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Abstract: Nowadays, smart irrigation is becoming an essential goal in agriculture, where water and 
energy are increasingly limited resources. Its importance will grow in the coming years in the agri-
cultural sector where the optimal use of resources and environmental sustainability are becoming 
more important every day. However, implementing smart irrigation is not an easy task for most 
farmers since it is based on knowledge of the different processes and factors that determine the crop 
water requirements. Thanks to technological developments, it is possible to design new tools such 
as sensors or platforms that can be connected to soil-water-plant-atmosphere models to assist in the 
optimization and automation of irrigation. In this work, a low-cost, open-source IoT system for 
smart irrigation has been developed that can be easily integrated with other platforms and supports 
a large number of sensors. The platform uses the FIWARE framework together with customized 
components and can be deployed using edge computing and/or cloud computing systems. To im-
prove decision-making, the platform integrates an irrigation model that calculates soil water balance 
and wet bulb dimensions to determine the best irrigation strategy for drip irrigation systems. In 
addition, an energy efficient open-source datalogger has been designed. The datalogger supports a 
wide range of communications and is compatible with analog sensors, SDI-12 and RS-485 protocols. 
The IoT system has been deployed on an olive farm and has been in operation for one irrigation 
season. Based on the results obtained, advantages of using these technologies over traditional meth-
ods are discussed. 

Keywords: IoT platform; precision agriculture; irrigation model; FIWARE; soil water balance; dual 
crop coefficient 
 

1. Introduction 
In Spain, as in the rest of southern Europe, water is a scarce, fragile, and unevenly 

distributed resource [1]. Climate models developed by the European Environment 
Agency (EEA) [2] show that, in the last 50 years, in the Iberian Peninsula, there has been 
a decrease in precipitation of up to 90 mm per decade, and predict that in the next 70 
years, this decrease will be even greater, reaching a reduction of up to 40% in some areas 
of southern Spain. As a result of decreased rainfall and overexploitation of water re-
sources, the balance between available water and water demand has already reached crit-
ical levels. 

In the context of this worrying future scenario, solutions need to be found. Improving 
irrigation efficiency and optimizing agricultural management practices are two of the nec-
essary actions, and technology is an indispensable tool to carry them out. 

Precision agriculture (PA) has emerged as an approach to optimize farm manage-
ment, which involves the use of a series of sensors and actuators that allow gathering 
context information from the surrounding environment [3]. 

Citation: Puig, F.; Rodríguez Díaz, 

J.A.; Soriano, M.A. Development of a 

Low-Cost Open-Source Platform for 

Smart Irrigation Systems. Agronomy 

2022, 12, 2909. https://doi.org/ 

10.3390/agronomy12122909 

Academic Editor: Juan Manuel  

Díaz-Cabrera 

Received: 28 September 2022 

Accepted: 18 November 2022 

Published: 22 November 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Agronomy 2022, 12, 2909 2 of 20 
 

 

Using different types of sensors and algorithms, the irrigation requirements of crops 
can be calculated automatically so that the amount of water they need can be estimated 
and applied at the right time. 

This development has led to an increase in the number of companies offering plat-
forms for the visualization of sensor data, which, while useful, still requires specialized 
farmers who know how to interpret the data and apply the most appropriate management 
strategies. In addition, these platforms, being mostly commercial, are characterized as 
closed systems, which do not allow connection with third-party sensors and often have 
high costs that prevent the farmer from installing several measurement points, which is a 
problem in the analysis of spatial variability within the farm. 

Several IoT (Internet of Things) platforms for agriculture can be found in the litera-
ture. Previous researchers [4–6] created an open IoT platform developed with FIWARE 
[7] for agriculture, but none of them use the linked data (LD) version that allows a greater 
standardization of the API (application programming interface), which is essential for the 
platform to have open data. Platform [8] uses the LD version of FIWARE and proposes a 
data model to improve the management and real-time monitoring of crops in irrigation 
communities. Additionally, an IoT platform based on microservices, such as FIWARE, but 
with its own architecture, so it does not have a standardized API, has been proposed [9]. 
However, none of the above works integrates soil-water-plant-atmosphere models. [10] 
propose a mobile application that incorporates an agricultural model [11] for fertilization 
and irrigation scheduling, but this model does not use sensor data and is based on the 
single crop coefficient (Kc) approach instead of the dual Kc for separate estimation of crop 
transpiration (Tc) and soil evaporation (Es) (i.e., Kc = Kcb + Ke), introduced in FAO56 [12] 
which improves the accuracy of potential crop evapotranspiration (ETc) estimation. 

To solve these problems, a low-cost IoT platform for precision irrigation has been 
developed in this work. Using FIWARE, more specifically the LD version, the objective is 
to create an open IoT application with an architecture that allows the connection of any 
type of sensor and agronomic model and with a standardized API that allows platforms 
of the same type, which also use FIWARE, to connect to each other without the need for 
additional configurations. The platform not only works as a dashboard, displaying the 
data captured by the sensors, but also automatically calculates the crop water needs using 
the dual Kc approach and allows the implementation of deficit irrigation strategies. To 
connect different sensors to the platform, a low-cost, energy-efficient data acquisition de-
vice has been developed. 

2. Materials and Methods 
2.1. Study Area 

This project has been carried out on a farm devoted to olive groves located in Cór-
doba, southern Spain. 

The climate in this area is characterized by mild winters and hot summers, with mean 
daily temperatures around 10 °C and above 26 °C, respectively (Table 1). The monthly 
mean values of grass reference evapotranspiration (ET0; FAO-Penman-Monteith method 
[12]) varies between 1.1 and 7.6 mm day−1. 
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Table 1. Average climatic data in Córdoba (Andalusia; southern Spain) during the period from 2001 
to 2021, obtained from the Córdoba agroclimatic station belonging to the Andalusian Agroclimatic 
Information Network (RIA). 

Month Precipitation (mm 
Month−1) Mean T (°C) Mean Relative 

Humidity (%) 
Wind Speed  

(m s−1) 
Solar Radiation 

(MJ m−2 d−1) 
ET0  

(mm day −1) 
January 56.8 8.4 81.9 1.38 8.7 1.17 

February 63.3 10.1 76.7 1.55 11.8 1.79 
March 79.0 13.0 71.9 1.65 16.1 2.79 
April 62.5 15.9 68.3 1.62 20.3 3.80 
May 36.3 19.9 58.1 1.62 24.8 5.20 
June 7.5 24.8 48.1 1.90 27.9 6.78 
July 2.2 27.9 40.9 1.99 28.3 7.61 

August 10.7 27.9 42.2 1.85 25.1 6.82 
September 32.0 23.7 54.6 1.63 19.3 4.67 

October 78.2 18.6 67.1 1.45 13.7 2.82 
November 76.5 12.2 77.3 1.39 9.7 1.57 
December 84.9 9.2 81.5 1.41 7.8 1.11 

Year 590 17.7 64.1 1.62 17.8 3.86 

The average annual rainfall and ET0 for the period from 2001 to 2021 was 590 mm, 
with high interannual variability, and 1409 mm, respectively (Figure 1). The year 2021, 
when the project started, was a dry year, with an annual rainfall of 436 mm. 

 
Figure 1. Annual precipitation and ET0 data recorded at the Cordoba agroclimatic station belonging 
to the RIA, from 2001 to 2021. 

The soil is alkaline (pH = 8.7), with a high presence of carbonates (45.3%) and active 
limestone (18.2%). The texture varied between loam and clay loam, with a medium water 
retention capacity. The soil had no salinity problems, with an average electrical conduc-
tivity (EC; 1:5) value of 0.14 dS/m. The average cation exchange capacity (CEC) was 24 
cmol(+)/kg, with the exchange complex dominated by the presence of Ca and a high K 
and low Mg content. The total organic matter content of soil is 1.43%. 

This olive farm consists of two plots of olive trees. The first of the plots is made up of 
olive trees of the Arbequina variety, planted in 2017 with a planting frame of 6 × 2 m. The 
second plot is made up of olive trees of the Arbosana variety, planted in 2019 with a plant-
ing frame of 5 × 1.75 m. Both plots are irrigated by means of a pump that drives the water 
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from the Guadajoz River to the different irrigation sectors. Table 2 shows the characteris-
tics of the irrigation system. 

Table 2. Characteristics of the irrigation sectors. Sector one with the Arbequina variety and sector 
two with the Arbosana variety. 

 Area  
(ha) 

Dripper Flow Rate 
(L/h) 

Drip Spacing 
(m) 

Irrigation Efficiency 
(%) 

Sector one 22.7 2.2 0.7 90 
Sector two 19.3 2.2 0.7 90 

2.2. Iot Platform 
2.2.1. General Architecture 

The architecture of the developed IoT platform (Figure 2) is divided into three dis-
tinct and independent layers that are interconnected through a set of APIs. This architec-
ture is made up of a set of microservices that perform a specific task. The central compo-
nent of the platform is the Orion Context Broker, which is responsible for connecting the 
different microservices using the same API. This type of architecture increases the scala-
bility and security of the system as it allows the creation of new services that perform 
specific functionalities without affecting those already in place. 

 
Figure 2. IoT Platform Architecture. 

2.2.2. Layer 1 (IoT Devices) 
All IoT applications need to have one or more sensors to collect data from the envi-

ronment. Sensors are essential components of smart objects. One of the most important 
aspects of the Internet of Things is context awareness, which is not possible without sensor 
technology [13]. The first layer is made up of smart and energy-efficient devices that have 
been developed with the aim of being compatible with different connections and proto-
cols. These devices have been developed to accomplish the following characteristics: 
• Wireless and with different communication protocols: The devices are usually in-

stalled in dispersed locations without internet connectivity and have therefore been 
developed to support a wide range of communications such as Low Power Wide 
Area Networks (LPWAN), including LoRaWAN, SigFox, NB-IoT, Global System for 
Mobile (GSM), Wi-Fi, and Bluetooth. Depending on the coverage and the number of 
sensors (e.g. LoRa network needs to deploy an infrastructure that is not cost-effective 
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for a limited number of sensors), one communication system or another will be cho-
sen. 

• Energy-efficient: Sensors in agriculture are usually installed in remote locations that 
are difficult to access, so they must be energy self-sufficient. 

• Supports different output protocols: To measure the different agronomic factors af-
fecting irrigation, the devices have to support the main protocols used by the sensors. 
These protocols are SDI-12 (Serial Digital Interface at 1200 baud), RS-485 (Communi-
cation standard published by the Telecommunications Industry Association and 
Electronic Industries Alliance; TIA/EIA), I2C (Inter-Integrated Circuit), and SPI (Se-
rial Peripheral Interface). The devices also support analog sensors. 
The devices are programmed with the open-source Arduino software, which can be 

extended with C and C++ programming languages. 

Hardware Architecture 
The devices are made up of a set of components that together form an embedded 

system. The main element of the devices is the microcontroller, which monitors the control 
of power consumption, obtains data from the sensors, and communicates with layer two. 
For this purpose, the Arduino MKR family of boards has been used, which are open 
source and support a wide range of communication protocols. This board is based on At-
mel’s 32-bit SAMD21 microcontroller. 

To integrate this board with the sensors, a printed circuit board (PCB) has been de-
veloped. A schematic is shown in Figure 3. The PCB can be divided into the following 
parts, each of which performs a specific functionality. 
• Battery system: consists of a 2600 mAh, 3.7 V, rechargeable 18,650 lithium-ion battery, 

which is charged by a 250 mA solar panel. To control the battery charge, the Lion 
TP4056 linear charger module has been used. This module controls the overcharging 
and discharging of the battery. 

• Power Switch: It consists of a Logic Level Mosfet, which is used as a switch, cutting 
off the power supply to the sensors during the sleep period and supplying it at the 
moment of taking measurements. This reduces power consumption considerably. 

• Voltage Divider: adjust the battery voltage to the MKR circuit operating voltage of 
3.3 V. 

• On/off button: button that turns the device on and off. 
• Sensor Connectors: It has four jack connectors for easy integration with sensors. 

These have a jumper that enables switching from digital to analog. 

 
Figure 3. Device Schematic. 
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2.2.3. Layer 2 (IoT Backend) 
The second layer is the backend. It is based on a microservices architecture and uses 

the FIWARE framework alongside custom services. FIWARE brings a curated framework 
of open source platform components that can be assembled together and with other third-
party platform components to build smart solutions faster, easier, and cheaper [7]. It is 
supported by the European Union (EU) and has been developed to create open source, 
standardized IoT platforms that are suitable for all sectors, such as smart cities, industry, 
and agriculture, and that enable better communication between systems. The EU’s com-
mitment to FIWARE is due to the need to create a common standard in the IOT world, as 
until then each organization followed different paths that prevented communication be-
tween sensors and platforms. With FIWARE, this problem is solved, and cities, industries, 
or agricultural farms follow the same standard that allows them to share information in a 
simple way. 

FIWARE is composed of a series of software blocks, called generic enabler (GE), 
which perform specific functions. Each of these GEs provides open APIs, which facilitate 
cross-platform communication and make it easier to develop IoT applications. This is one 
of the main advantages offered by this framework since it allows integration between dif-
ferent FIWARE-based platforms. This is very important both at the farm management and 
research levels because it allows the integration of methods developed by research groups 
and facilitates their use by farmers and the private sector, improving decision making. 

In FIWARE, the state of an object in the real world is defined as context information 
and is represented by an entity. Each entity has attributes that are divided into properties 
and relationships, where the first defines the value of the entity and the latter defines the 
relationship that this entity has with other entities. For example, in a “Device” entity, the 
“SoilMoisture” attribute is a property, while the “Parcel” attribute is a relationship linking 
this sensor to the crop plot where it is located. The values of this attribute represent the 
current status of the device, which is the context information, and only the latest state of 
the device is stored in the context broker. Therefore, to access historical data, it is necessary 
to connect to external services that store the information in databases. 

The components of the backend are: 
• Orion Context Broker with Linked Data Extensions (Orion-LD): It represents the 

main component of the platform and enables the management of the entire lifecycle 
of context information, including updates, queries, registrations, and subscriptions 
[14]. This component is based on the NGSI-LD API (Next Generation Service Inter-
faces—Linked Data) [15] that supports the LD concept. 

• QuantumLeap: a GE that is responsible for persistently storing temporal sensor data 
in a time-series database. 

• IoT Agent: a GE that allows the connection of the sensors with the context broker. It 
manages the different devices and is responsible for transforming the sensor-specific 
protocol into the NGSI-LD context information protocol. 

• Authentication Server: a custom microservice that is responsible for authentication 
and authorization of users to the platform. It is developed with Node.JS, a JavaScript 
runtime environment, and uses JSON Web Tokens to ensure security. 

• Soil Water Balance Model: A customized microservice that calculates the soil water 
balance of crop plots on a daily basis. The model has been developed with the Python 
programming language, and the microservice for accessing the model with Node.js. 
This model is described in more detail in Section 2.3. 

• MongoDB: a No-SQL database that stores context data and user information. 
• CrateDB: another No-SQL database where the sensor data is stored in a persistent 

way. 
To connect all the services or components that are in the backend, the NGSI-LD API 

provides two mechanisms called subscriptions and registrations. The first one informs the 
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external services that the context data has changed, and the second one connects the ser-
vices to the context broker, so that the context broker changes the context data. For exam-
ple, there is a subscription that connects Orion-LD to the QuantumLeap service. This sub-
scription aims to redirect to QuantumLeap the sensor data coming to the broker (via the 
IoT-Agent). An example of registration is when an external service, in this case the IoT-
Agent, wants to connect to the broker to change the context data; this IoT-Agent has an 
associated registration, which is responsible for changing the status of the sensors in the 
broker when data from the sensor is received again. 

Linked Data 
Linked data concepts allow for one step further in the communication between plat-

forms as it uses the JSON-LD (JavaScript Object Notation for Linked Data) data format, 
which makes it possible to read and write structured data supported by open vocabularies 
[16] that can be read by computers. This makes it easier to find and exchange information 
with open databases, mobile apps, and IoT platforms. This is especially useful in the IoT, 
where information exchange between platforms is currently very limited. 

The Orion-LD broker version, currently in beta, allows users to manage and request 
context information in an organized way using the NGSI-LD standards. For example, as 
will be seen in the following section, the application developed in this article has an entity 
called “Parcel”, which represents a crop plot within the farm. This same entity within the 
FIWARE standards, which are publicly available, is called “AgriParcel”. To relate these 
two concepts, FIWARE makes use of JSON-LD files, so that when our platform asks FI-
WARE to return the entitiy “Parcel”, FIWARE knows that it is referring to the “AgriPar-
cel” entity. As these standards are unique and public, different platforms can access the 
same FIWARE API using their own entity names, which may be different between appli-
cations. 

Figure 4 shows how two apps can access different FIWARE servers using their own 
entities. 

 
Figure 4. Simplified diagram of how JSON-LD works in FIWARE (with Orion-LD) using the 
“AgriParcel” entity. 
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2.2.4. Layer 3 (Frontend) 
The last layer is the frontend, which can be defined as the web design and develop-

ment technologies that allow the user to interact with the backend (Layer 2). This layer 
consists of a user interface that acts as an intermediary between the user and the platform, 
displaying information and facilitating user interaction with the platform. To connect to 
the Rest API of the backend, the frontend uses the HTTP protocol. 

For the development of this layer, the ReactJS library has been used, which is based 
on HTML5, JavaScript, and CSS technologies. This library allows the creation of single-
page applications (SPA), which significantly increases user experience and application 
performance. The web application consists of a single HTML document, and as the user 
interacts, the content changes dynamically. 

The frontend, as well as serving as an interface to facilitate the user’s connection with 
the server, is responsible for structuring the application. It is where the entities will be 
structured so that all users will follow the same pattern (Figure 5). The main entity in the 
application is the farm, where general aspects such as location, name, owner, etc. are col-
lected. Within the farms are the entities (“Parcel”) corresponding to the crop plots. These 
entities contain information about the agronomic factors such as soil type, crop character-
istics, irrigation system, irrigation strategy, and user management. 

Finally, within each “Parcel”, there are the entities corresponding to the devices. 
These entities represent the dataloggers installed in the farm and show the information 
and historical data of each of the devices. This structure makes it possible to simulate any 
farm in which there are parcels with different agronomic characteristics, on each of which 
one or more sensors are installed. 

 
Figure 5. Structure of the entities. 

Each user is assigned a role with specific permissions. Users with the role of admin-
istrator are the only ones authorized to add or delete users and administer the databases. 
The other users can only manage those entities that they have created themselves. 

Users can make the farms they have created public or give permission to different 
users, so that any of them can see the data but cannot edit anything. In addition, each farm 
has a private API-Key that can be shared to access the NGSI-LD API. 

2.3. Irrigation Model 
The irrigation model is responsible for calculating the amount of water that the crop 

needs and when the best time is to apply it. Although it could be used for any irrigation 
method, in this particular case it is focused on drip irrigation as it allows the calculation 
of the wet bulb dimensions. 
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Figure 6 shows the different elements that make up the irrigation model developed 
in this article. This diagram can be divided into two parts: the first one related to the soil 
water balance model, which is calculated using the FAO-56 methodology [17], and the 
second one related to the wet bulb, where the total available soil water (TAW) and the wet 
bulb dimensions are calculated. 

 
Figure 6. General outline of the proposed irrigation model. AEMET is the Spanish State Meteoro-
logical Agency, and elTiempo.es is a Spanish website where weather forecasts are shown. 

The application runs two types of models. The first one calculates the soil water bal-
ance from previous years. The user can choose whether to make a water balance by sim-
ulating a specific year or by making the balance using the average of the climatic values 
of the last 20 years. As the user can change the irrigation strategies, this first balance allows 
them to obtain the results of each of the strategies that they define and find the one that 
best suits their needs. The second type uses weather forecasts to estimate the crop water 
requirements in the next seven days and apply the most efficient irrigation strategy pos-
sible. All the weather data can be obtained using an on-farm weather station or an external 
meteorological API, such as AEMET and elTiempo.es, two meteorological services oper-
ating in Spain. 

2.3.1. Soil Water Balance 
The soil water balance (SWB) model uses daily climatic data, crop characteristics, and 

data recorded by sensors to calculate crop water consumption (ETa) and water losses in 
percolation and runoff processes. 

The daily SWB, expressed as water depletion at the end of day i, is calculated using 
the following equation: 𝐷௥,௜ = 𝐷௥,௜ିଵ − (𝑃 − 𝑅𝑂)௜ − 𝐼௜ − 𝐶𝑅௜ + 𝐸𝑇௔,௜ + 𝐷𝑃௜ (1)

where 𝐷௥,௜ is the soil water depletion in the root zone at the end of day 𝑖 [mm]; 𝐷௥,௜ିଵ is 
the depletion in the root zone at the end of the previous day i−1 [mm]; 𝑃௜ is the precipita-
tion on day 𝑖 [mm]; 𝑅𝑂௜ is the runoff from the soil surface on day 𝑖 [mm]; 𝐼௜ is the irri-
gation applied on day 𝑖 [mm]; 𝐶𝑅௜ is the capillary rise from the groundwater table on 
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day 𝑖 [mm]; 𝐸𝑇௔,௜ is actual crop evapotranspiration on day 𝑖 [mm], and 𝐷𝑃௜ is the water 
flowing out from the root zone -by deep percolation on day 𝑖 [mm]. 

ETa was calculated following the FAO56 method [17] as the product of the reference 
evapotranspiration (𝐸𝑇௢), calculated using the FAO Penman-Monteith equation, and the 
actual crop coefficient (𝐾௖ ௔௖௧), (ETa = ET0 × Kc act), with Kc act = Ks × Kc, where 𝐾௦ is a crop 
water stress coefficient, and 𝐾௖ is calculated using the FAO56 dual Kc method (Kc = Kcb + 
Ke) [12]. Where 𝐾௖௕ is the basal crop coefficient and 𝐾௘ is and evaporation coefficient, 
which represent the ratios of crop transpiration (Tc) and soil evaporation (Es), respectively 
(Tc/ET0, and Es/ET0) [18]. Thus, 𝐾௖ ௔௖௧ is calculated as follows: 𝐾௖ ௔௖௧ =  𝐾௦𝐾௖௕ + 𝐾௘ (2)

To adopt the dual 𝐾௖ approach, the methodology used in the SIMDualKc software 
has been used [19]. This methodology has been validated in high-density olive groves [20–
22] and in other woody row crops, such as peach trees [23] and vineyards [24].  

For the calculation of 𝐾௖௕, the differences in canopy density and crop height have to 
be considered as these parameters influence crop transpiration. 𝐾௖௕ can be calculated us-
ing the following equation [25]: 𝐾௖௕ =  𝐾௖௕ ௠௜௡ + 𝐾ௗ൫𝐾௖௕ ௙௨௟௟ − 𝐾௖௕ ௠௜௡൯ (3)

where 𝐾௖௕ ௙௨௟௟  represents the estimated 𝐾௖௕  at maximum crop growth, for conditions 
having nearly full ground cover, 𝐾௖௕ ௠௜௡ is the minimum 𝐾௖௕ for bare soil (𝐾௖௕ ௠௜௡~0.15) 
[19] and 𝐾ௗ is the density coefficient (𝐾ௗ) that can be found in [25,26]. 𝐾௖௕ ௙௨௟௟ is calculated as a function of mean crop height and adjusted for local climate 
conditions. This is because the standard 𝐾௖௕ values refer to a typical sub-humid climate 
(with an average daily minimum RH of 45% and a wind speed of 2 msିଵ) [27], so the 
values of 𝐾௖௕ ௙௨௟௟are adjusted using the following equation: 𝐾௖௕௙௨௟௟ =  𝐾௖௕,௛ + (0.04(𝑢ଶ − 2) − 0.004(𝑅𝐻௠௜௡ − 45)) ൬ℎ3൰଴.ଷ

 (4)

where 𝐾௖௕,௛ is the 𝐾௖௕ ௠௜ௗ for full cover vegetation under sub-humid and calm wind con-
ditions ( 𝑅𝐻௠௜௡  45% and 𝑢ଶ  = 2 m sିଵ ) that can be estimated ( 𝐾௖௕,௛ = min(1.0 +0.1ℎ, 1.20)) [25], 𝑢ଶ is the wind speed at 2-m height [m sିଵ], and h is the mean maximum 
crop height [m]. 

Finally, 𝐾௖௕ is adjusted for available soil water to maintain crop ET at potential rate. 𝐾௦ can be calculated by the following function [17,18]: 𝐾௦ =  ்஺ௐି ஽ೝ்஺ௐିோ஺ௐ when 𝐷௥ > 𝑅𝐴𝑊 (5)

where 𝑇𝐴𝑊 and RAW are the total available water and readily available water in the root 
zone [mm], respectively, and Dr is the soil water depletion in the root zone relative to field 
capacity [mm] [17]. 

The last step in the estimation of actual crop coefficient (Kc act) is the calculation of 𝐾௘. 
This coefficient is highest when the topsoil is wet and decreases as the water content 
drops: 𝐾௘ =  min (𝐾௥(𝐾௖ ௠௔௫ − 𝐾௖௕), 𝑓௘௪𝐾௖ ௠௔௫) (6)

where 𝐾௥ is the dimensionless evaporation reduction coefficient dependent on the cumu-
lative depth of water depleted from the topsoil and 𝑓௘௪ is the fraction of the soil surface 
wetted and exposed to solar radiation. Equations for calculating the 𝐾௥, 𝐾௖ ௠௔௫, and 𝑓௘௪ 
are presented in the FAO56 report [17]. 

The simplified procedures used in the SIMDualKc [19] model have been used to cal-
culate the last three components of the SWB (DP, CR, and RO). The SIMDualKc model 
calculates DP and CR using the procedure described by FAO-24 [27] and calculates RO 
using the curve number method [17]. 
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2.3.2. Wet Bulb Calculation 
As the crop used is drip irrigated, a series of equations have been developed to cal-

culate the dimensions of the wet bulb of the soil to give more precise recommendations 
on the hours that the irrigation system should be in operation. 

The model uses the soil properties to calculate the wet bulb dimensions and the soil 
water retention curve in order to estimate the maximum amount of water that can be ap-
plied without percolation and the TAW, respectively. Figure 7 gives an overview of the 
procedures followed. 

 
Figure 7. Flowchart of the procedures for calculating TAW and wet bulb dimensions. Where th1500 
and th33 are the soil water content at soil matric potentials of −1500 and −33 kPa, respectively. 

Calculation of Total Available Water 
To facilitate the use of the irrigation model, the soil texture and the effective root 

depth are the only mandatory parameters to calculate TAW. To calculate the missing pa-
rameters, the Rosetta pedotransfer model, which predicts the hydraulic parameters of un-
saturated soils, has been used. This model allows the estimation of van Genuchten water 
retention parameters and saturated hydraulic conductivity using limited (textural classes 
only) to more extended (texture, bulk density, and one or two water retention points) in-
put data [28–30]. However, it is highly recommended to estimate all these soil parameters 
in the lab in order to use the extended version and get better results. 

Using the parameters calculated by Rosetta, the van Genuchten equation can be used 
to calculate the soil water retention curve [31]. 𝜃(ℎ) =  𝜃௥ +  𝜃௦ − 𝜃௥(1 + (𝛼ℎ)௡)ቀଵିଵ௡ቁ (7)

where 𝜃(ℎ) is the soil water content [m3 m−3] at a matric potential h [kPa], 𝜃௦ is the satu-
rated water content, 𝜃௥ is the residual water content, 𝛼 is related to the inverse of the air 
entry suction [cm−1], and 𝑛 is a measure of the pore-size distribution 
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Finally, with the calculated water retention curve, the soil TAW can be estimated as 
the difference between the volumetric soil water content at −33 kPa, which represents the 
field capacity (FC), and at −1500 kPa, which represents the permanent wilting point (PWP) 
[32] multiplied by the effective root depth. 

Calculation of the Wet Bulb Dimensions 
To calculate how long the irrigation system should run, it is necessary to know the 

dimensions of the wet bulb. There are several methods that can be used for this, which 
can be divided into empirical [33–35], numerical [36] and analytical models [37]. 

We have used two models to calculate bulb dimensions. The first is the Schwartzman 
and Zur model [33]: 𝑤 = 1.82 𝑉଴.ଶଶ ൬𝐾௦௔௧𝑄 ൰ି଴.ଵ଻

 (8)

𝑧 = 2.54 𝑉଴.଺ଷ ൬𝐾௦௔௧𝑄 ൰଴.ସହ
 (9)

where w and z are the horizontal and vertical dimensions [m], V is the total amount of 
water in the soil [mଷ], 𝐾௦௔௧ is the saturated hydraulic conductivity [m sିଵ], and Q is the 
emitter discharge [mଷsିଵ] 

The second is the DIPAC-DRIP model. Equations (10) and (11) were created to esti-
mate the horizontal and vertical dimensions of the wet bulb using a non-linear regression 
analysis. 𝑤 = 0.2476 ∆𝜃ି଴.ହ଺ଶ଺ 𝑉଴.ଶ଺଼଺ 𝑄ି଴.଴଴ଶ଼ 𝐾௦ି଴.଴ଷସସ (10)𝑧 = 2.0336 ∆𝜃ି଴.ଷ଼ଷ 𝑉଴.ଷ଺ହ 𝑄ି଴.ଵ଴ଵ 𝐾௦଴.ଵଽହ (11)

where ∆𝜃 is the average change of SWC (∆𝜃 ≈ 𝜃௦/2, where 𝜃௦ is the soil water content at 
saturation). 

The effective root depth parameter is used to calculate the dimensions of the wet bulb 
before percolation. With the volume of this wet bulb, the amount of water needed to bring 
it to the target moisture content can be estimated. To calculate this volume using the hor-
izontal and vertical dimensions, the shape of the bulb has been assumed to be a semi-
ellipse. This assumption is not entirely correct as the shape of the bulb is not exactly a 
semi-ellipse, and some studies have tried to calculate the shape more precisely [38]. How-
ever, it has been decided to use the semi-ellipse for simplification, and other studies will 
be taken into consideration for future improvements of the model. 

The possible overlapping of the surface wetted by drippers in linear branches has 
been taken into account. Since the shape of the wet bulb is considered the same, the over-
lapped area can be calculated as the area of the intersection between two equal circles: 

𝐴௖,௢௩௘௥௟௔௣௘ௗ = 4 ⎝⎜
⎛𝜋𝑅ଶ𝑐𝑜𝑠ିଵ 𝑑2𝑅360 − 𝑅 ቆට𝑑ଶ − 𝑅ଶ4 ቇ4 ⎠⎟

⎞
 (12)

where 𝐴௖,௢௩௘௥௟௔௣௘ௗ is the overlapping area between the circles, R is the radius of the wet 
bulb, and d is the distance between the drippers. To translate this overlap area of the circles 
to the overlap area of the semi-ellipse, the following equation is used 𝐴௦௘,௢௩௘௥௟௔௣௘ௗ = 

஺೎,೚ೡ೐ೝ೗ೌ೛೐೏ ቀ೥ೃቁଶ  (13)

Finally, with the volume of the wet bulb, the overlapping area, and the soil humidity data, 
the total time that the irrigation system should work can be estimated as: 
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𝑡 = 𝑉௦௘  ൬ 𝐴௦௘𝐴௦௘,௢௩௘௥௟௔௣௘ௗ൰ ቀ 𝐼1000 𝑧ቁ𝑄  (14)

where I represents the irrigation needs [mm] calculated in the SWB, 𝑉௦௘ is the volume of 
the semiellipse, and 𝐴௦௘ is the area of the semiellipse. 

2.3.3. Irrigation Strategies 
The irrigation model uses four types of irrigation strategies: (1) Rainfed: when there 

is no irrigation; (2) Soil moisture target: define a maximum soil water depletion for each 
month of the year, which is particularly useful when scheduling deficit irrigation strate-
gies; (3) Predefined schedule: used if the irrigation is already defined and it is necessary 
to provide an irrigation time for each day of the simulation; (4) Constant depth: a strategy 
that attempts to keep soil water depletion within a specific range. 

Other parameters, such as limiting the maximum irrigation time per day, the interval 
between irrigation days, or the days of the week on which irrigation can take place, are 
considered. 

2.4. Server Implementation 
Finally, once the design is finished, it is necessary to move the backend into produc-

tion mode. This consists of deploying the application on a server so that it is operational 
24 h a day. In this section, it is important to apply the corresponding security measures. 

The development and deployment of the application was through Docker, a platform 
for the development of software containers. Among the advantages of using this technol-
ogy are the possibility of running multiple servers on the same machine in isolation, scala-
bility, and ease of deployment in the cloud. 

As a server, we have used a Raspberry Pi 4 with 4GB of RAM and a 64-bit Raspbian 
operating system. 

3. Implementation 
3.1. Device Implementation 

The model described above was implemented in the IoT system that was evaluated 
on the olive farm during one irrigation season. Two communication nodes have been in-
stalled (Figure 8), one in each of the irrigation sectors or plots of olive trees. Each node 
consists of three soil humidity, electrical conductivity, and temperature probes, placed at 
15, 30, and 45 cm soil depth, and a soil water potential sensor placed at 30 cm. 

The installation of the sensors is quite simple and intuitive. The communication node 
allows the connection of sensors with a 3.5 mm jack connector. As already mentioned, the 
architecture of the platform allows any type of sensor to be connected. To do this, when 
the user installs a new node, a window appears on the platform where the user must spec-
ify which sensors have been installed in each connector. Once this step is finished, the 
platform adapts to that sensor and displays its data. 



Agronomy 2022, 12, 2909 14 of 20 
 

 

 
Figure 8. Communication node with connected soil moisture sensors. 

3.2. User Interface 
The application interface has been developed to be user-friendly and scalable. This 

interface allows access to the different entities within the farm in a quick and intuitive way 
(Figure 9). 

The home page allows access to the main menus of the application, such as the user 
settings or the farms. The farms page shows the general characteristics of the farm and the 
field plots that compose it; this entity stores weather data. The next page is the plots page; 
this is the most important one because it is where the irrigation is calculated. This page 
has all the crops and agronomic data, the irrigation schedules, and the sensors that are 
installed there. Finally, the interface has the page sensors, where all sensor characteristics 
and telemetry are displayed. 

This structure allows for the separation of the different “Parcel” entities of a farm in 
order to use their characteristics as input for the agronomic models. 
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Figure 9. Main interface pages.  
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3.3. Scheduled Irrigation 
As mentioned above, the model allows multiple irrigation strategies; the use of one 

or the other will depend on the soil characteristics, the crop, the limits of the irrigation 
system, and the user’s management. 

In this work, a regulated deficit irrigation (RDI) strategy has been chosen as the irri-
gation allocation is not sufficient to replenish 100% of the irrigation needs of the olive 
grove on the farm. This strategy maximizes water productivity by reducing applied water 
only during the least drought-sensitive crop phenological periods [39], in which the crop 
can suffer water stress without severely affecting crop yield. 

For the two plots of olive trees monitored in this work, the RDI strategy evaluated in 
a high-density olive grove of the Arbequina variety located in the province of Seville was 
followed (Figure 10) [40]. 

 
Figure 10. RDI strategy applied in a high-density olive grove to supply 60% of the crop’s water 
needs [40]. 

To implement this irrigation scheduling, the strategy defined in the irrigation model 
as “soil moisture target” has been used. As mentioned above, with this strategy, the user 
can define a maximum soil water depletion for each month. Thus, the RDI strategy can be 
used in the water balance model. Following this strategy, the model performs two simu-
lations. The first one is an annual simulation that is run using historical data from the last 
20 years (Figure 11). This simulation shows how the water content in the soil changes 
during a normal year. The second simulation predicts the water needs of the olive crops 
in the following 7 days (Figure 12). For this, the soil water content is adjusted each day 
with the data provided by the soil moisture sensors, and the simulation of the water bal-
ance is performed using weather forecast data and the scheduled irrigation events. 
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Figure 11. Annual simulation of the irrigation model showing water depletion in the root zone when 
using the RDI strategy defined in Figure 10 for a high-density olive grove. 

 
Figure 12. Simulation of the next seven days from the current day, showing water depletion in the 
root zone when using the strategy defined in Figure 10. 

4. Discussion 
While the use of sensors in agriculture is growing exponentially, the use of IoT plat-

forms is also growing exponentially. The problem is that these platforms often have their 
own architecture, and the API is not standardized. This makes it difficult to connect be-
tween platforms and leads to their isolation. FIWARE, in particular its Linked-Data ver-
sion, is developed with the aim of solving this problem and appears as a great alternative 
for IoT applications in agriculture. 

That is why the most innovative part of this platform lies in its ease of sharing data 
between third-party platforms. Any platform developed with, or adapted to work with, 
the Orion-LD broker can be connected with little or no configuration. This is particularly 
beneficial in the public sector and in research, where data tends to become increasingly 
free, encouraging cooperation between researchers. 
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On the other hand, it is important that irrigation platforms use agronomic models 
that provide more information to the farmer. The reliability of these models depends on 
the homogeneity of the sector and the accuracy of the data obtained. 

One of the great advantages of open platforms is that they are easily scalable and 
allow the integration of new sensors, which will be able to send real-time information to 
soil-water-plant-atmosphere models and considerably improve the accuracy of the esti-
mates. For example, the integration of eddy covariance stations and sap flow sensors 
could help to improve the accuracy of the estimation of crop water requirements. 

With all this, it will be possible to integrate large amounts of information, what we 
know as ‘big data’, in quite complex models while offering accurate recommendations to 
farmers in a user-friendly and easy-to-understand way. 

In this particular case, before the implementation of this smart irrigation system, tra-
ditional irrigation management consisted of homogeneous irrigation of the olive farm, 
without making any distinction between the different sectors, despite the fact that the soil 
hydraulic characteristics and the olive varieties, as well as the planting date and tree den-
sity, were different. Moreover, the amount of irrigation depth applied was constant 
throughout the irrigation season, without taking into account the water requirements or 
the phenological stage of the olive tree. This was a problem, as there were periods of over-
watering and others in which the needs of the olive trees were not supplied. By using the 
web application, which displayed the results of the sensors and the application of the ir-
rigation model, the farmer improved his irrigation management, reducing water losses 
and avoiding tree water stress. It also facilitated the application of RDI strategies, some-
thing that is often not easy for the average farmer. 

Thanks to the use of technology, this IoT platform for smart irrigation is able to know, 
in real time, the state of the soil and of the crop and is able to use already validated soil-
water-plant-atmosphere models that give us current and future information on the behav-
ior of crops, all in an automatic way. Although it is difficult to measure the efficiency of 
this system in comparison with the conventional ones, as the latter depend mainly on the 
knowledge and experience of the farmer, it is clear that the information provided by this 
smart irrigation system is very useful for making decisions regarding irrigation schedul-
ing. Furthermore, for those farmers who are not familiar with agronomic models, this sys-
tem allows them to use these models without having the necessary knowledge to under-
stand them. On the other hand, for those more experienced farmers who already use this 
type of agronomic model, this system makes their work much easier as it allows them to 
automate irrigation scheduling. 

5. Conclusions 
The design of a complete open-source IoT system for smart irrigation systems is al-

ready completed. The system is a multilayer platform consisting of a series of energy-
efficient smart devices connected to an IoT platform that is based on a microservices ar-
chitecture. The platform uses the FIWARE framework alongside customized components 
and can be deployed using edge computing and/or cloud systems. This allows it to be 
adapted to the farmer’s needs, reducing costs and increasing safety. 

To complement the platform, an energy-efficient open-source datalogger has been 
designed. The datalogger supports a wide range of communications and protocols. The 
open-source availability of the data collected from the different sensors will facilitate the 
integration of the data into soil-water-plant-atmosphere models and their use as decision 
support systems for optimal irrigation management. 

In addition, a soil-water-crop model has been developed to improve irrigation man-
agement. This model calculates the dimensions and characteristics of the wet bulb when 
there is a drip irrigation system and uses the dual Kc approach to calculate the crop water 
requirements. Two simulations are performed in the application: the first calculates the 
soil water balance for a normal year, and the second calculates the water balance for the 
next seven days. 
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