
Computer Networks 199 (2021) 108470

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Lightweight method of shuffling overlapped data-blocks for data integrity
and security in WSNs
Francisco Alcaraz Velasco, Jose Manuel Palomares ∗, Joaquin Olivares
Department of Electronic and Computer Engineering, Universidad de Córdoba, Córdoba 14071, Spain

A R T I C L E I N F O

Keywords:
Wireless sensor networks
Security
Shuffling
Integrity
Overlapping blocks

A B S T R A C T

Wireless Sensor Networks (WSN) consist of devices with limited resources to explore and sense the environment
in a cooperative way. Security, mainly in terms of guaranteeing the data integrity, is a primary issue for many
applications, but with an extra energy cost. Thus, trade-off is required between security level and energy
consumption in real applications. First of all, a brief survey about security methods, focusing in data integrity,
in WSN is implemented. The objective of this paper is to propose a new data integrity method with medium
security levels and low energy cost. Therefore, we propose a new and lightweight mechanism for data integrity
with overlapping blocks in WSNs. Hence, an attacker will spend much time and effort to interpret and alter the
packets. The experiments were performed using TinyOS 2.1 operating system and TelosB nodes for measuring
the overhead in terms of energy consumption, memory, and packet size. Moreover, the receiver is able to
detect tampering packets and request those retransmission data. An attacker would require huge amounts of
memory and processing time to extract the original information, even for small-sized data blocks. Thus, this
fact makes this approach a simple, yet effective, mechanism to protect data whilst enhancing the data integrity.
1. Introduction

Wireless Sensor Networks (WSN) consist of small and autonomous
devices wirelessly connected cooperating to monitor or control an area.
These devices are based on small microcontrollers, low power radio
transceivers, limited power supply, sensors, and actuators. Thereby,
they present some limitations, as energy availability, computing power,
bandwidth and coverage to keep power consumption low [1,2].

Nevertheless, these networks create intelligent services to make
living environments more comfortable and safer with the networked
interconnection of everyday objects, in what is known as Internet
of Things [3]. In this way, wireless sensor networks are increasingly
becoming more widespread.

However, WSNs collect, transmit, store and potentially share vast
amounts of consumer data, and some of them contain sensitive and
private personal information. Therefore, mechanisms need to be used
to send the information securely [4,5], as security is an important
issue in WSNs [6,7]. However, the sensor nodes have limited hardware
resources and power energy units, and therefore there is a trade-off
between security and computing power [8].

Current trends in WSN and IoT usually require large amounts of
redundant data obtained from many sources, mainly sensors. Although
sensors send the data individually, new works [9,10] are providing
frameworks to send efficiently only the relevant information, structured

∗ Corresponding author.
E-mail address: jmpalomares@uco.es (J.M. Palomares).

in streams of blocks of data. In these cases, the security of each single
data is not so important, as the final systems are able to handle properly
some missing or altered data. The final systems must receive huge
amounts of data to perform the decision making. Therefore, those
nodes hosting the final systems are designed with buffers big enough
to store all the received data required for the computation. Thus, the
security for these systems can be considered within the integrity of each
individual data inside a larger block of information.

In this sense, this work aims at proposing a simple yet secure mech-
anism for multiple data flows. Therefore, our scope is focused in nodes
sending multi-packet data messages composed by a mixture of several
signals. So, it is possible to apply data combination to build a secure
data block. However, current state-of-the-art security mechanisms do
not seem to be suitable for the low-power, high-constraint wireless
motes involved in most WSNs. For instance, security solutions based
on encrypt algorithms would introduce large computational overhead.
Techniques based on watermarking are not able to make data flows
unintelligible. Besides, these solutions do not protect against side chan-
nel attacks [11]. Therefore, we propose a distributed and light security
scheme which prevents data blocks against tamperings. Moreover, the
proposed method transforms the interchanged data flows to make them
almost unintelligible to illegitimate users.
vailable online 13 September 2021
389-1286/© 2021 The Authors. Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.comnet.2021.108470
Received 20 January 2021; Received in revised form 24 April 2021; Accepted 6 Se
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ptember 2021

http://www.elsevier.com/locate/comnet
http://www.elsevier.com/locate/comnet
mailto:jmpalomares@uco.es
https://doi.org/10.1016/j.comnet.2021.108470
https://doi.org/10.1016/j.comnet.2021.108470
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2021.108470&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Computer Networks 199 (2021) 108470F. Alcaraz Velasco et al.

c

t
o
C

f
c
t
a
w

2

o
a
m

2

i
r
u

2

a
t
w
a
w
t

T
s
i

p
A
B
r
u

2

a
s
p
o
p

2

t
l
i
p
a
r

t
(

The rest of this article is organized as follows. Section 2 briefly intro-
duces techniques related with the data integrity and confidentiality in
WSNs. Section 3 describes our overlapping block mechanisms proposed
to protect WSNs from attacks and misbehavior. Section 4 presents
the hardware and software platform used to develop the proposals.
Section 5 describes the experiments and measures to evaluate our meth-
ods. Section 6 evaluates our proposals from the point of view security
services. Section 7 shows a comparison of the resource consumption
of the proposed scheme and other techniques presented in Section 2.
Section 8 concludes the technical report.

2. Foundations

Integrity and confidentiality are the leading security requirements
in WSNs to protect the information and resources from attacks and
misbehavior [12]. In this section, some works are described. The ad-
vantages and disadvantages of each technique are also highlighted.

2.1. Integrity schemes

Wireless communications are highly affected by external interac-
tions which can modify the messages. These modifications may be
unintentional (electromagnetic interference) or intentional (as injection
attacks or alteration of messages) [6]. Consequently, some mechanisms
are needed to detect errors or changes in messages. These mechanisms
add redundant or additional information, called Frame Check Sequence
(FCS), to the message to detect errors in transmission. In the following
sections, we present several techniques based on error-detecting codes,
hash functions, cryptography algorithms or watermarking schemes to
get FCS values.

2.1.1. Error-detecting codes
Error-Detecting Codes are widely used either in wired or wireless

networks. Only frames marked as correct are delivered to upper layers
of communication protocols, whilst frames with errors are dropped.
Cyclic Redundancy Check (CRC), one’s and two’s complement addition
hecksums are some examples of error-detecting codes.

Cyclic Redundancy Check (CRC): it is a powerful technique to detect
ransmission errors. Unlike the previous schemes, which are based
n addition, CRC is based on binary division. CRC-12, CRC-16 and
RC-CCITT are some examples of standardized polynomials.

Koopman at el. [13] evaluate the comparative error detection ef-
ectiveness, as well as cost performance trade-off points, of the most
ommonly used checksum approaches in embedded networks: XOR,
wo’s and one’s complement addition, Fletcher and Adler checksum,
nd CRC. They conclude that for all networks, a good CRC polynomial,
henever possible, should be used for error detection purposes.

.1.2. Hash functions
A hash function H maps an input message M to a fixed-length

utput H(M). Any modification to the original message M will result in
different hash value. This property enables the verification of integrity
essages. The followings hash functions have been analyzed:

• MD5: Rivest [14] obtains a hash length of 128 bits. Kyoungsoo
et al. [15] propose a secure scheme named TinyMD5 which uses
a modification of MD5 to generate a 32-bit hash. Due to a one-
way hash function, it has no decryption algorithm, the original
data are recovered by data matching on the base station. The
recovering process uses a matching and finding process in the
hash values stored in a database.

• SHA1: Secure Hash Algorithm (SHA) was one of the most widely
used hash functions.
2

a

.1.3. Message authentication code approaches
Message Authentication Codes (MACs) are a block of a few bytes that

s used to authenticate and check the integrity a message. Sender and
eceiver share a secret key. Different functions or algorithms can be
sed to calculate MACs, some of them are:

• HMAC: Keyed-Hashing for Message Authentication, defined in RFC
2104, it can be used with any iterative cryptographic hash func-
tion like MD5 or SHA-1, along with a secret shared key.

• Cipher-Block Chaining (CBC-MAC) Mode: to get the MAC code, the
message is encrypted using a cipher block operating with CBC
mode. In TinySec [16], link layer security architecture uses CBC as
its default mode of operation and Skipjack [17] as the encryption
algorithm. According to the experiments carried out by Jongdeog
et al. [18] on TelosB and AES with a 128-bit key as encryption
algorithm for 16-byte messages, CBC-MAC, XMAC and CMAC
take, 15.02 ms, 23.61 ms and 33.51 ms, respectively. Pereira [19]
analyzes the Marvin message authentication code with Curupira-2
as encrypt with 96-bit key size and 12-byte MAC size. On TelosB,
it requires 27.16 ms computation time for 108-byte messages.

• Offset Codebook Mode (OCB) approaches: TeenySec [20], a data link
layer security protocol is based on OCB and a private encryption
algorithm, Corrected Block Tea Algorithm (XXTEA). This protocol
outperforms Tinysec [16] because it consumes less energy and
produces less overhead in the packets.

.1.4. Watermarking approaches
Techniques based on watermarking offer lightweight data integrity

nd authentication schemes for WSN. The main objective of these
echniques is to introduce a piece of secret information, namely a
atermark, to detect any change in the original data streams. Kamel
nd Hussam [21] propose the MD5 hash function to generate the
atermark. Then, at the sender side, the watermark is embedded in

he least significant bits of the data.
In [22], a Position Random Watermark (PRW) method is designed.

he digital watermark is generated by a SHA-1 hash function and only
ome from the most significant bits of the watermark are embedded
nto dynamic positions of each packet.

However, watermarking methods are not comparable with our pro-
osed method because an attacker could interpret the transmitted data.
lso, the computational cost to calculate only the hash value is high.
esides, most watermarking methods require redundant bits in the data
eading to embed the watermark, so it could be a weakness, if the
nderlying WSN does not support those distortions in the data reading.

.2. Confidentiality approaches

In this section, some techniques to prevent the disclosure of secret
nd private information are analyzed. These mechanisms are clas-
ified in two categories: symmetric and asymmetric key cryptogra-
hy algorithms [23]. Energy consumption, time execution, and mem-
ry consumption are parameters evaluated to obtain the algorithm
erformance.

.2.1. Symmetric key encryption
These algorithms need a single key to encrypt and decrypt. Due to

he limited resources of WSNs, choosing any algorithm is a great chal-
enge. Cazorla et al. [24] present a study of 21 encryption blocks used
n the Texas Instruments 16-bit MSP430 microcontroller. Concerning
erformances, the best encryption/decryption processes in cycles/bytes
re AES, Noekeon, SPECK64, SPECK128 and SEA algorithms, which
equire less than 1000 cycles/byte.

Jongdeog et al. [18] studied AES, RC5, Skipjack, and XXTEA encryp-
ion algorithms on TelosB and MicaZ motes. Using Cipher block chaining
CBC) as mode of operation: Skipjack is the most energy-efficient

lgorithm of the fours.



Computer Networks 199 (2021) 108470F. Alcaraz Velasco et al.

u
c
s

k
i
r

3

w
c
a
F
(
m

S

p
a
m
a

M
i
B
p

3

Table 1
Original non-securized method.
Message-1 FCS-1-Hw
Message-2 FCS-2-Hw
... ..
Message-n FCS-n-Hw

Table 2
Overlapping Blocks, (OB).
Msg 1-a Msg 2-a .. Msg n-a FCS-a-Sw FCS-Hw
Msg 1-b Msg 2-b .. Msg n-b FCS-b-Sw FCS-Hw
.. .. .. .. .. FCS-Hw
Msg 1-m Msg 2-m .. Msg n-m FCS-m-Sw FCS-Hw
FCS-1-Sw FCS-2-Sw .. FCS-n-Sw FCS-m-n-Sw FCS-Hw

Table 3
Overlapping Blocks with Horizontal Shuffle, (OB_Ho).
Msg n-a FCS-a-Sw .. Msg 1-a Msg 2-a FCS-Hw
Msg 2-b Msg 1-b .. FCS-b-Sw Msg n-b FCS-Hw
.. .. .. .. .. FCS-Hw
Msg n-m FCS-m-Sw .. Msg 1-m Msg 2-m FCS-Hw
FCS-2-Sw FCS-1-Sw .. FCS-m-n-Sw FCS-n-Sw FCS-Hw

2.2.2. Asymmetric key encryption
These algorithms use a pair of different keys. Although private key

algorithms are much faster than public key algorithms, they present
some weaknesses such as: key management, key life-time, key inter-
change and digital signature [23].

Utku at al. [25] present an efficient software implementation of
the Rivest–Shamir–Adleman (RSA) cypher algorithm on TelosB devices,
tilizing several acceleration techniques. It achieves 1024-bit RSA en-
ryption and decryption operations on MSP430 in only 0.047 s and 1.14
, respectively.

Elliptic curve cryptography (ECC) is another widely regarded public
ey cryptographic primitive. Successive improvements in the math
mplemented in TinyECC [26] on TinyOS have allowed us to get a 2s
unning for signing and verifying.

. Methodology

In this section, we describe three overlapping block mechanisms
hich provide three security levels. Furthermore, it is possible to

hoose one mechanism according to the security level required by the
pplication. Table 1 shows the scheme to send a data block and the
rame Check Sequence (FCS) which is calculated by the hardware radio
FCS-Hw). In Section 3.2 the structure of the messages is described with
ore detail.

Table 2 shows the first proposal, which we have named Overlapping
Blocks (OB). In the first step, the transposed matrix is generated with
data block, and, in the second step, the FCS is calculated via software
for each column and row of the data blocks. The integrity software
method to calculate the FCS will be discussed in Section 4. Therefore,
the 𝑛 messages sent in the original non-securized method are sent in
the 𝑂𝐵 scheme by dividing each original message into 𝑚 different
pieces and creating a new message which is a composition of each
different part of the original messages. Thus, the original messages can
be obtained only if all the messages are captured.

The second method is named Overlapping Blocks with Horizontal
huffle, (OB_Ho). It is shown in Table 3. In this case, the chunks

are shuffled among columns but maintaining their position in rows.
Therefore, it is harder to interpret the communication for an intruder.
Graphically, the columns have different colors with respect Table 2.

Table 4 shows the last method named Overlapping Blocks with Com-
lete Shuffle, (OB_HoVe). The chunks can be shuffled among columns
nd rows. Thus, without the prior knowledge of the ordering, it is much
ore complex to interpret the messages by an attacker. Table 4 shows
3

n example after shuffling a data block.
Table 4
Overlapping Blocks with Complete Shuffle, (OB_HoVe).
FCS-1-Sw Msg 2-m .. FCS-b-Sw Msg n-a FCS-Hw
Msg n-m FCS-a-Sw .. Msg 1-b Msg n-b FCS-Hw
.. .. .. .. .. FCS-Hw
Msg 2-b Msg 2-a .. Msg 1-m FCS-m-n-Sw FCS-Hw
Msg 1-a FCS-n-Sw .. FCS-2-Sw FCS-n-Sw FCS-Hw

The receiver, using the software-computed FCS-Sw values, is able to
detect transmission errors and may request data retransmissions. The
receiver signals only the rows and columns where the FCS-Sw values
present errors. This procedure reduces energy consumption because a
complete resending of the complete data block is unnecessary.

3.1. Network architecture

In this section, the network architecture assumed in our protocol
is described. This architecture is based on clustering [27]. The cluster
head must first check data security. After that, it shuffles the received
data, and finally, sends the processed data to base station.

In Fig. 1, this architecture is presented. Nodes send Data Flow to
the head cluster, named D1, D2, D3. The head cluster builds a Data

essage after applying a data combination method. Then, Data Message
s shuffled and FCS integrity control is calculated. After that, a Data
lock is built with these data messages, which are sent using as many
ackets as necessary to send all the information to the Base Station.

.2. Packet and message structure

Fig. 2 shows the structure of the Data Messages of OB method, which
are encapsulated inside of the Data Packets.

The fields of the Data Packets structure depends on the communi-
cation standard. For instance, if the communication standard is IEEE
802.15.4 [28]:

• Metadata: example of these fields are frame control and address-
ing fields.

• Data Payload: this field encapsules the application data.
• CRC-Hw: this field is used for integrity control, which is calcu-

lated by the modem.

The Data Message fields are the following:

• SN-Data: Sequence Number-Data, this field has two objectives: The
first to provide freshness data control. This prevents an intruder
from requesting copies of old data values. The second one is
to provide authentication. The Sender and head-cluster must be
synchronized with the number of blocks that have been received
and sent. Using this value, the first byte value of a data packet
is decreased by the sender, and then it is light-signed using the
scheme proposed in [27]. The head cluster performs the inverse
process. This scheme has as an advantage that it does not generate
any additional overhead.

• Data: In this field, data readings of the 𝑂𝐵 mechanism are sent.
• FCS: Frame Check Sequence is computed via software. In Section 4,

the algorithm will be selected, based on our tests. Its objective is
to detect security faults and errors.

3.3. Authentication and seed generation

The working architecture of the proposed method is the clustering
depicted in Fig. 1. Thus, the Data Block will be authenticated using the
scheme proposed by Bouakkaz et al. [27].

The head cluster and nodes must carry out a handshake process
to interchange data of our overlapping mechanism. These sensitive



Computer Networks 199 (2021) 108470F. Alcaraz Velasco et al.
Fig. 1. Network Architecture.
Fig. 2. Packet and Message Structure.

Fig. 3. Procedure for sending information from a node to the Head cluster using
Overlapping Block method.

data should be securely sent. We use a private cypher mechanism
and, we take advantage of the radio [29]. Therefore, the head cluster
generates an 𝑁ℎ𝑐 nonce value as random value, an increasing sequence
𝐴 = (𝑎1, 𝑎2,… , 𝑎𝑡), with 𝑡 value as the cluster size. After that, the
head cluster calculates two integer values (W, n), where the n value
is greater than the sum of the 𝑎𝑖 values and the W value must satisfy
𝑔𝑐𝑑(𝑊 , 𝑎𝑖) = 1. Then, the head cluster sends each different private-
share key (𝑎𝑖,𝑊 , 𝑛,𝑁ℎ𝑐 ) to each node. Besides, during the shuffle
process the seed value is also calculated using this scheme.

The head cluster must be synchronized with each 𝑛𝑜𝑑𝑒𝑖 to know
how many blocks have been sent by each node. The head cluster
stores that value in the sequence 𝑆𝑁 = (𝑠𝑛1, 𝑠𝑛2,… , 𝑠𝑛𝑡). Fig. 3 shows
the execution flow diagram with the main steps for signing and seed
generation process from the head cluster to a 𝑛𝑜𝑑𝑒𝑖. The sender node
signs the packet according to the following equations:

𝑆𝑖𝑔𝑛 = 𝑎(𝑊 +𝑆𝑁+𝑁ℎ𝑐)
𝑖 mod 𝑛 (1)

𝑆𝑁_𝐷𝑎𝑡𝑎 = (𝑆𝑁_𝐷𝑎𝑡𝑎 − 𝑆𝑖𝑔𝑛) mod 255 (2)

The head cluster checks the authenticity of a data message us-
ing Eq. (3). The integrity control will fail if the first byte of data
4

Fig. 4. FCS Backwarding.

message has been altered or a replay attack has been generated.

𝑆𝑁_𝐷𝑎𝑡𝑎 = (𝑆𝑁_𝐷𝑎𝑡𝑎 + 𝑆𝑖𝑔𝑛) mod 255 (3)

3.4. Shuffle algorithms

Algorithm 1 shows the method to shuffle the chunks using the
Overlapping Blocks with horizontal shuffle scheme OB_Ho. The algorithm
used to apply Overlapping Blocks with complete shuffle scheme, OB_HoVe
is similar to OB_Ho, but it adds shuffle between rows.

Algorithm 1 Overlapping Blocks with horizontal shuffle
1: procedure Exchange by columns(𝐵𝑙𝑜𝑐𝑘𝐷𝑎𝑡𝑎, 𝑠𝑒𝑒𝑑𝐻𝑜)
2: 𝑟𝑜𝑤𝑠 ← 𝑙𝑒𝑛𝑔𝑡ℎ𝑃𝑎𝑐𝑘𝑒𝑡
3: 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 ← 𝑛𝑢𝑚𝑏𝑒𝑟𝑃𝑎𝑐𝑘𝑒𝑡
4: 𝑠𝑒𝑒𝑑 ← (𝑠𝑒𝑒𝑑𝐻𝑜 + 𝑛𝑢𝑚𝐵𝑙𝑜𝑐𝑘𝑆𝑒𝑛𝑡)
5: for 𝑖 ← 0, 𝑟𝑜𝑤𝑠 do
6: for 𝑗 ← 0, 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 do
7: 𝑗𝑢𝑚𝑝 ← (𝑗 + 𝑖 + 𝑠𝑒𝑒𝑑) mod 𝑐𝑜𝑙𝑢𝑚𝑛𝑠
8: if block(j) and block(jump) not shuffled then
9: 𝑎𝑢𝑥 ← 𝑏𝑙𝑜𝑐𝑘(𝑗)

10: 𝑏𝑙𝑜𝑐𝑘(𝑗) ← 𝑏𝑙𝑜𝑐𝑘(𝑗𝑢𝑚𝑝)
11: 𝑏𝑙𝑜𝑐𝑘(𝑗𝑢𝑚𝑝) ← (𝑎𝑢𝑥)
12: end if
13: end for
14: end for
15: end procedure

To increase the security level, the seed value is increased after
sending each block. After that, the seed value is added to each block
position of the data block chunk to obtain different shuffling values.

3.5. FCS backwarding

This section explains how FCS values are computed for the columns
of block 𝐵𝑖. These values are sent along with block 𝐵𝑖+1. With this
method, the security level is increased because the correlation between
FCS and the data blocks is reduced. However, this method has a small
drawback, because both sender and receiver need larger buffers. This
functionality is depicted in Fig. 4.



Computer Networks 199 (2021) 108470F. Alcaraz Velasco et al.
Fig. 5. Countermeasures when 𝐵𝑖 block is tampered.

3.6. Attack model and security analysis

WSN are exposed to more threats than wired networks, because they
have limited resources such as low available computational resources
and energy. Besides, the security protocol is also more complex for
those reasons. In this section, four usual types of attacks are analyzed,
and how our proposed method can prevent and mitigate their effects.

3.6.1. Attack model
Diaz et al. [30] make a classification of the type of attacks in

WSNs. We focus on four important and common attacks, which are the
following:

1. Tampering packet: a malicious node alters some data packets
and then, it forwards them.

2. Replay attack: an intruder resends old data packets. Therefore,
the freshness of the data is affected.

3. Packet forgery: a malicious node sends fake data packets, so the
traffic network is increased and the energy consumption rises,
consequently.

4. Selective forwarding: a malicious node sends data packets se-
lectively and other can be partially deleted, therefore this may
cause a loss of data in the head cluster.

3.6.2. Security analysis
This section analyzes how our protocol should behave when an

attack is presented. Fig. 4 depicts a data block sequence together with
the FCS Backwarding scheme. The following notation is used: 𝐵𝑖 is the
current data block, 𝐹𝐶𝑆𝑖−1 is the integrity control by columns for the
𝐵𝑖−1 block and 𝐵𝑖+1 is the following data block. 𝑀𝑖 is a data message,
which belongs to the 𝐵𝑖 block and its structure is depicted in Fig. 2.

1. Tampering packet: if the 𝐵𝑖 block has been tampered, the fol-
lowing may happen:

• The modifications affect some bytes in the 𝐹𝐶𝑆𝑖−1. An
integrity error of 𝐵𝑖−1 block is thrown. It is detected be-
cause the horizontal integrity will be corrected despite the
fact that the vertical integrity check will fail; therefore,
retransmissions are requested for resending the 𝐹𝐶𝑆𝑖−1
values where there are column errors. If the maximum
amount of attempts is reached, the 𝐵𝑖−1 block is discarded.

• The modifications affect bytes in the 𝑀𝑖 data message of
the 𝐵𝑖 block. When the head cluster receives the 𝐵𝑖+1 block,
an integrity error will occur. Therefore, the head cluster
will proceed to request retransmissions or to discard 𝐵𝑖
block if the maximum amount of attempts is reached.

Fig. 5 depicts in a diagram how the 𝐵𝑖 block is tampered.
2. Replay Attack: if a replay attack is launched in the 𝐵𝑖 block,

some 𝑀𝑖 data messages become old. The head cluster will detect
it when it receives the 𝐵 block, because the integrity control
5

𝑖+1
Fig. 6. 𝐵𝑖 block is replayed.

Fig. 7. 𝐵𝑖 block is forged.

of zero column will fail. However, the integrity control by rows
may be right, it would provoke the complete resubmission of
the 𝐵𝑖 block. Thus, the 𝐵𝑖 block is discarded. This behavior is
represented in Fig. 6.

3. Packet forgery: the 𝐵𝑖 block is altered by the inclusion of addi-
tional data. Fig. 7 depicts this procedure. The following options
are considered:

• The additional bytes change the length of the 𝑀𝑖 or 𝐹𝐶𝑆𝑖−1
making the message to be incorrect. So, the head cluster
discards the 𝐵𝑖 block in the first case (incorrect 𝑀𝑖 length)
and the 𝐵𝑖−1 block, in the other case.

• Another case comes out when those additional messages
are inserted into the 𝐵𝑖 block. So, when the number of
messages received achieves the size of block, all additional
messages are discarded. This, may provoke a fault in an
integrity control of the 𝐵𝑖 block because values of 𝐹𝐶𝑆𝑖
may not match. So, the 𝐵𝑖 block should be discarded.

• Additional messages which contain the values of the
𝐹𝐶𝑆𝑖−1 of the columns are discarded. However, in this
case, the integrity control of the 𝐵𝑖−1 block may be af-
fected. So, 𝐵𝑖−1 should be discarded.

4. Selective forwarding: the 𝐵𝑖 block is forwarded by deleting of
some data values. Fig. 8 shows the flow diagram of this behavior.
The following options are considered:

• Some readings of message 𝑀𝑖 are deleted, therefore the
length of the message is incorrect. So, this 𝑀𝑖 message
is discarded by the head cluster and retransmissions are
requested. If the maximum amount of attempts is reached,

the 𝐵𝑖 block is discarded.



Computer Networks 199 (2021) 108470F. Alcaraz Velasco et al.

4

i

4

m

4

s
C
a
a
s
b
a

a
t
o

T
E

o
M
t
m
m

4

f
a
f
t
R
t
t
b

4

s
i
w
C
T
t
M

X

t
o
f
l
h
t
i

c
m

5

a
m
t
t

Fig. 8. 𝐵𝑖 block is forwarded.

• Second case, some readings of messages which contain
the values of the 𝐹𝐶𝑆𝑖−1 are deleted. Therefore, their
lengths are incorrect and, these messages are discarded.
Once again, retransmissions are requested. If the maximum
amount of attempts is reached, the 𝐵𝑖−1 block is discarded.

• Another option is that 𝑀𝑖 or 𝐹𝐶𝑆𝑖−1 messages are fully
deleted. The 𝐵𝑖 block is discarded in the first case, and the
𝐵𝑖−1 block is rejected, in the second case.

. Implementation

In this section, we present the hardware and software platform used
n this project.

.1. Execution environment

The following execution environment is used to implement our
echanisms and to obtain experimental results and measures:

• The CM5000 mote is an IEEE 802.15.4 [28] compliant wire-
less sensor node based on the original open-source TelosB plat-
form [31]. We have selected TinyOS as open source Operating
System, which is commonly used by the scientific community.
The implementation of the proposals have been written using nesC
programming language [32], as a set of cooperating tasks and
processes.

• Moreover, we have used a second environment to study the
Hamming Distance and the Recall metric. This environment is
completely simulated and has been programmed in Java. It uses
the Eclipse IDE to provide the interface to obtain the results.

.2. CBC mode CC2420

The IEEE 802.15.4 standard provides security at the link layer,
upported by hardware in most standard radio transceivers, such as the
C2420 used on TelosB motes. This radio is able to perform encryption
nd decryption using the 128-bit Advanced Encryption Standard (AES)
lgorithm supported by IEEE 802.15.4. According to the IEEE 802.15.4
tandard, there are three modes of operation for encryption: Cipher
lock chaining-message authentication code (CBC-MAC), Counter (CTR)
nd Counter with CBC-MAC (CCM-MAC).

At first, we focused our attention in the CBC-MAC mode. When
message is received, a Message Integrity Code (MIC) is computed in

he first step. After that, in a second step, the computed 𝑀𝐼𝐶 value
btained from the message is compared with the MIC value stored in
6

able 5
xecution time and overhead length.
Checksums Time Overhead

XOR 4.43 μs 16 bits
C1 4.53 μs 16 bits
C2 4.37 μs 16 bits
ITU-T CRC-16 4.98 μs 16 bits

Hashs Time Overhead

MD5 1.73 ms 128 bits
SHA1 6.2 ms 160 bits

MAC-algorithm Time Overhead

HMAC 92.75 ms [19] 128 bits
Marvin 17.54 ms [19] 96 bits
CBC-MAC 15.7 ms [18] 32 bits

the RXFIFO register. The last byte of the MIC is replaced by hardware.
Therefore, the original MIC value is not accessible to the 𝑂𝑆𝐼 layers
f the network stack model. Then, the Counter with CBC-MAC (CCM-
AC) works with the MIC value as with the CBC-MAC mode. Thirdly,

he Counter (CTR) does not provide integrity control. Due to this, these
odes of operation cannot be used to control the integrity of data
essages in our proposed method.

.3. CRC-16 computation by CC2420

The CC2420 radio computes a 2-byte frame check sequence (FCS)
ollowing the last MAC payload byte, using the ITU-T CRC-16. When

packet is received, the most significant bit in the last byte of each
rame is set to high, if the CRC of the received frame is correct, and
o low, otherwise. The remaining 15 bits of FCS are replaced by the
SSI value, which is the average correlation used for LQI. Therefore,

he original value of CRC16 cannot be queried by the upper layers of
he network stack. Thus, the CRC-16 computation by CC2420 cannot
e used in our proposal.

.4. Selected frame check sequence

In this section, the Frame Check Sequence of our mechanism is
elected among the alternatives presented in Section 2. The stud-
ed parameters are: execution time, overhead length, and Hamming
eight. Table 5 shows the execution time and the overhead length.
hecksums and Hash algorithms have been programmed in nesC on
inyOS Operating System. The processing times have been measured
hrough LocalTimeMicroC components of TinyOS. Execution times of
AC algorithms have been taken from [19] and [18].

In Maxino et al. [13] the checksums using the Hamming weights of
OR, C1 and C2 complements checksums are studied.

We decided analyze the different checksum algorithms according
o the Hamming Weights in order to select the most suitable one for
ur proposal. Some of the values selected for the analysis are the
ollowing: 16 bits are used for the integrity control and 32 bytes for
ength messages. Also, 2, 4, and 6 errors in different random positions
ave been injected. According to Fig. 9, the CRC-16 of CCITT provides
he best results compared to the XOR, C1 and C2 complements, because
t has the lowest Hamming weights of all of them.

Therefore, we have decided to use the CRC-16 of CCITT for the
omputation of the Frame Control Sequence to implement our security
echanisms, as proposed in Section 3.

. Results

In this section, we described the experiments (or benchmark tests)
bout our OB mechanisms. We included a simulated man-in-the-middle
odule, which randomly changes some bytes of the data block to verify

hat the head cluster is able to detect these modifications and requests
he sender to resubmit all the altered data.



Computer Networks 199 (2021) 108470F. Alcaraz Velasco et al.
Fig. 9. Hamming weights.

Fig. 10. Receiving Data with error.

5.1. Simulated man-in-the-middle

This section shows how two motes send a 128-byte data block,
with data values going sequentially from 0 to 127, in order to help
in the evaluation of the results of the experiments. The motes use
the OB mechanism. Besides, a simulated man-in-the-middle module
is included. This module is programmed to alter 1 byte with a 50
hexadecimal value.

In Fig. 10, a data block is sent from Node 2 to the Head Cluster
(Node 3). Some labels have been included in Fig. 10. In the following
list, every labels is described:

1. Payload in hexadecimal notation.
2. CRC-16 computed for a row.
3. CRC-16 computed for columns of data block.
4. The Head Cluster (Node 3) detects one error in the fifth column

and third row. Therefore, it requires Node 2 to resend those data.

Fig. 11 shows the result of a test where:

1. Node 3 sends to Node 2 a NO_ACK_BLOCK message because
an error is detected when comparing the CRC values. Besides,
Node 3 sends the column and row numbers where the error has
been detected. These errors are represented in Fig. 10 with a
highlighted 50 hexadecimal value.

2. Node 2 resends only the data corresponding to the intersection
of the columns with the rows where there are errors.

3. If no error is detected, Node 3 informs Node 2 with an
ACK_BLOCK message. After that, Node 3 shuffles back the data
block using Algorithm 1 to obtain the original position of data
block.
7

Fig. 11. Detecting Errors.

Table 6
Overhead data messages (bytes).

Data Overhead % Overhead

base 128 0 0%
OB 128 48 37.5%
OB_Ho 128 48 37.5%
OB_HoVe 128 48 37.5%

Fig. 12. Example Overhead Packets.

5.2. Overhead

In this subsection, the overhead from the four alternatives is shown:
first, the data block is sent without any security solution, this version
is called base. In the second option, integrity control is added with our
(OB) method which adds the integrity control for each row and column
of data block. Third alternative is added with the horizontal shuffle
mechanism (OB_Ho), and the last one is with all the previous options
and complete shuffle (OB_HoVe). The data block has a size of 8 bytes
of payload and 16 messages, so the block has a total length of 128
bytes. Table 6 shows the results. There is no overhead increase among
(OB) mechanisms. The main overhead element is due to the integrity
control. This value decreases if the block size is greater. In Fig. 12 three
different size blocks are shown. The third block, B3, has a size of 1024
bytes and requires 128 bytes to send all CRCs, so the overhead is 12.5%,
which is lower than the one in block B1, which is 37.5%. because all the
computation to shuffle carried out by each node and the head cluster
is the same.



Computer Networks 199 (2021) 108470F. Alcaraz Velasco et al.

5

w
t

s
t
l

5

h
s
e
H
p

5

w
t

Table 7
Transmission Time (μs), Time increase(%), Energy Consumption (mJ), and Energy
increase(%).

Time % Time Energy %Energy

Tiny 54.78 0 31.46 0%
OB 68.93 20.5% 39.54 20.43%
OB_Ho 88.24 37.9% 50.67 37.91%
OB_HoVe 90.52 39.5% 51.98 39.47%

Table 8
ROM/RAM usage memory (bytes).

ROM RAM %ROM %RAM

Tiny 18,336 2,752 36.5% 22.86%
OB 18,780 2,896 37.4% 24.05%
OB_Ho 19,022 2,896 37.9% 24.05%
OB_HoVe 19,330 2,912 38.5% 24.19%

5.3. Energy consumption

This section shows the transmission time and energy consumption
based on TelosB nodes. The results are shown in Table 7. The following
assumptions are considered:

• The size of data block is 128 bytes.
• The current consumption of the radio modem to transmit is 17.4

mA with a supply voltage of 3.5 V.
• The average time spent (μs) to send five blocks.

.4. Usage memory

In this section, memory usage is analyzed. Table 8 shows this usage
ith other security solutions. The following considerations have been

aken into account:

• The size of the block is 16 columns and 8 rows, therefore 128
bytes are sent.

• The first version, called Tiny, sends the data blocks without any
security.

• Security services have been included incrementally: authentica-
tion service and integrity control in the OB method. The horizon-
tal shuffle is included in the OB_Ho method. Finally, OB_HoVe is
included with full horizontal and vertical shuffle.

• The TelosB nodes have 49 KB ROM memory and 10 KB RAM
memory.

The percentage of usage introduced by the OB_HoVe, which has all
ecurity services, produces an overhead of 1.23% RAM as compared to
he Tiny version and 2.0% in ROM. Therefore, this overhead has a very
ow impact in comparison with unsecured version.

.5. Recall

In this subsection, the recall values are presented. 200 data blocks
ave been used, with a size of 8 messages and a payload of 16 bytes. Be-
ides, all blocks have some collision in the checksums. Therefore, these
rrors cannot be detected by the XOR, C1, C2 and CRC16 methods.
owever, our OB methods include a double integrity control, which
rovides a 100% recall, as it is shown in Table 9.

.6. Retransmissions

In this section, the percentage of retransmitted bytes and the savings
hen an error is detected are presented. The following issues must be

aken into consideration:

1. Due to the mathematical properties of CRC, when an error is
detected, the rows and columns which were modified are known.
8

Table 9
Recall values.

False negative True positive Recall

XOR 200 0 0%
C1 200 0 0%
C2 200 0 0%
CRC16 200 0 0%
OB 0 200 100%
OB_Ve 0 200 100%
OB_HoVe 0 200 100%

Fig. 13. Percentage of Resent and Saved Bytes.

2. Considering 𝑅𝑐 , 𝑅𝑟 the two different identifiers of columns and
rows with errors, the amount of retransmitted bytes are 𝑅 =
𝑅𝑐 × 𝑅𝑒. Therefore, this number is a suboptimal value due to
issue number 1.

3. The worst case occurs when the modified values are the only
ones in the diagonal block. This triggers the resubmission of a
quantity between 50% and 100% of the blocks, depending on
the size block.

In Fig. 13, a block with 16 bytes of message length and 8 messages
by block is used for the experimental setup. Therefore, the size block is
128 bytes. This figure represents the percentage of retransmitted bytes
versus the percentage of saved bytes because the block has not been
completely resent. These savings are represented in red under the series
named Sa (Savings). Savings ranging from 80% to 90% when 𝑅𝑐 is low
and 𝑅𝑟 is high, or viceversa have been obtained. It is worth mentioning
that when the savings are below 50%, the best option is to discard the
block completely and request a complete retransmission.

5.7. Throughput

This section shows the throughput using three block sizes: 64,
128, and 256 bytes. We make some assumptions [33,34]: there are
only two motes with direct vision, no IEEE 802.15.4 beacon mode
is used, and the receiver does not send any ACK after receiving a
packet. Fig. 14 shows that the larger the block size, the higher the
throughput achieved. Besides, the proposed OB_HoVe method provides
a throughput which is slightly lower than, the other two techniques,
OB and OB_Ho.

5.8. Simulating attacks

This section analyzes how our protocol responses when a malicious
node throws randomly some attack presented in Section 3.6.2. To check
the anti-attack capability of our protocol, each experiment is repeated
50 times, 10 data blocks have been sent with messages of 16 byte length
and 8 messages each data block check. Table 10 shows the results,
100% of the committed attacks are detected.



Computer Networks 199 (2021) 108470F. Alcaraz Velasco et al.

d
s
d
t

6

s
T

c

F
s

m
m
l
a
S
d
p
m
v
t
b
T
c
p

6

S

Fig. 14. Throughput.

Table 10
Percentage of detection.

Type of attack Attacks Detected

Tamper 355 100%
Replaying 435 100%
Forwarding 420 100%
Forgery 390 100%

Fig. 15. Tampering Attack Example.

Table 11
Security services.

OB TinySec TeenySec WaterMarking

Cypher ✗ ✓ ✓ ✗

Integrity ✓ ✓ ✓ ✓

Freshness ✓ ✗ ✓ ✓

Authentication ✓ ✓ ✓ ✓

Side-channel attack ✓ ✗ ✗ ✗

Fig. 15 shows a tampered attack example with 10 blocks. Blue
ata series represents message number tampered by block. Orange data
eries represents the amount of tampered bytes by message and yellow
ata series shows the amount of bytes that need to be resent by a node
o the head cluster because of the data block integrity.

. Comparisons

In this section, the proposed mechanism is evaluated from the
ecurity services point of view. In Table 11, these services are shown.
he symbol ✗ represents that the service is not implemented, whilst

✓ means that the security service is included.
The Overlapping Block, (OB) mechanism is able to provide a simple

yet lightweight privacy service by shuffling the positions of the data
within the block. Therefore, these methods provide privacy but do
not encrypt data. Thus, the processing requirements are lower. Be-
sides, a lower but sufficient level of confidentiality is reached using
the OB_Ho and OB_HoVe methods. The OB methods achieve a strong
9

T

Table 12
Comparing overhead. Payload: 16 bytes.

Bytes % Overhead % Overhead
vs. base vs. OB_HoVe

base 16 0% –
OB 18 11.11% 0%
OB_Ho 18 11.11% 0%
OB_HoVe 18 11.11% 0%
PRW 18 11.11% 0%
FWC-D_bp 18 11.11% 0%
TeenySec 19 15.79% 4.68%
CBC-MAC-4 20 20.00% 8.89%
TinySec 21 23.81% 12.7%
CBC-MAC-6 22 27.27% 16.16%
CBC-MAC-8 24 33.33% 22.22%
FWD-C 34 52.94% 41.83%

integrity control, because a double integrity control using the CRC-16
algorithm is included. The freshness in the data is obtained with the
sequence number, which prevents from replay attacks. A lightweight
authentication service is provided by Bouakkaz et al. [27] algorithm.
An additional advantage provided by our methods is the prevention of
side-channel attacks, because the sensitive data are sent mixed among
the rest of the data. So, it is more difficult for a man-in-the-middle
attacker to detect the sensitive data within all the intercepted data.
Another important security service is the extreme to extreme security,
because the data block can be understood only by sender and receiver.

6.1. Comparing overhead

This section shows the advantages of our proposed methods in terms
of overhead, comparing it with others methods, studied in Section 2.
Table 12 shows the overhead introduced by our method and the rest
of the studies vs. the base version. This base version is the standard
ommunication mechanism in TinyOS without any additional coding

or integrity enhancement. Then, we compare the overhead of other
mechanisms with respect to our OB_HoVe method. The overhead has
been computed assuming messages with 16 bytes of payload.

First column shows the method under comparison. The second
column shows the sum of bytes of the payload with additional bytes
produced by the security method. The third column represents the
overhead percentage of security methods regarding to base version.
inally, in the fourth column, we show the overhead percentage of each
ecurity method vs. the OB_HoVe proposed mechanism.

These results are graphically shown in Fig. 16. All studied security
echanisms produce overhead respect to base version. Our proposed
echanisms generate an overhead of 11.11%, which is one of the

owest along with the watermarking methods. However, watermarking
pproaches have some drawbacks, which have been highlighted in
ection 2.1.4. In this sense, if the underlying WSN does not support
istortions in the bits of the data readings to embed the watermark, it
roduces a large overhead, as it can be seen in the FWC-D watermarking
ethod, which has an overhead of 52.94% regarding to the base TinyOS

ersion and 41.83% overhead compared to the OB_HoVe proposal. On
he other hand, if the watermarking is able to modify the precision
its of the data readings, it provides similar overhead to our proposal.
his is the case of PRW and FWC-D_bp methods. Nevertheless, the
omputational cost to obtain the hash value is much higher than the
rocessing cost of OB_HoVe, as shown in Fig. 17.

.2. Execution time

In this subsection, the execution times of the methods presented in
ection 2 and our OB_HoVe proposed method are indicated.

Fig. 17 shows the execution time (measured in milliseconds) on
elosB nodes of the followings algorithms: AES-128 using AES-C to



Computer Networks 199 (2021) 108470F. Alcaraz Velasco et al.

t
p
v

1

6

a

c
a
t
i
T
p
c
t
d

T
m
T
o
a
C
𝜇
t
r
o
M

m
o
a
m
t
e
b
6
t
t
d
i
s
a

Fig. 16. Comparing Overhead.

Fig. 17. Execution Time Algorithms.

cypher, and AES-D to decypher, both with 16-byte messages; RSA-
1024 bits using RSA-C for encryption and RSA-D for encryption. All
he measures have been taken from [25]. Finally, ECC is also com-
ared using ECC-S for the cryptographic signature and ECC-V for the
erification [26].

However, our OB_HoVe method requires only 819 μs to disorder a
28 byte data block, which is much lower than the other algorithms.

.3. Lightweight privacy

Although the main focus of the proposal is to provide data integrity
nd a certain degree of security against attacks, the OB_HoVe mech-

anism is able to provide a very lightweight level of privacy to the
data without encryption. In this sense, without any prior knowledge
of the interchanged data, the proposed method is able to hide the
data values within all the rest of the values. If there is no semantic
hint applicable to the data, OB_HoVe shuffles all the data values of
several different variables making original ordering very hard to obtain.
Moreover, the CRC values of the rows and columns are sent in the
following block. Therefore, there is no clue about the correct ordering
of the cells which forms the message. The worst case for an attacker
would be to know nothing from the data or the positions on the matrix
for the data and the CRC. As we have stated earlier, there is no guess
on the data, either semantic or by similarity of the involved values.
Therefore, the positions of the cells are unknown and the only way to
break the privacy is by guessing the ordering. On the other hand, the
best scenario for an attacker is to be able to determine which cells of the
matrix include data values and which ones not, because this scenario
would reduce the amount of possible data sources. Thus, by brute force
attack, if the CRC cell positions are known, for a given 𝑛×𝑚 matrix, the
total amount of possible rows to be check is provided by the variations
without repetitions of 𝑛−1 values (as one value is the CRC of that row)
out of the 𝑛 × 𝑚 values of the shuffled matrix, as described in Eq. (4).

𝑉(𝑛−1⋅𝑚−1),(𝑛−1) =
((𝑛 − 1) ⋅ (𝑚 − 1))! (4)
10

(𝑛 ⋅ 𝑚 − 𝑚 − 2 ⋅ 𝑛 + 2) b
Each possible row is then CRC-computed and selected if the result-
ing CRC value is found in the following block. It is expected to find
exactly 𝑚 − 1 rows that fulfills this requirement. Finally, the ordering
of the 𝑚 − 1 of the selected rows can be obtained by the permutation
of this amount: 𝑉𝑟𝑜𝑤𝑠 = (𝑚 − 1)!

For instance, for a 9 × 9 matrix sending a total amount of 162
bytes, and knowing in advance which cells include CRC values, by
brute force, an attacker should check 1.78𝐸 + 14 vectors of 8 values
of 16-bits. This huge amount of vectors would require more than 2.8
Petabytes of memory. In a 4-GHz computer running an efficient CRC
software implementation would take more than 25 days of computation
(without taking into account the memory access latencies). Therefore,
considering that most WSN use the received data to take immediate
decisions, the exploited data obtained by the attacker is too old and
probably, it has been used long time ago by the WSN system. Thus,
OB_HoVe proposed method provides an enough strong privacy mecha-
nism, if every specific data value cannot be semantically distinguished
from the rest of the data values.

7. Discussion

In this section, a comparison of the resource consumption of the pro-
posed scheme and other techniques presented in Section 2 is shown. In
the R-CS [35] scheme studied to improve the ARQ Scheme, no resource
consumption measures are provided. However, they proposed to use
CRC64, MD5, and Tiger as one-way hash functions. These methods add
a large overhead, in terms of packet length by means of adding 64, 128,
and 192 bits, respectively.

TinyMD5 [15] is a modification of MD5, proposed to improve the se-
urity of WSNs. Its evaluation is based on the amount of hash collisions
nd the energy consumption in a simulated environment. According
o the authors, TinyMD5 shows reductions in communication costs and
mprovements in the network lifetimes compared to previous schemes.
his integrity method increases the overhead in two bytes for each
acket compared to our OB mechanisms. In TinyMD5, the integrity
ontrol is centralized on the base station. However, it is worth men-
ioning that our proposed method carries out the integrity control in a
istributed way, in each head cluster.

Regarding MAC methods, the CBC-MAC is used, for example, in
inySec when operating in TinySec-Auth authentication mode. This
ode increases energy consumption in 3% compared to the original
inyOS stack in order to send 24 bytes of data. Also, it increases the
verhead in 2 bytes compared to CRC16. This architecture is only avail-
ble in TinyOS 1.x and Mica2 nodes. Using the same measure as [18],
BC-MAC code using AES-128 with a 16-byte message consumes 112.2
𝐽 . Therefore, it entails about 15 ms, which is a much larger time than
he one used to compute with CRC16. The hardware of the CC2420
adio could be used too. However, CBC-MAC has not been selected in
ur proposal because of the flaws described in Section 4.2. Besides CBC-
AC has some other weaknesses [18], which prevents us from using it.

With regard to the watermarking methods [21,22,36], it must be
entioned that, only sink nodes or base stations check the integrity

f the messages. However, in our scheme, all the head clusters are
ble to test the integrity and to authenticate the messages. Therefore,
essages with errors will not reach the sink node. Thus, it would reduce

he network traffic and energy consumption. In Fig. 13 this saving of
nergy is shown. For example, one packet with 8 errors in different
ytes would provoke the retransmission of messages representing about
.3% of the size of the block but saving 93.7%. On the other hand, most
he watermarking methods require redundant bits in the data to embed
he watermark. That can be taken as a weakness if the underlying WSN
oes not support those types of distortions in the payload. Besides,
n [22], the most significant bits of watermark are chosen. However,
electing only 2, 4, or 8 bits would largely increase the probability of
hash collision. Therefore, it would be necessary to select more bits,

ut this would increase the overhead.



Computer Networks 199 (2021) 108470F. Alcaraz Velasco et al.

h
B
O
e

o
t
h
b

v

Our overlapping method is based in a cryptographic principle,
named diffusion, which hides the relations between encrypted and
plain text. The confidentiality approaches in Sections 2.2.1 and 2.2.2
apply, in addition to diffusion, another cryptographic principle, named
confusion. This last principle requires complex math operations. There-
fore, these algorithms require more processing time than our overlap-
ping methods, although they provide higher security level. Thus, there
is a tradeoff between the security solution chosen and its costs.

8. Conclusions

A lightweight integrity mechanism with overlapping blocks provid-
ing multipacket data which is addressed to provide integrity for data
messages using the ITU-T CRC16 has been designed. Three mechanisms
ave been developed to provide different levels of security: Overlapping
lock (OB), Overlapping Block with Horizontal shuffle (OB_Ho) and
verlapping Block with complete shuffle (OB_HoVe). According to the
xperimental tests that have been carried out, the OB_HoVe mecha-

nism generates less readable data blocks than the other two proposed
mechanisms (OB and OB_Ho). However, obtaining that higher level
f security implies that the OB_HoVe mechanism spends more energy
han the others two, about 6𝜇J as shown in Table 7. On the other
and, the overhead included by OB, OB_Ho and OB_HoVe is similar,
ecause the main overhead is produced by CRC-16, as shown in Table 6.

Therefore, we can conclude that the OB_HoVe mechanism produces
the least readable message, requiring very few additional resources
more than the rest of the proposed mechanisms. We have tested this
functionality by developing an experiment with a man-in-the-middle
module. This module randomly modifies some bytes in the packets.
Thus, the receiver is able to detect these errors. Because of the structure
of the multipacket, the receiver requests only those columns and rows
which are wrong, with a large reduction in the required retransmissions
of packets.

Our integrity scheme is distributed, because all the receivers (head
cluster and base station) can check the integrity of the data. Therefore,
it is unnecessary to wait for the data to arrive at the sink node to check
their integrity. This leads to a reduction in the number of exchanged
data in the network and, consequently, in the energy consumption as
shown in Fig. 13.

Our proposed scheme is interesting, because, on one hand, it applies
a lightweight integrity mechanism jointly with overlapping and, on the
other hand, the authentication is obtained with a very light method
as proposed by [27]. Besides, no software cryptographic algorithm is
used, which is an advantage from the point of view of the resource
consumption.

CRediT authorship contribution statement

Francisco Alcaraz Velasco: Conceptualization, Methodology, In-
estigation, Writing – original draft, Software. Jose Manuel Palo-
mares: Conceptualization, Validation, Formal analysis, Resources, Writ-
ing – review & editing, Supervision. Joaquin Olivares: Validation,
Resources, Writing – review & editing, Supervision, Funding acquisi-
tion.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work has been partly supported by the Spanish Ministry of Sci-
ence, Innovation, and Universities grant RTI2018-098371-B-I00, and,
the Advanced Informatics Research Group – GIIA (TIC-252). Funding
11

for open access charge: Universidad de Córdoba / CBUA (Spain).
References

[1] P. Baronti, P. Pillai, et al., Wireless sensor notherswork: A survey on the state
of the art and the 802.15.4 and ZigBee standars, Comput. Comun. 30 (7) (2006)
1655–1695, http://dx.doi.org/10.1016/j.comcom.2006.12.020.

[2] A. Belfkih, J. Duvallet, et al., A survey on wireless sensor notherswork databases,
Comput. Nothersworks 25 (8) (2019) 4921—4946, http://dx.doi.org/10.1007/
s11276-019-02070-y.

[3] J. Horn, A. Koohang, et al., The Internothers of Things: Review and theo-
rothersical framework, Expert Syst. Appl. 133 (2019) 97–108, http://dx.doi.org/
10.1016/j.eswa.2019.05.014.

[4] P. Sandeep, W. Wanqing, et al., Medical information security for wearable body
sensor nothersworks in smart healthcare, IEEE Consum. Electron. Mag. 8 (5)
(2019) 37–41, http://dx.doi.org/10.1109/MCE.2019.2923925.

[5] N.B. Gaathri, G. Thumbur, et al., Efficient and secure pairing-free certificateless
aggregate signature scheme for healthcare wireless medical sensor nothersworks,
IEEE Internothers Things J. 6 (5) (2019) 9064–9075, http://dx.doi.org/10.1109/
JIOT.2019.2927089.

[6] C. Karlof, D. Wagner, et al., Secure routing in wireless sensor nothersworks:
Attacks and countermeasures, in: Proceedings of the First IEEE International
Workshop on Sensor Notherswork Protocols and Applications, Anchorage (USA),
2003, pp. 113–127, http://dx.doi.org/10.1109/SNPA.2003.1203362.

[7] S. Taisuk, C. Youngho, An enhanced trust mechanism with consensus-based false
information filtering algorithm against bad-mouthing attacks and false-praise
attacks in WSNs, Electronics 8 (11) (2019) 1359, http://dx.doi.org/10.3390/
electronics8111359.

[8] A. Carrasco, F. Alcaraz, et al., Securing a wireless sensor notherswork for human
tracking:a review of solutions, Int. J. Commnun. Syst. (27) (2014) 4384—4406,
http://dx.doi.org/10.1002/dac.2621.

[9] Fernando León-García, José M. Palomares, Joaquín Olivares, D2R–TED: data–
domain reduction model for threshold-based event dothersection in sensor
nothersworks, Sensors 18 (2018) 3806, http://dx.doi.org/10.3390/s18113806.

[10] F. León-García, F.J. Rodríguez-Lozano, J. Olivares, J.M. Palomares, Data commu-
nication optimization for the evaluation of multivariate conditions in distributed
scenarios, IEEE Access 7 (2019) 123473–123489, http://dx.doi.org/10.1109/
ACCESS.2019.2936918.

[11] O. Westman, M. Hell, Electromagnothersic side-channel attack on AES using
low-end equipment, ECTI Trans. Comput. Inf. Technol. 14 (2) (2020) 139–148,
http://dx.doi.org/10.37936/ecti-cit.2020142.239925.

[12] Y. Wang, G. Attebury, et al., A survey of security issues in wireless sensor
nothersworks, IEEE Commun. Surv. Tutor. 8 (2) (2006) 2–23, http://dx.doi.org/
10.1109/COMST.2006.315852.

[13] T.C. Maxino, P.J Koopman, et al., The effectiveness of checksums for embedded
control nothersworks, Ieee Trans. Dependable Secur. Comput. 6 (1) (2007)
59–72, http://dx.doi.org/10.1109/TDSC.2007.70216.

[14] R.L Rivest, RFC1321: The MD5 message digest algorithm, Tech. rep., RFC Editor,
USA, 1992.

[15] B. Kyoungsoo, L. Yunjeong, et al., An energy-efficient secure scheme in wireless
sensor nothersworks, J. Sensors (2016) 11, http://dx.doi.org/10.1155/2016/
1321079.

[16] C. Karlof, N. Sastry, et al., TinySec: A link layer security architecture for wireless
sensor nothersworks, in: Proceedings of the 2Nd International Conference on
Embedded Nothersworked Sensor Systems, New York (USA), 2004, pp. 162–175.

[17] L. Knudsen, D. Wagner, On the structure of Skipjack, Discrotherse Appl. Math.
(1) (2001) 103–116, http://dx.doi.org/10.1016/S0166-218X(00/00347-4.

[18] L. Jongdeog, K. Kapitanova, et al., The price of security in wireless sensor nother-
sworks, Comput. Nothersworks 54 (17) (2010) 2967–2978, http://dx.doi.org/
10.1016/j.comnothers.2010.05.011.

[19] G. Pereira, R. Alves, et al., Performance evaluation of cryptographic algo-
rithms over IoT platforms and operating systems, Secur. Commun. Nothersworks
(2046735) (2017) 16.

[20] M. Dener, O. Faruk, TeenySec: a new data link layer security protocol for
WSN, Secur. Commun. Nothersworks (18) (2016) 5882–5891, http://dx.doi.org/
10.1002/sec.1743.

[21] K. Ibrahim, J. Hussam, A lightweight data integrity scheme for sensor
nothersworks, Sensors 11 (4) (2011) 4118–4136, http://dx.doi.org/10.3390/
s110404118.

[22] G. Zhang, L. Kou, et al., A new digital watermarking mothershod for data
integrity protection in the perception layer of IoT, Secur. Commun. Nothersworks
2017 (2017) 12, http://dx.doi.org/10.1155/2017/3126010.

[23] A. Menezes, C. van Oorschot, S. Vanstone, Handbook of Applied Cryptography,
CRC Press, 1996, p. 794.

[24] M. Cazorla, S. Gourgeon, et al., Survey and benchmark of lightweight block
ciphers for MSP430 16-bit microcontroller, Secur. Commun. Nothersworks (18)
(2015) 3564–3579, http://dx.doi.org/10.1002/sec.1281.

[25] U. Gulen, A. Alkhodary, et al., Implementing RSA for wireless sensor nodes,
Sensors (13) (2019) 15, http://dx.doi.org/10.3390/s19132864.

[26] A. Liu, P. Kampanakis, P. Ning, TinyECC: elliptic curve cryptography for
sensor nothersworks, in: International Conference on Information Processing
in Sensor Nothersworks (Ipsn 2008), 2008, pp. 245–256, http://dx.doi.org/
10.1109/IPSN.2008.47.

http://dx.doi.org/10.1016/j.comcom.2006.12.020
http://dx.doi.org/10.1007/s11276-019-02070-y
http://dx.doi.org/10.1007/s11276-019-02070-y
http://dx.doi.org/10.1007/s11276-019-02070-y
http://dx.doi.org/10.1016/j.eswa.2019.05.014
http://dx.doi.org/10.1016/j.eswa.2019.05.014
http://dx.doi.org/10.1016/j.eswa.2019.05.014
http://dx.doi.org/10.1109/MCE.2019.2923925
http://dx.doi.org/10.1109/JIOT.2019.2927089
http://dx.doi.org/10.1109/JIOT.2019.2927089
http://dx.doi.org/10.1109/JIOT.2019.2927089
http://dx.doi.org/10.1109/SNPA.2003.1203362
http://dx.doi.org/10.3390/electronics8111359
http://dx.doi.org/10.3390/electronics8111359
http://dx.doi.org/10.3390/electronics8111359
http://dx.doi.org/10.1002/dac.2621
http://dx.doi.org/10.3390/s18113806
http://dx.doi.org/10.1109/ACCESS.2019.2936918
http://dx.doi.org/10.1109/ACCESS.2019.2936918
http://dx.doi.org/10.1109/ACCESS.2019.2936918
http://dx.doi.org/10.37936/ecti-cit.2020142.239925
http://dx.doi.org/10.1109/COMST.2006.315852
http://dx.doi.org/10.1109/COMST.2006.315852
http://dx.doi.org/10.1109/COMST.2006.315852
http://dx.doi.org/10.1109/TDSC.2007.70216
http://refhub.elsevier.com/S1389-1286(21)00420-5/sb14
http://refhub.elsevier.com/S1389-1286(21)00420-5/sb14
http://refhub.elsevier.com/S1389-1286(21)00420-5/sb14
http://dx.doi.org/10.1155/2016/1321079
http://dx.doi.org/10.1155/2016/1321079
http://dx.doi.org/10.1155/2016/1321079
http://dx.doi.org/10.1016/S0166-218X(00)00347-4
http://dx.doi.org/10.1016/j.comnothers.2010.05.011
http://dx.doi.org/10.1016/j.comnothers.2010.05.011
http://dx.doi.org/10.1016/j.comnothers.2010.05.011
http://refhub.elsevier.com/S1389-1286(21)00420-5/sb19
http://refhub.elsevier.com/S1389-1286(21)00420-5/sb19
http://refhub.elsevier.com/S1389-1286(21)00420-5/sb19
http://refhub.elsevier.com/S1389-1286(21)00420-5/sb19
http://refhub.elsevier.com/S1389-1286(21)00420-5/sb19
http://dx.doi.org/10.1002/sec.1743
http://dx.doi.org/10.1002/sec.1743
http://dx.doi.org/10.1002/sec.1743
http://dx.doi.org/10.3390/s110404118
http://dx.doi.org/10.3390/s110404118
http://dx.doi.org/10.3390/s110404118
http://dx.doi.org/10.1155/2017/3126010
http://refhub.elsevier.com/S1389-1286(21)00420-5/sb23
http://refhub.elsevier.com/S1389-1286(21)00420-5/sb23
http://refhub.elsevier.com/S1389-1286(21)00420-5/sb23
http://dx.doi.org/10.1002/sec.1281
http://dx.doi.org/10.3390/s19132864
http://dx.doi.org/10.1109/IPSN.2008.47
http://dx.doi.org/10.1109/IPSN.2008.47
http://dx.doi.org/10.1109/IPSN.2008.47


Computer Networks 199 (2021) 108470F. Alcaraz Velasco et al.
[27] F. Bouakkaz, M. Omar, et al., Lightweight sharing scheme for data integrity
protection in WSN, Wirel. Pers. Commun. (1) (2016) 211–226, http://dx.doi.org/
10.1007/s11277-016-3261-5.

[28] Standard, IEEE, 802.15.4, http://www.ieee802.org/15/pub/TG4.html, accessed:
2019-10-30.

[29] Instruments datasheothers chipcon smartrf cc2420, Available from: http://
www.ti.com/lit/ds/symlink/cc2420.pdf, accessed: 2019-10-30.

[30] A. Diaz, P. Sanchez, Simulation of attacks for security in wireless sen-
sor notherswork, Sensors 16 (11) (2016) 1–27, http://dx.doi.org/10.3390/
s16111932.

[31] J. Polastre, R. Szewczyk, et al., Telos: enabling ultra-low power wireless research,
in: IPSN 2005. Fourth International Symposium on Information Processing in
Sensor Nothersworks, Boise (USA), April 2005, pp. 364–369, http://dx.doi.org/
10.1109/IPSN.2005.1440950.

[32] Philip Levis, David Gay, TinyOS Programming, Cambridge University Press, 2009.
[33] L. Benoît, D. Mil, et al., Throughput and delay analysis of

unslotted IEEE 802.15.4, J. Nothersworks 1 (1) (2006) 20–28, URL
http://dx.doi.org/1854/7653.

[34] T. Sun, L. Chen, et al., Measuring effective capacity of IEEE 802.15.4 beaconless
mode, in: IEEE Wireless Communications and Nothersworking Conference, Vol.
1, 2006, pp. 493–498, http://dx.doi.org/10.1109/WCNC.2006.1683513.

[35] Q. Zhang, J. Xiao, et al., Improve security of wireless sensor nothersworks
through reluctant checksum, Int. J. Distributed Sens. Nothersworks 13 (9) (2017)
7, http://dx.doi.org/10.1177/1550147717731041.

[36] S. Xingming, S. Jianwei, Digital watermarking mothershod for data integrity
protection in wireless sensor nothersworks, Int. J. Secur. Appl. (4) (2013)
407–416.
12
Francisco Alcaraz was born in Córdoba, Spain, in 1977.
He received a B.Sc. in Computer Science in 1998 from
the Universidad de Córdoba, Spain. M.Sc. in 2003 from
Universidad de Málaga, Spain. M.Sc in Computer and Net-
work Engineering in 2011 from the Universidad de Sevilla,
Spain. M.Sc. in Communication, Networks and Content
Management in 2016 from the Universidad UNED, Spain.
M.Sc. in Intelligent Systems in 2016 from the Universidad
de Córdoba, Spain. His research interests are in the field of
security of wireless sensor networks and embedded systems.

Jose M. Palomares was born in Motril, Spain, in 1975. He
received a Ph.D., M.Sc., and B.Sc. degrees in Computer En-
gineering from the University of Granada, Granada, Spain in
2011, 1998 and 1996, respectively. Since 2000, he has been
working as a Lecturer, Assistant Professor, and, currently,
Associate Professor at the Universidad de Córdoba, Córdoba,
Spain. He is co-founder of the Advanced Informatics Re-
search Group, Universidad de Córdoba, Córdoba, Spain. He
has research interests in Image and Video Processing, Real-
Time Systems, Wireless Sensor Networks, and Computer
Architecture.

Joaquín Olivares is an Associate Professor at Electronic and
Computer Engineering Department at the Universidad de
Córdoba, Córdoba, Spain, since 2001. He received the B.S.
and M.S. degrees in Computer Sciences in 1997, and 1999,
respectively, and the M.S. degree in Electronics Engineering
in 2003, all from the Universidad de Granada, Spain. He
received the Ph.D. degree in 2008 at the Universidad de
Córdoba, Spain. His research interests focus on embedded
systems, wireless sensor networks, computer vision, and
high-performance computing.

http://dx.doi.org/10.1007/s11277-016-3261-5
http://dx.doi.org/10.1007/s11277-016-3261-5
http://dx.doi.org/10.1007/s11277-016-3261-5
http://www.ieee802.org/15/pub/TG4.html
http://www.ti.com/lit/ds/symlink/cc2420.pdf
http://www.ti.com/lit/ds/symlink/cc2420.pdf
http://www.ti.com/lit/ds/symlink/cc2420.pdf
http://dx.doi.org/10.3390/s16111932
http://dx.doi.org/10.3390/s16111932
http://dx.doi.org/10.3390/s16111932
http://dx.doi.org/10.1109/IPSN.2005.1440950
http://dx.doi.org/10.1109/IPSN.2005.1440950
http://dx.doi.org/10.1109/IPSN.2005.1440950
http://refhub.elsevier.com/S1389-1286(21)00420-5/sb32
http://refhub.elsevier.com/S1389-1286(21)00420-5/sb33
http://refhub.elsevier.com/S1389-1286(21)00420-5/sb33
http://refhub.elsevier.com/S1389-1286(21)00420-5/sb33
http://refhub.elsevier.com/S1389-1286(21)00420-5/sb33
http://refhub.elsevier.com/S1389-1286(21)00420-5/sb33
http://dx.doi.org/10.1109/WCNC.2006.1683513
http://dx.doi.org/10.1177/1550147717731041
http://refhub.elsevier.com/S1389-1286(21)00420-5/sb36
http://refhub.elsevier.com/S1389-1286(21)00420-5/sb36
http://refhub.elsevier.com/S1389-1286(21)00420-5/sb36
http://refhub.elsevier.com/S1389-1286(21)00420-5/sb36
http://refhub.elsevier.com/S1389-1286(21)00420-5/sb36

	Lightweight method of shuffling overlapped data-blocks for data integrity and security in WSNs
	Introduction
	Foundations
	Integrity schemes
	Error-detecting codes
	Hash functions
	Message authentication code approaches
	Watermarking approaches

	Confidentiality approaches
	Symmetric key encryption
	Asymmetric key encryption


	Methodology
	Network architecture
	Packet and message structure
	Authentication and seed generation
	Shuffle algorithms
	FCS backwarding
	Attack model and security analysis
	Attack model
	Security analysis


	Implementation
	Execution environment
	CBC mode CC2420
	CRC-16 computation by CC2420
	Selected frame check sequence

	Results
	Simulated man-in-the-middle
	Overhead
	Energy consumption
	Usage memory
	Recall
	Retransmissions
	Throughput
	Simulating attacks

	Comparisons
	Comparing overhead
	Execution time
	Lightweight privacy

	Discussion
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


