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Abstract
Some classification results for closed surfaces in Berger spheres are presented. On the one
hand, aWillmore functional for isometrically immersed surfaces into an homogeneous space
E
3(κ, τ ) with isometry group of dimension 4 is defined and its first variational formula is

computed. Then, we characterize Clifford and Hopf tori as the only Willmore surfaces sat-
isfying a sharp Simons-type integral inequality. On the other hand, we also obtain some
integral inequalities for closed surfaces with constant extrinsic curvature inE3(κ, τ ), becom-
ing equalities if and only if the surface is a Hopf torus in a Berger sphere.
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1 Introduction

A classical problem in the theory of isometric immersions is to classify immersed surfaces
into a space form of constant sectional curvature having either constant mean curvature or
constant Gaussian curvature. In this direction, we can highlight the rigidity theorems due to
Alexandrov [3], Liebmann [18] and Hilbert [14] on surfaces of constant curvature as the most
celebrated results in the theory of surfaces in the Euclidean space R

3. For generalizations
of these results, we quote [2, 21]. Besides that, we cannot fail to highlight the classical
Hopf’s theorem [15] which characterizes totally umbilical spheres as the unique topological
spheres of constantmean curvature immersed into a three-dimensional space form of constant
sectional curvature.
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A natural generalization of space forms is the so-called homogeneous spaces. A Rieman-
nianmanifold is said to be homogeneous if for any two points p and q , there exists an isometry
that maps p into q . Geometrically, an homogeneous manifold seems the same everywhere.
As it is well known, simply connected three-dimensional Riemannian homogeneous spaces
are classified. Such manifolds have an isometry group of dimension 6, 4 or 3. When the
dimension is 6, they correspond to space forms. When the dimension is 3, the manifold has
the geometry of the Lie group Sol3. In the case where the dimension of the isometry group
is 4, such manifold fibers over a two-dimensional space form of constant sectional curvature
κ ,M2(κ), and its fibers are the trajectories of a unit Killing vector field. These last manifolds
are usually denoted by E

3(κ, τ ), where τ is the constant bundle curvature of the natural
projection π : E3(κ, τ ) → M

2(κ) and κ �= 4τ 2. According to the constants κ and τ , we can
classify such spaces. When τ = 0, E3(κ, 0) = M

2(κ) ×R whereM2(κ) is the sphere S2(κ)

of curvature κ > 0 or the hyperbolic planeH2(κ) of curvature κ < 0. When τ �= 0, E3(κ, τ )

is a Berger sphere S3b(κ, τ ) if κ > 0, a Heisenberg group Nil3(τ ) if κ = 0 or the universal
cover of PSL(2,R) if κ < 0.

In the last years, the study of surfaces in homogeneous spaceswith 4-dimensional isometry
group has attracted the attention ofmany geometers.We can say that this attention is due to the
studies ofAbresch, Rosenberg andMeekswhichmade possible great advances in the research
in this area [1, 20, 25]. Indeed, Abresch and Rosenberg [1] discovered an holomorphic
quadratic differential for surfaces with constant mean curvature in these spaces and solved
the Hopf’s theorem for them. Moreover, these spaces are also related to the eight geometries
of Thurston [28]. Furthermore, in [12], Gálvez, Martínez and Mira considered the study of
the classical Bonnet problem for surfaces in the homogeneous 3-manifolds E3(κ, τ ). Later
on, Rosenberg and Tribuzy showed in [26] a rigidity result for a family of complete surfaces
in an homogeneous space having the same positive extrinsic curvature and satisfying a certain
condition.

Some years ago, Hu, Lyu and Wang developed in [16] a Simons-type integral inequality
for immersed minimal closed surfaces into the homogeneous space E

3(κ, τ ), the equality
being satisfied if and only if the surface has parallel second fundamental form. When the
homogeneous space E3(κ, τ ) is the Berger sphere S3b(κ, τ ) (κ �= 4τ 2), they showed that the
equality holds if and only if the surface is the Clifford torus.We recall that the Clifford torus is
the only minimal Hopf torus in the Berger sphere. Recently, Pámpano has considered in [24]
a more general setting, where the ambient space is the total space of a Killing submersion.
Specifically, he studies surface energies depending on the mean curvature, which extend the
classical notion of Willmore energy. Furthermore, the author constructs critical tori for these
energy functionals.

Concerning product spaces, even more recently the second author has studied in [11]
immersed complete surfaces into a product space M

2(κ) × R with nonnegative constant
extrinsic curvature. In this setting, he has shown that these surfaces must be either cylinders
when κ = −1, or slices when κ = 1. Our goal is, on the one hand, to present a Willmore
functional for immersed closed surfaces intoE3(κ, τ ), to obtain its Euler–Lagrange equation,
and as a consequence to present a characterization result for closed Willmore surfaces in
S
3
b(κ, τ ) in terms of an integral inequality. On the other hand, we extend the techniques

developed in [11] to the study of immersed closed surfaces with constant extrinsic curvature
into E

3(κ, τ ) (τ �= 0).
The outline of the paper goes as follows. In Sect. 2 we describe some basic facts about

surfaces in the homogeneous space E3(κ, τ ) (τ �= 0) with isometry group of dimension 4,
introducing some relevant families of surfaces in such homogeneous spaces. Later on, work-
ing with the Cheng–Yau’s operator, we develop in Sect. 3 a Simons-type formula for these
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surfaces (cf. Proposition 1), as well as a divergence type formula involving the Cheng–Yau’s
operator (cf. Lemma 2). In Sect. 4 we compute the Euler–Lagrange equation for the Will-
more functional of an immersed closed surface into an homogeneous space E

3(κ, τ ) (cf.
Proposition 2). As an application, we characterize Clifford and Hopf tori as the only Will-
more surfaces satisfying a sharp Simons-type integral inequality (cf. Theorem 1). In the last
section, we consider closed surfaces with constant extrinsic curvature and we also obtain
integral inequalities, becoming equalities if and only if the surface is a Hopf torus in a Berger
sphere S3b(κ, τ ) (cf. Theorems 2 and 3).

2 Preliminaries

In this section, we will introduce some basic facts and notations that will appear along the
paper.

Let κ and τ be real numbers. The region D of the Euclidean space R3 given by

D =
{
R
3, if κ ≥ 0

D(2/
√−κ) × R, if κ < 0

and endowed with the homogeneous Riemannian metric

〈 , 〉R = λ2(dx2 + dy2) + (dz + τλ(ydx − xdy))2 , λ = 1

1 + κ
4 (x2 + y2)

,

is the so-called Bianchi–Cartan–Vranceanu space (BCV -space) which is usually denoted
by E

3(κ, τ ) := (D, 〈 , 〉R).
As it is well known, there exists a Riemannian submersion π : E3(κ, τ ) → M

2(κ), where
M

2(κ) is the two-dimensional simply connected space form of constant curvature κ , such
that π has constant bundle curvature τ and totally geodesic fibers. Furthermore, ξ = E3 is a
unit Killing field on X(E3(κ, τ )) which is vertical with respect to π .

The BCV -spacesE3(κ, τ ) are oriented, and thenwe can define a vectorial product∧, such
that if {e1, e2} are linearly independent vectors at a point p, then {e1, e2, e1 ∧ e2} determines
an orientation at p. Then the properties of ξ imply (see [10]) that for any vector field X on
X(E3(κ, τ )) the following relation holds

∇X ξ = τ(X ∧ ξ), (1)

∇ being the Levi–Civita connection of E3(κ, τ ). Moreover, let us recall that the curvature
tensor of E3(κ, τ )1 satisfies, (see [10]),

R(X , Y )Z = (κ − 3τ 2)(〈X , Z〉Y − 〈Y , Z〉X)

+ (κ − 4τ 2)〈Z , ξ 〉(〈Y , ξ 〉X − 〈X , ξ 〉Y )

+ (κ − 4τ 2)(〈Y , Z〉〈X , ξ 〉 − 〈X , Z〉〈Y , ξ 〉)ξ,

(2)

where X , Y , Z ∈ X(E3(κ, τ )).
In what follows, let�2 be an isometrically immersed connected surface which we assume

to be orientable and oriented by a globally defined unit normal vector field N . Let us denote by
A the second fundamental form of the immersion with respect to N and by∇ the Levi–Civita
connection of �2. Then, the Gauss and Weingarten formulae are given by

1 We adopt for the (1, 3)-curvature tensor of the spacetime the following definition ([23,Chapter 3]),
R(X , Y )Z = ∇[X ,Y ]Z − [∇X , ∇Y ]Z .
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∇XY = ∇XY + 〈A(X), Y 〉N
and

A(X) = −∇X N ,

for every tangent vector fields X , Y ∈ X(�).
Furthermore, we can consider a particular function naturally attached to such a surface

�2, namely,C = 〈N , ξ 〉. Let us observe thatC measures the cosinus of the angle determined
by the vector fields N and ξ . A direct computation shows that the projection of the vector
field ξ on X(�) is given by

T = ξ�= ξ − CN , (3)

where ( ·)� denotes the tangential component of a vector field in X(E3(κ, τ )) along �2.
Thus, we get

|T |2 = 1 − C2. (4)

Besides, from (1), (3) and the Gauss and Weingarten formulae we easily obtain the integra-
bility equations,

∇XT = C(A − τ J )(X) and ∇C = −(A + τ J )(T ), (5)

where J denotes the (oriented) rotation of angle π/2 on T� given by J (X) = N ∧ X . In
particular,

〈J (X), J (Y )〉 = 〈X , Y 〉 and J 2(X) = −X ,

for every X , Y ∈ X(�). Therefore, from the first equation in (5) it easily follows that

div(T ) = 2CH , (6)

where div denotes the divergence operator on �2 and H stands for the mean curvature of
�2, defined by H = 1

2 tr(A). Furthermore, it is immediate to check that

4H2 = |A|2 + 2Ke, (7)

where |A|2 = tr(A2) and Ke = det(A) denotes the extrinsic curvature of �2.
As it is well known, the fundamental equations of �2 are the Gauss equation

R(X , Y )Z = (κ − 3τ 2)(〈X , Z〉Y − 〈Y , Z〉X)

+ (κ − 4τ 2)〈Z , T 〉(〈Y , T 〉X − 〈X , T 〉Y )

+ (κ − 4τ 2)(〈Y , Z〉〈X , T 〉 − 〈X , Z〉〈Y , T 〉)T
+ 〈A(X), Z〉A(Y ) − 〈A(Y ), Z〉A(X),

(8)

where R denotes the curvature tensor of �2 and X , Y , Z ∈ X(�), and the Codazzi equation

∇A(X , Y ) − ∇A(Y , X) = (κ − 4τ 2)C(〈X , T 〉Y − 〈Y , T 〉X), (9)

where ∇A : X(�) × X(�) −→ X(�) denotes the covariant differential of A,

∇A(X , Y ) = (∇Y A)(X) = ∇Y A(X) − A(∇Y X), for all X , Y ∈ X(�).

From the Gauss equation (8), jointly with (4) and (7), it holds

2K = 2τ 2 + 2(κ − 4τ 2)C2 + 4H2 − |A|2 = 2τ 2 + 2(κ − 4τ 2)C2 + 2Ke. (10)

Let us recall now some classical surfaces in E
3(κ, τ ) which can be constructed in the

following way. Given any regular curve α in M
2(κ), π−1(α) is an isometrically immersed
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surface into E
3(κ, τ ) which is usually known as a Hopf cylinder. Hopf cylinders are flat

surfaces, which have ξ as a parallel tangent vector field and they are characterized by C = 0.
Furthermore, these cylinders satisfy

H = kg/2, K = 0, Ke = −τ 2 and |Φ|2 = 2H2 + 2τ 2,

where kg is the geodesic curvature of α.
Moreover, if α is a closed curve and the Riemannian submersion π has circular fibers,

which happens just in the case where E3(κ, τ ) is a Berger sphere S3b(κ, τ ), then π−1(α) is a
flat torus which is also called a Hopf torus.

Let us remember at this point that the Berger sphere S
3
b(κ, τ ) is isometric to the usual

sphere S3 = {(z, w) ∈ C
2 ; |z|2 + |w|2 = 1} endowed with the metric

〈X , Y 〉 = 4

κ

(
〈X , Y 〉S3 + 1

κ

(
4τ 2 − κ

) 〈X , V 〉S3〈Y , V 〉S3
)

,

where 〈 , 〉S3 stands for the usual metric on the sphere, V(z,w) = J (z, w) = (i z, iw) for each
(z, w) ∈ S

3 and κ, τ are real numbers with κ > 0 and τ �= 0. We note that if κ = 4τ 2 then
S
3
b(κ, τ ) is, up to homotheties, the round sphere. The Hopf fibration π : S3b(κ, τ ) → S

2(κ),
defined by

π(z, w) = 1√
κ

(
zw,

1

2

(|z|2 − |w|2)
)

,

is a Riemannian submersion whose fibers are geodesics. The vertical unit Killing vector field

is given by ξ = κ

4τ
V . A particular Hopf torus in S3b(κ, τ ) is the Clifford torus given by

{(z, w) ∈ S
3
b(κ, τ ) ; |z|2 = |w|2 = 1/2}.

It is well known that the Clifford torus is the only minimal Hopf torus in any Berger sphere
(see for instance [30]).

Let us finish this section by recalling a classification result for parallel surfaces inE3(κ, τ ),
provedbyBelkhelfa,Dillen and Inoguchi in [6]. Fromnowon,wewill understandby aparallel
surface a surface with parallel second fundamental form.

Lemma 1 [6,Theorem 8.2] Let �2 be an isometrically immersed parallel surface into the
homogeneous space E3(κ, τ ), κ − 4τ 2 �= 0. Then,

1. if τ �= 0 �2 is a piece of a Hopf cylinder over a Riemannian circle in M
2(κ), that is,

over a closed curve inM2(κ) with constant geodesic curvature.
2. if τ = 0 �2 is either a piece of a slice in M

2(κ) × R or of a Hopf cylinder over a
Riemannian circle in M

2(κ).

3 A Simons-type formula for the Cheng–Yau operator in E
3(�, �)

In consideration of the foregoing, we are going to compute the Laplacian of |A|2. First and
foremost, we recall the following Weitzenböck formula (see for instance [22])

1

2

|A|2 = 1

2

〈A, A〉 = |∇A|2 + 〈
 A, A〉, (11)
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where 
A : X(�) −→ X(�) is the rough Laplacian of the second fundamental form, that
is,


A(X) = tr
(∇2A(X , ·, ·)) =

2∑
i=1

∇2A(X , ei , ei ), (12)

{e1, e2} being an orthonormal frame on X(�) and ∇2A(X , Y , Z) = (∇Z∇A) (X , Y ) for all
X , Y , Z ∈ X(�). In this setting, on the one hand we obtain from the Codazzi equation (9)
and the integrability equations (5) the following symmetry in the two firsts variables of∇2A,

∇2A(X , Y , Z) = ∇2A(Y , X , Z) − (κ − 4τ 2)〈(A + τ J )(T ), Z〉 (〈X , T 〉Y − 〈Y , T 〉X)

+ (κ − 4τ 2)C2 (〈X , (A − τ J )(Z)〉Y − 〈Y , (A − τ J )(Z)〉X) .

(13)
On the other hand, it is not difficult to see that

∇2A(X , Y , Z) = ∇2A(X , Z , Y ) + R(Y , Z)A(X) − A(R(Y , Z)X). (14)

Making Y = Z = ei in (13) and taking traces, we have

2∑
i=1

∇2A(X , ei , ei ) =
2∑

i=1

∇2A(ei , X , ei ) − (κ − 4τ 2)C2 (2HX − (A + τ J )(X))

− (κ − 4τ 2) (〈X , T 〉(A + τ J )(T ) − 〈A(T ), T 〉X) .

(15)

Furthermore, from (14) it yields

∇2A(ei , X , ei ) = ∇2A(ei , ei , X) + R(X , ei )A(ei ) − A(R(X , ei )ei ). (16)

Observe now that, using the Gauss equation (8), we get

2∑
i=1

R(X , ei )A(ei ) = (κ − 3τ 2)(A(X) − 2HX) − |A|2A(X) + A3(X)

+ (κ − 4τ 2) (〈A(T ), T 〉X − 〈X , T 〉A(T ))

+ (κ − 4τ 2) (2H〈X , T 〉 − 〈A(T ), X〉) T
and

2∑
i=1

A(R(X , ei )ei ) = −(κ − 3τ 2)A(X) + A3(X) − 2H A2(X) + (κ − 4τ 2)|T |2A(X).

Thus, inserting these two last equalities in (16),

2∑
i=1

∇2A(ei , X , ei ) =
2∑

i=1

∇2A(ei , ei , X) + 2(κ − 3τ 2)(A(X) − HX) + 2H A2(X)

+ (κ − 4τ 2)
(〈A(T ), T 〉X − 〈X , T 〉A(T ) − |T |2A(X)

)
+ (κ − 4τ 2) (2H〈X , T 〉 − 〈A(T ), X〉) T − |A|2A(X).

(17)

Observe now that, since the trace commutes with the Levi–Civita connection,

2∑
i=1

∇2A(ei , ei , X) = tr (∇X∇A) = ∇X (tr(∇A)).
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We claim that
tr(∇A) = 2∇H + C(κ − 4τ 2)T . (18)

Indeed, using the Codazzi equation (9),

〈∇A(ei , ei ), X〉 = 〈(∇ei A)(ei ), X〉 = 〈ei , (∇ei A)(X)〉 = 〈ei ,∇A(X , ei )〉
= 〈ei ,∇A(ei , X)〉 + (κ − 4τ 2)C(〈X , T 〉 − 〈X , ei 〉〈T , ei 〉),

which implies that

〈tr(∇A), X〉 =
2∑

i=1

[〈ei , (∇X A)(ei )〉 + C(κ − 4τ 2) (〈X , T 〉 − 〈X , ei 〉〈T , ei 〉)
]

= 2〈∇H , X〉 + (κ − 4τ 2)C〈X , T 〉,
for all X ∈ X(�), so the claim is proved. Hence, from (18) and (5), it holds

∇X (tr(∇A)) = 2∇X∇H−(κ −4τ 2)〈(A+τ J )(T ), X〉T +(κ −4τ 2)C2(A−τ J )(X). (19)

Therefore, putting (15), (17) and (19) in (12),


A(X) = 2∇X∇H + 2(κ − 3τ 2)(A(X) − HX) − |A|2A(X) + 2H A2(X)

+ (κ − 4τ 2)
(
2〈A(T ), T 〉X − 2〈X , T 〉A(T ) − |T |2A(X)

)
+ (κ − 4τ 2) (2H〈X , T 〉 − 2〈A(T ), X〉) T + 2(κ − 4τ 2)C2 (A(X) − HX)

− τ(κ − 4τ 2) (〈J (T ), X〉T + 〈X , T 〉J (T )) .

Consequently,

〈
A, A〉 = 2tr(A ◦ Hess H) + 2(κ − 3τ 2)(|A|2 − 2H2) + 2(κ − 4τ 2)C2(|A|2 − 2H2)

+ 2(κ − 4τ 2)
(
3H〈A(T ), T 〉 − 2〈A2(T ), T 〉 − τ 〈A(T ), J (T )〉)

− (κ − 4τ 2)|T |2|A|2 − |A|4 + 2H tr(A3).

(20)
Now, taking into account the characteristic polynomial of A, we observe that

4H〈A(T ), T 〉 − 2〈A2(T ), T 〉 = 2|T |2Ke. (21)

Besides that, from (7) it holds

2(κ − 3τ 2)(|A|2 − 2H2) + (κ − 4τ 2)(1 − C2)(2Ke − |A|2)
= 2(κ − 3τ 2)(|A|2 − 2H2) − 2(κ − 4τ 2)(1 − C2)(|A|2 − 2H2)

= 2(|A|2 − 2H2)(τ 2 + (κ − 4τ 2)C2).

(22)

Moreover, it is easy to check that tr(A3) = 3H |A|2 −4H3, so again from (7) we deduce that

− |A|4 + 2H tr(A3) = −|A|4 + 6H2|A|2 − 8H4 = 2(|A|2 − 2H2)Ke. (23)

Hence, taking into account (10), (21), (22) and (23), (20) reads

〈
A, A〉 = 2tr(A ◦ Hess H) + 2(|A|2 − 2H2)K + 2(κ − 4τ 2)C2(|A|2 − 2H2)

+ 2(κ − 4τ 2)
(
H〈A(T ), T 〉 − 〈A2(T ), T 〉 − τ 〈A(T ), J (T )〉) ,
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so (11) yields

1

2

|A|2 = |∇A|2 + 2tr(A ◦ Hess H)

+ 2(|A|2 − 2H2)K + 2(κ − 4τ 2)C2(|A|2 − 2H2)

+ 2(κ − 4τ 2)
(
H〈A(T ), T 〉 − 〈A2(T ), T 〉 − τ 〈A(T ), J (T )〉) .

(24)

Remark 1 Let us observe that formula (24)was already obtained in [16]. In fact, let us consider
a local orthonormal frame {e1, e2} such that A(e1) = λ1e1 and A(e2) = λ2e2. Moreover, by
the definition of J , we must have J (e1) = e2 and J (e2) = −e1. Taking into account these
two facts and writing T = 〈T, e1〉e1 + 〈T, e2〉e2, we have

〈A(T ), J (T )〉 = (λ2 − λ1)〈T, e1〉〈T, e2〉,
so we recover [16,Lemma 3.1]. However, we have included the proof for the sake of com-
pleteness, and because it represents an alternative reasoning based on tensorial analysis.

Nevertheless, our aim in this section is to obtain a Simons-type formula for the Cheng–
Yau’s operator. To this respect, following [9]we introduce theCheng–Yau’s operator� acting
on any smooth function u : �2 → R given by

�u = tr(P ◦ Hess u),

where P denotes the first Newton transformation of A, that is, P : X(�) → X(�) is the
operator given by

P = 2H I − A, (25)

which is also a self-adjoint linear operator which commutes with A and satisfies tr(P) = 2H .
Taking u = 2H , from equation (7) we obtain the following,

�(2H) = tr(P ◦ Hess (2H))

= 2H
(2H) − 2tr(A ◦ Hess H)

= 1

2

(2H)2 − 4|∇H |2 − 2tr(A ◦ Hess H)

= 1

2

|A|2 + 
Ke − 4|∇H |2 − 2tr(A ◦ Hess H).

(26)

Inserting (24) in previous equality, we get

�(2H) = 
Ke + |∇A|2 − 4|∇H |2 + 2(|A|2 − 2H2)K + 2(κ − 4τ 2)C2 (|A|2 − 2H2)
+ 2(κ − 4τ 2)

(
H〈A(T ), T 〉 − 〈A2(T ), T 〉 − τ 〈A(T ), J (T )〉) .

(27)
For our purpose, it will be more appropriate to deal with the traceless part of A, which is

given by Φ = A − H I , with I the identity operator on X(�). Then, tr(Φ) = 0 and

|Φ|2 = |A|2 − 2H2 ≥ 0, (28)

with equality at p ∈ �2 if and only if p is an umbilical point. In contrast to the case where the
ambient is a Riemannian product, it was proved in [27] that there does not exist any totally
umbilical surface in E

3(κ, τ ) with τ �= 0.
Now, from the characteristic polynomial of Φ and identity (28), the following equalities

hold,
−2〈A2(T ), T 〉 + 2H〈A(T ), T 〉 = −|Φ|2|T |2 − 2H〈Φ(T ), T 〉
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and
2C2|A|2 − 4H2C2 = 2C2|Φ|2.

Besides this, equations (4) and (10) give us

2K + (κ − 4τ 2)
(
2C2 − |T |2) = 2Ke + 5(κ − 4τ 2)C2 − κ + 6τ 2.

Therefore, inserting these three last equations in (27), we have finally shown the following
Simons-type formula for the Cheng–Yau’s operator.

Proposition 1 Let �2 be an isometrically immersed surface into an homogeneous space
E
3(κ, τ ). Then,

�(2H) = 
Ke + |∇A|2 − 4|∇H |2 + |Φ|2 (
2Ke + (κ − 4τ 2)(5C2 − 1) + 2τ 2

)
− 2(κ − 4τ 2) (H〈Φ(T ), T 〉 + τ 〈Φ(T ), J (T )〉) .

Remark 2 When τ = 0, as it was said in the Introduction, the homogeneous space E3(κ, τ )

is exactly the product spaceM2(κ)×R, whereM2(κ) is a space formwith constant sectional
curvature κ . Thus, Proposition 1 extends [11,Proposition 1.2].

Let us finish this section by showing a nice divergence formula involving the Cheng–Yau’s
operator.

Lemma 2 Let�2 be an isometrically immersed surface into an homogeneous spaceE3(κ, τ ).
Then,

div(P(2∇H)) = �(2H) − 2C(κ − 4τ 2)T (H). (29)

Proof Observe that by a standard tensor computation

div(P(2∇H)) = �(2H) + 2〈div P,∇H〉, (30)

where

div (P) =
2∑

i=1

∇P(ei , ei )

with
∇P(X , Y ) = (∇Y P)X = ∇Y (PX) − P(∇Y X),

for every X , Y ∈ X(�).
It remains to compute the last term of equation (30). Indeed, from (25),

∇P(X , Y ) = 2Y (H)X − ∇A(X , Y ),

for every X , Y ∈ X(�). Then, (18) implies that

div (P) = tr(∇P) = 2∇H − 2∇H − (κ − 4τ 2)CT = −C(κ − 4τ 2)T , (31)

so finally (29) follows from (30) and (31). �
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4 Willmore surfaces in S
3
b(�, �)

Let x : �2 → M
3(κ) be an isometrically immersed orientable closed, i.e., compact without

boundary, surface into the Riemannian space form M
3(κ) with constant sectional curvature

κ . The Willmore functional is defined by

W(x) =
∫

�

(H2 + κ)dA,

where dA denotes the area element of the inducedmetric on�2. Associated to this functional,
there is the famous Willmore conjecture, solved in 2012 by Marques and Neves [19], which
guarantees that this integral is at least 2π2 when �2 is an immersed torus into R

3. We say
that �2 is a Willmore surface if it is a stationary point for the functional W . Moreover, it is
well known thatW is a conformal invariant and its Euler–Lagrange equation is given by (see
[7, 31])


H + |Φ|2H = 0.

For our interests, let x : �2 → E
3(κ, τ ) be an isometrically immersed orientable closed

surface into the homogeneous 3-manifold E3(κ, τ ). Following Weiner [31], we consider the
following Willmore functional,

W(x) =
∫

�

(H2 + K )dA,

where at any p ∈ �2, K denotes the sectional curvature of Tp� in E
3(κ, τ ), which follow-

ing (2)-(4) can be expressed as

K = τ 2 + (κ − 4τ 2)C2. (32)

In the following result we obtain the Euler–Lagrange equation ofW , extending the result
of Weiner [31,Theorem 2.2] for immersed surfaces into the homogeneous space E3(κ, τ ).

Proposition 2 Let x : �2 → E
3(κ, τ ) be an isometrically immersed orientable closed

surface. Then x is a stationary point of W if and only if


H + (|Φ|2 + (κ − 4τ 2)(1 + C2)
)
H − 2(κ − 4τ 2)〈A(T ), T 〉 = 0.

Proof Let us consider a variation of x , that is, a smooth map X : (−ε, ε) × �2 → E
3(κ, τ )

satisfying that for each t ∈ (−ε, ε), themap Xt : �2 → E
3(κ, τ ), given by Xt (p) = X(t, p),

is an immersion and X0 = x . Then, we can compute the first variation ofW along X , that is,

d

dt
W(Xt )

∣∣∣∣
t=0

= d

dt

∫
�

(H2
t + K t )dAt

∣∣∣∣
t=0

=
∫

�

(
d

dt
(H2

t + K t )dAt + (H2
t + K t )

d

dt
(dAt )

) ∣∣∣∣
t=0

,

(33)

where, for each t ∈ (−ε, ε), Ht and K t stand, respectively, for the mean curvature of �2 and
the sectional curvature of Tp� in E3(κ, τ ) with respect to the metric induced by Xt , and dAt

denotes its volume element.
Observe that, on the one hand, the following identity is well known (see for instance [5])

2
dHt

dt

∣∣∣∣
t=0

= 
 f + 2〈∇H , Y�〉 + (Ric(N , N ) + |A|2) f ,
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Ric being the Ricci curvature tensor of E3(κ, τ ) and Y = ∂X
∂t

∣∣
t=0 the variational vector field

related to the variation X , which can be decomposed as Y = Y� + f N with f = 〈Y , N 〉.
On the other hand, denoting by Nt the unit normal vector field along �2 with respect to

the metric induced by Xt , since N0 = N it holds

dK t

dt

∣∣∣∣
t=0

= d

dt

(
τ 2 + (κ − 4τ 2)〈Nt , ξ 〉2)

∣∣∣∣
t=0

= 2(κ − 4τ 2)〈Nt , ξ 〉 d
dt

〈Nt , ξ 〉
∣∣∣∣
t=0

.

Since Y = ∂X
∂t

∣∣
t=0 is a coordinate field, there exists an orthonormal frame {e1, e2} in X(�)

such that [Y , ek] = 0, for any k = 1, 2. Thus, a direct computation gives us

∇ f = −∇Y N − A(Y�).

Then, from the integrability equations (5) we get

dK t

dt

∣∣∣∣
t=0

= −2(κ − 4τ 2)C
(
〈∇ f , T 〉 + 〈(A + τ J )(T ), Y�〉

)
.

Furthermore, by using Lemma 4.2 of [4] (see also [8,Lemma 5.4]), we have

d

dt
(dAt )

∣∣∣∣
t=0

=
(
−2H f + div(Y�)

)
dA.

Using the previous equalities, we obtain

d

dt
(H2

t + K t )

∣∣∣∣
t=0

dA = 2H
dHt

dt

∣∣∣∣
t=0

dA + dK t

dt

∣∣∣∣
t=0

dA

= H
(

 f + (Ric(N , N ) + |A|2) f ) dA + 〈∇H2, Y�〉dA

− 2(κ − 4τ 2)C
(
〈∇ f , T 〉 + 〈(A + τ J )(T ), Y�〉

)
dA

(34)

and

(H2 + K )
d

dt
(dAt )

∣∣∣∣
t=0

= −2H(H2 + K ) f dA + (H2 + K )div(Y�)dA. (35)

Let us also observe that

div(H2Y�) = H2div(Y�) + 〈∇H2, Y�〉.

From (5) it also holds

div(KY�) = Kdiv(Y�) − 2(κ − 4τ 2)C〈(A + τ J )(T ), Y�〉.

Then, it follows from (35) that

(H2 + K )
d

dt
(dAt )

∣∣∣∣
t=0

= −2H(H2 + K ) f dA + div(H2Y�)dA − 〈∇H2, Y�〉dA

+ div(KY�)dA + 2(κ − 4τ 2)C〈(A + τ J )(T ), Y�〉dA.

(36)
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Hence, replacing (34) and (36) in (33), we get

d

dt
W(Xt )

∣∣∣∣
t=0

=
∫

�

(
H
 f + H(Ric(N , N ) + |A|2) f − 2H(H2 + K ) f

)
dA

− 2(κ − 4τ 2)
∫

�

C〈∇ f , T 〉dA

=
∫

�

(

H + (Ric(N , N ) + |A|2)H − 2H(H2 + K )

)
f dA

− 2(κ − 4τ 2)
∫

�

C〈∇ f , T 〉dA.

Besides this, from (5) and (6),

div(C f T ) = C f div(T ) + C〈∇ f , T 〉 + f 〈∇C, T 〉
= 2HC2 f + C〈∇ f , T 〉 − f 〈A(T ), T 〉.

Therefore,

d

dt
W(Xt )

∣∣∣∣
t=0

=
∫

�

(
H
 f + H(Ric(N , N ) + |A|2) f − 2H(H2 + K ) f

)
dA

+ 2(κ − 4τ 2)
∫

�

(
2HC2 − 〈A(T ), T 〉) f dA

=
∫

�

(

H + (Ric(N , N ) + |A|2)H − 2H(H2 + K )

)
f dA

+ 2(κ − 4τ 2)
∫

�

(
2HC2 − 〈A(T ), T 〉) f dA.

Consequently, x is a stationary point of the Willmore functional W if and only if


H + (|Φ|2 + Ric(N , N ) − 2K + 4(κ − 4τ 2)C2) H − 2(κ − 4τ 2)〈A(T ), T 〉 = 0. (37)

Finally, by an straightforward computation from (2) and (4) we easily obtain

Ric(N , N ) = κ − 2τ 2 − (κ − 4τ 2)C2,

which jointly with (32) and (37) yields the desired result. �
Remark 3 It is not difficult to check that minimal surfaces and Hopf cylinders over a curve
of geodesic curvature kg = √

2(2τ 2 − κ), for all κ, τ ∈ R with κ < 2τ 2 satisfy (37). So,
they are stationary points of the Willmore functional W .

Before presenting our classification result for Willmore surfaces in E
3(κ, τ ), we firstly

need the following lemma whose proof follows the ideas developed in [13,Lemma 2.1] (see
also [17]).

Lemma 3 If�2 is an isometrically immersed orientable surface into the homogeneous space
E
3(κ, τ ), then

|∇A|2 ≥ 3|∇H |2 + 2(κ − 4τ 2)C〈∇H , T 〉. (38)

Proof Given any a ∈ R, let us consider the following tensor

F(X , Y , Z) = 〈∇A(X , Y ), Z〉
+ a (〈∇H , X〉〈Y , Z〉 + 〈∇H , Y 〉〈X , Z〉 + 〈∇H , Z〉〈X , Y 〉) .
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A direct computation gives

F(X , Y , Z)2 = 〈∇A(X , Y ), Z〉2 + 2aQ1(X , Y , Z) + a2Q2(X , Y , Z),

where

Q1(X , Y , Z) = 〈∇A(X , Y ), Z〉 (〈∇H , X〉〈Y , Z〉 + 〈∇H , Y 〉〈X , Z〉 + 〈∇H , Z〉〈X , Y 〉)
and

Q2(X , Y , Z) = (〈∇H , X〉2〈Y , Z〉2 + 〈∇H , Y 〉2〈X , Z〉2 + 〈∇H , Z〉2〈X , Y 〉2)
+ 2 (〈∇H , X〉〈Y , Z〉〈∇H , Y 〉〈X , Z〉 + 〈∇H , X〉〈Y , Z〉〈∇H , Z〉〈X , Y 〉)
+ 2〈∇H , Y 〉〈X , Z〉〈∇H , Z〉〈X , Y 〉.

In order to compute these last terms, let us take {e1, e2} an orthonormal frame on X(�).
Then, it is not difficult to check that

2∑
i, j,k

〈∇A(ei , e j ), ek〉2 = |∇A|2 and
2∑

i, j,k

Q2(ei , e j , ek) = 12|∇H |2.

Besides that, from Codazzi equation and (18), we have

2∑
i, j,k

Q1(ei , e j , ek) =
2∑

i, j=1

(〈∇A(ei , e j ), e j 〉〈∇H , ei 〉 + 〈∇A(ei , e j ), ei 〉〈∇H , e j 〉
)

+
2∑

i=1

〈∇A(ei , ei ),∇H〉

= 6|∇H |2 + 2(κ − 4τ 2)C〈∇H , T 〉.
Hence,

|F |2 = |∇A|2 + 2a
(
6|∇H |2 + 2(κ − 4τ 2)C〈∇H , T 〉) + 12a2|∇H |2.

Taking a = −1/2 we obtain (38). �
We can finally present our first main result.

Theorem 1 Let �2 be an isometrically immersed orientable closed Willmore surface into an
homogeneous space E3(κ, τ ). Then,∫

�

(|Φ|4 − (
2τ 2 − (κ − 4τ 2)(1 − 3C2)

) |Φ|2) dA
− (κ − 4τ 2)

∫
�

(|∇C |2 + (Ke + τ 2)(1 − 5C2) + 2τ 2(1 − 3C2)
)
dA ≥ 0,

where the equality holds if and only if �2 is a parallel surface.
In particular, if κ < 2τ 2 the equality holds if and only if E3(κ, τ ) = S

3
b(κ, τ ) and �2 is

either a Clifford torus or aHopf torus over a closed curve of geodesic curvature
√
2(2τ 2 − κ)

on S
2(κ).

Proof Firstly, taking into account (28), (26) can be written as follows,

�(2H) = 4H
H − 2tr(A ◦ Hess H)

= 2H
H − 1

2

|Φ|2 − 2|∇H |2 + 1

2

|A|2 − 2tr(A ◦ Hess H),

123



Annals of Global Analysis and Geometry

where 
H2 = 2H
H + 2|∇H |2 has been used. Consequently, by (24),

�(2H) = 2H
H − 1

2

|Φ|2 + |∇A|2 − 2|∇H |2

+ |Φ|2 (
2Ke + (κ − 4τ 2)(5C2 − 1) + 2τ 2

)
− 2(κ − 4τ 2) (H〈Φ(T ), T 〉 + τ 〈Φ(T ), J (T )〉) .

(39)

Let us observe now that from Lemma 3 we get

|∇A|2 − 2|∇H |2 ≥ |∇H |2 + 2(κ − 4τ 2)C〈∇H , T 〉
≥ 2(κ − 4τ 2)C〈∇H , T 〉, (40)

where the equality holds if and only if

|∇A|2 = 3|∇H |2 + 2(κ − 4τ 2)C〈∇H , T 〉 = 0,

that is, if and only if�2 is a parallel surface. Then, fromLemma 2 and taking into account (39)
and (40) we obtain the following inequality,

div(P(2∇H)) = �(2H) − 2(κ − 4τ 2)C〈∇H , T 〉
≥ 2H
H − 1

2

|Φ|2 + |Φ|2 (

2Ke + (κ − 4τ 2)(5C2 − 1) + 2τ 2
)

− 2(κ − 4τ 2) (H〈Φ(T ), T 〉 + τ 〈Φ(T ), J (T )〉) .

Therefore, the divergence theorem yields

−2
∫

�

H
HdA ≥
∫

�

|Φ|2 (
2Ke + (κ − 4τ 2)(5C2 − 1) + 2τ 2

)
dA

− 2(κ − 4τ 2)
∫

�

(H〈Φ(T ), T 〉 + τ 〈Φ(T ), J (T )〉) dA.

On the one hand, from Proposition 2 we can write

2H
H = −2H2 (|Φ|2 + (κ − 4τ 2)(1 + C2)
) + 4(κ − 4τ 2)H〈A(T ), T 〉

= − (|Φ|2 + 2Ke
) (|Φ|2 + (κ − 4τ 2)(3C2 − 1)

) + 4(κ − 4τ 2)H〈Φ(T ), T 〉
= −|Φ|2 (

2Ke + |Φ|2 + (κ − 4τ 2)(3C2 − 1)
) − 2(κ − 4τ 2)(3C2 − 1)Ke

+ 4(κ − 4τ 2)H〈Φ(T ), T 〉,
(41)

where we have used that
|Φ|2 − 2H2 = −2Ke, (42)

which follows from (7) and (28). Hence,

0 ≥
∫

�

|Φ|2 (−|Φ|2 + 2(κ − 4τ 2)C2 + 2τ 2
)
dA + 2(κ − 4τ 2)

∫
�

(1 − 3C2)KedA

+ 2(κ − 4τ 2)
∫

�

(H〈Φ(T ), T 〉 − τ 〈Φ(T ), J (T )〉) dA.

(43)

On the other hand, by using A2 − 2H A + Ke I = A2 − 2HΦ − (|Φ|2 + Ke
)
I = 0 and

the integrability equation (5), we easily obtain

|∇C |2 = 2H〈Φ(T ), T 〉 + 2τ 〈Φ(T ), J (T )〉 + (|Φ|2 + Ke + τ 2
) |T |2. (44)

123



Annals of Global Analysis and Geometry

Now, let us consider the local orthonormal frame on X(�), {e1, e2} such that e1 = T
|T | and

e2 = J (e1) we get
div(J (T )) = −〈J (T ),∇e1e1〉 + e2(|T |),

which using once more the integrability equations (5) yields

div(J (T )) = 2τC . (45)

So, from (5) and (45),

div(τC J (T )) = 2τ 2C2 − τ 〈(A + τ J )T , J (T )〉 = −τ 〈φ(T ), J (T )〉 − τ 2(1 − 3C2).

Thus, by (44)

2H〈Φ(T ), T 〉 − 2τ 〈φ(T ), J (T )〉 = |∇C |2 + 4div(τC J (T )) + τ 2(3 − 11C2)

− (|Φ|2 + Ke)(1 − C2)

Therefore, by (43) we obtain

0 ≥
∫

�

|Φ|2 (−|Φ|2 + (κ − 4τ 2)(3C2 − 1) + 2τ 2
)
dA

+ (κ − 4τ 2)
∫

�

(|∇C |2 + (Ke + τ 2)(1 − 5C2) + 2τ 2(1 − 3C2)
)
dA,

(46)

which is the desired inequality.
Moreover, as we have remarked before, the equality holds in (46) if and only if �2 is

a closed parallel surface. Then, from Lemma 1 �2 is either a Hopf torus (necessarily in
S
3
b(κ, τ )) over a Riemannian circle in S

2(κ), or a piece of a slice in M
2(κ) × R. However,

since �2 is closed this last case only occurs in the case τ = 0 and κ > 0, which does not
satisfy the assumption κ < 2τ 2.

Consequently, �2 is a Hopf torus in S
3
b(κ, τ ), so in particular C = 0 and Ke = −τ 2.

Hence, (41) reads
0 = (−|Φ|2 + 2τ 2

)
(|Φ|2 + κ − 4τ 2).

Then, either |Φ|2 = 2τ 2, which implies that H = 0 and �2 is the Clifford torus, or |Φ|2 +
κ − 4τ 2 = 0. Thus, from (42) we get H =

√
2τ 2−κ

2 and, consequently, �2 is isometric

to a Hopf torus in S
3
b(κ, τ ) over a curve of geodesic curvature

√
2

(
2τ 2 − κ

)
on S

2(κ), for

0 < κ < 2τ 2. �

5 Classification results for constant extrinsic curvature closed surfaces

Let us begin by obtaining some new interesting divergence formulae, which will play a
fundamental role in the proof of the main results in this section.

Lemma 4 Let�2 be an isometrically immersed surface into the homogeneous spaceE3(κ, τ ).
Then the following divergence formulae hold on �2,

(a) div(∇T T ) = K |T |2 + T (div T ) + |∇T |2 − 4τ 2C2.
(b) div (div(T )T ) = T (div T ) + 4H2C2.

(c) div (|T |∇|T |) = K |T |2 + T (div T ) + |∇T |2 − 2τ 2|T |2 − 2τ 〈Φ(T ), J (T )〉.
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Proof Firstly, let us observe that items (a) and (b) have already been proved in [29] (see also
[16,Lemma 3.2]). However, we will include the proofs for the sake of completeness.

From the integrability equations (5) it is immediate to check that

div(∇T T ) = div(C(A−τ J )(T )) = −〈A2(T ), T 〉+τ 2|T |2 +Cdiv(A(T ))−τCdiv(J (T )).

(47)
On the one hand, given a local orthonormal frame {e1, e2} onX(�) diagonalizing A, from

the Codazzi equation (9) it holds

div(A(T )) =
2∑

i=1

〈(∇ei A)(T ), ei 〉 +
2∑

i=1

〈A(∇ei T ), ei 〉

= tr(∇T A) + C(κ − 4τ 2)|T |2 +
2∑

i=1

〈∇ei T , A(ei )〉

= 2T (H) + C(κ − 4τ 2)|T |2 + C |A|2,

(48)

where in the last equality we have used again (5) and the fact that the trace commutes with
the Levi–Civita connection.

On the other hand, (6) yields

T (div(T )) = −2H〈A(T ), T 〉 + 2CT (H). (49)

Then, taking into account (45), (48) and (49), (47) reads

div(∇T T ) = K |T |2 + T (div(T )) + C2|A|2 − 2τ 2C2,

where we have used (10) and (21). Finally, item (a) follows by observing that

|∇T |2 =
2∑

i, j=1

〈∇ei T , e j 〉2 = C2(|A|2 + 2τ 2), (50)

for any {e1, e2} local orthonormal frame on X(�).
Item (b) follows directly from (6).
With respect to item (c), a direct computation from (5) guarantees us that

|T |∇|T | = C(A + τ J )(T ). (51)

Then, taking divergences in (51),

div (|T | ∇|T |) = div(A(T ))C + τdiv(J (T ))C + 〈∇C, (A + τ J )(T )〉. (52)

It is easy to check from (21) and from the integrability equations (5) that

〈∇C, (A + τ J )(T )〉 = −〈A2(T ), T 〉 − 2τ 〈A(T ), J (T )〉 − τ 2|T |2
= −2H〈A(T ), T 〉 + Ke|T |2 − 2τ 〈Φ(T ), J (T )〉 − τ 2|T |2. (53)

Then, item (c) follows by inserting (48)–(50) and (53) in (52). �
Bringing all these formulae together, we get the desired divergence-type formulae,

Corollary 1 Let �2 be an isometrically immersed surface into an homogeneous space
E
3(κ, τ ). Then the following divergence formulae hold,

div (U) = 
Ke + |∇A|2 − 4|∇H |2 + 2|Φ|2 (
Ke + (κ − 4τ 2)(4C2 − 1) + τ 2

)
− 2(κ − 4τ 2)

(
2H〈Φ(T ), T 〉 + (Ke − τ 2)(1 − 3C2)

)
,

(54)
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where U = P(2∇H) + (κ − 4τ 2) (∇T T − |T |∇|T | + div (T )T ) and

div (V) = 
Ke + |∇A|2 − 4|∇H |2 + 2|Φ|2 (
Ke + 3(κ − 4τ 2)C2 + τ 2

)
− 2(κ − 4τ 2)

(|∇C |2 − 2(Ke + τ 2)C2) ,
(55)

where V = P(2∇H) + (κ − 4τ 2) (|T |∇|T | + div(T )T − ∇T T ).

Proof On the one hand, let U1 = ∇T T − |T |∇|T | + div (T )T , then from items (a), (b) and
(c) of Lemma 4 we can compute

div (U1) = −2τ 2(3C2 − 1) + 2τ 〈Φ(T ), J (T )〉 + T (div(T )) + 4H2C2. (56)

Then, from (56), (49) and item (d) in Lemma 4 we get

div(U) = �(2H) − 2H(κ − 4τ 2)
(〈A(T ), T 〉 − 2C2H

)
− 2τ(κ − 4τ 2)

(
τ(3C2 − 1) − 〈Φ(T ), J (T )〉) .

Taking now into account Proposition 1 jointly with (4) and the definition of Φ, we easily
deduce

div(U) = 
Ke + |∇A|2 − 4|∇H |2 + 2|Φ|2 (
Ke + (κ − 4τ 2)(4C2 − 1) + τ 2

)
+ (κ − 4τ 2)

(−4H〈Φ(T ), T 〉 + (1 − 3C2)(2τ 2 + |Φ|2 − 2H2)
)
.

Then (54) follows from (42).
On the other hand, let us observe that

V − U = 2(κ − 4τ 2)(|T |∇|T | − ∇T T ).

Therefore, from (54) and items (a) and (c) of Lemma 4, it holds

div(V) = 
Ke + |∇A|2 − 4|∇H |2 + 2|Φ|2 (
Ke + (κ − 4τ 2)(4C2 − 1) + τ 2

)
+ 2(κ − 4τ 2)

(
4τ 2C2 − 2τ 2|T |2 − 2τ 〈Φ(T ), J (T )〉

−2H〈Φ(T ), T 〉 − (Ke − τ 2)(1 − 3C2)
)
.

Then, the desired formula (55) follows from (4) and (44), so Corollary 1 is proved. �
In the next results we will approach the case in which the extrinsic curvature is constant

and negative. For this, the following lemma is essential.

Lemma 5 Let �2 be an isometrically immersed orientable surface into the homogeneous
space E3(κ, τ ) with constant extrinsic curvature Ke < 0. Then

|∇A|2 ≤ 4|∇H |2. (57)

In particular, the equality holds if and only if �2 is a parallel surface.

Proof Indeed, let {e1, e2} be a local orthonormal framewhich diagonalizes A, that is, A(ei ) =
λi ei , i = 1, 2. Then |∇A|2 = ∑2

i, j=1(ei (λ j ))
2, and by a direct computation we get

4|∇H |2 = (e1(λ1) + e1(λ2))
2 + (e2(λ1) + e2(λ2))

2.

Hence,
|∇A|2 − 4|∇H |2 = −2(e1(λ1)e1(λ2) + e2(λ1)e2(λ2)). (58)
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On the other hand, since Ke = λ1λ2 is a negative constant, taking derivatives with respect
to e1 and e2,

0 = ei (Ke) = ei (λ1)λ2 + λ1ei (λ2), i = 1, 2. (59)

Furthermore, λ1, λ2 �= 0, so from (59) it holds

ei (λ1) = −λ1

λ2
ei (λ2), i = 1, 2.

Therefore, (58) reads

|∇A|2 − 4|∇H |2 = 2λ1
λ2

(e21(λ2) + e22(λ2)) = 2Ke

λ22
(e21(λ2) + e22(λ2)) ≤ 0 (60)

as desired. The conclusion about the equality is immediate. �
Corollary 2 There exists no immersed surface into the homogeneous space E

3(κ, τ ) with
κ −4τ 2 �= 0, satisfying the equality in (57) and having positive constant extrinsic curvature.

Proof Indeed, suppose there exists an immersed surface �2 into E
3(κ, τ ), κ − 4τ 2 �= 0,

satisfying the equality in (57) and having positive constant extrinsic curvature. Following the
same reasoning as in the proof of Lemma 5, we obtain (60), so

0 = |∇A|2 − 4|∇H |2 = 2Ke

λ22
(e21(λ2) + e22(λ2)) ≥ 0.

Since Ke > 0, we must have e1(λ2) = e2(λ2) = 0. Therefore, λ2 is constant, so by the
assumption on the extrinsic curvature λ1 is also constant. Thus, �2 should be a parallel
surface of E3(κ, τ ). Hence, from Lemma 1 �2 is either isometric to a piece of a Hopf
cylinder or of a slice, which is a contradiction since in both cases Ke = −τ 2 ≤ 0. �

Now, we present our first result related to surfaces with constant extrinsic curvature in
S
3
b(κ, τ ).

Theorem 2 Let�2 be an isometrically immersed closed surface into the homogeneous space
E
3(κ, τ ), κ − 4τ 2 �= 0, with negative constant extrinsic curvature. Then∫

�

|Φ|2(Ke + (κ − 4τ 2)(4C2 − 1) + τ 2
)
dA ≥ (κ − 4τ 2)

∫
�

Qτ,KedA,

where
Qτ,Ke = 2H〈Φ(T ), T 〉 + (Ke − τ 2)(1 − 3C2). (61)

The equality holds if and only if E3(κ, τ ) = S
3
b(κ, τ ) and �2 is a Hopf torus over a Rieman-

nian circle in S2(κ).

Proof By Corollary 1,

div (U) = 
Ke + |∇A|2 − 4|∇H |2 + 2|Φ|2 (
Ke + (κ − 4τ 2)(4C2 − 1) + τ 2

)
− 2(κ − 4τ 2)

(
2H〈Φ(T ), T 〉 + (Ke − τ 2)(1 − 3C2)

)
.

Since we are supposing that the extrinsic curvature is a negative constant, from Lemma 5,
we can estimate the divergence in this way

div (U) ≤ 2|Φ|2 (
Ke + (κ − 4τ 2)(4C2 − 1) + τ 2

)
− 2(κ − 4τ 2)

(
2H〈Φ(T ), T 〉 + (Ke − τ 2)(1 − 3C2)

)
.
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Therefore, taking integrals and using the classical divergence theorem, we have∫
�

{|Φ|2 (
Ke + (κ − 4τ 2)(4C2 − 1) + τ 2

) − (κ − 4τ 2)Qτ,Ke

}
dA ≥ 0, (62)

where Qτ,Ke is defined as in (61), which is the desired inequality.
Furthermore, the equality is satisfied if and only if the equality holds in (57). Since Ke < 0,

Lemma 5 guarantees that �2 is a parallel surface in E
3(κ, τ ). Therefore, from Lemma 1,

we conclude that �2 is isometric to a piece of a Hopf cylinder or to a slice of M2(κ) × R

when τ = 0. Thus, by closedness and recalling that slices inM2(κ) ×R are totally geodesic
surfaces, so consequently satisfy Ke = 0, the equality in (62) is only satisfied in the case
where E3(κ, τ ) = S

3
b(κ, τ ) and �2 is isometric to a Hopf torus. �

We can also obtain the following alternative characterization result from (55).

Theorem 3 Let�2 bean isometrically immersed closed surfacewith negative constant extrin-
sic curvature into the homogeneous space E3(κ, τ ) such that κ − 4τ 2 > 0. Then∫

�

{(
3(κ − 4τ 2)C2 + Ke + τ 2

) |Φ|2 + 2(κ − 4τ 2)(Ke + τ 2)C2} dA ≥ 0. (63)

The equality holds if and only if E3(κ, τ ) = S
3
b(κ, τ ) and �2 is a Hopf torus over a Rieman-

nian circle in S2(κ).

Proof The proof of (63) follows immediately taking integrals in (55) and taking into account
Lemma 5. The conclusion regarding the equality follows as in Theorem 2. �
Acknowledgements The authors would like to heartily thank the referee for his/her valuable remarks and
comments. The first author is partially supported by the project PGC2018-097046-B-I00, supported by
MCIN/AEI/10.13039/501100011033/FEDER “Una manera de hacer Europa”, and by the Regional Govern-
ment of Andalusia ERDEF Project PY20-01391. The second author is partially supported by CNPq, Brazil,
grants 431976/2018-0 and 311124/2021-6 and Propesqi (UFPE).

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature, Univer-
sidad de Córdoba/CBUA.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abresch, U., Rosenberg, H.: A Hopf differential for constant mean curvature surfaces in S
2 × R and

H
2 × R. Acta Math. 193, 141–174 (2004)

2. Aledo, J.A., Alías, L.J., Romero, A.: A new proof of Liebmann classical rigidity theorem for surfaces in
space forms. Rocky Mountain J. Math. 35, 1811–1824 (2005)

3. Alexandrov, A.D.: Uniqueness theorems for surfaces in the large I. Vestnik Leningrad Univ. 11, 5–17
(1956)

4. Barbosa, J.L.M., Colares, A.G.: Stability of hypersurfaces with constant r -mean curvature. Ann. Global
Anal. Geom. 15, 277–297 (1997)

123

http://creativecommons.org/licenses/by/4.0/


Annals of Global Analysis and Geometry

5. Barbosa, J.L., do Carmo, M., Eschenburg, J.: Stability of hypersurfaces of constant mean curvature in
Riemannian manifolds. Math. Z. 197, 123–138 (1988)

6. Belkhelfa, M., Dillen, F., Inoguchi, J.: Surfaces with parallel second fundamental form in Bianchi-
Cartan-Vranceanu spaces. In: PDE’s, submanifolds and Affine Differential Geometry, Banach Center
Publications, Institute of Mathematics, Polish Academy of Sciences, vol. 57, pp. 67–87 (2002)

7. Bryant, R.L.: A duality theorem for Willmore surfaces. J. Differential Geom. 20, 23–53 (1984)
8. Cao, L., Li, H.: r -minimal submanifolds in space forms. Ann. Global Anal. Geom. 32, 311–341 (2007)
9. Cheng, S.Y., Yau, S.T.: Hypersurfaces with constant scalar curvature. Math. Ann. 225, 195–204 (1977)

10. Daniel, B.: Isometric immersions into 3-dimensional homogeneous manifolds. Comment. Math. Helv.
82, 87–131 (2007)

11. dos Santos, F.R.: Rigidity of surfaces with constant extrinsic curvature in the Riemannian product spaces.
Bull. Braz. Math. Soc. New Ser. 52, 307–326 (2021)

12. Gálvez, J., Martínez, A., Mira, P.: The Bonnet problem for surfaces in homogeneous 3-manifolds. Com-
mun. Anal. Geom. 16, 907–935 (2008)

13. Guo, Z.: Willmore submanifolds in the unit sphere. Collect. Math. 55, 279–287 (2004)
14. Hilbert, D.: Über Flächen von konstanterGaußscherKrümmung. Trans. Amer.Math. Soc. 2, 87–99 (1901)
15. Hopf, H.: Differential Geometry in the Large. Lecture Notes in Mathematics, vol. 1000. Springer, Berlin

(1983)
16. Hu, Z., Lyu, D., Wang, J.: On rigidity phenomena of compact surfaces in homogeneous 3-manifolds.

Proc. Amer. Math. Soc. 143, 3097–3109 (2015)
17. Huisken, G.: Flow by mean curvature of convex surfaces into spheres. J. Differential Geom. 20, 237–266

(1984)
18. Liebmann, H.: Eine neue eigenschaft der kugel, Nach. Kgl. Ges. Wiss. Göttingen. Math. Phys. Klasse,

44–55 (1899)
19. Marques, F.C., Neves, A.:Min–max theory and theWillmore conjecture. Ann.Math. 179, 683–782 (2014)
20. Meeks, W.H., Rosenberg, H.: Stable minimal surfaces in M × R. J. Differential Geom. 68, 515–534

(2004)
21. Montiel, S., Ros,A.: Compact hypersurfaces: theAlexandrov theorem for higher ordermean curvatures, in

Differential geometry. PitmanMonogr. SurveysPureAppl.Math., vol. 52,LongmanSci. Tech.,Harlow,pp.
279–296 (1991)

22. Nomizu, K., Smyth, B.: A formula of Simons’ type and hypersurfaces with constant mean curvature. J.
Differential Geom. 3, 367–377 (1969)

23. O’Neill, B.: Semi-Riemannian Geometry, with Applications to Relativity. Academic Press, New York
(1983)

24. Pámpano, A.: Critical tori for mean curvature energies in Killing submersions. Nonlinear Anal. 200,
112092 (2020)

25. Rosenberg, H.: Minimal surfaces in M2 × R. Illinois J. Math. 46, 1177–1195 (2002)
26. Rosenberg, H., Tribuzy, R.: Rigidity of convex surfaces in the homogeneous spaces. Bull. Sci. Math. 136,

892–898 (2012)
27. Souam, R., Toubiana, E.: Totally umbilic surfaces in homogeneous 3-manifolds. Comment. Math. Helv.

84, 673–704 (2009)
28. Thurston,W.M.: Three-Dimensional Geometry and Topology, Vol. I, PrincetonMathematical Series, Vol.

35. Princeton University Press, Princeton (1997)
29. Torralbo, F., Urbano, F.: On the Gauss curvature of closed surfaces in homogeneous 3-manifolds. Proc.

Amer. Math. Soc. 138, 2561–2567 (2010)
30. Torralbo, F., Urbano, F.: Compact stable constant mean curvature surfaces in homogeneous 3-manifolds.

Indiana Univ. Math. J. 61, 1129–1156 (2012)
31. Weiner, J.L.: On a problem of Chen, Willmore et al. Indiana Univ. Math. J. 27, 19–35 (1978)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Willmore surfaces and Hopf tori in homogeneous 3-manifolds
	Abstract
	1 Introduction
	2 Preliminaries
	3 A Simons-type formula for the Cheng–Yau operator in mathbbE3(κ,τ)
	4 Willmore surfaces in mathbbSb3(κ,τ)
	5 Classification results for constant extrinsic curvature closed surfaces
	Acknowledgements
	References




