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Abstract: Climate change is one of the environmental issues of global dominance and public 
opinion, becoming the greatest environmental challenge and of interest to researchers. In this 
context, planting trees on marginal agricultural land is considered a favourable measure to alleviate 
climate change, as they act as carbon sinks. Aerial laser scanning (ALS) data is an emerging 
technology for quantitative measures of C stocks. In this study, an estimation was made of the gains 
of C in biomass and soil in carob (Ceratonia siliqua L.) plantations established on agricultural land in 
southern Spain. The average above-ground biomass (AGB) corresponded to 85.5% of the total 
biomass (average 34.01 kg tree−1), and the root biomass (BGB) was 14.5% (6.96 kg tree−1), with a 
BGB/AGB ratio of 0.20. The total SOC stock in the top 20 cm of the soil (SOC-S20) was 60.70 Mg C 
ha−1 underneath the tree crown and 43.63 Mg C ha−1 on the non-cover (implantation) area for the C. 
siliqua plantations. The allometric equations correlating the biomass fractions with the dbh and Ht 
as independent variables showed an adequate fit for the foliage (Wf, R2adj = 0.70), whereas the fits 
were weaker for the rest of the fractions (R2adj < 0.60). The individual trees were detected using 
colour orthophotography and the tree height was estimated from 140 crowns previously delineated 
using the 95th percentile ALS-metric. The precision of the adjusted models was verified by plotting 
the correlation between the LiDAR-predicted height (HL) and the field data (R2adj = 0.80; RMSE = 
0.53 m). Following the selection of the independent variable data, a linear regression model was 
selected for dbh estimation (R2adj = 0.64), and a potential regression model was selected for the SOC 
(R2adj = 0.81). Using the segmentation process, a total of 8324 trees were outlined in the study area, 
with an average height of 3.81 m. The biomass C stock, comprising both above- and below-ground 
biomass, was 4.30 Mg C ha−1 (50.67 kg tree−1), and the SOC20-S was 37.45 Mg C ha−1. The carbon 
accumulation rate in the biomass was 1.94 kg C tree−1 yr−1 for the plantation period. The total C stock 
(W-S and SOC20-S) reached 41.75 Mg ha−1 and a total of 4,091.5 Mg C for the whole plantation. Gleaned 
from the synergy of tree cartography and these models, the distribution maps with foreseen values 
of average C stocks in the planted area illustrate a mosaic of C stock patterns in the carob tree 
plantation. 
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1. Introduction 
Based on FAO statistics, forests covered an estimated area of 3999 million ha in 2015, 

or about 31% of the global land area. A further 1204 million ha were covered by other 
wooded land [1]. Europe (including the Russian Federation) accounts for approximately 
25% of the forests and is the greater forest geographical region in the world [1]. 
Additionally, the global planted forest area increased from 167.5 million ha to 277.9 
million ha in the period of 1990 to 2015, with the increase varying by region and climate 
domain. A total of 56% of the planted forest surfaces in 2015 were in the temperate zone 
[2]. 

Forest ecosystems play an important role in reducing greenhouse effects by storing 
atmospheric carbon dioxide as biomass [3,4], with an estimated global terrestrial CO2 sink 
of 2.7 ± 0.9 Pg C year−1. Other studies, such as [5], estimated the total C sink in established 
forests was 2.4 ± 0.4 Pg C year−1 for the period of 1990–2007. In addition, [6] estimated that 
forest land was a net source of CO2 emissions of 0.40 PgC year−1 in the period of 1991–
2015, mainly due to deforestation and forest degradation. After considering these results 
and according to other authors [7,8], significant uncertainties regarding carbon sinks exist 
that are related to imprecise estimates of the biomass in forest systems. Forest plantations 
are recognised as part of the strategy to mitigate greenhouse gas emissions [9]. Conversion 
to forest land through the planting of trees (afforestation/reforestation) is a forestry 
activity that has an effect on climate change mitigation and is defined in the Kyoto 
Protocol as one activity that can be accounted to fulfil national commitments [10]. 

Since 1990, the EU afforestation actions have had a significant boost within the 
Common Agricultural Policy. The EU has supported afforestation on agricultural land 
since 1992 (Council Regulation 2080/92), returning non-productive cultivated lands to 
forests. Since 2000, the objectives of extending woodland areas have been integrated into 
the support for rural development (Council Regulation 1257/1999). The EU afforestation 
policies have had an enormous impact on the Spanish afforestation dynamics [11]. The 
afforested land during the period of 1993–1999 reached 460,000 ha and was performed by 
private landowners using Quercus as the main tree species. Furthermore, between 2000 
and 2006, a total surface area of 208,000 ha was afforested. The impact of this afforestation 
programme was uneven throughout Spain [11]. However, the large-scale implementation 
of the EU afforestation program will lead to an extensive new forest and ultimately 
contribute to providing a greater range of ecosystem services, such as fruit and wood 
production, erosion, and desertification control, contributing to the regional carbon cycle 
and the reduction of atmospheric CO2 in the long run [12]. A good example of the EU 
afforestation program may be observed in the Andalusia region (southern Spain), where 
about 137,455 ha of agricultural land have been afforested (1993–2006) mainly using the 
Mediterranean Quercus species (Q. ilex L., Q. suber L., 59%), wild olive (Olea europea L. var. 
sylvestris Brot, 15.37%), carob tree (Ceratonia siliqua L, 10.24%), and Aleppo pine (Pinus 
halepensis Mill, 9,5%) [13–15]. In particular, carob tree species are located in Andalusia 
with a total of 14,075 ha, mainly in the interior of Eastern Andalusia. The carob tree is an 
evergreen tree frequently used in agri-food industries and soil restoration purposes. In 
the EU afforestation program in Andalusia, more than 12,000 ha have been cultivated with 
this species, with an extraordinary productive potential (e.g., justified by pharmacological 
and food industry interests) as well as with high environmental benefits, such as C 
sequestration and degraded soil ecological restoration. In quantitative terms, Muñoz-
Rojas et al. [16] estimated an increase of 17.24 Mg in the total vegetation C stock in 
Andalusia between 1956 and 2007, mainly due to afforestation and the intensification of 
agriculture. 
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Forest plantations have a high carbon uptake potential, especially concerning their 
contribution to soil carbon accumulation in abandoned agricultural lands [9,17]. Some 
authors have confirmed an increase in soil organic C (SOC) after plantation in 
Mediterranean environments [18,19]. More generally, recent studies have pointed out that 
agricultural dereliction may be an important and low-cost proposed action for climate 
change mitigation due to the vegetation retrieval and increase in soil organic matter [20–
23]. The importance of the accurate estimation of C sinks on these plantations, with 
different species and management systems, may contribute to a better understanding of 
the contribution of planted forests to the global C cycle [24]. Additionally, the estimation 
of C in afforestation programs requires the use of new species-specific methodological 
approaches and high-resolution zonal cartography that contribute to improving the 
clarity and accuracy of C sink accounting [25,26]. 

Carbon estimations by direct methods are complex, time-consuming, and costly. 
Thus, alternatively, indirect techniques based on models combined with remote sensing 
data have been developed [23,27]. The most common and well-known approach is to fit 
tree allometric equations based on forest inventory data [26,28] and, more recently, 
remote-sensing techniques have been used [29]. In the last decade, the use of airborne 
laser scanning (ALS) data has provided high-precision dasometric information on forest 
stands, improving above-ground biomass (AGB) [30]. Many studies have provided 
methodologies to integrate tree allometric models with LiDAR data to estimate the C stock 
of forest plantations [23,31–33]. However, despite these recent contributions, there is still 
a gap in the knowledge about the estimation of biomass accumulation and carbon 
sequestration at a species-specific scale for afforestation activities in Mediterranean 
environments. Here, we combined tree crown segmentation based on low-density ALS 
data (0.5 points m−2) and allometric models to estimate the overall biomass (above- and 
below-ground—AGB and BGB) and the SOC in a 14-year-old carob (Ceratonia siliqua L.) 
plantation in former agricultural land. The specific goals of this study were (i) to 
determine robust allometric models to estimate overall C biomass and SOC stocks based 
on tree height and diameter from field data; (ii) to use low-density ALS-derived individual 
tree measurements to segment individual tree crowns and assess tree heights in the carob 
afforestation studied; (iii) to quantify the dbh and SOC for individual trees using LiDAR-
derived individual tree height since the dbh is the most reliable variable for biomass 
estimation; (iv) to estimate and map the total C stocks of the total carob afforestation. Our 
study provides a valuable statistical and methodological framework to use allometric 
models and low-density ALS data for the purposes of monitoring C stocks in forest 
plantations on agricultural lands. This is crucial information to assess environmental 
services related to climate change mitigation through CO2 fixation. The methodology 
covers the need for a consistent and operational methodological framework that is 
affordable (e.g., cost and accuracy) using free-public ALS data with application for local 
to regional scales. 

2. Materials and Methods 
2.1. Site Description 

The study was located in Puerto Real (36°30′54.79” N–6°4′42.50” W, 52 m.a.s.l, Cádiz, 
southern Spain, Figure S1, Supplementary Materials), at a private planted forest 
established under the EU afforestation scheme. The study area falls into a semi-humid 
Mediterranean climate region with an average annual temperature of 17.6 °C, hot dry 
summers (25.2 °C, July), and warm and humid winters (10.5 °C, January). The annual 
mean precipitation is 595 mm. The study area comprised 28.5 ha that is covered with a 
carob tree plantation. The topography of the plantation is smooth. The colour of the 
studied soil was brown (10YR 5/2(d) and 10YR 4/1 (w), an indicator of young soils with 
the presence of carbonates [34]. The parent material is of colluvial–alluvial origin, 
originating a Calcic Fluvisol/Calcaric Regosol [35]. According to data from Andalusian 
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Environmental Information Network (REDIAM), the soils are characterised by a pH (H2O) 
ranging between 7 and 7.5, with low organic matter content (2–2.5%), low nitrogen content 
(0.1–0.15%), and a texture varying from clay to clay loam. The natural vegetation is 
composed of a mixture of evergreen shrubs (“mancha”) dominated by Quercus coccifera L. 
Ceratonia siliqua L., Arbutus unedo L., Cistus laurifolius L., Pistacia lentiscus L., and Myrtus 
communis L.) varying greatly in both horizontal and vertical dimensions. 

The carob tree plantations were established in 1994 (it was 26 years old at the time of 
our last measurements, 2020) in a 5 m × 6 m pattern, equal to a density of 330 trees ha−1 of 
C. siliqua (Table 1) on 28.5 ha of former agricultural land. This land was previously used 
for crop production until it was afforested as part of the EU afforestation program. The 
planting was performed in two phases, first by inserting disc harrows drawn by a 70-hp 
farm tractor to pull off shrub vegetation (20 cm deep) and continued by linear subsoiling 
produced with a shank (40 cm deep) along the planting line. To impede the spontaneous 
vegetation, mechanised tillage was performed on a yearly basis. The plantation was 
occasionally irrigated (the first and second year after establishment) and pruned (between 
ten and fifteen years) but never harvested or fertilised. 

Table 1. Silvicultural characteristics, biomass (kg tree−1), and soil organic carbon stocks (Mg ha−1) of 
Ceratonia siliqua plantation established under the EU afforestation scheme in Andalusia (Puerto Real, 
Cádiz, southern Spain). Variables and abbreviations: stem density (D, trees ha−1); height (H, m); 
diameter at breast height (dbh, cm); basal area (G, m2 ha−1), biomass C stock (Wt, Mg C ha−1), and 
soil organic carbon stock (SOCdepth –S, Mg C ha−1). Values are means ± SE. 

Silvicultural description 
Surface 28.5 

Age (years) 26 
D (trees ha−1) 293 

H (m) 4.29 (0.15) 
Dbh (cm) 12.83 (0.82) 

G (m2 ha−1) 7.39 (0.61) 
Biomass (kg tree−1) 

Foliate 5.35 (0.27) 
Branches 14.53 (1.07) 

Stems 9.52 (1.06) 
Roots 17.06 (1.45) 

Biomass stock (Wt) 46.48 (3.75) 
Soil organic carbon (Mg ha−1) 

SOC20-S under tree crown 58.91 (7.85) 
SOC20-S on non-covered areas 37.72 (3.42) 

SOC20-S on agricultural reference soil 23.16 (2.03) 

Our study used a combination of data sets and technically required the development 
of remote-sensing indices and data analysis methods. A flowchart outlining the steps and 
relationships of each process is provided in Figure 1. 
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Figure 1. Flowchart laying out the methodological steps of C stock estimation in a Ceratonia siliqua 
plantation in southeastern Andalusia, applying field and aerial laser scanning (ALS) data. 

2.2. Sampling and Biomass Equations 
The estimates for the biomass and stored carbon were made following the methods 

used in previous studies by the same authors [23] and according to general standard 
methodologies [27,36]. In July 2006, an extensive field survey was performed by the 
University of Córdoba to obtain the allometric equations of four tree species used in 
afforestation in Andalusia. In the study, 9 plots of carob trees were selected and 
characterised (Table S1, Supplementary Materials). The selected plot in which all the 
selected trees were measured covered a total area of 9000 m2 (10 × 10 m) of a regular 
plantation, with an average slope of 20%. In each plot, the diameter at breast height (1.3 
m above ground level, dbh, cm), the diameter at the base of the trunk (db, cm), and the 
tree height (Ht, cm) of all the trees were measured with a Vertex III hypsometer (Haglöf, 
Sweden). Forty trees—4 to 5 per plot with diameters between 5 and 20.5 cm—were chosen 
and logged for biomass determination, using the segmenting method considering 
fractions—stem, branches, foliage, and root. Root samples were obtained by a total 
excavation of the trees extending gradually out from the trunk and downwards to bedrock 
until no more roots were visible. At the tree base and dbh, two 2-cm-thick discs were 
extracted, which were weighed fresh (with bark) in the field. The branch biomass was 
assessed based on the fresh-to-dry weight ratio, which was estimated for branches 
selected from three segments of the tree crown that were later oven-dried. The sample 
branches from each tree were also used to estimate the foliage biomass. These subsamples 
were taken to the laboratory and oven-dried to a constant weight at 103 °C to estimate the 
dry matter content (W, kg). The dry weight of every sample was determined and 
mechanically ground to pass through a 0.5 mm mesh screen. The above-ground biomass 
(Wa) was represented by the sum of the stem, branches, and foliage. The total biomass 
(Wt) was represented by the sum of the Wa and the below-ground dry weight biomass 
(Wb). Individual models selected for each biomass component were fitted simultaneously 
using the additive system of equations based on nonlinear seemingly unrelated regression 
(NSUR) [37,38]. 

The powder samples of the tree components were analysed for the C concentrations 
using a NIR macro elemental analyser (Eurovector EA 3000) according to the Dumas 
combustion method. The obtained conversion factor was 0.487, very close to that 
established by the IPCC (1996) standards (0.5). The total carbon content from the tree 
biomass reservoir was estimated by adding together the above- and below-ground 
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biomass, and the dry biomass elements were converted to C stocks using the 48.7% C 
fraction determined previously. Descriptive statistics of the total above-ground biomass, 
biomass components, and other variables are shown in Table S1 in the Supplementary 
Materials. 

2.3. Soil Sampling 
In January 2020, a new field survey was performed in the study area to obtain tree 

measures and soil samples. In this survey, 210 carob trees were randomly selected and 
characterised. In each tree, the diameter at breast height (dbh, cm) and the tree height (Ht, 
cm) of all trees were measured (Table 1). A sub-meter global satellite receiver (Leica Zeno 
20 GIS, Leica Geosystems, Heerbrugg, Switzerland) was used to examine the tree samples, 
and overtopped trees were excluded from our analysis (Figure 1). 

From this sample, ten trees were selected to obtain soil samples according to the 
representative soil-forming factors for the study area (e.g., an average parental material, 
vegetation, and topographic conditions, and with adequate internal variability 
microtopography to collect the condition variation of all of the plantation factors). Soil 
samples were collected from the first 20 cm of the soil surface using a soil corer 8 cm in 
diameter; no surface litter was included. At this depth, the effects of the roots on the soil 
organic carbon content are considered. The mineral topsoil layer (0–20 cm) is the main 
area of interest in spatial inventories of SOC according to the Kyoto report requirements 
[39]. The soil samples for each tree were taken at two different distances away from the 
trunk and perpendicular to the plantation line. At each point, three subsamples were 
taken. The first three samples were taken close to each other at a distance of one meter 
away from the trunk and under the influence of the tree canopy. The next three samples 
were sampled two meters away from the trunk and in the same way as the previous ones. 
In addition, an agricultural reference soil was sampled. These samples were used to assess 
the soil organic carbon content. The soil samples were air-dried at room temperature (25 
°C) and then sieved (mesh size of 2 mm) to remove coarse living roots and gravel. The 
bulk density (BD) of the soil sampled points were estimated as follows [40] (g cm−3): 

BD = 𝟏𝟏𝟏𝟏𝟏𝟏
%𝑶𝑶𝑶𝑶   
𝟎𝟎.𝟐𝟐𝟐𝟐𝟐𝟐 +

𝟏𝟏𝟏𝟏𝟏𝟏−%𝑶𝑶𝑶𝑶
𝟏𝟏.𝟔𝟔𝟔𝟔

  (1) 

where OM, the soil organic matter, was obtained with the expression %OM = %SOC*1724; 
we used a typical value of 1.64 for the mineral bulk density [41]. 

The organic carbon content of the soil fine fraction was determined by oxidation with 
K2Cr2O7 in an acidified medium with H2SO4 (96%), using the method described by [42]. 
The total SOC (Mg ha−1) stock within a certain soil layer was calculated according to the 
following adapted equation [43]: 

SOC stock (Mg Cha−1) = BD × SOC × dh (2) 

where bd is the bulk density of the soil (g/cm3), dh is the thickness in centimetres of the 
horizon analysed, and SOC is the soil organic carbon concentration as a percentage of the 
soil weight. 

2.4. ALS Data and Height Data Processing 
Low-density ALS data (0.5 points m−2) were acquired in March, 2014 and provided 

by the PNOA (http://www. ign.es/PNOA/vuelo_ALS.html). The ALS survey was 
conducted using an airborne Leica ALS60 discreet return sensor. A total of 1.55 Gb of ALS 
data were provided and captured in 2009. The data were delivered in three 2 km × 2 km 
tiles (ranging from 86 Mb to 136 Mb) of raw data points in an ASPRS laser LAS binary file, 
format v.1.1, containing x- and y-coordinates (UTM Zone 30 ETRS 1989) and ellipsoidal 
elevation Z, with up to four returns measured per pulse and intensity values from a 1064-
nm wavelength laser. The resulting ALS point density of the test areas was 0.5-point m−2, 
with a vertical accuracy higher than 0.20 m. The flight parameters were a scan frequency 
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of 45 Hz and an FOV of 50°. The reference system was the European Terrestrial Reference 
System 89 (ETRS89), and the coordinate system was UTM for the thirtieth time zone. 

Before the ALS data processing, automated crown tree detection was performed 
using high-resolution aerial colour panchromatic images (1:10,000 scale, 0.5 m pixel, Junta 
de Andalucía, 2016). Photogrammetric stereo-measurements of the tree crowns were 
performed using a DPW (Hyundai IT W220S stereo-monitor) with PHOTOMOD Lite 4.4 
photogrammetric software and Global Mapper v11.01 software [44]. The tree segments 
were manually checked by an experimented observer to remove potential errors and 
verify the accuracy of the segmentation process. 

Afterwards, a digital vegetation model (DVM) was generated for the study area from 
the ALS data, but due to the low density of points and the reduced size of the trees, a gap-
filling algorithm was performed to obtain the canopy height model (CHM) using 
LAStools software [45]. In this study, 43 metrics were obtained by the “GridMetrics” 
command implemented in the FUSION and lidR package v2.0.0 [46,47] (Table S2, 
Supplementary Materials). All returns above 0.5 m were detected and the perimeter of 
each tree crown was defined considering that high laser values in a spatial neighbourhood 
represent the tip of a tree crown (95th percentile) [48]. The time delay between the ALS 
data (2014) acquisition and the field data collection (i.e., 2020, 6 years) was not considered 
as a significant source of error due to the management practices (e.g., pruning), which 
reduced the height growth in adult trees. In a subset of data (n =140), the relationship 
between the LiDAR percentile heights and the individual tree heights was determined 
using linear regression analysis. For additional details of the procedure used to obtain 
such ALS metrics and models, see [23]. 

2.5. Relationships among ALS Height, dbh, and SOC 
Regression models were used to develop equations relating the ALS height as an 

independent variable, the dbh of individual trees, and the SOC. The coefficient of 
determination R2 was calculated as a measure of the goodness of fit of the prediction 
model. R software, version 4.0.3 was used, including the ggplot2 package. 

2.6. Cartography of C Stocks 
A C stock map of the carob tree plantations in the studied location was generated. 

The heights of all trees were obtained using the ALS data (HL) based on tree crown 
binarisation/segmentation. Once the HL of each tree had been calculated, the allometric 
models, considering the HL as an independent variable, were used to estimate the dbh 
(dbhL) and SOC. The dbhL values were included in the equations to predict the total 
biomass of the trees. Both the SOC and biomass models were applied at the tree scale (8323 
trees) to generate two C stock maps—Wt-S and Wt-S + SOC-S20. The overall C (Mg C ha−1) 
presented in the tree biomass was calculated by adding all the trees’ individual values. 
The overall SOC presented in the afforestation was obtained, and the biomass ratios and 
SOC–C stocks were calculated for the 26-year period. 

2.7. Statistical Analysis 
The normality and homoscedasticity were analysed by the Kolgmorov and Levene 

tests (p > 0.05). All data were log-transformed when necessary to meet the assumption of 
normality. The results in the tables are shown as the means along with their standard 
errors for the untransformed variables. 

Individual models selected for each biomass component were fitted simultaneously 
using the additive system of equations based on nonlinear seemingly unrelated regression 
(NSUR) to ensure compatibility between the total biomass and the sum of the fractions 
[37]. This statistical approach has been frequently used in biomass studies [38]. The Proc 
SQL program of SAS [49] was used to perform the routine. The characteristic 
heteroscedasticity of the biomass data was evaluated with the White test (SAS Institute 
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2004) and was corrected with a residual variance power function as the weighting factor. 
The accuracy and precision of the models were evaluated by graphical and numerical 
analyses of the residuals. The relationships among the individual ALS tree heights (HL) 
with the field height (n = 140), dbh (n = 140), and SOC (n = 10) were determined using 
linear, exponential, power, and logarithmic regressions models. The statistical criteria for 
selecting the best model were the adjusted coefficient of determination (R2adj), the root 
mean square error (RMSE) and the Durbin–Watson test [50]. All statistical analyses were 
based on a significant level of p < 0.05. We performed all analyses with R software, version 
4.0.3, and SAS statistical software [50] was used for fitting the weighted nonlinear systems 
of equations using NSUR. 

3. Results 
3.1. Biomass and SOC Values 

The tree biomass values for the carob trees and fractions are presented in Table 1. The 
order of the biomasses of the different fractions is root>branches>stem>foliage. The 
average above-ground biomass corresponded to 85.5% of the total biomass (average 34.01 
kg tree−1) and the root biomass was 14.5% (6.96 kg tree−1), with a BGB/AGB ratio of 0.20. 

The total SOC stock in the top 20 cm of the soil (SOC-S20) was 58.91 Mg C ha−1 
underneath the tree crown and 37.72 Mg C ha−1 on the non-cover (implantation) area for 
the C. siliqua plantations. The agricultural soil used as reference had an SOC-S20 of 23.16 
Mg C ha−1 (Table 1). 

3.2. The Biomass Allometric Equations 
Table 2 shows the allometric equations using the NSUR functions correlating the 

biomass fractions with the dbh and Ht as independent variables. In all cases, an 
exponential trend was observed. The graphs of the residuals weighting did not show any 
trend or heteroscedasticity (data not included). All parameters were significant at the 95% 
confidence level. The best NSUR generic equations for biomass estimation showed 
adequate fit for the foliage (Wf, R2adj = 0.70), whereas the fits were weaker for the rest of 
the fractions (R2adj < 0.60; Table 2). 

Table 2. Allometric equations for tree biomass estimation (g) for Ceratonia siliqua L. plantation in 
Andalusia using nonlinear seemingly unrelated regressions (NSUR) (southern Spain), independent 
variables (Ht = total height, m; D = dbh, cm), the adjusted coefficient of determination (R2adj), root 
mean square error (RMSE, g), and p-value. 

Fraction Model RMSE R2adj p-Value 
Foliage 𝑊𝑊𝑊𝑊 = 𝑒𝑒(5.2047+0.9515𝑙𝑙𝑙𝑙𝑙𝑙+1.4302𝑙𝑙𝑙𝑙𝑙𝑙 2224.71 0.708 <0.001 

Branches 𝑊𝑊𝑊𝑊 = 271.3179 𝑒𝑒(0.0848𝐷𝐷𝐷𝐷) 13.23 0.517 <0.001 
Stems 𝑊𝑊𝑊𝑊 = 𝑒𝑒(0.0600𝐷𝐷𝐷𝐷) 3365.97 0.611 <0.001 
Roots 𝑊𝑊𝑊𝑊 = 2148.622𝑒𝑒0.0423𝐷𝐷𝐷𝐷 9694.12 0.609 <0.001 

Overall �𝑾𝑾𝑾𝑾 25.99 0.658 <0.001 

3.3. Height Estimation Based on ALS Metrics 
The individual trees were detected using colour orthophotography (Figure 1), 

according to a supervised maximum likelihood classification of three classes (soil, 
shadow, and vegetation). A total of 140 individual trees were detected using colour 
orthophotography (Figure 1), using photogrammetric stereo-measurements of the tree 
crowns. The tree heights were estimated using the 95th percentile ALS metric. The 
precision of the adjusted models was verified by plotting the correlation between the 
LiDAR-predicted height (HL) and the field data (n = 70) (R2adj = 0.80; RMSE = 0.53 m). 
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3.4. The dbh and SOC Allometric Equations Based on ALS Height 
The dbh and SOC models were fitted using the ALS height (HL) as an independent 

variable (Table 3). Linear regression was selected for dbh estimation (R2adj = 0.64, DW = 
1.47), and a potential regression model was selected for SOC estimation (R2adj = 0.81, DW 
=2.19). 

Table 3. Allometric equations were used to estimate the dbh (cm) and SOC content (kg m-2) (SOC20, 
0–20 cm) for the Ceratonia siliqua plantation (southern Spain). Independent variable (HL = ALS 
derived height, m), adjusted determination coefficient (R2adj), p-value, F, Durbin–Watson test for 
residuals autocorrelation (DW). 

Variable Model 
Adjusted 

R2 F p-Value p-DW 

dbh dbh = −2.0788 + 3.6730 HL  0.649 47.27 <0.001 1475 
SOC20 SOC20= 1.1458 + HL2.5639 0.813 109.7 <0.001 2.19 

3.5. C Stock Estimation and Cartography from ALS Data 
Using the segmentation process, a total of 8324 trees were delineated in the study 

area, with an average height of 3.81 m. A regression model was selected to spatially 
estimate the C stocks for the study area (Wt-S and SOC20-S, Table 3). 

The biomass C stock, including both the above- and below-ground biomass, was 4.30 
Mg C ha−1 (50.67 kg tree−1) and the weighted SOC20-S was 41.51 Mg C ha−1, with a total C 
stock (Wt−S and SOC20-S) of 45.81 Mg ha−1, (Table 4). The overall average C accumulation 
rate was 1.76 Mg C ha−1 yr−1 for the plantation period, and regarding the reference 
agricultural soil, the C accumulation rate was 0.87 Mg C ha−1 yr−1 for the plantation period. 
The total C stock (W-S and SOC20-S) for the whole plantation (28.5 ha) reached a value of 
1,305.70 Mg C for the entire plantation (Table 4). Based on the tree cartography and these 
models, the distribution maps with predicted values of average C stocks in the planted 
area show a mosaic of C stock patterns in the carob tree plantation (Figure 2). 

Table 4. Silvicultural characteristics, biomass, and soil organic carbon stocks (Mg ha−1) of Ceratonia 
siliqua plantation derived from low-density ALS in Andalusia (Puerto Real, Cádiz, southern Spain). 
Overall biomass (Wt, Mg C ha−1) and soil organic carbon stock (0–20 cm layer, SOC20 –S, Mg C ha−1) 
in the forest plantation (98 ha). Proportional distribution of SOC values in line and interline tree 
plantation. 

Height (m) Dbh (cm) 
Biomass C 
Stock (Mg 

ha−1) 

SOC20-S (Mg 
ha−1) under 

Crown 
(17.91%) 

SOC Stock 
in Inter-

Plantation 
(Mg ha−1) 
(82.09%) 

SOC Stock 
in 

Plantation 
(Mg ha−1)  

Total C 
Stock in 
Forest 

Plantation 
(Mg) 

3.81 11.92 4.30 10.55 30.96 41.51 1305.70 
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Figure 2. Cartography of individual tree height (m) in the Ceratonia siliqua–Quercus ilex plantation 
at Puerto Real (Cádiz, Southwestern Spain). 

4. Discussion 
In this study, we estimated the overall biomass C and SOC stocks on a Ceratonia 

siliqua afforestation using field and low-density ALS point cloud data. The mean canopy 
height was selected as a predictor variable for the biomass and SOC individual tree 
estimation and the subsequent mapping. A set of regression equations was used to predict 
the biomass fraction and forest properties (dbh and SOC), and the ALS individual canopy 
heights were selected to estimate the tree heights. The combination of both models 
allowed us to calculate the total C stock in the plantation accurately and at a lower cost 
than with field inventories. 

4.1. Biomass and SOC Values 
Biomass is the most important indicator of the C sequestration capacity of forests; 

therefore, its calculation is essential to estimate forest carbon balance and dynamics. The 
average overall biomass C stock of carob trees was 46.48 kg tree−1, which is lower than 
those reported for the natural and planted trees of the same species (AGB = 157 kg tree −1, 
BGB = 170 kg tree−1) but similar to the values found for Quercus species in similar 
plantations (27.9 kg tree−1 for holm oak and 41.1 kg tree−1 for cork oak [23]). These 
discrepancies can be explained by the differences in tree size (dbh = 12.83 cm and 19.0 cm, 
respectively [27]). The above-ground biomass represented the highest proportion of 
individual tree biomass (63.2%), which is similar to the results of C. siliqua in Spain 
(54.7%), but with a lower root/shoot ratio (0.58 and 0.80, respectively, [27]). The lower 
proportion of the below-ground biomass of the carob trees in this study may be related to 
the origin of the forest. In plantations, the root growth pattern is limited by the seedling 
quality and the root ability to explore the soil (e.g., root morphology due to container 
culture), which in turn, can produce alterations in height and root growth in the field 
[51,52]. In addition, most measures of root biomass are usually neglected and probably 
underestimate this biomass fraction [53], although root pool contributes significantly to 
the soil organic carbon fraction [54]. 
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Regarding the SOC-S, in our study, SOC20-S was 58.91 Mg ha−1 under the tree crown 
and 37.72 Mg ha−1 in the interplanted areas, with a weighted average of 41.51 Mg ha−1, 
which is significantly higher than the values found in the reference agricultural soil (23.16 
Mg ha−1). These values are also higher than other forest plantations (Quercus ilex-Q. suber 
plantation, SOC40-S = 36.90 Mg ha−1 under the tree crown and 29.26 Mg ha−1 for the inter-
planted areas, Lara et al., 2020) and mature semi-natural populations of Quercus species 
(Q. suber, SOC50-S = 24.20 Mg ha−1 [55]; Q. pyrenaica, SOC20-S = 33 Mg ha−1 [56,57]). Many 
studies have considered the soil the most important carbon pool in forest plantations; 
however, changes in soil carbon stocks among forest species used on plantations are not 
easy to assess due to differences in litter production, tree size, soil management, and so 
forth, resulting in different SOC values [58]. 

4.2. Allometric Equations for Biomass Estimation 
A nonlinear seemingly unrelated regression (SUR) approach was used to fit the 

models relating the biomass fractions with the dbh and Ht as independent variables from 
the field inventory data and field-based estimates of the biomass at a tree scale [37]. In 
carob trees, the foliage and overall biomass correlated most strongly with the height and 
dbh data (R2adj > 0.65); branches showed the weakest correlation (R2adj = 0.51), and the stem 
and root biomass model had a middle value (R2adj ~0.60). Carob is a very managed tree; its 
crown can be altered by pruning, significantly altering the allometry [59], and which is 
more relevant in accurately estimating the biomass of small trees. Although our results 
have lower adjusted models than previous studies [27], we obtained accurate estimates 
for the overall and fraction biomass, showing that the dbh and H were useful parameters 
to estimate the biomass in low-density C. siliqua plantations. 

4.3. Allometric and SOC Stock Estimation from ALS Data 
In this study, we obtained the carob tree height using a combination of segmentation 

and heights extracted from the raw CHM (ALS-data, 95th percentile). Colour orthophotos 
were used for the tree crown segmentation process based on simple raster classification 
[54] However, it is difficult to conclude that colour orthophotography should be 
recommended for tree segmentation in forest areas due to the limitations related to the 
use of specific algorithms for segmentation, species shape, and tree distribution (crown 
overlapping) [60]. 

Once the tree crowns were delimited, ALS data were applied for height estimation. 
Low-density ALS data (less than 1 point m−2) has also been used to predict dasometric 
variables (e.g., dbh and height) at the tree and stand scale, with a good fit for predicting 
biomass [61,62]. Thus, a similar approach was used in this study to relate the PNOA-ALS 
(0.5 point m−2) height with the field height on carob tree plantations. A regression model 
was generated to predict the tree height based on ALS metrics (e.g., 95th percentile) in 
homogeneous carob tree plantations. The validation results (R2adj =0.80; RMSE = 0.53 m) 
are consistent with those of previous studies that have estimated the height in Quercus 
spp. plantations in the Mediterranean area, with a similar coefficient of determination 
(between 0.60 to 0.90, [23,63]). However, LiDAR-derived tree heights are frequently 
underestimated [64]. Potential sources of error in our study may be related to field 
measurement data (e.g., tree geolocation) and ALS data (e.g., time delay between the ALS 
data acquisition and the field measure). In this study, individual tree geolocation was 
conducted with low error (lower than 10 cm); thus, ALS point clouds corresponded 
exactly with the dasometric values obtained through the field inventories. Additionally, a 
time delay between the ALS acquisition and the field measure may have resulted in height 
detection errors due to the growth form of carob trees producing many shoots in small 
trees [59]. However, although there were temporal differences between the ALS data and 
the field tree heights (6 years), the height estimation was useful and reliable and helped 
in the visual interpretation of the trees. 
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Finally, two regression models between ALS-height data and dbh and SOC-S were 
generated (in concordance with results obtained in other studies [23,62,65]. The best 
accuracies were obtained for linear (dbh, R2adj = 0.64) and potential regression models 
(SOC, R2adj = 0.81). To the best of our knowledge, no study has applied height as an 
indicator in SOC estimation for carob tree plantations. Our study shows that low-density 
ALS data was sufficient for estimating forest inventory variables and SOC at the tree level 
for planted forests. 

4.4. C Stock Cartography 
The establishment of tree plantations on former arable soils has contributed 

significantly to the process of soil C sequestration [66]. In this study, as a final product, 
the overall C stock (biomass and SOC) of the whole carob tree plantation was estimated 
at the tree and plot scales. This plantation has shown a high capacity for C carbon 
sequestration (45.81 Mg ha-1), as has been found for other forest plantations, such as 
Quercus ilex and Q. suber in similar conditions (46.47 and 35.11 Mg ha−1, respectively) [23], 
with an overall on-site C stock of 1,305.70 Mg in the 26-year-old, 28.5-ha plantation. This 
difference may be associated with the higher capacity for soil organic carbon related to 
the litter quality input and rate of decomposition [67]. When considering this overall C 
stock, we obtained a positive C biomass accumulation rate after the establishment of 1.76 
Mg ha−1 yr−1 including SOC20, and 0.871 Mg ha−1 yr−1 in comparison to the reference 
agricultural soil. These rates in C stocks agree with another study showing a higher C 
accumulation following reforestation [23], which estimated a C accumulation rate 
between 0.90 and 1.22 Mg C ha−1 yr−1 [68]. The increase in on-site C stock in the C. siliqua 
plantation was related to the tree biomass and the SOC accumulation underneath the tree 
crown, which highlights the importance of low-density forest plantations for C 
sequestration in Mediterranean areas [23]. Additionally, the use ALS data and a limited 
number of field measurements for C quantification allows for the accurate mapping of the 
C stock distribution at trees and plantations [23]. 

C stock cartography outlines the importance of forest plantations on abandoned 
agricultural land for C sequestration in the coming years. In this study, biomass C stock, 
comprising both above- and below-ground biomass, was 4.30 Mg C ha−1, and the SOC20-S 

was 37.45 Mg C ha−1, with a total C stock (W-S and SOC20-S) of 41.75 Mg ha−1. These values 
show the potential contribution of low-density plantations of C. siliqua for C sequestration 
under adequate management practices, as has been found in similar plantations in 
Mediterranean areas [23,69]. The current and future rural development strategy of the EU 
should promote ecosystem services related to planted forests, as they are some of the most 
important for C sequestration [70]. 

5. Conclusions 
Southern Spain was one of the most relevant areas in the European Afforestation 

Scheme (1993–2008), and forest plantations of carob trees covered more than 5000 ha, 
mostly on low-quality agricultural land. This paper presents an individual tree-based 
approach for estimating C stock in carob trees. Integrating several allometric equations, 
low-density ALS data, and co-registered digital orthophoto imagery makes our approach 
a realistic alternative to traditional methods, allowing for a faster, lower cost, and higher 
precision approach. The main limitation is related to the ALS data quality and temporal 
update, but more frequent (four-year frequency in Spain) low-density national ALS covers 
can help to minimise this limitation. The final maps of C stocks (biomass and SOC) are 
crucial for the assessment of land-use changes and greenhouse gas emission balances. 
However, few studies have mapped C stocks at Mediterranean forest plantations on 
agricultural lands in Europe (see, [33]) from LiDAR data. The development of C prediction 
models would be based on regional equations, opening many alternatives to ALS data to 
estimate the C stock in Mediterranean forest plantations at affordable costs and with good 
accuracy. The results of this study show that low-density ALS data at a regional scale 
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allows for the use of generalised equations for predicting C stocks at homogenous species 
plantations based on allometric techniques. Additionally, ALS data allows for the 
generation of high-resolution maps of on-site C stocks, which are essential for C-based 
silviculture and successful monitoring in terms of C sequestration. The increase in the 
national scale ALS systems’ capabilities and the reduction in costs (e.g., open-source data) 
have made reliable operational methods possible for C stock inventories of tree 
plantations established on agricultural lands at regional scales. 

Supplementary Materials: The following are available online at 
www.mdpi.com/article/10.3390/f13020285/s1, Figure S1: Location of the study area and afforestation 
perimeter, Table S1: Dasometric characteristics and biomass measures of Carob trees plots, Table 
S2: ALS-based metrics used for the estimation of tree heights. 
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