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Effects of size on the spectrum and stability of a
confined on-center Hydrogen atom
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Abstract. In this work we studied the problem of the stability of confined atoms
when they are released from confinement. We analyzed the confined Hydrogen atom
inside a cage modelled by a square-well potential, in particular the effects of size on
the energy and the electronic structure of the confined atom, by considering different
internal radii of the confining cage. Starting from the confined wave function, we
clarified the effect on the probability transition between different confined states,
and characterized the stability of the atom when released from in term of both, the
ionization probability and the transition probability to a bound state of the free atom.
The values of the different atomic properties calculated present oscillations when they
are studied as a function of the size of the confining cage. This behaviour can be
explained in terms of the shell structure of the atom.
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1. Introduction

The study of confined systems has attracted considerable interest in recent years due
to their promising applications in a wide range of disciplines due to the changes in the
physical and chemical properties of a system when it becomes confined. An extensive list
of examples can be found, for instance, in [1–4] and the references therein. Some of these
applications extend from fields such as optoelectronics [5–11] and the design of nonlinear
optical (NLO) materials [12] or, plasma Physics [13–15], to the development of qubits
for quantum computing [16], or photovoltaics [17–20], where artificial photosynthesis
has been the focus of several works [21, 22]. Hydrogen storage and transportation also
deserve special mention, both of which have attracted particular attention owing to the
use of this gas as an effective, eco-friendly and clean alternative to fossil fuels [23–25].
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Effects of size on the spectrum and stability of a confined on-center Hydrogen atom 2

For this reason, over the last few decades, fullerenes (especially C60) have emerged
as a promising cheap and lightweight system for Hydrogen storage [24, 26–30]. The
isomerization of the sp2-hybridized carbon network [31] allows us to use fullerenes as
storage cages not only for Hydrogen, but for atoms, ions and molecules in general [32, 33].
Moreover, their unique structure and electronic properties make fullerenes useful for
applications with NLO materials [34, 35], where the change of the catalytic activity of
the confined systems makes use of their fluxional behaviour [36], or in biomedicine [37]
for drug design and delivery [38–40].

Consequently, in view of the importance of the subject, many theoretical works on
confined systems can be found in the literature [41–54]. Different models of confinement
have been proposed to study the properties of confined atoms and molecules, most of
which use a potential barrier to model the confinement. Among the models proposed
are the infinite [55–58] or finite [59–61] spherical barrier, the harmonic potential [51], a
parabolic confinement [62], the gaussian potential [63–67], the square-well potential
[32, 68–71], a combination of Woods-Saxon potentials [60, 72, 73], and Lorenztian
functions [74]. In the case of fullerenes, the use of the square-well potential or a
combination of Woods-Saxon potentials provides suitable results in agreement with
experiment [75]. Although some atomic properties can be better described by diffuse
potentials [73], others, like energy levels or photoionization spectra of enclosed species,
are not affected by the square-well discontinuity [73, 75].

One key question that needs to be addressed is the stability of the encapsulated
system when removed from confinement as regards some of the above applications, for
example, for a possible use as nanocontainers. Owing to the fact that energy levels of the
confined system are different from those of the free system, stability could not to be taken
for granted. If it is considered that the confining cavity exerts pressure on the confined
atom, which disappears once the atom leaves the cavity, atomic conditions may change
in such a way that the atom can become unstable and ionize or, in the case of molecules,
instabilities may lead to dissociation or ionization. Despite the importance of this issue,
little information is available in the literature [57, 61]. In this work we study the problem
of the stability of an atom when it is released from a confining environment, which is
closely related to how the electronic structure of the encapsulated species changes. The
stability is characterized here in terms of the ionization probability of the confined atom
when removed from its cage.

As an initial approach to the subject of stability, we first studied the Hydrogen
atom confined by a square-well potential to model an endofullerene [71, 73]. In spite of
its simplicity, it contains relevant physical information of the problem and can help to
model other more complex and realistic confinement situations. Thus, we first analyze
the effects of size on the spectrum and electronic structure of the atom in order to
understand the results obtained for the stability.

The structure of this work is as follows: section (2) includes a description of the
model and the theoretical approach to studying the confined Hydrogen atom inside
the cage. In section (3), we show and discuss the results obtained here. Finally, our
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Effects of size on the spectrum and stability of a confined on-center Hydrogen atom 3

conclusions are presented in section (4). Atomic units are used throughout this work.

2. Methodology

The Hamiltonian for a Hydrogen atom confined by a spherically symmetric potential,
Vc(r), can be written as

H = −1

2
∇2 − 1

r
+ Vc(r). (1)

A square-well potential is employed to model the confining attractive environment

Vc(r) =

{
−V0 if r0 ≤ r ≤ r0 +∆,

0 otherwise,
(2)

where r0 is the inner radius of the well, ∆, the width, and V0 the depth of the well. The
effects of size are studied here by considering different values of the parameter inner
radius for fixed ∆ and V0 values.

In this work, we have obtained confined stationary states which, due to the spherical
symmetry of the problem, are in the form

Ψc
nlm(r) =

uc
nl(r)

r
Ylm(Ω), (3)

with Ylm(Ω) the Spherical Harmonics and uc
nl(r) the reduced radial function, which is

calculated by solving the radial Schrödinger equation
d2uc

nl(r)

dr2
+

[
2Ec

nl +
2Z

r
− l(l + 1)

r2
− 2Vc(r)

]
uc
nl(r) = 0 (4)

with the usual boundary conditions for bound states; Ec
nl is the energy of the confined

state.
In this work, we solved the radial Schrödinger equation, (4), by using the analytic

continuation method [57, 61, 76–78]. The basic idea is to expand the solution around
each tabular point, rt, in a power series. Thus, the solution around the origin is written
as a Frobenius series [79],

u(r) =
∞∑
j=0

bjr
l+j+1, (5)

while for the other tabular points, rt ̸= 0, t = 1, 2, ..., it produces

u(r) =
∞∑
j=0

ctj(r − rt)
j. (6)

In practice, the series are truncated at a given N value that governs the accuracy
of the method; the reduced radial wave function is therefore written as a piece-wise
polynomial function. When the proposed solution around the origin, (5), is substituted
into the radial Schrödinger equation, (4), a three term recursion relationship is obtained
for the bj coefficients. This equation is solved by using both the regularity and
normalization conditions to initialize the recursion. The values of the ctj coefficients
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Effects of size on the spectrum and stability of a confined on-center Hydrogen atom 4

are also calculated by employing the three term recursion relationship obtained by
substituting the proposed solution, (6), into the radial Schödinger equation, (4). The
recursion is initialized at any given rt value by using the solution at rt−1 and applying
the condition of the continuity of the radial function and its first derivative.

Here, equally-spaced tabular points with step size ∼ 10−4 and polynomial
expansions of degree N = 20 have been employed. These parameters lead to accuracies
of 18 decimal digits in the eigenvalues. All of the recursion relationships involve the
energy eigenvalue Ec

nl. A shooting method is used to compute the eigenvalue, carrying
out inward and outward integrations and imposing the continuity of the log derivative
at an intermediate point [57].

Once the wave functions were known, we calculated physically relevant magnitudes
for the problem such as the Dipole Oscillator Strength (DOS) or the ionization
probability. The DOS is related to the transition probability from the ground state
to an excited state. Owing to the spherical symmetry of the problem considered, the
DOS between the ground state, 1s, and the excited state, np, can be reduced to

fnp,1s =
2

3
(Enp − E1s)

∣∣∣∣∫ ∞

0

dr uc
np(r) r u

c
1s(r)

∣∣∣∣2 (7)

which is known as the mean Dipole Oscillator Strength [79].
The ionization probability can be obtained as

PI =

∫ ∞

0

dE |Cnl(E)|2, (8)

where |Cnl(E)|2 dE represents the probability that the electron, which is initially in the
Ψc

nlm confined state, becomes ionized with energy between E and E+dE when released
from the cage. If we employ the sudden approximation [80], the Cnl(E) functions can
be calculated as

Cnl(E) =

∫ ∞

0

dr uf
El(r)u

c
nl(r), (9)

where uf
El(r) is the reduced radial function of the ionized H atom with energy E and

angular momentum l. The ionization probability can also be written in terms of PB, the
probability that the atom remains in a bound state when removed from confinement,

PI = 1− PB, (10)

where PB is calculated as

PB =
∞∑

n′=1

|Cnl
n′ |2, Cnl

n′ =

∫ ∞

0

dr uf
n′l(r)u

c
nl(r). (11)

3. Results and discussion

In figure 1, we study the effects of size on the single particle spectrum of the confined H
atom. We plot the energy of the 1s to 6s states as a function of the inner radius of the
square-well, r0, for fixed values of potential depth, V0 = 0.422, and width, ∆ = 1.25,
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Effects of size on the spectrum and stability of a confined on-center Hydrogen atom 5

generally used to model a C60 fullerene [73, 75]. Here, we can distinguish three different
kinds of behaviours for the orbital energies. For the ground state, the effect of the
confinement is significant only for r0 ≲ 5. The energy initially decreases and presents a
minimum at r0 ≈ 0.5, and then increases, reaching the value of the free atom at r0 ≈ 5.
The behaviour of the energy of the 2s and 3s orbitals is different from that of the other
orbitals. Cage effects for the 2s energy are relevant for sizes up to r0 ≈ 40, with a
maximum and minimum for lower values of the confinement radius, and reaches the free
orbital value as r0 increases. The 3s orbital does not reach the free atom value as r0
rises (for the sizes studied here) and presents two maxima and one minimum for small
confinement sizes. Finally, for inner radii between 36.5 and 36.7, as can be seen in the
inset of figure 1(b), the energies of the 2s and 3s orbitals are very similar but do not
cross. The behaviour for the other excited bound states is different, showing a series of
maxima and minima as a function of r0, see figure 1(c), where we plot the energy for
the 4s, 5s and 6s orbitals, which are representative of the other excited states. For ns

orbitals with n ≥ 4, the asymptotic value of the energy as the cage size increases is that
of the free (n− 1)s orbital, Ens = −1/(2(n− 1)2) for n ≥ 4, and the number of maxima
is n − 1, i.e., the number of nodes of the radial function. The data of such figures can
be found in the supplementary material.
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Effects of size on the spectrum and stability of a confined on-center Hydrogen atom 6
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Figure 1. (a) Energy of the 1s orbital as a function of inner square-well radius, r0;
(b) same for 2s and 3s; (c) same for 4s, 5s and 6s states

In order to understand the behaviour of the orbital energies, we studied the confined
radial functions. In figure 2 we plot the reduced radial orbital of the ground state for
several representative values of the cage size, r0, and the free orbital for the sake of
comparison. For r0 = 0.2, the effect of the cage is to trap charge in the well, reducing
the potential energy and increasing the kinetic energy, with a net effect of a total energy
lowering. As the well radius increases, the charge distribution becomes more spread and
the total energy increases, but it is still smaller than the energy of the free atom. For
cage sizes larger than r0 ≈ 5, the effect of the well on this orbital is negligible.
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r0=5
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Figure 2. Reduced radial function, u(r), of the 1s orbital for r0 = 0.2, 2 and 5. The
free orbital is also plotted

In figure 3(a), we plot the reduced radial function of the 2s orbital for several
representative values of the cage size, r0. The unconfined orbital is also plotted. For
r0 ≲ 1 the effect of the cage is small and consists of reducing the charge distribution
and increasing the energy. When the well is located in the second shell position of
the unconfined atom, r0 ≈ 5, i.e. the second maximum of the charge distribution, the
energy reaches a minimum and most of the electric charge is located within the well. As
r0 increases, as is illustrated in the figure for r0 = 15, the first shell tends to disappear
and the orbital resembles that of the ground state of the well, with a minor contribution
of the Coulomb interaction with the atomic nucleus. Thus, for r0 = 34 the confined 2s

radial function presents a node which is indistinguishable within the scale of the figure,
making the first shell negligible. As the inner radius of the cage increases, the energy of
the orbital increases due to decreased nuclear attraction. This situation holds for cage
sizes of r0 ≲ 36.

In figure 3(b), we plot the reduced radial function of the 3s orbital for the same cage
sizes as in figure 3(a). For r0 ≲ 5, confinement does not affect this orbital much. The
charge is compressed towards the nucleus, increasing the kinetic energy and lowering
the potential energy. This competition leads to the oscillatory behaviour shown in
figure 1(c); the minimum corresponds to a well located in the region of the first shell,
while the two maxima appear when the well is in a zone with almost no charge. For
5 ≲ r0 ≲ 36.5, the third atomic shell gradually vanishes and the charge density shrinks
toward the nucleus in such a way that the confined 3s orbital behaves like the free 2s

orbital. Thus, for r0 = 34, the third node of the 3s cannot be observed within the scale
of the figure. As a result, the energy of the confined 3s orbital approaches the energy of
the 2s orbital of the free H atom and the confined 2s orbital for this radius. Although
the electronic structure of these orbitals is very different, their energies are very close
for r0 ≈ 36.5, see inset of figure 1(b).
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Figure 3. (a) Reduced radial function, u(r), of the 2s state for r0 = 0.7, 5, 15 and
34. The free state is also shown. (b) Same for 3s state

For r0 ≳ 36.5, confinement effects on the 2s orbital become negligible, see figure 1b,
and the confined and unconfined 2s orbitals practically overlap, while the electron cloud
of the 3s orbital is located within the well. This is illustrated in figure 4, which shows
the radial function of these orbitals for r0 = 34 and r0 = 40. The radial functions for the
unconfined H atom are also plotted for the sake of comparison. It is worth remembering
that the orbitals of the excited states have the right number of nodes, although they
cannot be seen within the scale of the figure. As the size of the cage increases, the
effect of confinement on the 1s and 2s orbitals becomes negligible while the 3s orbital
continues to be trapped within the well. For this reason, the asymptotic energy of this
orbital is not the energy of the free orbital - see figure 1(b).

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0  20  40

-0.4

-0.2

 0

 0.2

 0.4

 0.6

r0=34

u
n

s(
r) V

(r)

r

Confined 2s

Confined 3s

Unconfined 2s

Unconfined 3s

(a)

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0  20  40

-0.4

-0.2

 0

 0.2

 0.4

 0.6

r0=40

u
n

s(
r) V

(r)

r

Confined 2s

Confined 3s

Unconfined 2s

Unconfined 3s

(b)

Figure 4. (a) Reduced radial functions, u(r), of the 2s and 3s orbitals for r0 = 34.
The effective potential and the free states are also plotted. The free 2s and confined
3s orbitals overlap. (b) Same for r0 = 40. Free 2s and confined 2s orbitals overlap
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Effects of size on the spectrum and stability of a confined on-center Hydrogen atom 9

Figure 5 shows the effect of the cage on the 5s orbital for several representative
r0 values, which illustrates the behaviour of higher excited states. As was the case
of previous orbitals, when the well was located at a maximum point of the free atom
charge distribution, the energy decreases, while the opposite occurs when it is near a
node. In the latter case, the state is practically unmodified by the confining potential
and its energy is similar to that of the free atom. This explains the sawtooth structure
of the energy as a function of r0 for these states, with a number of maxima equal to
the number of nodes of the radial function - see figure 1(c). In figure 5(c), we plot
the reduced radial function for r0 = 34, the location of the outermost shell of the
free 5s orbital. In this case, the effect of confinement is to shrink the charge towards
the nucleus by diminishing the charge in the outermost shell. This effect is enhanced
as larger r0 values are considered - see figure 5(d), where we plot the reduced radial
function for r0 = 70. For this radius the outermost shell is located in the well and is
negligible, therefore the node is not visible within the scale of the figure. The confined
5s orbital therefore behaves in the same way as the unconfined 4s orbital. This is the
same behaviour as in other ns confined states that approach the free (n − 1)s orbitals
for cage sizes larger than the outermost shell.
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Figure 5. (a) Reduced radial function, u(r), of free and confined 5s orbital for
r0 = 16.4, corresponding to minimum in the orbital energy. The potential is also
shown. (b) The same for r0 = 26.7, which provides a maximum value of the orbital
energy. (c) Same for r0 = 34.0; the 4s free orbital is also plotted. (d) Same as (c) for
r0 = 70.0

These changes in the charge distribution within the cage give rise to substantial
modification of certain atomic properties. One important case is the transition
probability between confined bound states. Here, we consider the probability of a
transition between the ground and the 2p state, which is representative for other
transitions. The value of the Dipole Oscillator Strength for this transition for the free
atom is f1s→2p = 0.4162 [81]. For the confined atom with potential parameters r0 = 6.01,
V0 = 2 and ∆ = 1.25, a set of parameters which has been previously studied in [73], we
obtained f1s→2p = 0.6825, in agreement with the results reported in the aforementioned
work. In figure 6, we study the effects of size due to confinement for this magnitude.
The DOS presents a maximum value of around 0.9 for cage sizes of r0 ≈ 1.8, which
disappears as r0 increases. The reason for this behaviour lies in the different charge
distribution of the orbital when the atom is in the cage. For r0 ≈ 1, the two orbitals
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Effects of size on the spectrum and stability of a confined on-center Hydrogen atom 11

1s and 2p are practically superimposed, while at large distances, the confined 1s is near
the nucleus while the 2p is trapped in the well. It is worth noting that the excitation
energy for r0 = 1.8 is Ec

2p − Ec
1s = 0.361, similar to, but smaller than, the excitation

energy of the free atom, 0.375.

 0
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Figure 6. Dipole Oscillator Strength for the 1s → 2p transition as a function of r0

Finally, we studied the effects of confinement on the stability of the atom when
it is released from confinement. Figure 7 shows the effects of size on the ionization
probability of the 1s to 6s confined orbitals. The ionization probability exhibits
oscillatory behaviour as a function of r0. The maximum ionization probability is shown
by the orbital trapped within the well, i.e. 2s for r0 ≲ 36.5 and 3s for larger inner radii.
For the trapped orbital, the ionization probability increases with the cage size, reaching
values above 0.5. The ionization probability decreases abruptly for the 2s orbital when
it leaves the well, while the opposite occurs for the confined 3s orbital. The ionization
probability of the other orbitals is below 0.1. Furthermore, it is worth noting that the
excitation energy of a confined orbital is smaller than the ionization energy of the free
atom.

This behaviour of the ionization probability is different from that obtained in
previous works where other confinement models were considered. In [57] a spherical
hard wall potential, which accounts only for size effects, was studied. The probability
of ionization in that case was very high and practically constant for small sizes and
decreased monotonically as the cavity size increased. In [61] stability of confined H when
confinement is removed was analyzed by considering a model of a penetrable spherical
barrier, which accounts not only for the size of the confinement but also for the strength
of the potential. The ionization probability for that model showed sharply peaked local
maxima at some values of the confinement radius, which are originated by the tunnelling
and re-tunnelling of the electronic cloud of the atom across the barrier. In both cases,
the behaviour of the ionization potential in terms of the confinement size is different
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Effects of size on the spectrum and stability of a confined on-center Hydrogen atom 12

to that here found. The physical origin of the behaviour of the ionization probability
for the attractive potential here considered lies in the fact that the electronic charge
is located within the well for some values of the confinement radius. Therefore, the
stability of the atom when confinement is removed presents an important dependence
not only on the size of the cavity but also on the form of the potential.

 0

 0.2

 0.4

 0.6

 0  20  40  60

P
I

r0

1s

2s

3s

4s

5s

6s

Figure 7. Ionization probability of the 1s− 6s states as a function of r0

The probability that the atom remains in an excited bound state provides
complementary information about the stability of confined species when they are
released from confinement. In figure 8 we show P5s→ns, the probability that, starting
from a confined 5s state, the final free state is ns. These results are representative for the
other confined initial bound states. We show the results for two different confinement
radii, r0 = 16.4 and r0 = 26.7, corresponding respectively to a minimum and a maximum
of the orbital energy as a function of r0 respectively. For r0 = 16.4 we find a non-
negligible probability for the different final free states; however, for a confinement radius
of r0 = 26.7, practically the only possible final state is the 5s. The former cage size
corresponds to a well located in the neighborhood of an atomic electronic shell, see
figure 5(a), while in the latter case, the well is in the region between the shells and
hardly modifies the atomic orbital at all - see figure 5(b). This behaviour is generally
seen in other orbitals, in such a way that the shell structure of the free atom governs
the stability of the system when it is released from confinement. Thus, when the well is
located in the neighborhood of an electron shell, the final state is a mixed state, while
when the well is in a charge distribution node, the final state has the same quantum
number as the initial one. For cage radii larger than the outermost electron shell of the
confined ns state, the final state is the free (n− 1)s state.
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Figure 8. Transition probabilities to bound ns states of the free atom for an initial
5s orbital for r0 = 16.4 and r0 = 26.7. Lines are used as visual guides

4. Conclusions

Here we studied the stability of a confined Hydrogen atom when removed from
confinement by a cage. A square-well potential has been used to model the cage. We
obtained the ionization and excitation probabilities for different initial states and studied
the effects of size. For the confinement potential model studied here, the 2s orbital is
trapped in the well for radii of the cage, r0, smaller than 36.6, while the 3s remains
inside the well for larger cage radii. This leads to a high ionization probability if the
initial state is trapped in the well, reaching values above 0.5 for the 3s state, while the
ionization probability for the other confined orbitals exhibits oscillatory behaviour as a
function of the cage radius, with maximum values of 0.1.

The energies of the confined states present a series of local maxima and minima as
a function of the cage size, in such a way that when the well is located in an unconfined
electronic shell, the energy is at a minimum, while the opposite occurs when the well
is near the nodes of the radial function. Thus, the energy of the ns orbital with n > 3

as a function of the cage radius, presents a sawtooth structure with n− 1 maxima and
asymptotically converges to the energy of the free (n− 1)s state, because the 3s orbital
is located in the well for large radii. For the attractive environment model considered
here, the ground state energy of one electron in the well, without nuclear attraction, is
between the 2s and 3s orbital energies of the free Hydrogen atom. If other parameters
of the confining potential are considered, the atomic orbital with unconfined energy just
above that of the ground state of the well is trapped for large confinement sizes and
presents the greatest ionization probability. Thus, the stability and the behaviour of
other properties of the confined atom are governed by the shell structure of the free
atom with respect to the size of the cage.
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