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Abstract. The Schrödinger equation with a Gaussian potential to model a confined system as a quantum
dot or a fullerene is solved using the Analytic Continuation Method. The use of the Rodrigues formula
allows us to obtain in an easy way the coefficients of the power series expansion of the Gaussian potential
in terms of the Hermite polynomials. Recurrence formulas have been obtained for the series of the states
of a electron confined by that potential. This method is simpler and computationally more efficient than
others employed to model quantum dots using Gaussian potentials.
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1 Introduction

The Gaussian confining potential is a particular case of
the power-exponential potentials [1]:

V (r) = −w0 exp

[
−
(
r − rc
σ

)p]
, (1)

where w0 is the depth of the potential (w0 > 0), r is
the radial coordinate, rc is the radial distance from the
origin to the minimum of the potential, σ is the range
of the potential and p ≥ 1. Changing the value of the
parameter p we can change the shape of the potential from
the Gaussian one for p = 2 to the rectangular well for
p→∞.

In 1977, Buck et al. [2] used the Gaussian potential as
the nucleus-nucleus interaction potential to calculate the
α-α scattering phase shifts. They solved the Schrödinger
equation by direct integration and obtained a satisfactory
agreement with experiment.

Since then, several methods have been applied to cal-
culate the eigenvalues of the Schrödinger equation (2D or
3D) with a radial Gaussian potential: Stephenson [3] used
the Liouville-Green uniform asymptotic method, Bessis
et al.[4] applied a perturbational and a variational treat-
ment, Crandal [5] used a Prüfer transformation to the
Schrödinger equation that provides fast algorithms to cal-
culate eigenvalues in one-dimensional problems, and Lai
[6] determined the eigenvalues using the hypervirial-Padé
scheme.

In 2000, Adamowski et al. [7] considered the Gaus-
sian potential to study two electrons confined in quantum
dots (QD) in a variational approach while Ciurla et al.
[1] applied a finite-difference numerical method with the
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higher-order approximation of the Laplacian described in
Chelikowsky et al. [8], showing that the attractive Gaus-
sian potential was more suitable to describe QD than pre-
viously used potentials as square-well or parabolic ones.
Thus, in the last years, many works used the Gaussian
potential to investigate the electronic structure of QD
and their properties [9–12]. Also, a Gaussian potential
has been used to model other confined systems as a C60

fullerene [13].
There is an increasing interest not only in eigenvalues

but in eigenfunctions too for the bound states of the Gaus-
sian potential. Nascimento et al. [13] applied a variational
approach expanding the wave function using a finite ba-
sis obtained by the p-version of finite-element method, an
approach known as self-consistent finite-element method
(SC-FEM). Boda and Chatterjee [14] chose as trial wave
functions the product of a gaussian function with a Jas-
trow factor using three variational parameters. Al-Hayek
and Sandouqa [15] calculated the spectra of an electron
and a donor in QD confined by a Gaussian potential and
applied the shifted 1/N expansion method (N is the num-
ber of spatial dimensions) but only reported the eigenval-
ues in their paper. Recently, Mutuk [16] used the asymp-
totic iteration method that consists in expanding the Gaus-
sian potential in a power series and truncating it for the
r10 term. He also worked with a variational method using
as trial functions the radial part of the three-dimensional
harmonic oscillator wave function with one variational pa-
rameter. Sari et al. [11] reported the first six confined lev-
els for a GaAs QD using a Gaussian potential to model
the QD and a perturbation expansion method to obtain
energies and wave functions. Bai et al. [9] described the
electron confined in a QD by an asymmetric Gaussian po-
tential and computed the ground and first excited state
energies and wave functions using the Pekar-type varia-
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tional method. All these works have calculated approxi-
mate bound state wave functions using perturbational or
variational methods.

In 1985, Holubec and Stauffer [17] proposed to ap-
proximate the solution of a differential equation with an
initial value at point x0 by a truncated Frobenius series
instead of a truncated Taylor series. This Frobenius series
is used to evaluate the derivatives at x0 and a Taylor se-
ries at x1 = x0+h is constructed . In this way they obtain
an analytic continuation of the solution of the differential
equation. The solution is also an approximate one but the
method works for arbitrary order and is superior in speed
and accuracy to conventional methods. It works very well
if the potential can be expanded in a Taylor series so an-
alytic coefficients can be obtained [18,19].

Therefore, in this work, we apply the analytic contin-
uation method (ACM) proposed by Holubec and Stauf-
fer to calculate the eigenvalues and eigenfunctions of the
Schrödinger equation with a radial Gaussian potential in
order to model a QD or a fullerene. The coefficients of
the series for the Gaussian potential are computed using
the Rodrigues formula for the Hermite polynomials [20].
This paper is organized as follows. In Section 2, a descrip-
tion of the analytic continuation method for a symmetric
Gaussian potential is done. In Section 3, the numerical en-
ergy states, wave functions and other interesting magni-
tudes are presented. Finally, the conclusions are provided
in Section 4.

2 Methodology

Given a spherically symmetric potential Vc(r) to describe
a confining environment, the Hamiltonian for the one-
electron problem containing this potential can be expressed
as

H = −1

2
∇2 − Z

r
+ Vc(r) (2)

where the Laplacian term corresponds to the kinetic en-
ergy of the confined electron and the second right-term
represents the Coulomb interaction with the atomic nu-
cleus (Z = 1 models a Hydrogen atom inside a fullerene
whereas Z = 0 can model a quantum dot). Atomic units
have been used through out this work.

The confining potential Vc(r) is considered to be an
attractive short-range spherical Gaussian-type potential
not centred in the origin, given by equation 1 with p = 2
[13]. In this case, rc corresponds to the position of the
confining shell or the quantum dot given by the minimum
of the potential, w0 indicates the confinement strength,
and σ represents a measure of the size of the confining
shell.

Owing to the spherical symmetry of the confining po-
tential, the Schrödinger equation for a stationary state
Ψ c
nlm(r),

HcΨ c
nlm(r) = Ec

nlΨ
c
nlm(r) (3)

can be reduced to the radial form as

d2ucnl(r)

dr2
+

[
2Ec

nl +
2Z

r
− l(l + 1)

r2
− 2Vc(r)

]
ucnl(r) = 0

(4)
where Ec

nl is the energy of the state, ucnl(r) is the reduced

radial function (Ψ c
nlm(r) =

uc
nl(r)
r Ylm(Ω)), and nlm are

the quantum numbers of the state.
As stated before, the analytic continuation method has

been employed to obtain the radial functions of the con-
fined states [17–19,21,22]. To apply this method, it is nec-
essary to discretize the interval of integration along r-axis
in a series of tabular points r0, r1, . . . , rN . These points do
not need to be equally spaced. The ACM approximates the
solution of the differential equation in the neighbourhood
of each tabular point by a truncated series, so the radial
function is expressed as a piecewise polynomial function.

The Gaussian potential can be expanded in the neigh-
bourhood of a point ri by a Taylor series in the form:

Vc(r) =

∞∑
k=0

Vk (r − ri)k (5)

where Vk is proportional to the kth-order derivative of the
Gaussian function. This derivative is calculated using the
Rodrigues formula for the Hermite polynomials [20] and
we get

Vk =
1

k!σk
(−1)k+1w0

[
e−x

2

Hk(x)
]∣∣∣

x=
ri−rc
σ

(6)

where Hk is the kth-order Hermite polynomial.
It is well known that the solution around the origin

(ri = r0 = 0) can be written as a Frobenius series of the
form [23]

u(r) =

∞∑
j=0

bjr
l+j+1 (7)

where l is the quantum number associated to the angular
momentum. For l = 0 we obtain the s-states, for l = 1 the
p-states and so on.

Substituting Eqs. (7) and (5) into Eq. (4) we get for
the coefficients bj :

b0 6= 0 (8)

b1 = − b0
l + 1

(9)

bj =
−2

j(j + 2l + 1)
(Zbj−1 + Ebj−2

−
j−2∑
k=0

Vkbj−2−k

)
, j ≥ 2 (10)

This solution can be extended analytically to other
tabular points rt 6= 0, t = 1, 2, ... Thus, as it has been
done previously, the solution around rt can be written as
a series of the form

u(r) =

∞∑
j=0

cj(r − rt)j (11)
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Substituting Eqs. (11) and (5) into Eq. (4) we obtain

c0 = u(rt) (12)

c1 = u′(rt) (13)

c2 = −c0
[

2− l(l + 1) + 2rtZ + 2(E − V0)r2t
2rt

]
(14)

c3 =
1

6rt

{
− 4rtc2 −

[
2rtZ + 2r2tE − l(l + 1)

]
c1

− [2Z + 4rt(E − V0)] c0 + 2r2t

1∑
k=0

Vkc1−k

}
(15)

cj =
1

rtj(j − 1)

{
− 2rtcj−1(j − 1)(j − 2)

− cj−2 [(j − 2)(j − 3)− l(l + 1)

+ 2rtZ + 2r2tE
]
− (2Z + 4rtE)cj−3

+ 2r2t

j−2∑
k=0

Vkcj−2−k + 4rt

j−3∑
k=0

Vkcj−3−k

+ 2

j−4∑
k=0

Vkcj−4−k

}
, j ≥ 4 (16)

with c0 and c1 for rt calculated from the series at rt−1.

If we considered the Schrödinger equation only for the
Gaussian potential without the Coulomb interaction with
the atomic nucleus, the sets of coefficients would be sim-
pler. In the case of the coefficients bj , b0 would be zero and
each bj would not depend on bj−1, and for the cj , we have
underlined in Eqs. (14)-(16) the terms that correspond to
the Coulomb potential and are absent for the Gaussian
potential only. This would be the case, for example, of the
absence of donor atom in a quantum dot.

Equations (10) and (14)-(16) include the eigenvalue
E, so we have applied a shooting method to carry out
inward and outward integrations imposing the continuity
of the log derivative at an intermediate point to get the
eigenvalue [21].

Equally spaced tabular points with step size ∼ 10−4

have been employed in most cases. Calculations were car-
ried out in double precision on an AMD OpteronTM 6376.

Once energies and wave functions are known, it is pos-
sible to obtain other interesting magnitudes such as the
binding energy for quantum dots, which is defined by the
difference of energy for a state in the absence of donor
atom (Z = 0) and in its presence (Z = 1), or the hyper-
fine splitting constant, which contributes to the coupling
between the nuclear spin and the electron and is defined
as [24]

A =
2

3
gβgnβn|R1s(0)|2 (17)

where g is the electron gyromagnetic ratio, gn is the di-
mensionless nuclear g-factor, β is the electron magnetic
moment, βn is the nuclear magneton, and R1s(0) is the
radial wave function evaluated at the origin.

3 Results and discussion

Firstly, Hydrogen energies are computed for the Coulomb
and attractive non-centred Gaussian potentials for rc =
6.69 so as to model a C60 fullerene [25] and compare to
previous results obtained using the SC-FEM [13]. In order
to assert the highest possible accuracy, we have previously
studied the convergence of the energy values as a function
of N , the degree of the polynomial in the series expansion,
as it is shown in Table 1. We present to 8 decimal places
the results of applying the method for N = 3, 5, 10 and
20 and it is observed that energy values are not modified
for N ≥ 5. CPU times for the calculus of the 1s state as
a function of N are also included. As the order of mag-
nitude for computational times are seconds, a polynomial
expansion of degree N = 20 has been used through out
this work to ensure a great accuracy. This method preci-
sion is supported by previous studies where it was tested
for well-known problems [17–19].

1s to 4s energy levels are computed and compared with
those from the SC-FEM as it is seen in Table 2 (other or-
bitals with l 6= 0 can be calculated using the same recur-
rence formulas, Eqs. (8)-(10) and (12)-(16)). Our results
are equal or lower than those of SC-FEM as expected. SC-
FEM is a variational method so it gives an upper bound to
the energies. Only 4 decimal places are included in order
to compare with values reported but as indicated before,
we have obtained 8 decimal places.

In addition, wave functions have been computed as it
is shown in Fig. 1, where the reduced radial function of the
3s state is plotted for rc = 6.69, σ = 1.08 and different
values of the well depth, w0, which is representative for
the rest of cases. As the well depth increases, the charge
density is attracted by the confining potential so it is more
localised between the origin and the well (w0 = 1 and
w0 = 2). From certain value of well depth (w0 = 5) the
electron is practically confined in that region because a
lower orbital is localised around the well and the 3s takes
its place near the origin. For deeper wells (w0 = 7), almost
all the wave function is inside the well including all its
nodes, so the density is bounded to the well due to its
strong attraction. This result is in good agreement with
other results [13].

Moreover, energy values only for the attractive Gaus-
sian potential centred in the origin (rc = 0) have also
been calculated. This potential can model different phys-
ical phenomena such as the absence of an impurity in a
spherical quantum dot. Table 3 shows our results for the
1s to 4f energy states for w0 = 200 and σ = 1 compared
with previous calculations obtained from the use of the
hypervirial-Padé scheme [6], the Numerov’s integration
method [26], the diagonalization of the Hamiltonian ma-
trix [26], the shifted 1/N expansion method [15], and the
asymptotic iteration method [16]. Our results are in very
good agreement with those from different approximation
methods but present some advantages against them. Thus,
the shifted 1/N expansion method only allows to calcu-
late the spectra without giving any information about the
wave functions. The case of the Hypervirial-Padé Method
is similar but it permits to obtain information about mean
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Table 1. Convergence for the 1s to 4s energy levels of H for the attractive Gaussian potential for rc = 6.69, w0 = 0.5 and
σ = 3.01. CPU time for the calculus of the 1s state is also included.

Energy levels CPU time (s)
N 1s 2s 3s 4s 1s
3 −0.55841238 −0.48920712 −0.24808437 −0.07087828 0.07
5 −0.55841252 −0.48920779 −0.24808456 −0.07087825 0.09
10 −0.55841252 −0.48920779 −0.24808456 −0.07087825 0.18
20 −0.55841252 −0.48920779 −0.24808456 −0.07087825 0.48

Table 2. Energy of the 1s to 4s states of H for the attractive Gaussian potential for rc = 6.69 and different values of w0 and
σ.

Energy levels
1s 2s 3s 4s

w0 σ SC-FEM [13] Our work SC-FEM [13] Our work SC-FEM [13] Our work SC-FEM [13] Our work
0.49 −0.5002 −0.5002 −0.2224 −0.2227 −0.0565 −0.0565 −0.0316 −0.0316

0.500 1.08 −0.5013 −0.5013 −0.3418 −0.3419 −0.0639 −0.0639 −0.0362 −0.0363
3.01 −0.5584 −0.5584 −0.4892 −0.4892 −0.2480 −0.2481 −0.0708 −0.0709
0.49 −0.5001 −0.5001 −0.1804 −0.1806 −0.0562 −0.0562 −0.0314 −0.0314

0.324 1.08 −0.5006 −0.5006 −0.2504 −0.2504 −0.0599 −0.0599 −0.0336 -0.0336
3.01 −0.5280 −0.5280 −0.3603 −0.3603 −0.1594 −0.1595 −0.0491 −0.0492
0.49 −0.5000 −0.5001 −0.1495 −0.1495 −0.0559 −0.0559 −0.0313 −0.0313

0.162 1.08 −0.5002 −0.5002 −0.1799 −0.1799 −0.0575 −0.0575 −0.0322 −0.0322
3.01 −0.5128 −0.5128 −0.2382 −0.2382 −0.0918 −0.0918 −0.0406 −0.0406

free −0.5000 −0.5000 −0.1250 −0.1250 −0.0556 −0.0556 −0.0312 −0.0313
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Fig. 1. Reduced radial function, u(r), of the confined 3s state
for rc = 6.69, σ = 1.08 and w0 = 1, 2, 5 and 7. The unconfined
radial orbital and the effective potential in arbitrary units are
also shown.

values of powers of r. In contrast, ACM gives not only
the energy spectra but also the wave functions. Although
Gómez and Romero [26] calculate the wave functions too,
they do it in a basis set composed by Cartesian Gaussian
functions and they need 140 functions to describe states
with l ≤ 4 and 360 ones for states with l ≤ 7. Our re-
sults are obtained with a power series of only 20 terms
for any value of l and as discussed before, results con-
verge till 8 decimal places with only 5 terms. Similar to
ACM, asymptotic iteration method expands the Gaussian
potential near the origin but the description is limited to

10th-power of r. Our method is more general as it allows
to have the Gaussian potential not centered in the origin.

Other physical properties as binding energies for quan-
tum dots or the hyper-fine splitting constant can also be
computed. On one hand, Fig. 2 displays the binding en-
ergy, EB , of the 1s to 4s and of the 3s to 3d states as a
function of the dot size, σ, for potential depth w0 = 25.
The binding energy rises as the dot size decreases until
it reaches a maximum value. The highest binding energy
corresponds to the ground state. Similar results have been
obtained in other works[15].

On the other hand, Fig. 3 shows the hyper-fine split-
ting constant, A, as a function of the well depth, w0, for
rc = 6.745 and σ = 0.945 in order to compare with a pre-
vious work by Mart́ınez-Flores and Cabrera-Trujillo [27].
As it can be seen, there is a decrease around a critical value
of w0 = 0.8 and then, there is no further contribution to
the splitting constant, which means that the 1s state is
mainly bounded to the well. This behaviour is similar to
the one described in the aforementioned work.

4 Conclusions

Analytic Continuation Method is well suited for the reso-
lution of the Schrödinger equation with a Gaussian poten-
tial. The use of the Rodrigues formula allows us to obtain
in an easy way the coefficients of the power series expan-
sion of the Gaussian potential in terms of the Hermite
polynomials. Thus, recurrence formulas have been calcu-
lated for the series of the states of a electron confined by a
Gaussian potential. As it has been explained, this method
is simpler and computationally more efficient than others



M. F. Morcillo-Arencibia et al.: Confined states in a Gaussian potential calculated by Analytic Continuation Method 5

Table 3. Energy of the 1s to 4f states for the attractive Gaussian potential for rc = 0, w0 = 200 and σ = 1.

Energy Hypervirial Shifted Asymptotic Our
levels Padé [6] Numerov [26] Diagon. [26] 1/N exp.[15] Iteration[16] work

1s −170.9476 −170.946 −170.948 −170.948 −170.948 −170.9476
2s −134.8223 −134.820 −134.822 −134.822 −134.822 −134.8222
2p −152.2314 −152.232 −152.232 −152.232 −152.232 −152.2314
3s −101.9918 −101.990 −101.992 −101.999 −101.979 −101.9918
3p −117.7250 −117.725 −117.223 −117.723 −117.735 −117.7250
3d −134.0554 −134.056 −134.055 −134.056 −134.056 −134.0554
4s −72.6890 −72.687 −72.686 −72.716 −72.567 −72.6889
4p −86.6222 −86.622 −86.578 −86.629 −86.611 −86.6222
4d −101.2157 −101.216 −101.214 −101.216 −101.208 −101.2156
4f −116.4377 −116.448 −116.425 −116.439 −116.437 −116.4377
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Fig. 2. Upper panel: Binding energy, EB , of the 1s to 4s states
as a function of the dot size, σ, for w0 = 25. Lower panel: The
same for 3s to 3d states.

described to model quantum dots using Gaussian poten-
tials.
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