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Abstract: Aortic stenosis (AS) is a frequent cardiac disease in old individuals, characterized by valvular
calcification, fibrosis, and inflammation. Recent studies suggest that AS is an active inflammatory
atherosclerotic-like process. Particularly, it has been suggested that several immune cell types,
present in the valve infiltrate, contribute to its degeneration and to the progression toward stenosis.
Furthermore, the infiltrating T cell subpopulations mainly consist of oligoclonal expansions, probably
specific for persistent antigens. Thus, the characterization of the cells implicated in the aortic valve
calcification and the analysis of the antigens to which those cells respond to is of utmost importance
to develop new therapies alternative to the replacement of the valve itself. However, calcified aortic
valves have been only studied so far by histological and immunohistochemical methods, unable to
render an in-depth phenotypical and functional cell profiling. Here we present, for the first time, a
simple and efficient cytometry-based protocol that allows the identification and quantification of
infiltrating inflammatory leukocytes in aortic valve explants. Our cytometry protocol saves time and
facilitates the simultaneous analysis of numerous surface and intracellular cell markers and may well
be also applied to the study of other cardiac diseases with an inflammatory component.

Keywords: flow cytometry; protocol; aortic stenosis; inflammation

1. Introduction

Aortic stenosis (AS) is one of the most common and serious valve pathologies in devel-
oped countries. AS is characterized by the thickening and calcification of the aortic valve
leaflets. It can be secondary to rheumatic inflammation or congenital. Age-degenerative
calcific aortic stenosis (also known as senile AS or sclerocalcific) is currently the most
frequent cause of adult aortic stenosis in the USA and Western Europe. Up to 30% of
adults over 65 years have valvular sclerosis, and the incidence of all-cause death from
cardiovascular disease due to aortic valve sclerosis has increased by 35% [1]. With time,
most aortic sclerosis patients progress to obstructive aortic stenosis. In the United States,
calcified aortic valve stenosis has become the major indication for aortic valve replacement,
and it is the third-most common cardiovascular disease after coronary heart disease and
hypertension [2]. In Europe, 82% of aortic stenosis is caused by calcification [3]. Most
AS patients (80%) progress to cardiac insufficiency, valve replacement, or death within a
period of 5 years [4,5].
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Diagnostic suspicion of AS is mainly clinical (electrocardiography and echocardio-
graphy). Generally, it does not lead to hemodynamic compromise in the adult until the
valvular hole narrows below ø 1 cm2, leaving the patient asymptomatic despite having
critical AS [6]. Most AS patients suffer a gradual progressive obstruction over the years
and symptoms are understated. Thus, there is an evident necessity for biomarkers for the
prompt detection of this pathology in earlier stages of the disease.

Although aortic valves experience mechanical stress throughout life, with aging the
triggering factor, not all older individuals develop AS [7,8]. Therefore, other factors must
play a key role in this progression. AS is associated with a higher risk of coronary arteri-
opathy events. Histopathologic analysis shows alterations in the valves similar to those
observed in atherosclerosis and vascular inflammation. Over the past years, results ob-
tained from different studies indicate that AS could be related to coronary atherosclerosis,
with both diseases triggered by similar pathogenic mechanisms [9–12]. Thus, it is probable
that AS is an atherosclerotic-like process, not only in tricuspid patients but also in bicuspid
ones [13–15]. Furthermore, there is an association between AS and atherosclerosis risk
factors—age, sex, smoking, diabetes mellitus, hypertension, elevated low-density lipopro-
teins, (LDL), reduced high-density lipoproteins (HDL), and increased C-reactive protein
(CRP) [16]. Additionally, it has been demonstrated that there is a strong association between
AS severity and the presence and severity of aortic atheromas, which indicates that AS
could be a manifestation of the atherosclerotic process.

Immunohistochemical analysis has shown the presence of B cells, T cells (CD4+ y
CD8+), and other immune cells (macrophages, mastocytes) in the inflammatory infiltrate
of the valve [17–20]. It is probable that with age, mechanical stress alters the integrity of
the valvular endothelium leading to lipoprotein accumulation that induces the expres-
sion of adhesion molecules (ICAM-1, VCAM-1) in the endothelium, facilitating T cell and
macrophage infiltration through blood and lymphatic vessels [19,21]. Furthermore, it has
been shown that M1 macrophages promote calcification of the aortic valve [22]. Inflam-
matory cells release mediators that stimulate the destruction of the normal collagen field
and elastic fibers in the aortic valve. Later, fibroblasts differentiate into myofibroblasts and
these into osteoblast-like cells, leading to the calcification of the valve. Normal aortic valves
do not have microvessels. However, during the calcification process, new microvessels
are formed, which attract more pro-inflammatory cells (for revision, see [1] and [23,24]).
Furthermore, molecular analysis has shown that most T cell populations present in the
valvular infiltrate of AS patients consist of oligoclonal expansions, and some of the infiltrat-
ing clones correspond with the ones found in peripheral blood, corroborating the existence
of cellular traffic between the periphery and the valve [20,25].

These results indicate that aortic valve stenosis is an active inflammatory process.
However, up to date, there are no effective treatments except the surgical or transcatheter
replacement of the valve itself. For that reason, a thorough characterization of the cell
populations present in the valvular infiltrate and the peripheral blood of AS patients is
of utmost importance for the development of new effective treatments to avoid surgical
intervention in these patients, as well as for the discovery of biomarkers for early diag-
nosis. Here we present a novel powerful cytometry-based protocol, which allows both
the phenotypical and functional characterization of the immune cells present in the aortic
valve inflammatory infiltrate.

2. Results

A flow cytometric technique was used to characterize circulating and infiltrating
immune cells of AS patients. Histological and immunohistochemical (ICH) techniques
were used as controls for comparison with the flow-cytometry based protocol.

2.1. Characterization of Infiltrating and Circulating Immune Cells by Flow-Cytometry

Aortic stenosis is characterized by the thickening and accumulation of calcium deposits
in the aortic valve leaflets. After digestion of the valvular tissue, samples go through to
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rounds of filtering to clean the calcium debris (70 and 20 µm ∅ cell restrainers). However,
a large amount of calcium debris will remain in it. During sample acquisition in the BD
LSR Fortessa SORP cytometer, this debris hinders the immune cell analysis. To solve
this visualization problem, we used a LIVE/DEAD™ Fixable Far Red Dead cell stain
(655 nm emission maximum) that, when confronted with a stain for anti-CD45 in AF700
(719 nm emission maximum), allowed us to properly discriminate the live leukocytes
present in the sample from the debris, facilitating the identification of our target cells. After
the live-leukocyte gate, anti-CD8 in V500 (500 nm emission maximum) was confronted
with anti-CD45 in AF700 to remove any remaining contamination, which exhibited high
autofluorescence in the V500 channel. Finally, singlets were gated in an FSC-H vs. FSC-A
plot. After the data-cleaning process, infiltrating leukocyte subpopulations were identified
and the phenotypic characterization of T cells was performed using the gating strategy
shown in Figure 1. The gating strategy for the immunophenotyping of peripheral cell
subpopulations was carried out as depicted in Figure S2.
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Figure 1. Gating strategy for aortic valve infiltrate. (A) After cleaning strategy, CD3+ cells and CD3−
cells were gated in a CD3 vs. CD45 plot. From the CD3+ gate, any remaining debris was excluded
an SSC-A vs. FSC-A plot. Then CD4+, CD8+, CD4−CD8−, and CD4+CD8+ (DP) T cell subsets were
determined in a CD8 vs. CD4 plot. From the CD3− gate, monocytes (CD14+) and CD14− cells were
gated in an SSC-A vs. CD14 plot. From the CD14− gate, CD16+ neutrophils were gated in an SSC-A
vs. CD16 plot, and CD3− lymphocytes were gated in an SSC-A vs. FSC-A plot. Finally, from CD3−
lymphocytes gate, NK cells and their subsets were defined confronting CD56 vs. CD16. (B) From CD4+,
CD8+, and CD4−CD8− T cells, CD28 and CD56 gate were set by confronting SSC-A vs. CD28 or CD56.

2.2. Frequency of Circulating and Infiltrating Leukocyte Subpopulations

The cytometry panel for aortic-valve-infiltrating cells included phenotypic markers
for the identification of monocytes, neutrophils, NK cells, and T cells (Tables S1 and S2).
The frequencies of infiltrating leukocyte subpopulations were compared to those obtained
from the peripheral blood of AS patients (Figures 2 and 3, Table S5).
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The results showed that, compared with peripheral blood, within the valvular infiltrate
there was a higher frequency of monocytes, total NK cells, CD56bright NK cell subset, total
T cells, CD8 T cells, and CD4+CD8+ T cells. Conversely, there was a lower frequency of
CD16+ neutrophils, CD4+ T cells, and CD56dim NK cells (Figure 2). Moreover, infiltrating
CD4+ T cells have a higher expression of CD56 and a lower expression of CD28 than in
the periphery (more differentiated) (Figure 3A). In the CD8+ T cell subset, there was a
higher proportion of CD28null cells in the infiltrate versus the periphery but with a lower
expression of CD56 (Figure 3B). Finally, the phenotypic analysis of CD4−CD8− T cells,
mostly TCRγδ cells, showed that the proportion of CD56-expressing cells was higher in the
periphery than in the valve (Figure 3C).

2.3. Functional Analysis

We further validated the feasibility of performing ICS and functional analysis of valve-
infiltrating cells. For the functional analysis we studied the response (production of IFN-γ,
TNF-α or granzyme B) of the infiltrating T cells to a polyclonal stimulus (Cytostim). As
the number of infiltrating T cells is limiting, PBMCs from the same patient were used as a
negative control. After incubation cells were analyzed by flow cytometry (Figure S3). Our
data show that our protocol can be used to study intracellular markers such as granzyme
B (Figure 4). Moreover, our results demonstrate that despite the low number of cells, our
protocol is sensitive enough to detect cytokine production by infiltrating cells.
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Figure 2. Frequencies of innate and adaptative leukocyte subpopulations. Boxplot graphs showing
the frequencies of innate and adaptative cell subsets from peripheral blood (blue) and valvular
infiltrate (orange). Frequencies were calculated from the total number of leukocytes. The horizontal
bar shows the median and whiskers show the maximum and minimum values. Each dot represents a
donor. The significance of the data was determined by the Mann–Whitney comparison test. * p < 0.05,
** p < 0.01, *** p < 0.001, and **** p < 0.0001.
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3. Discussion

Numerous previous studies have attempted to characterize the leukocyte populations
of the valvular infiltrate [18,20,26]. However, the limitations of IHC technique prevent a
thorough and accurate characterization. Immunohistochemistry requires serial histological
sections to determine each of the valve-infiltrating leukocyte subpopulations. The num-
ber of staining antibodies to be used per slice and the characterization of co-expression
markers is also limited.

Our novel protocol changes the paradigm in the characterization of the aortic valve
inflammatory infiltrate. The methodology for the isolation of the valvular infiltrating cells
and the flow-cytometry-based techniques applied allowed us to identify and quantify
several valvular-infiltrating populations simultaneously, providing further information
regarding their phenotype. All experiments were performed using fresh samples. Thus,
future studies are needed to confirm if this protocol has the same efficiency in frozen samples.
Nevertheless, the application of this protocol reduces sample processing times and complexity,
allows the performance of functional assays, and the study of intracellular markers. Thus, our
protocol opens the possibility of studying not only which cell subsets are implicated in the
AS pathophysiology process, but also gives information about what these cells can do and in
response to which stimuli. Moreover, our technique gives information of the total aortic valve
infiltrate and not only of a section as in the immunohistochemistry methods.

Our study provides a more objective information regarding the immunopathology
of the aortic stenosis than previous IHC-based studies. Our results showed a predom-
inancy of T cells and monocytes in the valve infiltrate compared to peripheral blood,
confirming the relevance of the inflammatory process in the development of the disease
(Figure 3 and Figure S1). In this sense, it has been suggested that infiltrating innate im-
mune cells such as monocytes/macrophages or neutrophils trigger the process of valve
degeneration (calcification), while adaptive immune cells will contribute to chronic in-
flammation, aggravating the pathology [24]. Our data confirm the prevalent presence of
monocytes/macrophages and T cells in the valve infiltrate and opens the possibility of
performing future full phenotypic and functional characterization of these cell subpopula-
tions. Besides, our results corroborate previous molecular data on the CD4:CD8 T cell ratio
in the valve infiltrate [18], but show that there is a greater frequency of CD4 T cells here
than in the periphery, indicating that these cells could have a more important role than
originally thought. Furthermore, our data confirmed that in the valve infiltrate there is a
predominance of CD28null CD8+ T cells as shown in molecular studies [20] and we extend
these results, showing that this is also true for the CD4+ T cell subset.

All this evidence shows that our protocol offers a technical advantage over other
methodologies for the study of cardiovascular, and other tissues’, immunopathology. An
in-depth characterization of the cell populations implicated in AS will allow the identifica-
tion of new biomarkers of early diagnosis and the development of new therapies for the
treatment of this disease.

4. Materials and Methods
4.1. Subjects

A total of 50 calcified human aortic tricuspid valves were included in the study
(Table 1). Calcified aortic valves and peripheral blood samples were harvested, by the
Cardiovascular Surgery Unit of RSUH, from aortic stenosis (AS) patients undergoing aortic
valve replacement, at the time of cardiovascular surgery. AS patients’ selection was done
according to the following criteria: patients with aortic stenosis (isolated or in association
with others cardiac diseases) with indication for surgical replacement, regardless of the
anatomical characteristics of the native valve. Exclusion criteria included: chronic infec-
tions apart from CMV (HCV, HBV, HIV, etc.), inflammatory disease (oncologic diseases,
rheumatoid arthritis, ankylosing spondylitis, ulcerative colitis, Crohn’s disease, celiac dis-
ease, systemic lupus erythematosus, multiple sclerosis, psoriasis, etc.), immunosuppressor
treatment or hemodialysis. antihypertensive drugs that have calcium channel blockers as
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their active ingredient, such as Lercanidipine, Felodipine, Amlodipine, Bepridil, Diltiazem,
Isradipine, Nicardipine, Nifedipine, Nimodipine, Verapamil, Clevidipine and Nisoldipine
(only for those included in the functional analyses).

Table 1. Demographics of studied individuals (n = 50).

Group Name Sex (Male/Female) Age (Mean ± SD) n

Aortic stenosis 34/16 42–79 (67 ± 8.76) 50

All donors were informed, and signed informed consent was obtained to participate
in the study. The study was approved by the Ethics Committee of Hospital Universitario
Reina Sofia of Cordoba (Spain).

For the surgical valve replacement procedure, during anesthetic induction, the main
drug used was Etomidate (20 mg). To ensure correct anesthetic levels during the whole
procedure the surgical team used Propofol at low doses and F (300 µg) in continuous
infusion at high doses. Other drugs used during induction were Midazolam (1 mg/mL),
Cisatracurium (20 mg), or Remifentanil (15 mg). In addition, analgesic drugs (Lidocaine)
and neuromuscular blockers (Rocuronium) were also used. During the surgical procedure
and extracorporeal pump time, several drugs were used to ensure the correct hemodynamic
stability. The most common were: antiarrhythmics (Bisoprolol or Amiodarone), inotropes
(Dobutamine, Levosimendan or Milrinone), chronotropes (adrenaline), vasodilators (nitro-
glycerin), and vasopressors (noradrenaline).

4.2. Reagents

• RPMI 1640 medium (PanBiotech, cat. P04-17500. Aidenbach, Germany);
• Phosphate-buffered saline (PanBiotech, cat. P04-36500. Aidenbach, Germany);
• Fetal Bovine Serum (Gibco, ref. 10270106. Waltham, USA, Massachusetts);
• Collagenase D 0.24U/mg lyophilized (Roche Diagnostics, ref. 11088866001. Basel,

Switzerland);
• FcBlock (BD Becton Dickinson, cat. 564220. Franklin Lakes, USA, New Jersey);
• MACSQuant Running Buffer (Miltenyi, cat. 130-092-747. Bergisch Gladbach, Germany);
• Brefeldin A/Golgi Plug (BD Becton Dickinson, cat. 555029. Franklin Lakes, USA,

New Jersey);
• Cytostim human (Miltenyi, cat. 130-092-173. Bergisch Gladbach, Germany);
• EDTA (PanReac AppliChem, cat. A4892. Chicago, USA, Illinois);
• Glutamine (Biowest, cat. X0550-100. Nuaillé, France);
• Penicillin/Streptomycin (Biowest, cat. L0022-100. Nuaillé, France).

The following materials were used to process the sample:

• 15 mL tubes with strew cap (NerbePlus, ref. 02-502-8001. Winsen, Germany);
• 50 mL tubes with strew cap (NerbePlus, ref. 02-572-8001. Winsen, Germany);
• 5 mL Flow Cytometry tubes (Corning, ref. 352052. Corning, USA, New York);
• 70 µm tube filter (Biologix, ref. 15-1070. Jinan, Shandong, China);
• 20 µm tube filter (Pluriselect, ref. 43-10020. Leipzig, Alemania);
• Scalpel Blades (Heinz Herenz, ref. 1110923. Hamburg, Germany);
• Needle (BD Becton Dickinson, ref. 305899. Franklin Lakes, USA, New Jersey);
• Syringe (BD Becton Dickinson, ref. 300928. Franklin Lakes, USA, New Jersey);
• Sterile Petri dish (Deltalab, ref. 200219. Barcelona, Spain);
• Sterile 5 mL Flow Cytometry tubes (Corning, ref. 352054. Corning, USA, New York,).

4.3. Reagent Preparation

For the cell isolation protocol, 6 mL of 2% Collagenase D in RPMI-1640 was prepared
in a 15 mL tube (digestion solution). Collagenase was reconstituted following the manu-
facturer’s instructions. For functionality assay, 1 mL of 10% FBS, 1% glutamine, and 1%
penicillin/streptomycin in RPMI-1640 (culture medium) was prepared in a 15 mL tube.
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4.4. Surgical Procedure for Aortic Valve Tissue Collection

For aortic valve replacement surgery, it is necessary to open the chest and see the heart.
This can be done through sternotomy, mini-sternotomy, or anterior thoracotomy. Once
the skin, the subcutaneous cellular tissue, and the corresponding bone access have been
opened, a retractor is placed to allow correct exposure throughout the surgery. Next, the
pericardium is sectioned perpendicularly and pulled towards the retractor, elevating the
cardiac structures. To be able to work on the aortic valve it is necessary to do it under
cardiac ischemia and using an extracorporeal circulation (ECC) pump. The ECC pump
requires certain levels of anticoagulation to be maintained during the procedure; we use
heparin. Once heparin is administered the cannulas are inserted. From this moment
on, all the patient’s cardiac output is handled by the ECC pump. To stop the heart, an
aortic clamp is placed between the arterial perfusion cannula and the cardioplegia cannula.
Once the heart has stopped, an aortotomy is performed about 2–3 cm above the valve
annulus. At this time, the process of extracting the valve tissue begins, starting with the
non-coronary leaflet, which is the closest. This methodology will limit the manipulation of
the aortic leaflets to the minimum, since sometimes calcium deposits are fragile and easily
disintegrate. Resection is performed by gentle traction in the central area of the leaflet,
using a scalpel or dissection scissors. The cut will start at the commissure closest to the
surgeon and extend along the lower edge of the leaflet located next to the aortic annulus.
This technique ensures the obtention of the maximum amount of tissue. The procedure is
repeated for each of the three leaflets. After extraction, leaflets are placed in a sterile tray
with a physiological saline solution. Finally, the collected tissues are moved into RPMI
solution for transportation and study in the laboratory.

4.5. Histological and Immunohistochemical (IHC) Analysis

One aortic valve from an AS patient was processed with this methodology. After
surgical sample collection, valve leaflets were fixed in 10% buffered formalin for 24 h and
processed for paraffin embedding using standard procedures for histological and IHC
analysis. The specimens were sectioned at 4 µm thickness and stained with haematoxylin–
eosin (H&E). Decalcification with a 10% EDTA solution was done if needed.

For IHC analysis, 3 µm-thick sections were obtained, and immunostaining was per-
formed using the rabbit monoclonal antibody anti-CD3 (1:150) (Abcam ab16669, Cambridge,
UK) with the envision FLEX/HRP system (Dako, Glostrup, Denmark). For IHC staining,
the secondary antibody (Envision FLEX/HRP) was used for 30 min at room temperature,
followed by 3,3′-diaminobenzidine (DAB) staining (Dako, Glostrup, Denmark) before being
counterstained with Harris haematoxylin. Human lymph node was used as a positive
control for CD3 antibody and staining in the absence of the primary antibody was used as
a negative control. IHC images were acquired using a Leica microscope (Leica Microsys-
tems, Wetzlar, Germany) and a Thunder Imager microscope (Leica Microsystems, Wetzlar,
Germany), respectively.

4.6. Cell Isolation Protocol

To prepare a single-cell suspension for flow cytometry, aortic valve leaflets were
processed using the following protocol:

1. Wash leaflets 3–5 times with 10 mL of PBS + 1% FBS, to ensure no peripheral blood
contamination.

2. Inject 1 mL of digestive solution per 1 cm of valve leaflet and incubate for 5 min at
room temperature.

3. Cut the valve tissue using the scalpels to avoid calcification.
4. Transfer the processed tissue to the digestion solution tube and incubate it at 37 ◦C

for 1 h and 30 min under continuous stirring.
5. Filter the digested tissue through a 70 µm ∅ cell restrainer to a 50 mL tube and top up

with 10 mL of washing solution.
6. Centrifuge the cells for 5 min at 400× g, then discard the supernatant and vortex gently.
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7. Add 4.5 mL of PBS + 1% FBS and filter the cells through a 20 µm ∅ cell restrainer to a
sterile 5 mL FACS tube.

8. Centrifuge the cells for 5 min at 400× g, then discard the supernatant and vortex gently.
9. Continue with surface or intracellular staining protocol.

4.7. Surface Cell Staining for Flow Cytometry

Before staining, 0.5 µL of Fc Block was added and incubated at room temperature
for 10 min to reduce non-specific antibody staining. Isolated cells were directly stained
with the cocktail of antibodies corresponding to the valve panel (Tables S1 and S2) or the
functional assay panel (Table S3) and incubated for 20 min at RT in the dark. Finally, cells
were resuspended in 500 µL of Running Buffer. Of note, no wash step was performed after
staining to obtain a maximum number of cells.

4.8. Functionality Assay

For functionality assays, isolated infiltrating cells and peripheral blood mononuclear
cells (PBMCs) were processed using the following protocol:

1. Add 250 µL of culture medium to the cell suspension in a sterile FACS tube. For
PBMCs functionality assay, 2 × 106 cells were stimulated.

2. Add 5 µL Cytostim, vortex, and incubate the cells for 2 h at 37 ◦C, 5% CO2.
3. Add 245.5 µL of culture medium and 0.5 µL Brefeldin A. vortex and incubate the cells

overnight (14 h) at 37 ◦C, 5% CO2.
4. The following morning, stop the stimulation with 100 µL EDTA 20nM, vortex, and

incubate for 10 min at room temperature.
5. Add 3 mL PBS + 1% FBS (4 ◦C).
6. Centrifuge the cells for 5 min at 400× g, then discard the supernatant and vortex gently.
7. Continue with the intracellular staining protocol.

4.9. Intracellular Staining (ICS) for Flow Cytometry

Following incubation, cells were incubated for 30 min at 4 ◦C in the dark with the
cocktail of antibodies for surface makers staining (Table S2). Subsequently, cells were
directly fixed and permeabilized with 250 µL Cytofix/Cytoperm solution and incubated
for 20 min. Of note, the wash step was eliminated to avoid losing cells. The cell suspension
was centrifuged for 5 min at 400× g, and the supernatant was discarded. Then, cells were
washed with 1 mL of Perm/Wash buffer and centrifuged for 5 min at 400× g twice. Once
the supernatant was discarded, cells were stained with intracellular antibodies (Table S2)
and incubated for 30 min at 4 ◦C in the dark. Finally, the cell suspension was washed with
1 mL of Perm/Wash buffer, centrifuged for 5 min at 400× g, and resuspended in 500 µL
of Running Buffer.

4.10. Whole Blood Antibody Staining

Fresh whole blood (100 µL) was stained with monoclonal, fluorescent-labeled antibod-
ies (Tables S3 and S4). Cells were incubated for 20 min at RT in the dark and lysed with
FACS Lysing Buffer (BD Beckton Dickinson, Franklin Lakes, USA, New Jersey) according
to the manufacturer’s instructions. After a washing step with PBS + 1%, FBS pellets were
resuspended in 300 µL of Running Buffer (Miltenyi Biotec, Bergisch Gladbach, Germany)
before acquisition within 1–4 h.

4.11. Acquisition and Data Analysis

Following cell staining, samples were acquired in a BD LSR Fortessa SORP cytometer.
The FACS tubes were acquired completely. Spectral overlap compensation between all
channels was done automatically by the BD FACSDiva software v8.0.1 (BD Biosciences,
Franklin Lakes, USA, New Jersey) using single-color controls. Comparable day-to-day per-
formance of the cytometer was ascertained by running CS&T calibration beads (BD) weekly.
In addition, for standardization of instrument settings longitudinally, an 8-peak Rainbow
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Compensation Particles Set (BD) was used prior to every experiment, and photomultiplier
tubes (PMTs) voltages were adjusted if needed. Flow cytometry data were analyzed using
FlowJo v10.8.1 (TreeStar, Portland, USA, OR). The FlowJo boolean gating tool was used to
create the co-expression profiles.

4.12. Statistical Analysis

GraphPad Prism (version 8.0, GraphPad Software, Inc., La Jolla, CA, USA) was used
for graph representation and statistical analysis. Data are represented as individual values
with the median and 25th to 75th percentiles. Each dot represented a donor/patient. For
data normal distribution assessment, the Shapiro–Wilk test was used. According to this,
the Kruskal–Wallis’s test (for multiple group comparison) and Mann–Whitney test (for
comparison of sample pairs) were used to derive p-values for data comparison among
groups. Significance was indicated by * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001,
and **** p-value < 0.0001.

5. Conclusions

Our data show the benefits of using a cytometry-based protocol for the study of
cardiovascular, and other tissues’, immunopathology. An in-depth characterization of the
cell populations implicated in AS will allow the identification of new biomarkers of early
diagnosis and the development of new therapies for the treatment of this disease.
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