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Resumen 

Los índices de vegetación derivados de la teledetección se han utilizado ampliamente para 

estimar el contenido de humedad del combustible vivo (LFMC por sus siglas en inglés), 

un factor importante del riesgo de incendios forestales, debido a la amplia disponibilidad 

de datos. Sin embargo, marcadas diferencias en la estructura de la vegetación afectan la 

relación entre LFMC medido en campo y la reflectancia captada por los sensores de los 

satélites, lo que limita la extrapolación espacial de estos índices. Para superar esta 

limitación, exploré el potencial de Random Forests (RF), una técnica de aprendizaje 

automático basada en la agregación de múltiples árboles de decisión, para estimar LFMC 

a escala subcontinental en la cuenca Mediterránea. Probé distintos modelos de RF usando 

una combinación de bandas espectrales de MODIS, índices de vegetación, la temperatura 

superficial terrestre y el día del año como predictores. Utilicé las bases de datos del Globe-

LFMC y del programa catalán de seguimiento de LFMC como muestras de verdad-

terreno (10.374 muestras). El proceso de modelado consistió en una selección de 

predictores y una validación cruzada espacial para evitar el sobreajuste espacial. El 

modelo final de LFMCRF se calibró y evaluó con muestras recolectadas entre 2000 y 2014, 

y se probó de forma independiente con muestras de 2015 a 2019, reportando valores 

generales de raíz del error cuadrático medio (RMSE por sus siglas en inglés) de 19,9% y 

16,4%, respectivamente. Los resultados de LFMCRF fueron comparables a los enfoques 

actuales basados en modelos de transferencia radiativa (RMSE ~74–78%), introduciendo 

una alternativa confiable para aplicaciones a gran escala. Este estudio llena un importante 

vacío de investigación al crear un enfoque homogéneo para estimar LFMC en toda el área 

occidental de la cuenca Mediterránea. El modelo final fue usado para generar una base de 

datos pública con mapas de LFMC semanales extendidos a toda la cuenca Mediterránea 

propensa a incendios forestales. 

 

Palabras clave: contenido de humedad del combustible vivo, incendio forestal, MODIS, 

índice espectral, temperatura superficial terrestre, Random Forest 
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Abstract 

Remotely sensed vegetation indices have been widely used to estimate live fuel moisture 

content (LFMC), an important driver of wildfire risk, due to broad data availability. 

However, marked differences in vegetation structure affect the relationship between field-

measured LFMC and reflectance, which limits spatial extrapolation of these indices. To 

overcome this limitation, I explored the potential of Random Forests (RF), a machine 

learning technique based on the ensemble of multiple decision trees, to estimate LFMC 

at the subcontinental scale in the Mediterranean basin wildland. I built RF models using 

a combination of MODIS spectral bands, vegetation indices, surface temperature, and the 

day of year as predictors. I used the Globe-LFMC and the Catalan LFMC monitoring 

program databases as ground-truth samples (10,374 samples). The modelling process 

consisted in a feature selection and two step spatial cross-validation in order to avoid 

spatial overfitting. The final LFMCRF model was calibrated and evaluated with samples 

collected between 2000 and 2014, and independently tested with samples from 2015 to 

2019 reporting an overall root mean square errors (RMSE) of 19.9% and 16.4%, 

respectively. The results from LFMCRF were comparable to current approaches based on 

radiative transfer models (RMSE ~74–78%), introducing a reliable alternative for large-

scale applications. This study fills an important research gap by creating a homogeneous 

approach to estimate LFMC across the Western Mediterranean basin. I used the final 

model to generate a public database with weekly LFMC maps extended to the fire-prone 

Mediterranean basin. 

 

Keywords: live fuel moisture content, wildfire, MODIS, spectral indices, land surface 

temperature, Random Forests.  
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1. Introduction 

Wildfires are a recurring phenomenon in many terrestrial biomes, where they play a 

fundamental role as drivers of ecosystem dynamics (Bowman et al., 2020). Interactions 

between climate, vegetation and fire occurrence have led to distinct fire regimes 

(Bowman et al., 2020). Human actions have modified intensively these fire regimes in 

many areas worldwide, including the Mediterranean basin, leading to undesirable impacts 

in ecosystems with carry-over effects for human safety, health and the economy (Duane 

et al., 2021; Karavani et al., 2018). 

Live fuel moisture content (LFMC), the mass of water in the foliage and small 

twigs relative to its total dry mass, is a key factor affecting fire potential and determining 

wildfire danger and activity (Bradstock, 2010; Resco de Dios, 2020). Fuel moisture is 

directly related to the amount of energy needed to evaporate water before ignition (Jolly 

& Johnson, 2018; Resco de Dios, 2020). Consequently, high moisture values reduce, or 

even inhibit, ignitability and subsequent fire spread (Nelson, 2001). 

Different studies conducted in a wide range of ecosystems have observed a 

significant correlation between burned area and LFMC (Dennison & Moritz, 2009; Luo 

et al., 2019; Nolan et al., 2016). More specifically, these studies report that large fires 

only occur once fuel moisture crosses critical dryness levels. In Mediterranean regions, 

longer summer drought periods along with increases in temperature have been projected 

under climate change (IPCC, 2022). Such climatic changes could significantly decline 

LFMC and consequently enhance the length of the fire season and the rate of high 

intensity fires (Dupuy et al., 2020). This situation could be exacerbated with intensifying 

fuel load accumulation and fuel connectivity as a result of rural exodus and widespread 

lack of land management. As a consequence, the probability and the frequency of extreme 

fire events is expected to increase (Dupuy et al., 2020). Accurate and comprehensive 

spatial and temporal estimations of LFMC are thus needed to assess wildfire danger 

(Chuvieco et al., 2020) and to develop early warning systems for the evolution of critical 

conditions (Boer et al., 2017). 

Regional-scale assessment of LFMC is commonly obtained through expensive 

and time-consuming field inventories (Gabriel et al., 2021; Martin-StPaul et al., 2018) or 

through meteorological drought indices (e.g., Van Wagner, 1987). The latter allow 
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spatially continuous measurements, but their validity for the Mediterranean area has been 

questioned in various studies (Caccamo et al., 2012; Ruffault et al., 2018; Soler Martin et 

al., 2017), as they do not take into account plant-specific differences and the influence of 

site conditions (e.g., soil water dynamics), often leading to poor predictions (Jolly & 

Johnson, 2018). 

Remote sensing of LFMC using satellite information provides a valuable 

alternative to overcome the limitations of drought indices. Current approaches are mainly 

grouped into either physically-based simulation (Jurdao et al., 2013; Yebra et al., 2008, 

2018) or empirical methods (Argañaraz et al., 2016; Caccamo et al., 2012; Chuvieco et 

al., 2004; Peterson et al., 2008). Generally, these methods measure how water absorption 

and leaf properties affect reflectance in the optical spectrum (Yebra et al., 2013). Physical 

approaches, such as radiative transfer models (RTM), are expected to be more robust than 

empirical methods (Chuvieco et al., 2020). This is because they are based on the physical 

associations between leaf-canopy properties and spectral reflectance, which are 

independent of sensor and site conditions (Yebra et al., 2008; Yebra & Chuvieco, 2009). 

However, they are also more complex to parameterize and require additional ecological 

information and prior knowledge over large geographical gradients to prevent unrealistic 

spectra simulations (Yebra & Chuvieco, 2009). In contrast, empirical approaches, which 

are commonly based on spectral indices (SI), are simpler and have shown similar or even 

better accuracies than physical models when applied locally (Marino et al., 2020; Yebra 

et al., 2008) or across specific vegetation types (Yebra et al., 2018). 

Combinations of SI have been successfully employed to estimate LFMC 

(Argañaraz et al., 2016; Caccamo et al., 2012; Marino et al., 2020; Nolan et al., 2016). In 

addition, some authors found stronger predictive power by including land surface 

temperature (LST) along with optical data to the empirical relationships (Chuvieco et al., 

2004; García et al., 2008; McCandless et al., 2020; Sow et al., 2013). The connection 

between LFMC and LST lies on the interaction between the plant energy balance 

mechanisms and its response to water stress (Yebra et al., 2013). Other recent studies 

implement microwave remote sensing to retrieve LFMC (Fan et al., 2018; Rao et al., 

2020; Wang et al., 2019), but their use still has some limitations, such as data availability. 

The application of empirical approaches at continental or global scales is precisely 

constrained by the availability of data for calibration during model development 
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(Argañaraz et al., 2016; Jurdao et al., 2013). The biophysical and structural differences 

among species impact the functional relationships between LFMC and remotely sensed 

reflectance (Ceccato et al., 2001; Zhu et al., 2021). Consequently, a large number of 

diverse sampling observations is required to reduce the effect of site dependence. 

Furthermore, the use of many predictive variables potentially related to LFMC may 

significantly improve the empirical estimations of the model (Yebra et al., 2018), but also 

increases its complexity. 

Machine learning (ML) algorithms, such as Random Forests (RF), are a solid 

alternative to physically based RTM methods or the classical regression models on which 

the empirical approaches are commonly based. ML algorithms are highly efficient with 

high dimensional data and solve the problem of model complexity by applying different 

functional forms in the relation between predictors and LFMC, without make explicit a 

priori assumptions (Kuhn & Johnson, 2013). However, using ML to estimate LFMC from 

remote sensing is still very recent (Adab et al., 2016; McCandless et al., 2020; Rao et al., 

2020; Zhu et al., 2021) and has not been used in the Mediterranean basin. 

Despite the importance of wildfires in the Mediterranean basin, we are currently 

lacking a specific method to reliably estimate LFMC at the subcontinental scale. For 

example, the European Forest Fires Information System (EFFIS) is using the Australian 

operational system (Yebra et al., 2018) to estimate LFMC in the European extent, but this 

method has not been broadly assessed yet. Other studies have addressed LFMC modelling 

at local (Costa-Saura et al., 2021; Marino et al., 2020) or regional (Jurdao et al., 2013; 

Yebra & Chuvieco, 2009) scales and they are usually focused on specific vegetation types 

(e.g., grasslands or shrublands). Thus, we are still lacking a product that provides 

complete LFMC estimates for the Mediterranean basin. The only exception is the global 

LFMC product developed by Quan et al. (2021), which is based on an RTM, and it is not 

yet known whether LFMC estimates could be improved through ML approaches. 

The present study aims to fill this knowledge gap by developing an RF algorithm 

to predict LFMC within the Western Mediterranean basin using the information of the 

widely used Moderate Resolution Imaging Spectroradiometer (MODIS), and comparing 

the results with the only other method available for this area, the physically-based 

estimations of Quan et al. (2021). I also aim to generalize the model over a wide range of 

fuel types with a unique formulation by combining a forward feature selection with a 
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spatial cross-validation and ML techniques. Finally, the ultimate goal is to develop a 

database of LFMC for the Mediterranean basin using available data that improves beyond 

currently existing products. 

2. Materials and Methods 

2.1. Data 

2.1.1. LFMC Field Measurements 

I used all the LFMC data publicly accessible to date in the Mediterranean basin. Most of 

these data have been compiled in the Globe-LFMC database (Yebra et al., 2019, last 

accessed June 2021). The Globe-LFMC is a global compilation of 161,717 LFMC 

destructive field measurements of leaves and small twigs (<6 mm) from 1977 to 2018 at 

1,383 sampling sites with different species and characteristics in 11 fire-prone countries 

(Yebra et al., 2019). I also found a more recent LFMC time series from Catalonia (Cat-

LFMC) (Gabriel et al., 2021). This is a collection of 21 years (1998-2019) of biweekly 

field-sampled data compiled by the Catalan Forest Fire Prevention Service across nine 

sampling areas within this Spanish region, and focused on five species representatives of 

Mediterranean shrublands (Gabriel et al., 2021). Cat-LFMC was added to the Globe-

LFMC to extend the total number of sites and the time interval within the Mediterranean 

area. Both datasets have already been technically validated by correcting inconsistencies 

and anomalies in LFMC, as described in the relevant publications (Gabriel et al., 2021; 

Yebra et al., 2019). All records are properly georeferenced and inform about the species 

collected, the sampling protocol, land cover type, and further eco-physiological and 

environmental properties not used in this study. 

2.1.2. MODIS Data 

The MODIS MCD43A4 Collection 6 product (Schaaf & Wang, 2015) was selected as a 

source of aboveground spectral information, as it has shown good performance in 

previous studies (Argañaraz et al., 2016; Marino et al., 2020; Zhu et al., 2021). MCD43A4 

provides daily maps at 500 m spatial resolution from a 16-day composite of Nadir 

Bidirectional Distribution Function (NBDF)-Adjusted Reflectance for each of the 7 

MODIS bands (channels 1-7, Table 1). Using a composite product may reduce the 
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probability of cloud cover and shadows. The ‘Good quality’ flag from the simplified band 

specific quality layers (BRDF_Albedo_Band_Quality) associated with MCD43A4 was 

used to keep the full quality pixels of the composite. 

The Terra MODIS Land Surface Temperature (LST) MOD11A2 Collection 6 

product was included as a predictor of LFMC due to the impact of water availability in 

plant evapotranspiration and, consequently, on canopy temperature (Yebra et al., 2013). 

MOD11A2 is an 8-day pixel average from the MOD11A1, a daily product of LST 

measurements from the Terra satellite (Wan, 2014). I used the daytime composite values, 

instead of single day measurements, because MOD11A2 had fewer data gaps (8% vs 

35%), and their effect on LFMC predictions, in terms of model RMSE, was the same 

(~20%, see Appendix A1). Daytime images cover the same period as MCD43A4, and 

they coincide better with the typical sample collection time, but at a 1000 m spatial 

resolution. They were resampled to the 500 m spatial resolution of MCD43A4 using a 

Table 1. List of potential predictors of LFMC. 

Variable Description Wavelength 

(nm) 

Source 

NR1 Nadir Reflectance Band 1 Red 620 - 670 MCD43A4 

NR2 Nadir Reflectance Band 2 Near infrared 
(NIR1) 

841 - 876 MCD43A4 

NR3 Nadir Reflectance Band 3 Blue 459 - 479 MCD43A4 

NR4 Nadir Reflectance Band 4 Green 545 - 564 MCD43A4 

NR5 Nadir Reflectance Band 5 Near infrared 
(NIR2) 

1230 - 1250 MCD43A4 

NR6 Nadir Reflectance Band 6 Shortwave infrared 
(SWIR1) 

1628 - 1652 MCD43A4 

NR7 Nadir Reflectance Band 7 Shortwave infrared 
(SWIR2) 

2105 - 2155 MCD43A4 

SI Vegetation spectral indices: NDVI, EVI, 
SAVI, VARI, VIgreen, Gratio, NDII6, NDII7, 
NDWI, GVMI, MSI, NDTI, STI 

 see Table A2 

LST Land surface temperature  MOD11A2 

DOY_COS, 
DOY_SIN 

Cosine and Sine of the Day of Year   
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bilinear interpolation. 

Additionally, the annual MODIS Land Cover Type (MCD12Q1) Collection 6 

product (Sulla-Menashe et al., 2019) with the International Geosphere-Biosphere 

Programme (IGBP) classification scheme was used to distinguish between vegetation 

types in the analyses. This product replaced the land cover field included in the Globe-

LFMC database, which is based on the ESA Climate Change Initiative Land Cover for 

the year 2015. This is because MCD12Q1 accommodates to the spatial resolution of the 

reflectance data and the temporal resolution of the field samples. It also was used for map 

production (e.g., masking water bodies and non-vegetation covers). 

All MODIS images were downloaded from the NASA Land Processes Distributed 

Active Archive Center (LP DAAC) in the U.S. Geological Survey (USGS) Earth 

Resources Observation and Science Center (EROS) (https://lpdaac.usgs.gov/; accessed 

on June 2021). 

2.1.3. Landsat Data 

The Landsat Collection 1 surface reflectance data included in Google Earth Engine (GEE) 

(Gorelick et al., 2017) was used to assess the MODIS subpixel spatial heterogeneity 

corresponding to each sampling site in the LFMC dataset. The revisit time of these 

satellites is 16 days, and the resolution is 30 m for the reflective bands. Similarly to Quan 

et al. (2021), I employed Landsat 5 TM from Feb 2000 to Oct 2011 for high quality pixels, 

Landsat 7 ETM+ from Feb 2000 to Oct 2011 when Landsat 5 TM had poor quality pixels 

and also from Nov 2011 to Apr 2013, and Landsat 8 OLI from May 2013 until 2019. The 

use of Landsat 5 TM instead of Landsat 7 ETM+ was due to data gaps produced in the 

latter by failure in a sensor component (Quan et al., 2021). Snow, cloud, and shadow 

pixels were removed using the Landsat internal quality band. 

2.1.4. Radiative Transfer Model (RTM) Database 

The global RTM-based product developed by Quan et al. (2021) was used to compare the 

results of the ML-based approach proposed here. I chose this product because it is the 

only currently available database that has produced LFMC maps over the whole 

Mediterranean basin. It consists of a weekly collection of maps (2001-2019) generated 

by a physically-based remote sensing model. 

https://lpdaac.usgs.gov/


Universidad de Córdoba 

9 
 

2.2. Methods 

The following sections describe all the steps I used to estimate LFMC (Figure 1). The 

first section explains how I prepared the data for analyses. The second section briefly 

introduces the modelling approach. The last sections describe the variable selection 

process, the calibration and validation methods, and the software used in all steps. 

 

 
Figure 1. Overview of the pre-processing, modelling and analysis steps. 

 

2.2.1. Data Preparation 

First, I cropped the Globe-LFMC dataset to the Mediterranean region (Figure 2) and used 

it, along with the Cat-LFMC, only for the dates with available MODIS data. Then, LFMC 

samples collected within the same day and site, but corresponding to different species or 

vegetation layers (e.g., understory and canopy), were aggregated by arithmetic means to 

obtain a single value per site. Nolan et al. (2016) observed that average LFMC per site 

has a stronger correlation with spectral data than any individual vegetation layer alone. 

However, some studies have observed that spectral information may more closely reflect 

signals from the upper part of the canopy, particularly for closed forests (Yebra et al., 

2013). I am interested in developing an indicator of LFMC representative of the entire 

canopy (upper canopy but also of the understory) because the understory often burns 

during a fire, which explains why I used the average LFMC value. 

For each resultant LFMC sample, pixel values from remote sensing data were 

obtained by a simple pixel extraction (that is, the nearest grid cell centroid) matching their 

sampling date. I performed some preliminary tests observing that the simple pixel 
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extraction method showed no significant differences (p-value = 0.9; see Appendix A2, 

Table A1) relative to conducting a focal mean (e.g., from a 3×3 window). Afterwards, 

various vegetation SI (Table A2) potentially related to LFMC were calculated by 

combining information from different MODIS spectral bands and used as predictors of 

LFMC in addition to atmospherically corrected reflectance. SI tend to reduce directional 

anisotropic and soil background effects and highlight specific properties of the vegetation 

canopy (Yebra et al., 2013). I also used LST from the MODIS LST 8-day average 

composite, as previously discussed (see Appendix A1). Finally, I added the day of year 

(DOY) of the ground LFMC samples as auxiliary variables to take into account the 

seasonal trends in LFMC (Chuvieco et al., 2004; García et al., 2008). To do so, DOY was 

normalized to [0, 1] and reconverted to [−𝜋, 𝜋], such that DOY 1 and DOY 366 

corresponded to −𝜋 and 𝜋, respectively. With the resulting values, I calculated the sine 

(DOY_SIN) and cosine (DOY_COS) to maintain the information on the periodicity as 

performed in Zhu et al. (2021). Consequently, DOY_SIN varied from -1 to 1 between the 

wettest and driest season, while DOY_COS varied from winter (coldest; -1) and summer 

(hottest; 1). 

After defining the potential predictors described above (Table 1), I removed 

LFMC samples with missing data from any variable, and I discarded values outside the 

threshold 20-250%, which is considered the biological range of LFMC (Martin-StPaul et 

 
Figure 2. Distribution of sampling sites and extension of the mapping area for the database and 

future map productions. The background layer represents terrestrial biomes (Dinerstein et al., 

2017). Gray areas were discarded from the predictions. 
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al., 2018). I then averaged multiple observations in the same day and MODIS-grid cell 

and randomly assigned the values to one of their locations to have a single daily LFMC 

value for a given pixel value. The resulting dataset contained a total of 10,374 LFMC 

field measurements between 2000 and 2019 from 118 sites located in Spain, France, Italy, 

and Tunisia (Figure 2; Figures B1, and B2). These sites are mostly concentrated in the 

ecoregions ‘Northeast Spain and Southern France Mediterranean forests’ and ‘Italian 

sclerophyllous and semi-deciduous forests’ (~80%). Ecoregions with Mediterranean 

woodlands and coniferous, broadleaf, and mixed forest formations are also represented to 

a minor degree. In conjunction, mean annual temperature ranges from 6 to 20 °C and 

mean annual rainfall ranges from 250 to 1100 mm (Dinerstein et al., 2017). Site altitudes 

ranges from 11 to 1660 m. 

For model validation, Quan et al. (2021) RTM data were only acquired for the 

sample records that coincided with the available dates of such products. I also assigned 

land cover information from the MCD12Q1 layers to each ground sample by matching 

the year of sampling with the year of the layer. Misclassified sites (e.g., croplands, 

permanent wetlands, and urban covers) were discarded or manually corrected based on 

the species collected, location, and the land cover type field included in the Globe-LFMC 

database. To simplify the analyses, the IGBP land cover classes present in the study were 

re-classified into four vegetation (or fuel) types accounting for different structural 

characteristics (Table A3). These new land cover classes were defined as grasslands, 

shrublands, savannas (tree cover 10-60%), and forests (tree cover >60%). 

Additionally, the NDVI coefficient of variation (NDVICV) derived from Landsat 

data were used to assess the homogeneity of vegetation ‘greenness’ surrounding each site 

coordinates, as performed in Quan et al. (2021). The authors suggest using these metrics 

to filter highly heterogeneous areas within a specific satellite footprint since they may not 

be suitable for predictive attributions (Yebra et al., 2019). Lower values correspond to 

more homogeneous sites. NDVICV was calculated with the Landsat surface reflectance 

values from a 500×500 m2 buffer that matched the MODIS cell where site coordinates 

were located. To do so, I adapted the GEE script publicly shared by Yebra et al. (2019), 

such that the NDVICV value was the monthly average that corresponded to the sampling 

date. Monthly average maximizes the quality (unmasked pixels) and the stability of the 

NDVICV statistic. Only values with more than 80% good quality pixels (without snow, 
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clouds, or shadows) were retained. 

2.2.2. Machine Learning Approach 

Random Forests (RF) was the ML algorithm chosen to empirically estimate LFMC at the 

Mediterranean basin because of its simplicity, its ability to deal with a large number of 

covariates, and because it is not necessary to have prior knowledge of the functional form 

of the relationships between these covariates and the response. Furthermore, the presence 

of outliers does not have a great influence on its performance (Kuhn & Johnson, 2013). 

RF is a non-parametric data-driven statistical method proposed by Breiman 

(2001), which is based on Classification and Regression Trees (CART, also called 

decision trees) and bagging. Several decision trees are constructed in different bootstrap 

samples of the data, on which every data split (node) is forced to consider an arbitrary 

subset of available predictors. All individual-tree responses are then aggregated to obtain 

the final output predictions. The hyperparameters needed for model calibration and used 

in the subsequent analyses are explained in the supplementary methods (Appendix A5). 

Full details on CART, bagging, and RF can be found in Kuhn and Johnson (2013). 

2.2.3. Variable Selection: Forward Feature Selection 

Variable selection was needed because many of the variables (or features) used as 

candidates to estimate LFMC were highly correlated with each other, as expected (Figure 

B3). This is because the SI were formed by close combinations of different spectral bands. 

On the other hand, predictor variables that are highly autocorrelated in space can be 

misinterpreted by the Random Forests algorithm, leading to poor predictions outside the 

locations of the training data (Meyer et al., 2018). 

Here, I used the Forward Feature Selection (FFS) method proposed by Meyer et 

al. (2018) to eliminate uninformative predictors and reduce the spatial over-fitting. First, 

the algorithm trains models using all possible combinations of two predictor variables 

and keeps those with the lowest prediction error based on a spatial cross-validation that 

discards entire sampling sites, as described later. Then, FFS iteratively increases the 

number of variables and evaluates the new model until none of the remaining variables 

improves the performance of the current best model. Additionally, I introduced a 

modification of the original method that consisted of calculating the average error over 

25 different data splits. This avoided the dependence of cross-validation data splitting and 

aimed at stabilizing the error estimation (Krstajic et al., 2014). 
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FFS is complex and computationally intensive to execute parallel with RF 

parameter selection (Krstajic et al., 2014), and this step was performed before model 

calibration using a fixed set of hyperparameters (Table A4). 

2.2.4. Model Selection and Performance Evaluation 

In order to select the final model, I first assessed the general performance of different 

forms of the RF (depending on the selected predictors and whether or not the NDVICV 

filter for heterogeneous pixels was applied) independently from a specific model 

calibration. I then adjusted the best performing model and evaluated its predictions. 

Initial model performance assessment (MP) consisted of a bias-reduced predictive 

performance evaluation done using a nested 5-fold leave-location-out cross-validation 

(LLOCV) (Krstajic et al., 2014). Nested cross-validation divides the data two times, first 

to develop the model and then for independently testing its performance. LLOCV means 

that the cross-validation folds are made of the observations left out of complete locations, 

assuring spatial independence (Meyer et al., 2018). More specifically, the data were 

divided into 5 outer folds, where one was kept for testing and the remaining were split 

again into 5 nested folds to iteratively train and select the optimal tuning using a standard 

LLOCV. Five optimal models were obtained for each outer partition and the accuracy 

metrics (described in the section below) were then calculated based on the collection of 

predictions from all the outer folds. The same procedure was repeated 100 times with 

different data splits (that is, 500 independent validations), and the overall predictive 

power metrics were the mean of all repetitions. 

Using this method, I assessed MP over 5 different model combinations with the 

entire set of variables, with the variables selected during the FFS, and with/without 

applying the NDVICV filter. NDVICV was treated as an additional hyperparameter and 

implemented in both the whole dataset (training and test) and only to the training partition. 

The five models consisted of: (1) all variables without filters; (2) all variables with 

NDVICV filters on the whole dataset; (3) FFS-selected variables without filters; (4) FFS-

selected variables with NDVICV filters on the whole dataset; and (5) the best of 

all/selected variables with the NDVICV filter only applied to the training partition. This 

method of evaluation provides an appropriate estimate of model reliability since the 

reported metrics are not a function of a specific model calibration, and many alternative 

independent datasets (outer folds) are used for testing (Krstajic et al., 2014). Thus, models 
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1-4 allowed to examine the effectiveness of the NDVICV filter on the model performance, 

and the predictive improvement achieved by using only the selected features along with 

different parameter combinations than the fixed ones in the FFS process. With model 5 I 

tested how well a model optimized for homogeneous sites (defined by the selected 

NDVICV value threshold) predicted on independent sites that represent both homogeneous 

and heterogeneous pixels. The best alternative was employed in the subsequent 

calibration and validation strategies. 

After selecting the best approach, I evaluated the predictions by first calibrating 

the model with LFMC samples from 2000 to 2014 (~80% of the total dataset) and then 

validated it using the samples collected in 2015-2019 (~20% of the total dataset). That is, 

I first determined the optimal hyperparameter values for a single model using the samples 

collected during 2000-2014 by training the algorithm iteratively on one-fifth of the 

sampling sites and tested on the remaining ones using a standard LLOCV. This process 

was repeated over 25 random site-resamples for each of the model candidates to stabilize 

the error rate and eliminate the effect of a particular data partition (Krstajic et al., 2014). 

The model with the lowest average predictive error was selected and calibrated again to 

obtain predictions on the whole 5 cross-validation folds. The respective accuracy metrics 

(called CAL) referred to estimates within the sample period but are not independent from 

model calibration, as they are the outer-fold metrics in MP. I then evaluated how well the 

model extrapolates outside the sample period using the samples collected in 2015-2019. 

This validation phase (named EXT) included some new locations (3 sites) not used in 

CAL, which means validating future predictions also at unknown points in space. 

The final model was used to compare the RF predictions against the RTM 

estimations produced by Quan et al. (2021). To be a fair comparison, both estimates were 

contrasted over the same ground-truth samples separately for the LFMCRF predictions 

inside (CAL) and outside (EXT) the training period. 

The optimal hyperparameters for model calibration were chosen from an initial 

set of possible inputs performing a grid-search scheme (Krstajic et al., 2014). I considered 

a wider range of possible values (Table A4) of the grid-search scheme for the MP, and 

then I limited the range according to the results obtained from all fitted models. For CAL, 

each parameter combination in the grid was iteratively assessed. In the MP, a random 

subset of combinations (e.g., 50) was implemented at each training process to be more 



Universidad de Córdoba 

15 
 

computationally effective. In this case, the choice of hyperparameters was not so 

important since the cross-validation estimates were a generalization of the model 

performance. 

In all cases, models were optimized to predict on new locations, which is the 

interest of remote sensing (that is, to estimate LFMC over areas without available ground 

data), and it prevents spatial over-fitting (Meyer et al., 2018). For MP and CAL grid-

search steps, these locations were randomly selected using the method of Meyer et al. 

(2018), which benefits splitting diversity. In the final model adjustment, prior to 

predictions, sample-site splitting was conducted by means of their coordinates and the K-

means algorithm to ensure equal spatial distribution (Pejović et al., 2018). 

2.2.5. Validation Methods and Map Production 

The predictive capabilities of the model were characterized by means of the root mean 

square error (RMSE), the mean absolute error (MAE), the mean bias error (MBE), and 

the unbiased RMSE (ubRMSE), as well as the variance explained by predictive models 

based on cross-validation (VEcv) (Li, 2016) and the Lin’s Concordance Correlation 

Coefficient (CCC) (Lin, 1989). RMSE, MAE, and MBE measure, respectively, squared, 

absolute, and mean departures between the estimated (𝑦�̂�) and observed (𝑦𝑖) test values 

of LFMC in the same units of the outcomes. RMSE was the statistic used as a criterion 

for parameter tuning and variable selection processes. I included the ubRMSE following 

Zhu et al. (2021), which shows the error after removing the tendency to over- or under-

predict in the model: 

𝑢𝑏𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)2
𝑛

1

− (
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

𝑛

1

)

2

 (1) 

Here, n is the number of observations in a validation dataset. VECV is similar to the 

coefficient of determination R2, but it measures the predictive accuracy of a model by 

comparing observations and predictions derived from cross-validation and not the square 

correlation between observed and fitted values. It is defined as: 

𝑉𝐸𝐶𝑉 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
1

∑ (𝑦𝑖 − 𝑦)2𝑛
1

 (2) 

where 𝑦 is the mean of the observed values. Otherwise, CCC provides a measure of 
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correlation relative to the line of agreement, which is expected to be unbiased with a slope 

of 1 and apply a penalty (Cb) if the relationship is far from this line. From CAL, EXT and 

the RTM, I also obtained the slope and intercept from the linear regression between 

observed against predicted to assess general deviation trends. 

Spatiotemporal analyses were additionally made through land cover types (Rao et 

al., 2020). More specifically, I calculated general performance metrics from the CAL and 

EXT estimates for each land cover class, and I decomposed the mean RMSE by land 

cover and the month of the year to determine the temporal variability of the predictions 

over each vegetation functional type. 

After the validations, I recalibrated the model using the whole dataset in order to 

consider all the available information to train the algorithm. The readjusted LFMCRF was 

then used to produce the collection of maps of the reported LFMC database. 

2.2.6. Marginal Effects of the Predictors 

I used partial dependence plots derived from the fitted model to evaluate the contribution 

of each variable to the LFMC estimations. The partial dependence function represents the 

average effect of a given variable on the predicted response marginalized over the effects 

of the rest of model inputs (Friedman, 2001). Mainly, I divided the distribution of values 

of the variable of interest into equal steps (e.g., 50). At each step, I calculated the average 

of all possible predictions made on the data holding the value of the step constant, and I 

drew a line joining all average points. Resulting plots allowed for the examination of the 

functional relationships between the most relevant features and the LFMC estimates. 

2.2.7. Software and Data Availability 

Model building and statistical analysis were made with the statistical software R version 

4.2.0 (R Core Team, 2022) and their base package for generic operations. RF was 

principally implemented with the R package ‘ranger’ (Wright & Ziegler, 2017) but also 

with the ‘randomForest’ library (Liaw & Wiener, 2002) to extract the partial dependence 

plots. The R packages ‘raster’ (Hijmans, 2022) and ‘sf’ (Pebesma, 2018) were used for 

remote sensing and spatial data manipulation, and ‘doParallel’ (Microsoft-Corp & 

Weston, 2022) for parallel computing. An adaptation of the stratfold3d function of the 

‘sparsereg3D’ package (Pejović et al., 2018) was used to make the equally spatially 

distributed LLOCV folds, while the spatially random splits were created with the 

CreateSpacetimeFolds function from the ‘CAST’ package (Meyer, 2022). 
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 All the scripts and datasets generated and analyzed during the current study are 

publicly available in the Github repository, https://github.com/fuegologos/lfmc_rf. The 

final product of the weekly LFMC maps is fully available at 

https://doi.org/10.5281/zenodo.6784663. 

3. Results 

3.1. Selected Variables 

Results of the FFS indicated that the most important predictors of LFMC, in terms of 

error reduction, were the combination of LST and DOY_SIN followed by VARI, NDTI, 

and DOY_COS (Figure 3). These five variables alone led to an RMSE of 20.1%. I also 

considered NR3 and NR5 because each one represented on average an additional 

improvement of ~0.1% in RMSE from the previous stepwise selection, which was greater 

than the corresponding RMSE standard error (~0.05%) calculated from the 25 FFS step 

realizations. Selected variables for the subsequent developments reached an overall 

RMSE of 19.9%. 

 
Figure 3. Selected variables derived from the combination of the Forward Feature Selection 

(FFS) process and the leave-location-out cross-validation (LLOCV). Black dots and vertical 

segments represent, respectively, the average LLOCV error and the standard error calculated from 

the 25 RF computed at each FFS step. 

https://github.com/fuegologos/lfmc_rf
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3.2. Statistical Performance of the LFMCRF 

Calibrated and evaluated models within the general model performance assessment (MP) 

achieved similar results among them, with overall RMSEs (that is, from all separate 

iterations of each MP alternative in conjunction) ranging from 19.1% to 21.4% and VECV 

ranging from 0.28 to 0.43. Average performance statistics (Table 2) showed that all MP 

alternatives tended towards a slight overprediction (MBE: 0.9-1.5%). Nonetheless, the 

ubRMSE values were close to the RMSE (max. difference ~0.07%), further indicating a 

relatively low bias of the LFMCRF estimates. In general, models with all the initial 

predictors (Allp) showed worse performance than those with only the selected ones (Selp) 

(Table 2). The latter benefited from the elimination of the spatially dependent variables, 

and were used in the successive validation strategies. 

Application of the NDVICV filter did not show significant effects on the general 

model performance (Table 2; Figures B4-B5). For example, applying the optimal filter in 

Selp to the entire dataset (F1) led to a small improvement in RMSE (<2%) and VECV 

(~0.01), but also to an increase of MBE (~0.15%) with respect to no filter application. 

Moreover, comparing MP with no filter and with the filter only applied to the training 

data (F2) resulted in increases in RMSE and MBE by 0.02% and 0.2%, respectively. In 

addition, the application of the filter led to the elimination of 26-28% of the dataset. It is 

worth noting that only a very small percentage of the data (2-4%) was deleted with 

NDVICV application because they were above the optimal filter threshold (0.3-0.35 in this 

case). The rest of the data was removed because of missing rows in NDVICV, which were 

derived from poor-quality pixels in Landsat products. The model with no filter was thus 

used in subsequent analyses. 

3.3. Prediction Assessment and Intercomparison 

Accuracy metrics from the calibrated model (CAL) were consistent with the general 

performance (MP) of the LFMCRF (Table 2). These results were expected because CAL 

was developed with 80% of the data employed in MP, but they proved that the adjusted 

model was not overfitted to the particular data or by the current hyperparameter 

optimization (Table A4). In contrast, the EXT validation showed smaller RMSE (~3.5%) 

and higher VECV (~0.15) than CAL, probably due to differences in the validation samples. 

According to the previous section (section 3.2), I did not observe any significant 
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bias in the LFMCRF estimations, as the y-intercepts and slopes were close to 0 and 1 in 

the fitted line between measured and predicted values of LFMC, respectively (Figure 

4a,d). However, the residuals between predictions and observations revealed a linear 

pattern along the range of LFMC in both CAL and EXT (Figure B6). For example, the 

Table 2. Evaluation metrics from predicted and observed values of the model performance (MP), 

spatial cross-validation (CAL), and the time extrapolation (EXT) assessment. Different methods 

based on the NDVICV filter application and the complete (Allp) or selected (Selp) predictive 

variables. Predictions from CAL and EXT broken down by fuel type. RTM extractions and 

LFMCRF were validated on the same ground-truth observations separately if they were used in 

CAL or EXT. 

Method Fuel type Variables Filter* 
MBE 

(%) 

MAE 

(%) 

RMSE 

(%) 

ubRMSE 

(%) 
CCC VECV 

#Testing 

Samples/ Sites 

MP All Allp NF 1.10 15.70 20.57 20.54 0.53 0.32 10,374 / 118 

 All Allp F1 1.43 15.47 20.29 20.24 0.55 0.35 7633 / 103 

 All Selp NF 0.86 15.18 19.90 19.88 0.56 0.37 10,374 / 118 

 All Selp F1 1.00 15.07 19.74 19.71 0.57 0.38 7633 / 103 

 All Selp F2 1.06 15.18 19.92 19.89 0.57 0.39 7887 / 109 

CAL All Selp NF 0.47 15.10 19.93 19.93 0.56 0.37 8983 / 115 

 Forests   0.87 14.49 18.32 18.30 0.54 0.33 2633 / 27 

 Savannas   1.94 15.22 19.74 19.65 0.51 0.33 4330 / 46 

 Shrublands   -7.76 16.20 20.98 19.50 0.53 0.31 442 / 9 

 Grasslands   -1.94 15.48 22.57 22.49 0.57 0.36 1578 / 43 

EXT All Selp NF 2.75 13.05 16.35 16.12 0.69 0.52 1391 / 43 

 Forests   7.40 13.57 16.87 15.16 0.62 0.40 456 / 17 

 Savannas   1.63 13.18 16.46 16.38 0.69 0.55 730 / 22 

 Shrublands   -4.62 12.08 15.27 14.56 0.72 0.54 166 / 3 

 Grasslands   0.86 8.56 12.04 12.01 0.72 0.55 39 / 2 

LFMCRF (CAL) All Selp NF 0.86 14.54 18.74 18.73 0.54 0.34 1152 / 68 

RTM (CAL) All - - 65.10 66.56 77.78 42.58 0.04 -10.31 1152 / 68 

LFMCRF (EXT) All Selp NF 3.88 14.15 17.32 16.88 0.66 0.46 157 / 41 

RTM (EXT) All - - 61.87 63.10 74.41 41.33 0.07 -8.98 157 / 41 

*NF: no filter; F1: NDVICV filter applied to the entire dataset (training and test); F2: filter applied only to 

the training data. 
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model highly underestimated values above 120% (MBE CAL=-33.97% and MBE EXT=-

22.58%) and overestimated values below 30% (MBE CAL = 45.7%; no data in EXT). 

This explained the aforementioned better outcomes from EXT, because the range of the 

actual LFMC for testing (31-209%) excluded values where the model performed worst. 

Within the LFMC values where live fuels transition from flammable to non-flammable 

(30-120%), the model attained a smaller RMSE (MAE) of 16.75% (13.35%) for CAL and 

15.10% (12.19%) for EXT relative to the overall performance of the corresponding 

estimates, with a small propensity to overestimate (MBE of 3.30% and 5.24% for CAL 

and EXT, respectively). It is worth noting that 92% of the data was within the range of 

30-120%, and data below 30% may have represented curing. 

LFMCRF had better performance than RTM-based estimates when comparing 

against the same validation samples. In fact, poor correlation and large errors between 

observed and predicted values occurred in RTM simulations (Table 2). RTM 

systematically overpredicted LFMC when LFMC exceeded ~76% (Figure 4c,f). Negative 

values of VECV (-10.15 and -8.98) indicated that these LFMC estimates were less accurate 

 
Figure 4. LFMC field measurements versus predictions from CAL (upper plots) and EXT (lower 

plots): all predictions (a; d), LFMCRF predictions made on the same data points available in RTM 

(b; e), and the corresponding RTM (c; f). Dashed black line and red line indicates the expected 

1:1 relationship and the fitted linear model, respectively. Color scale indicates point density. 
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than using the mean of observations as predictions. Otherwise, the LFMCRF estimations 

used for this comparison showed the same level of accuracy as in the previous sections 

(Figure 4b,e), given that they were subsets of predictions from CAL and EXT. 

3.4. Evaluation Across Vegetation Types 

Assessing the performance across vegetation types, LFMCRF reached better results in 

EXT (RMSE: 12-17%; CCC: 0.6-0.7) than in CAL (RMSE: 18-23%; CCC: 0.5-0.6) for 

all fuel types (Table 2). This coincides with previous results and may be because of the 

greater range in LFMC variation observed in the CAL dataset (Figure B2). Forests 

showed the smallest errors in CAL (MBE = 0.87%; RMSE = 18.32%), but the largest in 

EXT (MBE = 7.40%; RMSE = 16.87%). Grasslands obtained the best performance within 

the EXT validation (Table 2). However, they represented <3% of the validation records 

and were mainly concentrated (~80% of the total) in Jul-Aug, where the model performed 

better (Figure 5c,d). In both cases, LFMCRF significantly underpredicted LFMC in 

shrublands (MBE -7.76 to -4.62). Temporally, the smallest errors (RMSE: 16-19%) were 

obtained during the hottest months (Jul-Aug), where field samples were primarily 

collected (Figure 5a,b), and also in winter months (Jan-Feb), matching with the lowest 

 
Figure 5. Number of testing samples and RMSE from CAL (a, c) and EXT (b, d) by vegetation 

type and month of the year. Gray cells in c and d indicate no data available. The IGBP classes 

from MCD12Q1 were aggregated by the vegetation functional type to which they belong. 
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LFMC variability (Figure B2d). Forests showed larger stability during the entire year in 

both RMSE (Figure 5c) and LFMC measurements (Figure B2c). Contrarily, the 

performance of the model greatly fluctuated in grasslands. Grasslands reported the largest 

RMSE (36.7%) in May, one of the wettest months of the Mediterranean region, when 

fires are scarce, declining to an RMSE of 14.9% (Figure 5c) during the driest month. 

3.5. Marginal Effects of the Predictors 

Partial dependence plots exposed different patterns on the variation of LFMC estimates 

(Figure 6). VARI and DOY_SIN exerted the strongest effects on predictions. LFMCRF 

estimates monotonically increased as the VARI values increased. Conversely, LFMC 

generally monotonically decreased with increases of DOY_SIN, indicating that the 

 
Figure 6. Partial dependence plots from the fitted model. Blue lines describe the average effect 

of a given predictor in the LFMC estimates. Small lines in the x axis indicate the deciles of the 

predictor values. 
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highest LFMC values occurred in spring (-1) and the lowest in late summer (1). LST had 

non-significant effects on the LFMC estimations up to 20°C but then presented a clear 

negative relationship. NR5 showed a concave shape, with marked increases at higher 

values of NR5 (>0.3; last decile). NDTI, NR3, and DOY_COS showed little effects on 

the predictions of LFMC, but they were still considered informative. The partial 

dependence of DOY_COS on the LFMC prediction may have been masked by the 

marginal effects of LST, as they were highly correlated (Figure B3). 

4. Discussion 

I propose a novel method to estimate LFMC from remote sensing at the subcontinental 

scale by means of a selected set of remote sensing predictors and the RF algorithm. 

LFMCRF outperforms current approaches used in the Mediterranean basin in terms of 

validation errors and provides a solid alternative to predict LFMC over a wide range of 

environmental conditions using a simple but robust model with a unique formulation. In 

the next sections, I discuss the contribution of each selected predictor, the general and the 

spatiotemporal performance of the model, as well as their potential applicability and 

future improvements. 

4.1. Selected Predictors 

The key explanatory features resulting from the FFS process were the variables derived 

from the day of the year (DOY_COS, DOY_SIN), LST, VARI, and NDTI, along with 

nadir reflectance bands 3 (blue) and 5 (NIR) to a minor degree. 

DOY_SIN and DOY_COS had a significative influence on the LFMC estimates 

due to the seasonal variation in LFMC. In general, LFMC dynamics follow the 

distribution of the balance between evapotranspiration and rainfall in the Mediterranean 

region (Argañaraz et al., 2016; Marino et al., 2020; Zhu et al., 2021). DOY_SIN partly 

reflects the average annual pattern in soil water availability and acts as a complement of 

the SI, maintaining the periodicity of LFMC within the year. Similarly, DOY_COS 

reflects changes in the temperature and is more related to vegetation surface temperature, 

which is measured by the LST (Chuvieco et al., 2004; García et al., 2008). 

As I expected, LST was a key factor explaining LFMC, and it showed a negative 
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relationship with LFMC when temperatures were above ~20ºC (Chuvieco et al., 2004; 

García et al., 2008; McCandless et al., 2020). LST is a key determinant of the energy 

balance of the vegetation, and its difference with air temperature is related to 

evapotranspiration and water losses (Vidal et al., 1994). Such differences between air 

temperature and LST depend on the density of vegetation cover, and previous works have 

shown strong relationships when combining LST and a vegetation index (e.g., García et 

al., 2008), as was done here. DOY_COS and LST are complementary because the former 

keeps the inter-annual variation of LFMC trends, while the latter provides better spatial 

information (that is, local deviations from the average trends) (García et al., 2008). The 

partial dependence of LFMC on LST was similar to that reported in previous studies in 

that LST only affected LFMC after a certain temperature threshold (McCandless et al., 

2020). LST is related to vapor pressure deficit (VPD) (Hashimoto et al., 2008), which is 

a variable that can also affect plant water content as a primary driver of evapotranspiration 

(Balaguer-Romano et al., 2022). The importance of LST may thus be related to the fact 

that VPD significantly acts on leaf moisture content after a certain threshold is reached. 

Therefore, it is also possible that LST could be reflecting local differences in surface 

temperature and VPD. Further work is needed to fully understand the mechanisms by 

which LST affects LFMC. 

VARI combines different visible wavelength bands (blue-green-red), and it has 

the ability to detect chlorophyll content and leaf structure variations, which are indirectly 

associated with changes in canopy moisture (Yebra et al., 2008). Several authors 

(Caccamo et al., 2012; Fan et al., 2018; Peterson et al., 2008; Roberts et al., 2006; Yebra 

et al., 2008) have shown that VARI is one of the best indices for predicting LFMC on 

different vegetation types, and I also demonstrated a notable dependency of the LFMCRF 

estimations (Figure 6). Other authors found stronger correlations with indices that include 

SWIR (Costa-Saura et al., 2021) and NIR (Argañaraz et al., 2016; García et al., 2020) 

bands predicting LFMC at local scales. 

Reductions in chlorophyll content can result from water shortage but also from 

changes in leaf age, nutrient deficiency, health, and phenological stages (Ceccato et al., 

2001; Wang et al., 2013). Introducing NDTI from SWIR bands, in the spectral region 

greatly sensitive to plant water content (Ceccato et al., 2001; Chuvieco et al., 2002), was 

necessary to correct for VARI changes not driven by the moisture status of plants. 
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Moreover, Wang et al. (2013) described a connection (r = 0.45) between NDTI and dry 

matter content of vegetation. Dry matter weight is the denominator of the LFMC equation 

and could lead to variations in the spectral response and LFMC due to plant seasonal 

growth, independently of drought changes (Bowyer & Danson, 2004; Fan et al., 2018). 

On the other hand, NIR (NR5, centered at 1240 nm) is partly influenced by water 

content, but also by leaf internal structure and dry biomass (Bowyer & Danson, 2004; 

Ceccato et al., 2001). This particularity may explain the concave effect that this variable 

had on predictions. Water loss produces an increment of NR5 as a result of lower water 

absorption (Chuvieco et al., 2002). However, at certain species and LFMC levels, water 

stress leads to leaf cell structure changes (reducing reflective areas by wilting) and leaf 

curling, which cause a decrease in NR5 (Chuvieco et al., 2002; Yebra et al., 2013). 

I acknowledge that topography could have affected the results as it alters micro-

climatic variables influencing LFMC, such as solar radiation. However, a previous study 

that used reflectance bands as main explanatory variables (Zhu et al., 2021) indicated a 

rather small effect on LFMC estimations with an RMSE improvement of ~1%. 

4.2. Model Performance Assessment 

Generalization errors of the LFMCRF (RMSE: 16-20%; MAE: 13-15%) were lower than 

in other studies attempting to model LFMC at large spatial scales. For instance, Zhu et al. 

(2021) reported an overall RMSE of 27.9% using a similar spatial validation strategy but 

for the contiguous US. They also achieved an RMSE of 22.7% performing a standard 

cross-validation, which normally results in higher accuracy because the training and 

testing sets are not spatially independent. LFMCRF also showed smaller RMSE than did 

Rao et al. (2020) (25%), who used the same spatial approach as Zhu et al. (2021) but 

ignored multi-species sites with high LFMC seasonal variation, where predictions tend to 

be more uncertain. 

The proposed model tended to underestimate large values and overestimate small 

values of LFMC (Figure B6). Poor performance of the RF-based model towards the 

extremes is a well-known problem within RF models (Kuhn & Johnson, 2013). 

Nonetheless, similar problems were also reported in previous works based on ML (Adab 

et al., 2016; Zhu et al., 2021), classical regression (Marino et al., 2020; Peterson et al., 

2008) and RTM simulation (Yebra et al., 2018) methods. One reason for the systematic 
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bias at high moisture levels can be the lower sensitivity of optical spectra to capture 

changes in water content while the vegetation gets wet (Quan et al., 2021; Yebra & 

Chuvieco, 2009). The strategy I adopted to address this problem was to assess LFMC 

over a very wide range, such that extreme values, those where LFMC estimation is 

problematic, are largely out of range. The lower level of LFMC in this study was 20%, 

but fuel moisture below 30% often corresponds to dead fuel (e.g., cured grass) and is thus 

beyond the scope of the model, since it was designed for LFMC (Yebra et al., 2013). 

Similarly, the higher LFMC values (above 200%) may be related to harvested samples 

with the presence of primary tissues from a new vegetative period (Argañaraz et al., 

2016), plant parts other than leaves (e.g., fruits, flowers), or the inadequately inclusion of 

samples collected after rain or dew events (Yebra et al., 2018). 

The LFMCRF showed a better performance that RTM predictions from Quan et al. 

(2021). The RTM-based estimates were highly biased with a strong tendency to 

overpredict beyond 76% LFMC. This coincided with the results reported by Marino et al. 

(2020), who found an identical pattern starting at the threshold of 65% using the RTM 

developed by Yebra et al. (2018). This demonstrates a better predictive power for the 

LFMCRF approach, even though physically-based approaches are expected to be more 

precise when applied to sites not used for calibration (Yebra et al., 2013). At any rate, I 

acknowledge that comparing a regional dataset like this one against a global dataset is not 

entirely fair, given the scale gap, but the reported results highlight that the RMSE of the 

global RTM hinders any local application for operational purposes. 

The critical LFMC level associated with fire occurrence in the Mediterranean 

forests, and other parts of the world, occurs around 100% (Dennison & Moritz, 2009; Luo 

et al., 2019; Nolan et al., 2016). The LFMCRF model improves current products, but MAE 

around the critical threshold of 100% LFMC is still ~13%. Differences of 10% in LFMC 

estimation from field measurements are generally acceptable for fire management 

(Marino et al., 2020). However, these results indicate that there is still room for further 

improvements, particularly towards the critical threshold, so as to avoid reporting of false 

fire alerts or omission of danger situations (Yebra et al., 2008). 

4.3. Evaluation Across Vegetation Types 

The predictive errors obtained by the LFMCRF within the training period for 
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forests/savannas (RMSE 18-20%), shrublands (RMSE ~21%), and grasslands (RMSE 

~23%) were similar between them and comparable to those reported by other studies for 

the same vegetation types (forests/savannas 22-32%, shrublands 14-29%, grasslands 29-

49%) (Jurdao et al., 2013; Quan et al., 2021; Rao et al., 2020; Yebra et al., 2018; Zhu et 

al., 2021). Despite the methodological differences, this comparison demonstrates that a 

single model can be as accurate or even better than formalizing a model for each fuel 

class separately. This could be due to the RF architecture that allows using the spectral 

and thermal information itself to discriminate between vegetation functional types. 

Furthermore, misclassification problems of the land cover products used to differentiate 

between fuel classes can further increase the uncertainty of the LFMC estimates (Yebra 

et al., 2018; Zhu et al., 2021). 

In general, I observed that the uncertainty of the LFMC predictions (Figure 5) 

depended on the range of LFMC values for testing and their local and temporal variability 

(Figure B2). For example, forests showed more stable behavior in both LFMC dynamics 

and prediction agreement. Deep root systems in trees reduce the seasonal LFMC variation 

(Resco de Dios, 2020). On the contrary, grasslands reported the highest errors in spring 

(the wettest part of the year) and the lowest in the driest periods (summer, when fires are 

more likely). These patterns overlapped with the monthly maximum and minimum values 

of LFMC, that is, larger LFMC errors under higher LFMC values and smaller LFMC 

errors under lower values. Shrublands instead had a low temporal variability but 

presented a significant bias (MBE from -5 to -8%), likely because of the high proportion 

of large LFMC values (>120%) in their ground-truth sample distributions (16.4% of the 

total ground-truth samples). The error associated with predictions outside the training 

period (EXT) was similar to that from the CAL dataset (Figure 5). However, RMSE was 

slightly lower with the EXT dataset because of the lower LFMC variability in the EXT 

dataset relative to CAL. I thus conclude that the fitted model with historical data can be 

safely applied in future situations without the need for frequent readjustment, but with 

careful interpretation in the wettest months and for LFMC values below 30%. 

4.4. Applicability and Potential Improvements 

The relatively coarse resolution (~500 m) of the final product is appropriate for landscape-

scale use and does not guarantee smaller-scale applications. Each individual pixel 
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normally contains information from a mixture of vegetation canopy layers, species, 

surface litter, and soil elements with different properties that cannot be unambiguously 

interpreted (Chuvieco et al., 2020; Yebra et al., 2018). I acknowledge that a limitation to 

this study is that I did not explicitly assess the representativeness of the samples within 

the site. I therefore took into account small-scale heterogeneity by implementing an 

NDVICV filter, as in Quan et al. (2021). However, I did not observe any significant 

improvement after applying this filter, likely indicating that sample areas were relatively 

homogenous. In any case, sub-pixel variation and the scale mismatch between sample-

plot size and pixel resolution hinder establishing relationships between field observations 

and satellite-derived variables, introducing uncertainties into the predictions. The latter 

could be solved using higher spatial resolution data (e.g., Sentinel-2 or Landsat) (Adab et 

al., 2016; Costa-Saura et al., 2021; Marino et al., 2020), but these satellites usually have 

lower revisit frequency disabling near-real-time usage and introducing a time lag between 

the images and the sampling date (Marino et al., 2020). Future work should extend the 

use of the LFMCRF methods to these newer satellites because historical LFMC field data 

currently available is not yet sufficient to achieve this goal. 

Further progress will come from joining the LFMCRF approach with microwave 

remote sensing data. Microwave observations (active and passive) can also detect changes 

in vegetation water content but are less sensitive to atmospheric conditions (e.g., clouds) 

than optical wavelengths (Fan et al., 2018) and have the ability to penetrate deeper into 

the canopies (Rao et al., 2020). The recently available non-commercial radar data 

supplied by the Sentinel-1 A/B Synthetic Aperture Radar (SAR) may represent a great 

opportunity to infer the improvement of LFMC models at the operational level (Rao et 

al., 2020; Wang et al., 2019). 

Sample representativeness is a general constrain in the empirical models (Yebra 

et al., 2013). In this study, field samples were not evenly distributed across the whole 

Mediterranean basin. They could be considered representative of the Western 

Mediterranean conditions since they were abundant in number (space and time) within 

their specific biome, as well as in species and environmental conditions. However, LFMC 

predictions in temperate zones should be interpreted with caution as they were 

underrepresented. Thus, the application of the LFMCRF should be limited to areas with 

similar characteristics, and LFMC estimates must be interpreted with caution in 
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underrepresented areas (e.g., temperate zones). Despite that, the generated maps extend 

to the entire Mediterranean biome included in the Mediterranean basin, as well as some 

meridional areas of the temperate biomes of Europe (e.g., northern Spain) (Figure 2). 

5. Conclusions 

I successfully tested an RF algorithm as an approach to predict large-scale LFMC using 

the spectral and thermal information of MODIS and two static variables representing 

seasonal patterns. The LFMCRF is applicable to a wide variety of vegetation types, and 

the performance of the fitted model (MBE = 0.47%, RMSE = 19.9%, VECV = 0.37, CCC 

= 0.56) was comparable to that of other studies with similar purposes but with a higher 

degree of complexity than LFMCRF, including the RTM-based methods with applications 

in the Mediterranean basin. The architecture of RF allows the introduction of new 

explanatory variables that would help to reduce the uncertainty in the predictions. LFMC 

maps were produced at 8-day intervals from 2001 to 2021. The final product provides a 

complete asset for studying the relationships between LFMC and the influencing factors 

that promote wildfire activity and fire regimes in the Mediterranean basin. Furthermore, 

after the imminent MODIS decommission, the new Visible Infrared Imaging Radiometer 

Suite (VIIRS) is expected to provide long-term continuity with better spatial resolution 

(Yebra et al., 2013). Continuous retrievals, either with MODIS or VIIRS, might be a 

valuable tool for quasi near-real-time fire risk assessment and for operational applications 

such as the mobilization of resources and people or the planning of preventive actions for 

fire mitigation (e.g., fuel reduction or prescribed burns). 
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Appendix A. Supplementary Methods 

A1. Land Surface Temperature 

I performed preliminary tests to specify the LST product that would be used in the 

development of the model. The comparison was made using the Forward Feature 

Selection (FFS) process described in section 2.2.3. Specifically, I tested the ability of the 

MODIS LST daily (MOD11A1) and the 8-day average composite (MOD11A2) products 

to predict LFMC along with the other variables in a variable selection process, where its 

usefulness is also evaluated. MOD11A1 data were obtained for each sample site by their 

sampling date. MOD11A2 were extracted from the composite layer which includes, on 

their averaged days, the corresponding sampling date. The number of missing data was 

much greater in MOD11A1 than in MOD11A2 (34.7% and 7.7%, respectively). In order 

to be a fair comparison, I formed a single dataset of equal size by eliminating missing 

values in both variables. The two LST variables were selected as predictors in the FFS. 

The final models reached an RMSE of 20.38% and 20.27% for the daily LST and 8-day 

composite product, respectively. Given that RMSEs were very similar between both 

models, and that the 8-days LST composite showed smaller data gaps, I used the latter. 

A2. Data Extraction Method 

I previously tested the method for remote-sensing data extraction at the sampling sites. In 

particular, I compared the performance of models with all predictor variables obtained 

from a simple pixel extraction or the average value from the 3×3 pixels window closest 

to each field sampling location as performed in Quan et al. (2021). To do so, I used a 

nested 5-fold leave-location-out cross-validation and 30 iterations, such as I described in 

section 2.2.4. Average mean bias error (MBE), root mean square error (RMSE) and 

variance explained by cross-validation (VECV) are shown in Table A1. Additionally, I 

applied a Chi-square test using the distributions of RMSE and VECV values from the 30 

repetitions to statistically check differences. I concluded that there were no significant 

differences between both methods (RMSE p-value = 0.9; VECV p-value = 0.88). 

Averaging of adjacent pixels to avoid positioning errors may be considered advantageous 
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at higher spatial resolutions (e.g., Sentinel-2) than those treated here (Congalton & Green, 

2019) and I used simple pixel extraction for simplicity and shortest computation time. 

 
Table A1. Performance metrics from the focal mean and simple pixel extraction comparison. 

Method MBE [%] RMSE [%] VECV 

Focal mean 1.33 20.52 0.33 
Simple pixel 1.05 20.53 0.33 

 

A3. Spectral Vegetation Indices 

Table A2. Spectral vegetation indices used to estimate LFMC based on the MCD43A4 Collection 

6 reflectance bands: B1, Red; B2, NIR1; B3, Blue; B4, Green; B5, NIR2; B6, SWIR1; B7, 

SWIR2. MODIS formulations extracted from the literature cited in the main text. 

Index Formulation Reference 

Normalized Difference 
Vegetation Index 𝑁𝐷𝑉𝐼 =

𝐵2 − 𝐵1

𝐵2 + 𝐵1
 Rouse et al. (1974) 

Normalized Difference Water 
Index 𝑁𝐷𝑊𝐼 =

𝐵2 − 𝐵5

𝐵2 + 𝐵5
 Gao (1996) 

Normalized Difference Infrared 
Index 𝑁𝐷𝐼𝐼6 =

𝐵2 − 𝐵6

𝐵2 + 𝐵6
 Hardisky et al. (1983) 

Normalized Difference Infrared 
Index (with band 7) 𝑁𝐷𝐼𝐼7 =

𝐵2 − 𝐵7

𝐵2 + 𝐵7
 Hardisky et al. (1983) 

Global Vegetation Moisture 
Index 𝐺𝑉𝑀𝐼 =

(𝐵2 + 0.1) − (𝐵6 + 0.02)

(𝐵2 + 0.1) + (𝐵6 + 0.02)
 Ceccato et al. (2002) 

Enhanced Vegetation Index 𝐸𝑉𝐼 =
2.5 × (𝐵2 − 𝐵1)

𝐵2 + 6 × 𝐵1 − 7.5 × 𝐵3 + 1
 Huete et al. (2002) 

Soil Adjusted Vegetation Index 𝑆𝐴𝑉𝐼 =
(1 + 0.5)(𝐵2− 𝐵1)

𝐵2+ 𝐵1+ 0.5
 Huete (1988) 

Visible Atmospherically 
Resistant Index 𝑉𝐴𝑅𝐼 =

𝐵4 − 𝐵1

𝐵4 + 𝐵1 − 𝐵3
 Gitelson et al. (2002) 

Vegetation Index — Green 𝑉𝐼𝑔𝑟𝑒𝑒𝑛 =
𝐵4− 𝐵1

𝐵4+ 𝐵1
 Tucker (1979) 

Normalized Difference Tillage 
Index 𝑁𝐷𝑇𝐼 =

𝐵6− 𝐵7

𝐵6+ 𝐵7
 van Deventer et al. (1997) 

Simple Tillage Index 𝑆𝑇𝐼 = 𝐵6 𝐵7⁄  van Deventer et al. (1997) 

Moisture Stress Index 𝑀𝑆𝐼 = 𝐵6 𝐵2⁄  Rock et al. (1986) 

Greenness index 𝐺𝑟𝑎𝑡𝑖𝑜 = 𝐵4 𝐵1⁄  Zarco-Tejeda et al. (2005) 
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A4. Land Cover Definitions 

Table A3. Land cover classes from samples used in the study. International Geosphere-Biosphere 

Programme (IGBP) definitions and corresponding grouped classes for the analyses. 

IGBP class Definition Grouped class 

Evergreen needleleaf 
forests 

Dominated by evergreen conifer trees (canopy 
>2 m). Tree cover >60%. Forests 

Evergreen broadleaf 
forests 

Dominated by evergreen broadleaf and 
palmate trees (canopy >2 m). Tree cover 
>60%. 

Forests 

Mixed forests 
Dominated by neither deciduous nor evergreen 
(40-60% of each) tree type (canopy >2 m). 
Tree cover >60%. 

Forests 

Woody savannas Tree cover 30-60% (canopy >2 m). Savannas 
Savannas Tree cover 10-30% (canopy >2 m). Savannas 

Open shrublands Dominated by woody perennials (1-2 m 
height) 10-60% cover. Shrublands 

Closed shrublands Dominated by woody perennials (1-2 m 
height) >60% cover. Shrublands 

Grasslands Dominated by herbaceous annuals (<2 m). Grasslands 
 

A5. Model Parametrization 

The Random Forest algorithm requires specification of some hyperparameters for model 

calibration. The parameters considered here were the number of variables randomly 

selected at each split (mtry), the total number of trees in the forest (ntree), the minimal 

terminal node size (min. node size), and the ratio of observations sampled for each 

decision tree (sample fraction). Samples selection was made without replacement except 

for the FFS process. In this case, mtry was set to 2, as suggested by Meyer et al. (2019). 

The number of trees was fixed to 250 to reduce the computational time, as I showed no 

significant increase of performance by using more trees. The rest of parameters were left 

as configured by default in the RF algorithm. Table A4 shows the range of parameters 

used in model development and the optimal parameters chosen after model tuning. 
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Table A4. Boundaries of the RF hyperparameters grid-search space, adjusted parameters for the 

Forward Feature Selection (FFS) process and optimized hyperparameters for the final model. 

Step Type NDVICV ntree mtry min. node size sample fraction 

Grid-Search Start 0.20 250 2 5 0.2 
 End 0.60 1000 p × 0.40 

p min = 4 
30 0.95 

 Step 0.05 250 1 1 0.05 
FFS Selected - 250 2 5 0.632* 
CAL Optimal - 500 2 5 0.3 
*Sample with replacement.; p, predictor variables. 
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Appendix B. Supplementary Analyses 

B1. Data Description 

 

 
Figure B1. LFMC ground samples overall (a) and by country (b) distributions. Numbers between 

parenthesis under country names are the number of samples in that country. 

 

 
Figure B2. Mean and standard deviation (SD) matrices from CAL (a, c) and EXT (b, d) of the 

LFMC field measurements showed by fuel type and month of the year, and the overall of each 

one. Gray cells indicate no data availability. 
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B2. Features Correlation 

 
Figure B3. Correlation matrix between LFMC and predictive variables. 

B3. NDVICV Filter 

The optimal values for the application of the NDVICV filter were in the range of 0.3-0.4 

(Figure B4). I additionally examined LFMC predictions made with the calibrated 

LFMCRF model against observations that were discarded by a NDVICV threshold value of 

0.3 (Figure B5). The most error estimates were around the mean absolute error of the 

model (MAE = 15.10%). So, the filter did not discriminate bad quality predictions at all. 
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Figure B4. Performance metrics profiles from the general model performance assessment (MP) 

alternative with the selected variables and the NDVICV filter applied to the entire dataset (blue 

line) and only to the training partition (red line). Dots and vertical segments represent the average 

value and ±1 standard error obtained from the 100 nested LLOCV repetitions, respectively. 

 

 
Figure B5. LFMC field observations versus predictions from the CAL validation theoretically 

rejected by the 0.3 NDVICV threshold. 
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B4. Additional Prediction Analysis 

 

 
Figure B6. Residuals between predictions and observations against the LFMC observations and 

their marginal density distributions for CAL (a) and EXT (b). Point colors highlights LFMC 

observations below, within and above the critical interval for live fuel flammability. 

 



 

 
 

 


