Estenosis Arterial Renal
Hipertensión Vascular Renal

Diagnostico no invasivo mediante ecografía Doppler
realizada con potenciador de señal (SH U 508 A) y test de Captopril

Autor: Rafael Oteros Fernández
Directores: Antonio Cano Sánchez y María Martínez Paredes
Departamento: Ciencias Sociosanitarias, Radiología y Medicina Física.
A mi esposa, María José.
A Lourdes, a Manuel, mis hijos.
A mis padres.
Agradecimientos:

Al Dr. Antonio Cano Sánchez, por su dirección en la elaboración de esta tesis, así como por su labor docente que nunca agradeceré bastante. A él debo buena parte de mi formación como médico y especialista, constituyendo siempre un referente personal y profesional.

A la Dra. María Martínez Paredes codirectora de este trabajo, por la orientación que me ha brindado, su interés y buenos consejos. Ella me ha permitido reencontrar un vínculo con la vida académica y con esta Universidad que por desgracia había perdido.

Al Dr. Miguel Angel Zarca Díaz de la Espina, de la Unidad de Radiología Vascular Intervencionista del Complejo Hospitalario de Ciudad Real, sin cuyo esfuerzo este trabajo no hubiese llegado buen puerto. El realizó una parte muy importante de los estudios y siempre estuvo dispuesto a sacrificar su tiempo cuando fue necesario. Su labor no puede ser suficientemente reconocida en estas escuetas palabras.

Al Dr. Javier Nieto Iglesias, nefrólogo de la Unidad de Hipertensión del Complejo Hospitalario de Ciudad Real, que inspiró esta línea de investigación y seleccionó los pacientes. Su interés y entusiasmo nos mantuvo siempre constantes a lo largo de este tiempo.

Al Dr. Cristóbal Martínez Delgado, jefe de la Unidad de Investigación del Complejo Hospitalario de Ciudad Real, que supervisó el análisis estadístico de los datos y en todo momento veló por el rigor científico de este trabajo. El ha despertado mi entusiasmo hacia un campo que creía árido convirtiéndolo en fructífero y ameno.

A la Dra. Mª Paz Alcaide Lara, del Servicio de Nefrología del Complejo Hospitalario de Ciudad Real, que realizó una importante labor en el manejo de datos clínicos y epidemiológicos.

A las Dras. Mª Carmen Vozmediano Poyatos y Mª Dolores Sanchez de la Nieta, nefrólogas, por su interés en este tema, así como a todo el Servicio de Nefrología, por su labor inestimable.

Al Dr. Ceferino Molino Trinidad, jefe de Servicio de Radiodiagnóstico del Complejo Hospitalario de Ciudad Real, que facilitó los medios logísticos necesarios sin los cuales no hubiese sido posible concluir este estudio.

A D. Javier Quejigo García y D. Berísimo Moreno Cazallas, D.U.E. de la Unidad de Radiología Vascular Intervencionista, por su trabajo y dedicación desinteresadas, a pesar de la sobrecarga asistencial que tuvieron que soportar.

A Dª Pilar Sánchez Rubio y Dª Alicia Hervás García, Auxiliares de esta Unidad por su actitud siempre colaboradora y serena en toda circunstancia.
...La ignorancia y la envidia llevan por fuerza al hombre a la negación de la verdad. En cambio, el conocimiento y la honradez lo llevan a inclinarse hacia ella. La razón de ello es que el ignorante no entiende lo verdadero a causa de la ignorancia. El que es envidioso y los que se asemejan tampoco se vuelven hacia ella, aun cuando la entienden, ya que su fin está viciado.

Rabbenu Moshe bar Maimón (Maimónides)
Índice

1. Introducción ...1
 1.1. Definición ...5
 1.2. Prevalencia ...9
 1.2.1. Estudios de necropsia ..10
 1.2.2. Estudios angiográficos ...11
 1.2.3. Otros estudios ..14
 1.3. Historia natural de la estenosis de la arteria renal16
 1.4. Fisiopatología y clínica ...19
 1.4.1. Fisiopatología de la hipertensión vascular renal19
 1.4.2. Clínica ..21
 1.5. Métodos diagnósticos de la estenosis de la arteria renal25
 1.5.1. Métodos no invasivos ..26
 1.5.2. Métodos invasivos ...34
 1.5.3. Ecografía Doppler renal ..37
 1.6. Tratamiento de la estenosis de la arteria renal ..67
 1.6.1. Tratamiento médico ..67
 1.6.2. Técnicas de revascularización quirúrgicas ..67
 1.6.3. Técnicas de revascularización endovascular69

2. Hipótesis de Trabajo. Objetivos ..72
 2.1. Premisas ..72
 2.2. Formulación de la hipótesis: ..73
 2.3. Objetivos ..74
 2.3.1. Primarios ..74
 2.3.2. Secundarios ...74

3. Material y Métodos ..75
 3.1. Diseño ..75
 3.1.1. Criterios de inclusión y exclusión ...75
 3.1.2. Datos clínicos y analíticos ...76
 3.1.3. Eco Doppler renal. Descripción de la técnica77
 3.1.4. Angiografía. Descripción de la técnica ..81
 3.1.5. Análisis estadístico ...81
 3.2. Descripción de la serie pacientes ...83
 3.2.1. Características clínicas. Generalidades ...83
 3.2.2. Distribución de pacientes por grados de estenosis84
 3.3. Descripción de la serie riñones ...85
 3.4. Análisis de concordancia entre observadores ...89
 Anexo de variables ..90
1. Introducción

La “estenosis de la arteria renal” (EAR) representa un problema de interés clínico creciente, tanto por ser una causa importante de hipertensión arterial secundaria, como de insuficiencia renal. Parte de este interés deriva de la posibilidad de mejorar la morbimortalidad asociada a este proceso mediante diferentes técnicas de revascularización (1-3).

La prolongación de la esperanza de vida de la población se acompaña de un incremento en la patología vascular en diferentes órganos y sistemas y en concreto en el lecho arterial renal. Esto se ha visto acompañado de un incremento en el número de pacientes que alcanzan el estadio terminal de la insuficiencia renal, debido fundamentalmente a la enfermedad aterosclerótica de la arteria renal.

En los últimos años se ha realizado un considerable esfuerzo en el ámbito clínico y epidemiológico dirigido a identificar los factores de riesgo asociados, y los signos y síntomas relacionados con esta entidad. Por otro lado se han desarrollado test de screening y métodos diagnósticos funcionales y no invasivos, que puedan ser aplicados a grandes grupos de población. La técnica de referencia en el diagnóstico continúa siendo la angiografía, un procedimiento invasivo, no exento de riesgo, por lo que debe emplearse de manera restrictiva. Sin embargo a pesar del desarrollo de múltiples métodos diagnósticos, existe un cierto grado de confusión respecto al valor real de las
diferentes técnicas actualmente disponibles. Por esta razón no disponemos de un protocolo estandarizado en el manejo de esta enfermedad.

Los meta-análisis (4) que comparan diversas técnicas diagnósticas en la estenosis arterial renal, pueden ser de utilidad para ilustrar esta situación. Los mejores resultados obtenidos se refieren a la angi-CT y angio-RM, seguidos muy de cerca por la ecografía Doppler y el renograma con Captopril que presentan los mismos resultados. No obstante un problema se hace manifiesto, la heterogeneidad de los estudios, que los hace difícilmente comparables, lo que se atribuye a varios factores:

La ausencia de criterios estandarizados para definir los resultados positivos de los test, especialmente en la ecografía y en el renograma. En ambos casos se emplean demasiadas variables y combinaciones de criterios para definir cuándo es positivo el test, además los valores umbrales de las variables difieren entre los estudios.

La exactitud de los resultados puede ser muy variable en la ecografía, dado su carácter notoriamente dependiente del operador.

Otra de las causas de esta heterogeneidad puede relacionarse con el case-mix. Como es sabido los estudios de rendimiento diagnóstico dependen de la distribución, y severidad de la enfermedad en la población estudiada, por lo que una muestra muy seleccionada puede no ser representativa de la población general de pacientes. La prevalencia de estenosis es muy variable en los diversos trabajos.

El test de referencia para valorar una prueba, en este caso, debe ser la arteriografía con catéter, aunque no siempre ocurre así. Por otro lado, incluso la fiabilidad de la arteriografía se ha visto cuestionada. Además puede ser técnicamente inadecuado comparar pruebas funcionales con pruebas morfológicas. En ocasiones los resultados de pruebas como el renograma o la eco Doppler pueden ser incorrectamente juzgados.
como falsos negativos cuando en la angiografía se encuentra una estenosis moderada considerada no significativa.

De entre todas las técnicas diagnósticas nos interesa en concreto la ecografía Doppler. Hasta hace pocos años la ecografía renal en modo B era prácticamente la única prueba de imagen incluida en la rutina diagnóstica de los pacientes con sospecha de enfermedad vascular renal. Con este método el único criterio valorable de sospecha es la asimetría de tamaño renal, la cual tiene un valor muy limitado.

La ecografía Doppler se introdujo en los años 80, aunque su uso en la práctica clínica se ha popularizado en la pasada década. Desde su introducción ha experimentado una demanda creciente. A modo de ejemplo, sólo en nuestro medio realizamos 500 Doppler renales al año, lo que representa un 20% de todos los estudios de nuestra unidad. Las principales indicaciones para eco Doppler renal en nuestro centro son la hipertensión y la nefropatía isquémica.

Aunque las técnicas isotópicas han sido la herramienta diagnóstica principal en muchos centros, su disponibilidad no es generalizada, y sus resultados son variables. La introducción de una prueba de imagen como la eco Doppler, que conjuga información morfológica y funcional, su carácter no invasivo, así como los resultados prometedores descritos en la literatura han derivado muchos pacientes hacia esta última, generando una mayor demanda de la misma, dada su mayor disponibilidad. Sin embargo la ecografía Doppler renal presenta los mismos inconvenientes que hemos citado hasta ahora, como son la disparidad de criterios diagnósticos, variabilidad de resultados, o su aplicabilidad limitada, ya que en muchos pacientes no puede completarse un examen concluyente por limitaciones anatómicas o técnicas. La introducción de los fármacos potenciadores de señal a partir del año 1997 vino a resolver muchos de estos problemas, y ha supuesto un nuevo auge para la técnica.
En este trabajo estudiaremos la prevalencia de la estenosis de las arterias renales en nuestro medio, y analizaremos el valor de la ecografía Doppler en el diagnóstico. Como novedad realizaremos la prueba en combinación con un test de Captopril y el uso de potenciadores de señal ecográfica. Antes de abordar esta cuestión conviene centrar el objeto de nuestro estudio, por lo que procederemos a describir esta entidad desde un punto de vista epidemiológico y clínico.
1.1. Definición

El término “enfermedad vascular renal” (EVR) es un concepto genérico, que suele referirse a la aterosclerosis de las arterias renales, por ser esta la enfermedad más frecuente, entre todas las patologías vasculares del riñón (enfermedad vascular aterosclerótica) (5). Existen no obstante otras patologías que afectan al lecho vascular renal que deben incluirse bajo este epígrafe, entre las que se encuentran las displasias fibromusculares, aneurismas, malformaciones arteriovenosas, arteritis, y la enfermedad ateroembólica renal. La manifestación más conocida de la EVR es la hipertensión vascular renal.

La enfermedad renal isquémica o “nefropatía isquémica” (NI) es una entidad específica reconocida recientemente como causa de insuficiencia renal. Este concepto introducido por Jacobson en 1988 se define como una reducción significativa del ritmo de filtración glomerular (GFR) producida por una estenosis hemodinámicamente significativa del flujo renal, lo que implica una enfermedad de las arterias renales bilateral crítica (6). Otros autores no obstante, utilizan el término para referirse a la insuficiencia renal progresiva producida por la estenosis de causa aterosclerótica de las arterias renales, sin especificar la localización o grado de la estenosis (7). Hansen (8) propugna una nueva definición de NI dado que la experiencia ha demostrado de una parte que la revascularización del riñón puede mejorar la función renal, y de otra que la estenosis no puede considerarse como la única causa del deterioro de la función en estos pacientes. Las causas de isquemia renal se refieren en la tabla 1.1.
Tabla 1.1. Causas de isquemia renal

<table>
<thead>
<tr>
<th>Causa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aterosclerosis de la arteria renal</td>
</tr>
<tr>
<td>Estenosis de la arteria renal post-transplante</td>
</tr>
<tr>
<td>Displasia fibromuscular de la arteria renal</td>
</tr>
<tr>
<td>Nefroangiosclerosis</td>
</tr>
<tr>
<td>Enfermedad renal tromboembólica</td>
</tr>
<tr>
<td>Disección aórtica</td>
</tr>
<tr>
<td>Vasculitis</td>
</tr>
<tr>
<td>Malformaciones arteriovenosas renales y aneurismas</td>
</tr>
<tr>
<td>Microangiopatía</td>
</tr>
<tr>
<td>Traumatismo</td>
</tr>
<tr>
<td>Neurofibromatosis</td>
</tr>
<tr>
<td>Tromboangiitis obliterante</td>
</tr>
<tr>
<td>Enfermedad de Kawasaki</td>
</tr>
<tr>
<td>Esclerodermia</td>
</tr>
</tbody>
</table>

La “hipertensión vascular renal” (HVR) debe diferenciarse de la hipertensión relacionada con las enfermedades del parénquima renal como son las diversas glomerulonefritis, nefropatía diabética, nefritis intersticial o la poliquistosis renal, cuyo mecanismo fisiopatológico es diferente (9). La HVR puede definirse como aquella hipertensión que se cura o mejora tras la corrección de la estenosis de las arterias renales o sus ramas, mediante cirugía o técnicas percutáneas, tales como la angioplastia o el stent (10;11). De hecho la HVR es la forma más curable de hipertensión secundaria (12).

Las razones para esta definición son varias: la presencia de estenosis de arterias renales en personas normotensas en estudios de necropsia (13), la presencia de estenosis significativas en arteriografía, tanto en individuos hipertensos como normotensos (14) la ausencia de mejoría en determinados enfermos hipertensos con estenosis de la arteria renal tras la corrección de la estenosis, o la irreversibilidad en algunos pacientes, de la HTA que se inició como consecuencia de una estenosis de la arteria renal.

Así como la estenosis de la arteria renal es un componente necesario para el desarrollo de la hipertensión, la lesión anatómica por sí sola no es suficiente para
definir la HVR (15). La fisiopatología de la hipertensión será tratada más adelante. Las causas de la hipertensión vascular renal se exponen en la tabla 1.2.

Tabla 1.2. Causas de Hipertensión vascular renal

<table>
<thead>
<tr>
<th>Aterosclerosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displasia fibromusculares</td>
</tr>
<tr>
<td>Síndrome de Ehlers-Danlos</td>
</tr>
<tr>
<td>Enfermedad de Marfan,</td>
</tr>
<tr>
<td>Neurofibromatosis</td>
</tr>
<tr>
<td>Feocromocitoma</td>
</tr>
<tr>
<td>Bandas fibrosas</td>
</tr>
<tr>
<td>Arteritis</td>
</tr>
<tr>
<td>Embolia cardiaca</td>
</tr>
<tr>
<td>Trombosis</td>
</tr>
<tr>
<td>Disección de la aorta</td>
</tr>
<tr>
<td>Aneurismas malformaciones vasculares y fistulas</td>
</tr>
<tr>
<td>Radiación</td>
</tr>
<tr>
<td>Compresión extrínseca por quistes, tumores o hematomas perirrenales</td>
</tr>
<tr>
<td>Tumores del aparato yuxtaglomerular</td>
</tr>
</tbody>
</table>

La “estenosis arterial renal” (EAR) es producida básicamente por dos enfermedades, la aterosclerosis y la displasia fibromuscular. Esta lesión se asocia a dos síndromes clínicos frecuentes, la hipertensión y la nefropatía isquémica. Las relaciones entre la estenosis, hipertensión e insuficiencia renal son complejas. La estenosis puede ocurrir como una lesión anatómica de manera aislada, o en asociación con la hipertensión, la nefropatía, o ambas (16).

La aterosclerosis es la enfermedad más frecuente de las arterias renales (17), suele afectar a pacientes de edad avanzada. Generalmente se localiza en el ostium y el tercio proximal de la arteria renal, así como en la aorta perirrenal, aunque en casos avanzados también puede afectar a las ramas distales intrarrenales.

Las displasias fibromusculares (DFM) son un grupo de enfermedades que afectan a la íntima, media y adventicia, y son responsables de 1% a 30% de los casos de
estenosis de la arteria renal. En general las lesiones se localizan en los dos tercios distales de la arteria y en sus ramas, y afectan de manera preferente a personas más jóvenes, generalmente mujeres, de edades comprendidas entre los 15 y los 50 años. En adelante nos referiremos a la estenosis por aterosclerosis.

<table>
<thead>
<tr>
<th>Tabla 1.3. Causas de estenosis de la arteria renal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Causas de EAR</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Aterosclerosis</td>
</tr>
<tr>
<td>DFM intimal</td>
</tr>
<tr>
<td>DFM medial</td>
</tr>
<tr>
<td>DFM periarterial</td>
</tr>
</tbody>
</table>
1.2. Prevalencia

La presencia de estenosis de la arteria renal no se asocia necesariamente a hipertensión o insuficiencia renal. De hecho no es infrecuente que se descubra de manera incidental (18). Por otro lado la EAR afecta al 1% a 5% de todos los pacientes hipertensos. Se calcula que un 20% a 30% de la población de los Estados Unidos padece hipertensión. Estos datos supondrían que sólo en los EUA la enfermedad podría afectar de 2 a 4 millones de personas (19).

La aterosclerosis es la enfermedad más frecuente de las arterias renales. Aproximadamente hasta un 90% de todas las lesiones vasculares renales son secundarias a aterosclerosis (20). Esta enfermedad es más frecuente en los varones mayores de 50 años, aunque no es rara en mujeres de grupos de edad similar, e incluso en adultos más jóvenes.

La enfermedad puede estar limitada a la arteria renal en un 15% a 20% de los casos, pero con más frecuencia es una manifestación más de una aterosclerosis difusa que afecta a la aorta abdominal, arterias coronarias, cerebrales o a las arterias del sistema periférico de los miembros inferiores (80% a 85% de los casos). Estudios epidemiológicos recientes indican que la aterosclerosis de las arterias renales es muy frecuente en pacientes con aterosclerosis obliterate generalizada, independientemente de la presencia o no de hipertensión vascular renal.

Los datos sobre prevalencia de la aterosclerosis renal son múltiples en la literatura, y se derivan básicamente de dos tipos de estudios, postmortem y angiográficos.
1.2.1. Estudios de necropsia

La prevalencia general de estenosis renal en estos estudios oscila entre 4% y 27%. Estas cifras son muy variables en función de la asociación a otros factores como la edad, hipertensión o diabetes.

En este apartado debemos mencionar la clásica serie de Schwartz y White (21). Se trata de un estudio prospectivo de 154 autopsias consecutivas, en las que se encontró estenosis renal significativa (superior al 50% de diámetro) en 24% de los casos. La distribución por edades reveló una frecuencia de 5% en los pacientes menores de 64 años, 18% en el grupo de 65 a 74 años y 42% en los mayores de 75 años. En este último grupo la frecuencia de aterosclerosis renal vascular en general fue de 86%. Además se encontraron estenosis bilaterales en 50% de los casos.

También es obligado referirnos al estudio de Holley (13), el cual realizó angiografía en 295 autopsias consecutivas. En este estudio 256 casos correspondían a pacientes normotensos, mientras que 39 eran hipertensos (presiones diastólicas >100 mm Hg). El 49% de individuos normotensos de todas las edades, presentaba una estenosis de la arteria renal superior al 25% del diámetro, mientras que en los mayores de 50 años, esta cifra alcanza el 64%. La frecuencia general de estenosis de más de 50% de diámetro fue de 27%. Entre los individuos normotensos, el 17% presentó estenosis superior al 50% de diámetro, frente al 56% de los hipertensos. Aunque se encontraron estenosis severas en los individuos mayores de 70 años de ambos grupos, la prevalencia fue mayor en el grupo de hipertensos 62%.

Por último la gran serie retrospectiva de Sawicki (22) sobre 5194 autopsias consecutivas demostró una prevalencia general mucho más baja que las anteriores. La estenosis estaba presente solo en 225 pacientes, es decir sólo el 4,3%. Sin embargo en los pacientes diabéticos la frecuencia de estenosis fue mayor, alcanzado el 8,3%, siendo
la razón de oportunidades (odds ratio) de 3,5. Además en los pacientes diabéticos con hipertensión la frecuencia de estenosis renal fue de 10.1%. Las estenosis bilaterales afectaron al 43% de los pacientes diabéticos, y al 30% de los no diabéticos. En este estudio se comprobó también que el 73% de los pacientes con estenosis de la arteria renal eran hipertensos, y el 53% diabéticos, todos de tipo 2, no dependientes de insulina. La tabla 1.4 resume los datos expuestos.

<table>
<thead>
<tr>
<th>Referencia</th>
<th>nº casos</th>
<th>Asociación</th>
<th>Estenosis (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwartz-White(21)</td>
<td>154</td>
<td>Todos</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edad > 75 años</td>
<td>42</td>
</tr>
<tr>
<td>Holley (13)</td>
<td>295</td>
<td>Normotensos</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hipertensos</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>50 años</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>70 años y HTA</td>
<td>70</td>
</tr>
<tr>
<td>Sawicki(22)</td>
<td>5194</td>
<td>Todos</td>
<td>4,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diabéticos</td>
<td>8,3</td>
</tr>
</tbody>
</table>

1.2.2. Estudios angiográficos

Desde hace años disponemos estudios de prevalencia de la estenosis renal basados en series de pacientes sometidos a angiografías por enfermedad coronaria, aneurisma de aorta, enfermedad vascular periférica u otras formas de aterosclerosis. Estos estudios pretenden además definir los factores de riesgo cardiovascular, morbilidad, mortalidad y otros datos de interés epidemiológico asociados a la enfermedad. La importancia de estos trabajos radica precisamente en que los pacientes no se seleccionaron para la angiografía en base a la sospecha de enfermedad vascular renal, sino para valorar otros territorios vasculares.

La prevalencia general de estenosis de la arteria renal en pacientes con enfermedad vascular extrarrrenal se ha estimado entre un 11% y 42%, siendo mayor en los pacientes con enfermedad periférica y aórtica. Sin embargo estos datos no valoran el
hecho de que la aterosclerosis renal es una manifestación más de una enfermedad generalizada (7). En nuestro medio se estima que es de un 15%(23). La tabla 1.5 muestra varias series representativas de estudios angiográficos. Como puede verse la prevalencia disminuye en algunas series recientes hasta un 7%, esto puede deberse al tamaño de las muestras, y a los diferentes criterios de selección de los pacientes para la angiografía.

Tabla 1.5. Prevalencia de la EAR > 50% en estudios angiográficos

<table>
<thead>
<tr>
<th>Referencia</th>
<th>año</th>
<th>Indicación</th>
<th>Nº de pacientes</th>
<th>Pacientes con estenosis (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choudri(24)</td>
<td>1990</td>
<td>EVP</td>
<td>100</td>
<td>42</td>
</tr>
<tr>
<td>Olin(18)</td>
<td>1990</td>
<td>EAO, EVP</td>
<td>395</td>
<td>39</td>
</tr>
<tr>
<td>Wilms(25)</td>
<td>1990</td>
<td>EVP</td>
<td>100</td>
<td>22</td>
</tr>
<tr>
<td>Salmon(26)</td>
<td>1990</td>
<td>EVP</td>
<td>374</td>
<td>14</td>
</tr>
<tr>
<td>Harding(15)</td>
<td>1992</td>
<td>CC</td>
<td>1302</td>
<td>15</td>
</tr>
<tr>
<td>Valentine(27)</td>
<td>1993</td>
<td>AAA, EAO</td>
<td>346</td>
<td>28</td>
</tr>
<tr>
<td>Missouris(28)</td>
<td>1994</td>
<td>EVP</td>
<td>127</td>
<td>33</td>
</tr>
<tr>
<td>Marin(23)</td>
<td>1997</td>
<td>EVP</td>
<td>418</td>
<td>27</td>
</tr>
<tr>
<td>Weber-Mzell(29)</td>
<td>2002</td>
<td>AAA</td>
<td>177</td>
<td>11</td>
</tr>
<tr>
<td>Rath(30)</td>
<td>2002</td>
<td>CC</td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>Yamashita(31)</td>
<td>2002</td>
<td>CC</td>
<td>289</td>
<td>7</td>
</tr>
<tr>
<td>Rihal (32)</td>
<td>2002</td>
<td>CC</td>
<td>297</td>
<td>19</td>
</tr>
</tbody>
</table>

Abreviaturas: AAA, aneurisma de aorta abdominal; CC, cardiopatía isquémica; EAO, enfermedad aórtica oclusiva; EVP, enfermedad vascular periférica.

Entre las series más importante por número de casos, destaca la de Harding (15) que incluye un total de 1605 pacientes consecutivos, a los cuales se les realizó coronariografía y aortograma abdominal en 1302 casos identificando estenosis arterial renal en 30% de los pacientes. La mitad de estos (15%) presentaba estenosis menor al 50% de diámetro y la otra mitad (15%) estenosis superior al 50%. En estos últimos la estenosis unilateral representó el 11%, y la bilateral el 4%.

Olin (18) refiere 395 pacientes a los que realiza arteriografía por diversas indicaciones como aneurisma de aorta, enfermedad aórtica oclusiva, arteriopatía periférica de los miembros inferiores, y sospecha de estenosis de la arteria renal. La prevalencia general de estenosis renal fue de 39%, variando desde un 33% en los pacientes con aneurisma de aorta abdominal, hasta un 70% en los casos de sospecha de
introducción. prevalencia

estenosis renal. El análisis multivariante mostró la mayor incidencia en caso de asociación de diabetes y arteriopatía periférica de los miembros inferiores (50%), comparada con los pacientes no diabéticos con arteriopatía (33%).

Missouris (28) informa de 127 pacientes estudiados con angiografía por claudicación intermitente, de los cuales 57 (44,9%) tenían estenosis de la arteria renal. La estenosis fue moderada (< 50% de diámetro) en 17,3% de los casos, en 15,7% se consideró severa (> 50%), y en 11,8% bilateral. En su estudio se demostró que existía una correlación entre la severidad de la aterosclerosis de los vasos periféricos y la estenosis de la arteria renal con independencia de otros factores como la edad o la hipertensión. Igualmente se observó una mayor correlación con el tabaquismo que con los niveles elevados de colesterol. Curiosamente no observó correlación con la insuficiencia renal. En otro estudio el mismo autor encuentra datos similares, con un 45,3% de estenosis renales en pacientes con arteriopatía periférica severa (33).

Nos interesa especialmente la serie de *Marín* (23) ya que es representativa de nuestro medio, y participa en el grupo de trabajo sobre Nefropatía Isquémica de la Sociedad Española de Nefrología. En su estudio se refieren los hallazgos en 418 pacientes a los que se realizó angiografía por arteriopatía periférica, encontrando una prevalencia de estenosis de la arteria renal en 114 casos (27%), siendo superior al 50% de diámetro en 62 casos (14,8%), y superior al 75% de diámetro en 19 pacientes. También se observó una mayor prevalencia y asociación significativa con factores como hipertensión, lesiones arteriales periféricas severas, y deterioro de la función renal.

Weber-Mzell (29) estudiaron 177 pacientes con coronariografía, encontrando estenosis renal > 50% de diámetro en el 11% de los casos, y estenosis > 70% en el 7%. En esta serie se observó que la edad media de los pacientes con estenosis fue superior a la de los pacientes sin estenosis (67 años, frente a 61 años). La presencia de enfermedad de coronaria de 2 vasos fue un factor predictor de estenosis con una sensibilidad 84%, y especificidad de 77%.
Yamashita (31) nos ofrece una serie interesante por referirse a una población no occidental. En la población japonesa la prevalencia de estenosis > 50% de diámetro en pacientes sometidos a coronariografías es 7%, (6% unilateral y 1% bilateral). En los pacientes sin afectación coronaria la prevalencia es de 5%, mientras que en los casos de enfermedad de 3 vasos alcanza el 19%. Entre los pacientes hipertensos la prevalencia de estenosis fue 13%, y en los normotensos sólo de 2%.

Rath (30) estudia 1000 pacientes remitidos para coronariografía a los que realizan una arteriografía renal selectiva una vez terminado el estudio cardíaco. La edad media de los pacientes es de 57 años, y el 74,6% eran mujeres. El 85% presentaba enfermedad coronaria, y el 10,3% estenosis de la arteria renal, de las cuales en 7,8% de los casos eran estenosis > 50% de diámetro y el resto < 50%. Sólo hubo tres casos de estenosis bilaterales. En este estudio no hubo asociación con diabetes, tabaquismo o hipertensión.

Rihal (32) publica una serie de 297 pacientes con hipertensión a los que se realiza coronariografía, encontrando de manera incidental una prevalencia general de estenosis renal de 47%, de los cuales un 19% era superior a 50% de diámetro, siendo en 3,7% de los casos bilateral.

1.2.3. Otros estudios

Nos referimos a estudios de prevalencia realizados mediante otras técnicas diagnósticas como ecografía Doppler (Hansen (34), prevalencia 6,8%), angio-RM (Takeji (35), prevalencia 50%), o una combinación de varias técnicas incluyendo eco Doppler, renograma isotópico, y RM (Coen prevalencia 20%)(34;36-38). Se trata de estudios recientes, que en general están dirigidos a grupos de pacientes de edad avanzada, hipertensos y con fracaso renal, por lo que emplean métodos de diagnóstico no invasivos. En realidad no pueden considerarse como auténticos estudios de prevalencia. Tienen un interés limitado, ya que el valor diagnóstico de los métodos empleados no es contrastado con una prueba de referencia como la arteriografía.
Finalmente nos interesa conocer la prevalencia real de estenosis de la arteria renal en pacientes hipertensos seleccionados, con criterios de clínicos de hipertensión vascular renal. En este caso las cifras oscilan entre 18% y 22%. De Haan (39) encuentra una prevalencia de estenosis EAR > 50% de diámetro, variable entre 18% de los pacientes estudiados mediante angio-RM, y un 20% de los pacientes estudios mediante angiografía (40). Johansson (41) refiere una prevalencia de EAR >50% de diámetro de 19%, en un estudio de 121 pacientes estudiados mediante renograma con 99m Tc DTPA captopril, y angiografía. Radermacher (42) realiza eco renal a 5950 pacientes con criterios clínicos de hipertensión vascular renal, encontrando 138 casos de estenosis (2,3%).

El grupo de estudio DRASTIC, “Dutch renal artery stenosis intervention cooperative” (43;44) publica un estudio multicéntrico con una serie de 1133 pacientes hipertensos, de los cuales seleccionan 477 con hipertensión refractaria a tratamiento médico. Los autores realizan arteriografía por sospecha de hipertensión vascular renal, encontrando estenosis en 107 (22,4%), así como una asociación significativa con factores como la aterosclerosis de otros territorios vasculares (periférico, carotídeo, coronario), la edad avanzada, historia familiar de hipertensión, presencia de soplo abdominal, y la resistencia al tratamiento con 2 drogas.

El análisis de los datos de las diversas series permite identificar la presencia de factores de riesgo o condiciones de co-morbilidad asociadas a la estenosis de la arteria renal. Como puede comprobarse una serie de factores de riesgo se repiten a lo largo de los diferentes estudios con grados diferentes de impacto, los más comunes son la hipertensión refractaria a tratamiento médico, edad superior a 50 años, insuficiencia renal, enfermedad coronaria de más de dos vasos, aterosclerosis de las arterias periféricas de los miembros inferiores y la aorta abdominal, y la diabetes, mientras que tabaquismo, sexo, raza, y niveles elevados de colesterol, presentan una correlación menos evidente.
1.3. Historia natural de la estenosis de la arteria renal

El conocimiento de la historia natural de la aterosclerosis renal es importante en el manejo de la enfermedad. Es conocido que la estenosis por aterosclerosis presenta una tendencia a la progresión, alcanzando la oclusión total en los casos más severos (20). El ritmo de progresión ha sido valorado en diferentes estudios de historia natural publicados en la literatura, estimando que ocurre entre 36% y 71% de los casos(19).

Muchos de estos estudios son series retrospectivas. En los años 80 Dean (45) publicó el primer estudio prospectivo, en el que valoraba la disminución del tamaño renal, el incremento en niveles de creatinina sérica y la filtración glomerular mediante renograma isotópico. El autor observó que al cabo de 36 meses el 40% de los pacientes sufría un deterioro de la función renal, y el 37% una disminución de tamaño del riñón. La progresión se mostró independiente de la hipertensión, ya que sucedió incluso en aquellos pacientes en los que se controlaron las cifras tensionales.

Schreiber (46) en un estudio retrospectivo observó una progresión significativa de la enfermedad en 36% de los pacientes, y una progresión hasta la oclusión total, en 16% de las estenosis de cualquier grado al cabo de 52 meses. Esta cifra se eleva hasta 39% en las estenosis severas > 75% de diámetro.

Zierler (47) observa que el 42% de los pacientes con estenosis < 60% de diámetro, progresan a estenosis > 60% al cabo de 36 meses, y que todas las arterias que alcanzan la oclusión en este periodo presentaban en el momento del diagnóstico estenosis > 60% de diámetro. La progresión hasta la oclusión ocurrió en un 5% al año, y en 11% a los 2 años. En otro estudio este autor observa que el 18% de las arterias inicialmente clasificadas como normales presentan estenosis al cabo de 3 años(48).
Tollefson y Ernst (49) estudian 48 pacientes a los que realizan arteriografía secuencialmente, para evaluación de enfermedad aórtica, durante un período de 2 años, encontrando progresión de la estenosis renal hasta en 71% de los casos. Es más el 43% de los pacientes sin lesión de la arteria renal en el estudio inicial, desarrollaron estenosis.

El tamaño renal también se ve afectado por la estenosis. Caps (50) en un estudio de seguimiento en 122 pacientes que presentaban estenosis de la arteria renal conocida, observó atrofia renal en 11,7% de los pacientes con estenosis < 60% de diámetro, y en 20,8% en aquellos con estenosis > 60% de diámetro. Schreiber (46) por su parte refiere una disminución de tamaño superior al 10% hasta en 70% de los casos.

La progresión de la enfermedad cobra especial interés si consideramos su asociación a la nefropatía isquémica. Crowley (51) en un estudio de 1189 pacientes con un seguimiento medio de 2,6 años, observa la correlación entre el grado de estenosis y la función renal. En los pacientes con estenosis > 75% de diámetro, los niveles de creatinina eran un 40% más elevados que en pacientes con grados menores de estenosis.

El deterioro progresivo de la función renal conduce finalmente a la insuficiencia renal en estadio terminal. Se calcula que 14% a 16% de los pacientes que entran en programa de diálisis presentan estenosis de la arteria renal (52-54). Además se ha observado que estos pacientes tienen una media de edad superior a la de otros grupos en diálisis. En este caso la asociación a otros factores como diabetes supone un riesgo añadido, y una esperanza de vida más corta. Mailloux (53) calcula que la supervivencia media de los pacientes con estenosis renal es de 25 meses, con una supervivencia a los 2 años de 56%, a los 5 años de 18%, y a los 10 años de sólo un 5%. Cuando comparamos estos datos con los de pacientes en diálisis por otras patologías como la enfermedad poliquística los resultados son abrumadores.
La mera presencia de EAR es un factor de mal pronóstico, incluso antes de alcanzar la insuficiencia renal terminal. La supervivencia a los 2 años en pacientes con estenosis unilateral es de 96%, en caso de estenosis bilateral la cifra es de 74%, y si la estenosis afecta a un riñón único la supervivencia se reduce hasta el 47% (55). La supervivencia disminuye a medida que progresa el grado de estenosis, y las cifras de creatinina sérica se incrementan.

Aunque el grado de estenosis se ha considerado el principal factor responsable de la pérdida de función renal en los pacientes con aterosclerosis, no es el único, ya que a largo plazo se producen daños en el parénquima renal que contribuyen a la insuficiencia renal (56). De hecho actualmente se considera que esta lesión del parénquima es la causa principal del fracaso renal. Otros factores contribuyen a esta situación, como la insuficiencia cardíaca, los émbolos de colesterol y la nefrosclerosis. Esta última consiste en cambios en el lecho microvascular preglomerular producidos como manifestación de una aterosclerosis sistémica (57).
1.4. Fisiopatología y clínica

1.4.1. Fisiopatología de la hipertensión vascular renal

En 1934 Goldblatt fue el primero en observar que la isquemia unilateral de un riñón provocaba hipertensión. Desde entonces la fisiopatología de la hipertensión vascular renal ha sido estudiada en modelos animales, considerando que los mecanismos de la hipertensión son similares a los que ocurren en humanos. El modelo clásico de 2 riñones y 1 clip (2K-1C) se considera análogo a la estenosis unilateral de la arteria renal en humanos, mientras que el modelo de 1 riñón y 1 clip (1K-1C) se considera que reproduce la situación de estenosis bilateral o estenosis unilateral en un riñón único. El sistema renina-angiotensina juega un papel importante en el mecanismo de la hipertensión. Aunque en la fase aguda estos modelos son similares a la enfermedad en humanos, en la fase crónica existen diferencias.

En la fase aguda del modelo 2K-1C de isquemia unilateral, el descenso del flujo sanguíneo en el riñón estimula la producción de renina. La renina actúa sobre la proenzima angiotensinógeno produciendo angiotensina I, la cual en presencia de la enzima convertidora de angiotensina (ECA) se convierte en angiotensina II. Esta última tiene varias funciones: un efecto vasoconstrictor sistémico, elevando directamente la presión arterial; estimula la secreción de aldosterona causando reabsorción de sodio y la secreción de potasio e hidrógeno; y aumenta el tono de la arteriola eferente en un esfuerzo junto con la hipertensión sistémica por mantener la filtración glomerular (GFR). El sodio y el exceso de agua retenida por la producción de aldosterona es rápidamente excretada por el riñón contralateral sano mediante una natriuresis por presión. Esto produce un ciclo de hipertensión dependiente de renina (20). En el riñón contralateral sin estenosis se produce una disminución de la secreción de renina, y se alcanza un ritmo de filtración glomerular (GFR) normal a expensas de la hipertensión sistémica. Sin embargo cuando se provoca una disminución de la presión sistémica, por
ejemplo colocando un clip en la aorta, se ha observado que en este riñón sin estenosis, se produce un fallo de los mecanismos de autorregulación del flujo renal y disminuye la excreción de sodio. El efecto de clampaje de la aorta en estos modelos es análogo al de la administración de agentes inhibidores de angiotensina (IECA). Estos mecanismos contribuyen a mantener la hipertensión (58).

La fase crónica del modelo de isquemia unilateral se caracteriza por una hipertensión persistente, sin embargo la actividad de la renina plasmática disminuye, alcanzando niveles prácticamente normales. En esta fase la acción de los inhibidores de la enzima convertidora de angiotensina (IECA) o de los bloqueantes de los receptores de angiotensina (ARA) es menos eficaz para controlar la tensión arterial. En el riñón no estenótico los IECA producen un incremento moderado del flujo renal sin cambios significativos del GFR o de la excreción de sodio. Esta menor respuesta a los IECA podría deberse a la aparición de daños estructurales como hipertrofia vascular y esclerosis, inducidas por la exposición prolongada a la hipertensión (59).

Si la situación se prolonga se alcanza una tercera fase en la que la HTA se mantiene y no se afecta aunque se corrija la estenosis. En esta etapa la HTA es multifactorial, y se cree que la hipertrofia cardiovascular juega un papel muy importante (59).

En el modelo 1K-1C se produce igualmente un descenso del flujo en el riñón solitario o en los dos riñones simultáneamente, estimulando de manera aguda la producción de renina, angiotensina II y aldosterona. La angiotensina II eleva la tensión arterial por efecto directo, y la aldosterona provoca la retención de agua y sodio. Pero en este modelo no hay un riñón sano, por lo que no se produce la natriuresis. El exceso de sodio y agua produce una expansión de volumen del plasma, el cual a su vez suprime la actividad de la renina plasmática, convirtiendo el modelo de hipertensión dependiente de renina en un modelo de hipertensión dependiente de volumen. En esta fase la administración de IECA, o de los ARA, no disminuye la presión, ni cambia el flujo
Introducción. Fisiopatología y clínica

La restricción de sodio en la dieta y la administración de diuréticos revierten hacia un estado de hipertensión mediada por renina, y restablecen la sensibilidad a los agentes IECA y ARA. Una insuficiencia renal funcional puede ocurrir en humanos con estenosis renal bilateral o unilateral con riñón único, especialmente en estados de deplección de volumen.

1.4.2. Clínica

Como ya se ha expuesto la estenosis de la arteria renal puede estar presente sin manifestación clínica aparente. Sus manifestaciones clínicas abarcan un espectro que va desde una forma asintomática, descubierta de manera incidental en el curso de una angiografía por otra causa, hasta la hipertensión acelerada, con compromiso cardiovascular, edema pulmonar e insuficiencia renal terminal (60). Dado que su causa principal es la aterosclerosis, suele aparecer como manifestación de una enfermedad generalizada. Por esta razón es frecuente su asociación a la claudicación intermitente por arteriopatía periférica de los miembros, cardiopatía isquémica, enfermedad aórtica, o carotídea. Desde un punto de vista clínico debemos sospear la presencia de estenosis de la arteria renal en determinadas situaciones (20).

Hipertensión

La hipertensión esencial suele desarrollarse entre los 30 y 55 años de edad. Si el diagnóstico inicial de hipertensión se realiza antes de los 30 años, la causa más frecuente es la displasia fibromuscular. Dado que la aterosclerosis afecta a pacientes de mayor edad, la EAR también es más frecuente a partir de los 55 años. La hipertensión acelerada o maligna también se ha asociado a una alta prevalencia de EAR. La retinopatía hipertensiva de grado III-IV, y igualmente la hipertensión refractaria deben considerarse como una muy probable causa de EAR. Esta última se define como aquella HTA en la que no se consigue normalizar las cifras de presión arterial (< 140/90 mmHg) después de un régimen de al menos 3 drogas con diferentes mecanismos antihipertensivos.
Exploración física

En general la exploración es de utilidad limitada. Sin embargo puede poner de manifiesto factores de riesgo asociados, como la cardiopatía isquémica, enfermedad vascular cerebral, o arteriopatía periférica. Aunque el soplo abdominal es inespecífico, la presencia de un soplo sistólico y diastólico en el epigastrio es un signo de alta sospecha de EAR. El componente diastólico del soplo indica un grado de estenosis severo (61).

Función renal

Es conocido que la atrofia renal es frecuente en los riñones isquémicos. Varios estudios han mostrado que la asimetría de tamaño entre dos riñones, o la presencia de un riñón atrófico suponen una probabilidad de EAR de hasta un 60%. Por esta razón una asimetría de tamaño de 1.5 a 2 cm debe establecer un alto índice de sospecha.

El fracaso renal agudo en paciente hipertensos provocado por IECA es un cuadro que debe hacer sospechar una estenosis bilateral, o unilateral en un riñón aislado (62;63). Típicamente aparece entre 1 y 14 días después de comenzar el tratamiento. Puede ser debido a una hipoperfusión renal asociada al descenso de la presión arterial sistémica, o a un descenso de la filtración glomerular por la vasodilatación de la arteriola eferente provocada por estos agentes. Se calcula que entre un 6% y 38% de pacientes con estenosis significativa de la arteria renal desarrollan un fracaso agudo cuando son tratados con estos fármacos. Por el contrario esta situación puede ocurrir en pacientes hipertensos en ausencia de enfermedad vascular renal, en estados de deplección de volumen (por ejemplo deshidratación). Otros agentes antihipertensivos también pueden causar este cuadro, incluyendo los vasodilatadores directos. El fracaso renal agudo relacionado con IECA es un proceso reversible. Una vez identificado el problema, el paciente debe ser valorado para diagnosticar la estenosis (64). Una azotemia inexplicada debe inducir también a sospecha.
Insuficiencia cardiaca congestiva y edema pulmonar

La insuficiencia cardiaca congestiva recurrente y el edema pulmonar no relacionado con cardiopatía isquémica activa pueden ser debidos a EAR bilateral (o unilateral en riñón único).

Varios autores han propuesto una serie de criterios clínicos de sospecha para realizar un screening de hipertensión vascular renal (tabla 1.6). Svetky (65) propone 6 criterios: soplo abdominal o en el flanco, hipertensión refractaria, hipertensión acelerada, retinopatía grado II o IV, hipertensión de comienzo reciente, y edad de comienzo antes de los 25 años o después de los 45.

El grupo de trabajo DRASTIC (dutch renal artery stenosis intervention cooperative) (43) ha estudiado 12 características clínicas definidas de sospecha de EAR y ha valorado la prevalencia de la enfermedad mediante varios test diagnósticos en estos pacientes. Estas características incluyen edad, sexo, raza, signos y síntomas de aterosclerosis en otros territorios, hipertensión de comienzo reciente, historia familiar de hipertensión, tabaquismo, obesidad (índice masa corporal \geq 25 kg/m2), soplo abdominal, retinopatía hipertensiva (grados III y IV), concentración de creatinina sérica, e hipercolesterolemia. Empleando un análisis de regresión de estos criterios consiguen identificar correctamente a los pacientes con estenosis con una sensibilidad de 68% y especificidad de 87%, muy similar a la de algunas pruebas diagnósticas (44). La tabla siguiente resume los hallazgos clínicos asociados a la EAR (16).
<table>
<thead>
<tr>
<th>Tabla 1.6. Características clínicas de la EAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hipertensión</td>
</tr>
<tr>
<td>Comienzo reciente antes de los 50 años (sospecha de DFM)</td>
</tr>
<tr>
<td>Comienzo reciente después de los 50 años (sospecha de aterosclerosis renal)</td>
</tr>
<tr>
<td>Acelerada o maligna</td>
</tr>
<tr>
<td>Refractaria (no respuesta a 3 drogas)</td>
</tr>
<tr>
<td>Insuficiencia renal</td>
</tr>
<tr>
<td>Asimetría de tamaño o riñón atrófico</td>
</tr>
<tr>
<td>Azotemia inexplicada</td>
</tr>
<tr>
<td>Fracaso renal agudo inducido por IECA</td>
</tr>
<tr>
<td>Hipokaliemia inexplicada</td>
</tr>
<tr>
<td>Otros hallazgos</td>
</tr>
<tr>
<td>Soplo abdominal, en el flanco, o ambos</td>
</tr>
<tr>
<td>Retinopatía severa</td>
</tr>
<tr>
<td>Enfermedad carotídea, o arteriopatía periférica</td>
</tr>
<tr>
<td>ICC o edema pulmonar</td>
</tr>
</tbody>
</table>
1.5. Métodos diagnósticos de la estenosis de la arteria renal

Actualmente disponemos de un amplio arsenal de pruebas para el diagnóstico de la estenosis de la arteria renal. Muchas de estas técnicas como la urografía o el sampling venoso de renina, se consideran obsoletas y sus resultados han demostrado una escasa eficacia. La angiografía continua siendo la técnica de referencia en el diagnóstico, aunque otras técnicas de imagen como la angio-CT y angio-RM han demostrado excelentes resultados. A pesar de todo no disponemos de un test de screening aceptado universalmente, bien por la disparidad de los resultados, bien por la disponibilidad limitada de algunas de estas técnicas.

Un método ideal de screening debería ofrecer una adecuada sensibilidad y especificidad para identificar a los pacientes con enfermedad significativa, evitando procedimientos costosos e invasivos (66). En nuestro caso el método ideal debería identificar la arteria renal principal y las accesorias o polares, localizar el lugar de la estenosis, valorar la significación hemodinámica de la lesión, e identificar la patología asociada (aneurisma de aorta, etc) que pueda tener un impacto en el tratamiento de la enfermedad arterial renal.

La valoración de las arterias renales es esencial en pacientes con fracaso renal agudo o crónico, hipertensión mal controlada, o insuficiencia cardíaca congestiva no relacionada directamente con cardiopatía isquémica, es decir en paciente con criterios de sospecha de estenosis arterial renal. Otra indicación importante es el seguimiento de pacientes intervenidos mediante técnicas de revascularización o trasplante renal, para valorar la posible reestenosis. Los métodos actualmente disponibles en el diagnóstico de la estenosis renal se describen en la tabla 1.7.
Tabla 1.7. Métodos de diagnóstico de la estenosis renal

Métodos indirectos
- Actividad de renina plasmática
- Test de Captopril
- Sampling de venas renales
- Urografía intravenosa
- Renograma isotópico

Métodos de imagen no invasivos
- Ecografía Doppler
- Angio-CT
- Angio-RM

Métodos invasivos
- Angiografía
- Angiografía con CO₂ y otros medios de contraste
- Ecografía intravascular
- Gradiente de presiones

1.5.1. Métodos no invasivos

1.5.1.1. Métodos indirectos

Actividad de renina plasmática
Tal y como se explicó en el capítulo sobre fisiopatología, los niveles de renina en plasma aumentan como consecuencia de la activación del sistema renina-angiotensina-aldosterona. Se ha comprobado un aumento de la actividad de renina en 50% de los pacientes con estenosis de la arteria renal (67). No obstante también se eleva hasta en un 30% de pacientes con hipertensión esencial. La sensibilidad y especificidad de esta técnica se estima en 57% y 66% respectivamente.

Test de Captopril
Consiste en medir la renina plasmática tras la administración de 25 o 50 mg de Captopril, lo que produce un bloqueo del sistema renina-angiotensina. Se cree que este bloqueo es más importante si existe una estenosis de la arteria renal. Los criterios tradicionales de esta prueba fueron descritos por Muller (68): actividad plasmática de renina, PRA > 5,7 ng/mL/h (según el método de Smith-Kline); incremento de PRA > 4,7 mg/mL/h; y un incremento de PRA > 150% o un 400% si el PRA inicial es > 1,4
ng/mL/h. Con estos criterios el resultado del test mostraba un 100% de sensibilidad y 95% de especificidad. Sin embargo estos criterios se desarrollaron retrospectivamente para conseguir estos magníficos resultados. Secchi (69) utilizando los mismos criterios consiguió una sensibilidad de 92%, especificidad de 96%.

Otros autores realizan el test con ligeras variaciones (70;71) con una sensibilidad de 96% y especificidad de 55%. Diferentes estudios prospectivos obtienen rendimientos variables, inferiores a los descritos (72). Esto se explica por varias razones como la diferencia de criterios de positividad del test, la preparación inadecuada de los pacientes (el estudio debería hacerse de manera ideal tras suspender la medicación previa ya que los diuréticos, los vasodilatadores y los beta-bloqueantes interfieren la secreción de renina), y los diferentes criterios de inclusión de los pacientes.

Sampling de Renina en venas renales

Esta técnica se introduce en 1965, y consiste en la toma de muestras de sangre venosa mediante cateterización selectiva de ambas venas renales, por lo que deberíamos considerarla como invasiva. Su fundamento es que en el riñón mal perfundido por una estenosis de la arteria renal, se produce un aumento de la secreción de renina, mientras que en el riñón contralateral sano la secreción se frena. Sin embargo esta asimetría no es evidente en caso de lesión contralateral, y es menos pronunciada en caso de insuficiencia renal (73). Hasta la década de los 80 se consideraba que este sampling tenía un valor predictivo de la respuesta a la cirugía de revascularización.

CSRVRR (Captopril-stimulated renal vein renin ratio):

Con la finalidad de mejorar el rendimiento de esta prueba se propuso realizar sampling tras la administración de una serie de estímulos para incrementar la secreción de renina, como la administración de furosemida, maniobras posturales o una dieta pobre en sodio. Un ejemplo de ello es la determinación de la "relación entre las reninas de ambas venas renales" después de 30-60 min tras la administración de 25 mg de Captopril (CSRVRR = renina en vena renal del lado estenótico / renina del lado normal)
Introducción. Diagnóstico

(74). Se considera que el test es positivo cuando CSRVRR > 1,5. Existen numerosos trabajos en este sentido con resultados muy diferentes. La sensibilidad se calcula en 65%, con una especificidad de 52% a 82%. El 18% a 48% de pacientes con HTA esencial presentan falsos positivos.

Urografía intravenosa

Es uno de los métodos tradicionales utilizados en el diagnóstico de la hipertensión vascular renal, actualmente en desuso. Los criterios diagnósticos son el retraso en la excreción, asimetría de tamaño renal, y diferencia de concentración del contraste. Su utilidad inicialmente muy valorada, es muy escasa como demostró Thornbury (75).

1.5.1.2. Renograma isotópico con IECA

Las técnicas de imagen con radionúclidos son métodos no invasivos que permiten evaluar el flujo y la función renal de una forma segura. En condiciones basales tienen un alto índice de falsos positivos y negativos. Cuando a estas técnicas se añade un agente inhibidor de la enzima convertidora de angiotensina (IECA) como Captopril, su sensibilidad y especificidad mejora considerablemente, especialmente en pacientes con estenosis unilateral de la arteria renal. En muchos centros estas técnicas son consideradas como el método no invasivo de elección en el diagnóstico de la estenosis de la arteria renal.

En presencia de una estenosis unilateral, el ritmo de filtración glomerular (GFR) en el riñón estenótico cae hasta un 30% tras la administración de Captopril (76). En contraste en el riñón contralateral sano el GFR, el flujo de orina y la excreción de sodio aumenta. Estos cambios son el fundamento de estas técnicas que son capaces de detectar la asimetría de la función renal. Tras la administración de agentes IECA el renograma isotópico revela cambios en las curvas de tiempo / actividad en el riñón afectado en comparación con las curvas basales (77;78). Estos alteraciones no ocurren en ausencia de estenosis, o cuando la estenosis no tiene significación hemodinámica.
La técnica consiste en la realización de un renograma basal con diferentes radiofármacos, seguido de un segundo renograma tras la administración de un agente IECA, el cual se realiza 1 hora después de la administración de 25 a 50 mg de Captopril por vía oral (79), o después de 15 minutos tras administración de Enalapril. Para realizar la prueba el paciente debe interrumpir previamente el tratamiento con agentes IECA entre 2 y 5 días, en función de la vida media del fármaco (80). En el estudio se obtienen imágenes secuenciales y curvas de actividad a los 30 minutos de la inyección de los diferentes trazadores. Las curvas de tiempo / actividad son generadas en la corteza y pelvis renal. La captación renal se mide a intervalos de 1 a 2 minutos tras la inyección. Los radiofármacos utilizados son de dos tipos básicamente, agentes glomerulares y agentes tubulares. Los primeros son el ácido dietilentriaminopentacético (DTPA), el glucoheptonato (GH), y el ácido dimerocapotosuccínico (DMSA). Estos agentes se filtran a nivel glomerular sin posterior secreción tubular y están marcados con TC-99m. Los agentes tubulares son O-I-hipurato (HIP) y mertitiade (MAG₃), los cuales se secretan principalmente en túbulo proximal. HIP puede marcarse con I¹³¹ o con I¹²³ el cual es un mejor trazador aunque es más caro. MAG₃ se marca con Tc-99m.

En el renograma basal con agentes glomerulares se mide la captación del radiofármaco, mientras que en el caso de los agentes tubulares lo que se determina es la retención de los mismos en la corteza renal. Los criterios generales de interpretación son los siguientes: un renograma con IECA normal indica una baja probabilidad de estenosis; un riñón pequeño, con mala función (captación > 30%, con tiempo de actividad máxima \(T_{\text{max}} \leq 2\text{min} \)), que no muestra cambios en el renograma con IECA y con trastornos simétricos bilaterales, como retención cortical de los agentes tubulares, indica una probabilidad intermedia; y un deterioro de la curva de actividad, la reducción de la captación, la prolongación del tiempo de tránsito en fase parenquimatosa, el incremento de la ratio 20-min / pico de captación, y la prolongación del \(T_{\text{max}} \), se consideran criterios de alta probabilidad de estenosis. Se han descrito criterios específicos para los distintos trazadores. Los hallazgos en el renograma pueden revertir tras la revascularización con angioplastia o stent.
Además del empleo de diferentes radiofármacos, se han propuesto otras modificaciones en la prueba empleando diversos agentes bloqueantes de los receptores de angiotensina II (ARA) como Losartan, Valsartan (81), o fármacos antiinflamatorios no esteroideos (AINE).

Los resultados del renograma son variables en distintas publicaciones con una sensibilidad de 45% a 94%, y especificidad de 81% a 100% (20;82;83). Esto es lógico si consideramos la heterogeneidad de la técnica en cuanto a protocolos y criterios diagnósticos. En grupos seleccionados de pacientes con alta sospecha de estenosis, puede alcanzar una sensibilidad y especificidad muy elevadas, de 90% y 96% respectivamente (84). Por desgracia es menos sensible en pacientes hipertensos no seleccionados, en presencia de estenosis arterial renal bilateral, uropatía obstructiva, insuficiencia renal, y en pacientes con tratamientos prolongados con agentes IECA (17;41).

1.5.1.3. Angiografía por Tomografía Computarizada

Desde la introducción de la tomografía helicoidal a inicios de los años 90, la tomografía computarizada (CT) ha experimentado un importante auge. Además su disponibilidad es mayor que la de otras tecnologías como la angiografía por RM (85).

La angio-CT permite una adecuada valoración de la arteria renal y sus ramas principales, posibles arterias accesorias, y otras patologías asociadas como el aneurisma de aorta o lesiones renales parenquimatosas. La angio-CT no sólo es útil para valorar el grado de estenosis y su localización, sino también la morfología y características de la placa de ateroma, presencia de calcificación, o disección.

La técnica consiste en la realización de un primer scan sin contraste en el que se localizan las arterias renales y posibles patologías asociadas, tras lo cual se procede a un test de inyección con una pequeña cantidad de contraste iodado. La finalidad de este test
es calcular el tiempo en el que se produce la máxima intensidad de contraste a nivel de
las arterias que deseamos valorar (delayed time). Una vez calculado se realiza un
segundo scan ajustando el tiempo de retraso entre la inyección de contraste y el de
adquisición de la serie para conseguir una opacificación completa de las arterias,
evitando en lo posible la fase venosa. La mayoría de protocolos administran 100 a 120
cc de contraste iodado, con un tiempo de retraso entre 20 y 30 seg, y un tiempo de
adquisición de 20 a 40 segundos, lo cual es posible durante una pausa de apnea
reduciendo los artefactos por movimientos respiratorios (66).

Posteriormente las imágenes deben ser reprocesadas en una estación de trabajo
con diferentes algoritmos de reconstrucción, lo que permite obtener imágenes en modo
bidimensional en planos axial, sagital, coronal u oblicuos, en planos curvos a lo largo
del eje de la arteria y tridimensionales. Los modos de imagen en máxima intensidad
MIP, SSD, y la segmentación o el uso de diferentes filtros añaden innumerables
posibilidades para visualizar las arterias en cuestión.

Un tiempo de retraso inadecuado, un tiempo de adquisición demasiado largo o un
volumen de contraste insuficiente suponen una opacificación incompleta de las arterias
lo que podría interpretarse como una estenosis u obstrucción. Por otro lado el volumen
del scan debe ser suficientemente amplio para incluir la arteria renal en todo su
recorrido y las posibles arterias accesorias con un origen en la aorta más distal (86;87).
Una limitación importante de la angio-CT es el volumen de contraste requerido. La
aplicabilidad en pacientes con insuficiencia renal es por tanto reducida, por lo que no
podemos utilizar esta técnica como método de screening.

Con una técnica depurada la sensibilidad y especificidad de la angio-CT alcanza
un 90% y 98% respectivamente (88). Sin embargo dependiendo de los diferentes
protocolos empleados los resultados varían entre una sensibilidad de 59% a 96%, y una
especificidad de 82% a 99% comparada con la angiografía convencional (89-92).
1.5.1.4. Angiografía por Resonancia Magnética

Las técnicas de angiografía con contraste por Resonancia Magnética (angio-RM) fueron introducidas por Prince (93) en 1994. Desde las secuencias iniciales basadas en los efectos de tiempo de vuelo (“time of flight” o TOF), y las basadas en el contraste de fase (“phased contrast” o PC), hasta las modernas técnicas de angio-RM con Gadolinio, la resolución de la imagen, el tiempo de adquisición, y en general el rendimiento diagnóstico, se ha incrementado notablemente. No solo se ha evolucionado en el desarrollo de secuencias de gradientes de eco más rápidas, sino también en el de equipos con campos magnéticos de mayor intensidad, gradientes de campo, antenas de superficie, y en todo lo relacionado con las técnicas de reprocesado de datos e imágenes.

Las secuencias más empleadas en los estudios de angio-RM son las de gradientes de eco, intensamente potenciadas en T1, combinadas con la administración de un material de contraste (Gadolinio), que permiten obtener imágenes vasculares tridimensionales (3D T1W GRE). Con estas técnicas se pueden obtener imágenes de alta resolución de la aorta y las arterias viscerales, en un tiempo de 20 a 30 segundos, durante una pausa de apnea.

La señal arterial se basa en el efecto de acortamiento de T1 producido por Gadolinio durante su primer paso a través del territorio vascular de interés. Gadolinio es un contraste paramagnético extracelular que se administra por vía venosa periférica, generalmente mediante una bomba de infusión, a una dosis de 0,2 a 0,3 nmol/Kg. Para conseguir una imagen de alta calidad se requiere un cálculo preciso del tiempo de inyección y de la dosis administrada. Varias estrategias permiten conseguir un “bolus timing” exacto: un test inyección previo (“bolus test”), un cálculo automático realizado en algunos equipos (“automatic triggering”) (94;95), técnicas de fluoroscopia por RM (96), y técnicas de angiografía por sustracción digital por RM (DSA) (97).

Las imágenes obtenidas son reprocesadas en un estación de trabajo independiente, que permite obtener diferentes reconstrucciones en múltiples planos del espacio y en 3
Dimensiones. De este modo pueden valorarse regiones poco accesibles en vasos tortuosos, o placas excéntricas en el ostium. El tipo de imágenes más empleadas son las de máxima intensidad de proyección (MIP).

Es importante conocer el límite de resolución espacial de la técnica a la hora de determinar el grado de significación de una estenosis(98). Generalmente la angio-RM tiende a sobreestimar el grado de estenosis si sólo consideramos criterios morfológicos. Por esta razón actualmente se han desarrollado secuencias que proporcionan información funcional como la angiografía 3D PC (99), o secuencias que determinan el flujo en modo cine con sincronización cardíaca (“cardiac gated cine PC flow”) (100), o las imágenes de perfusión “extra-slice spin-taggin” (101;102).

La angio RM 3D PC está basada en las técnicas de contraste de fase, y no requiere la administración de Gadolinio. Esta técnica utiliza la ausencia de señal producida por el flujo turbulento distal a la estenosis, para demostrar su significado hemodinámico. Las técnicas de determinación de flujo con sincronización cardíaca miden el volumen y los perfiles de flujo a lo largo del ciclo cardíaco, y permiten evaluar los efectos hemodinámicos de la estenosis renal, con una sensibilidad de 100% en las estenosis superiores a 50% de diámetro. Las técnicas de perfusión generan mapas renales en un plano axial, que permiten identificar defectos de perfusión que reflejan la presencia de un obstrucción al flujo por una estenosis arterial. Más recientemente se han desarrollado técnicas que permiten medir la fracción de extracción y el filtrado glomerular mediante RM(103), así como realizar renogramas con RM tras la administración de Captopril (104). Aunque se trata de técnicas experimentales en modelos animales, se considera que en breve plazo podrían aplicarse en la práctica clínica.

Respecto a los resultados reales de la angio-RM en el diagnóstico de la estenosis renal, los estudios que comparan el valor de la técnica con la arteriografía generalmente se refieren a series muy cortas de pacientes, entre 20 y 50 casos, y emplean secuencias diferentes. La serie más larga incluye 103 pacientes (105). Por esta razón y a pesar de
todos los avances descritos, es difícil establecer claramente su valor real. Un reciente meta-análisis (106) revela que las técnicas de angio-RM sin contraste muestran una sensibilidad general de 94%, y especificidad de 85%, mientras que las técnicas con contraste alcanzan una sensibilidad de 97% y una especificidad de 93%.

1.5.2. Métodos invasivos

1.5.2.1. Angiografía

La angiografía es considerada actualmente como la técnica de referencia en el diagnóstico de la estenosis de la arteria renal. Permite una excelente visualización de la arteria en toda su extensión, determinando con exactitud la presencia de estenosis, su localización, grado y en su caso oclusión. Además permite visualizar posibles arterias accesorias, y valorar de una manera grosera la función renal en la fase de nefrograma. A pesar de esto, es una técnica invasiva y costosa comparada con otras modalidades de imagen. Además presenta un riesgo asociado, que aunque no es frecuente puede ser grave, incluyendo las complicaciones locales en la zona de punción, hematoma, pseudoaneurisma, fistula arteriovenosa, y complicaciones generales como la nefrotoxicidad, embolización ateromatosa del riñón, o de otros territorios (107). Por todo esto la angiografía raramente es empleada en el diagnóstico, siendo utilizada para confirmarlo una vez que se ha decidido una intervención terapéutica como angioplastia, stent o cirugía.

Algunos autores defienden el uso de la angiografía intravenosa con sustracción digital como técnica de screening. En este caso la inyección de contraste se realiza por vía venosa en lugar de arterial, evitando los riesgos asociados a la punción arterial. Con esta técnica Dunnick (108) obtiene una sensibilidad y especificidad en el diagnóstico de la estenosis de 92% y 93% respectivamente. Sin embargo la resolución espacial de la imagen es muy inferior a la de una angiografía por abordaje arterial, y estos resultados se refieren a un pequeño grupo de 22 pacientes, por lo que debemos considerarlos poco fiables. Otros estudios muestran una sensibilidad muy inferior, en torno a 50%-60%.
La angiografía con CO₂ ha sido propuesta como alternativa a la angiografía con contraste iodado para evitar los riesgos derivados de la nefrotoxicidad de este último (109). Sin embargo en la práctica este método presenta una escasa disponibilidad, ya que requiere de bombas de inyección sofisticadas específicas, y por otro lado las imágenes obtenidas presentan una menor resolución. Además los riesgos por nefrotoxicidad asociada a contraste se han minimizado con el desarrollo de contrastes no iónicos hipoosmolares.

El papel de la angiografía arterial, actualmente está en cuestión dado el desarrollo de otros métodos de imagen. Según Khauli (110), en pacientes con criterios de hipertensión vascular renal la arteriografía debería ser el último método a emplear después de los métodos no invasivos, mientras que en pacientes con criterios de nefropatía isquémica es necesario un diagnóstico precoz, y otros métodos como el renograma isotópico son menos eficaces. Además la arteriografía permite la práctica de técnicas de revascularización en el mismo tiempo.

Recientemente algunos autores han cuestionado el valor diagnóstico de la angiografía al observar una correlación muy deficiente entre distintos observadores. Un estudio del grupo DRASTIC (111) en 289 pacientes, revela una correlación moderada entre diferentes radiólogos a la hora de determinar el número de arterias renales ($kappa = 0,50-0,72$), o para determinar la presencia de estenosis ($kappa= 0,68-0,86$), o en lo referente al grado de estenosis ($kappa= 0,65-0,70$). Sin embargo la correlación respecto a la localización de la estenosis es muy pobre ($kappa= 0,26-0,47$). Los radiólogos encontraron dificultades especialmente para distinguir entre estenosis > 50% y > 60% de diámetro, o entre > 60% y > 70% de diámetro.

Se han propuesto otros métodos para el diagnóstico. La determinación del gradiente de presiones a través de la estenosis puede realizarse en el curso de la angiografía (112), para lo cual se necesita un sistema que permita medir presiones...
invasivas conectado al catéter. Sin embargo como discutiremos más adelante no existe un acuerdo respecto al gradiente necesario para establecer la presencia de una estenosis hemodinámicamente significativa, variando según los autores entre 10 y 20 mmHg (113). Finalmente algunos autores proponen el empleo de la ecografía Doppler intravascular (IVUS) en el diagnóstico de la estenosis (114;115). Este método es cuestionado debido a que la presencia de la propia sonda en la luz vascular puede artefactar los registros.
1.5.3. Ecografía Doppler renal

La ecografía Doppler presenta varias ventajas respecto a las técnicas anteriores, fundamentalmente su disponibilidad, inmediatez y bajo coste. Además ofrece tanto información anatómica como funcional. No obstante, al igual que ocurre con el renograma isotópico, los resultados muestran una enorme variabilidad en las distintas publicaciones, que oscilan entre el mayor entusiasmo y el más absoluto escepticismo (116). Por esta razón, hoy por hoy, la ecografía Doppler no ha sido universalmente aceptada en el diagnóstico de esta entidad. Esto se debe a la falta de estandarización metodológica, la gran cantidad de criterios diagnósticos propuestos, las dificultades y limitaciones inherentes a la técnica (117), y a la mayor complejidad de la hemodinámica renal, en comparación con otros territorios vasculares, en la que intervienen factores que probablemente no podemos valorar (118).

Se han publicado numerosos estudios dirigidos a determinar el valor real de esta técnica. Hasta el momento se perfilan dos grandes tipos de técnicas diferentes, de un lado el estudio de la arteria renal principal o métodos directos dirigidos a la estenosis, y de otro el estudio de las arterias intrarrenales distales a la estenosis, o métodos indirectos, aunque como veremos se han abierto nuevas perspectivas en este terreno.

1.5.3.1. Conceptos de hemodinámica

Una de las razones que explican la diversidad de enfoques de los métodos ecográficos deriva de la ausencia de un modelo de flujo preciso que explique la hemodinámica renal. Algunos autores han intentado establecer analogías entre el sistema vascular renal y complicados circuitos electrónicos o hidráulicos en laboratorio (119;120). Sin embargo estas analogías son solo teóricas y cuestionables (121). Por esta razón antes de abordar los aspectos diagnósticos de la ecografía Doppler es necesario, introducir algunos conceptos que nos permitan entender el significado del análisis espectral. Las leyes de la hidrodinámica explican el comportamiento de los fluidos
Introducción. Diagnóstico

ideales y viscosos, aunque estas leyes no pueden ser aplicadas directamente al estudio del flujo sanguíneo ya que éste presenta características especiales, es un flujo pulsátil, el lecho vascular es un sistema de paredes elásticas, que se ramifica y disminuye de calibre progresivamente, y la sangre presenta propiedades de viscosidad complejas. No obstante es posible un desarrollo matemático de estas leyes que nos permita aproximarnos a una mejor comprensión de la hemodinámica renal.

Viscosidad y resistencia vascular

El movimiento más sencillo de un fluido en un circuito es el “flujo estacionario”, en el cual cada partícula de fluido sigue siempre la misma trayectoria o línea de corriente. En un régimen estacionario se cumple siempre la ecuación de continuidad según la cual el volumen de flujo (Q) que atraviesa una sección del circuito debe mantenerse siempre constante (fig 1.1):

$$A_1 v_1 = A_2 v_2 = Av = Q = cte \quad (A: \text{área de la luz; } v: \text{velocidad } Q: \text{volumen de flujo})$$

Fig 1.1 Ecuación de continuidad

Esta ecuación también puede expresarse de otro modo:

$$\frac{v_2}{v_1} = \frac{A_1}{A_2} = \frac{D_1^2}{D_2^2} \quad (D = \text{diámetro})$$

En estas condiciones la velocidad del fluido aumenta cuando disminuye el diámetro de la luz del circuito, y viceversa. Además los fluidos en movimiento están sometidos a la ecuación fundamental de la hidrodinámica, el teorema de Bernoulli, según el cual la energía total de un fluido en movimiento es la suma de la energía debida a la presión (energía potencial), más la energía cinética, más la energía gravitatoria: $E_{\text{total}} = E_{\text{potencial}} + E_{\text{cinética}} + E_{\text{gravitatoria}}$
Los líquidos complejos, como la sangre, presentan un rozamiento interno entre sus partículas. Esta característica se denomina viscosidad. En esta situación el régimen de flujo es “laminar”, donde unas líneas de corriente se desplazan sobre otras, a distinta velocidad. Cada líquido tiene un coeficiente de viscosidad que se expresa en “poise” o “pascal-sec”. Para la sangre se ha calculado en 0,35 p. La viscosidad produce una resistencia al movimiento, la cual es mayor en las líneas de corriente periféricas, en contacto con las paredes vasculares, lo que produce un perfil de flujo parabólico, ya que la velocidad es mayor en las líneas de corriente centrales.

Según la ley de Poiseuille la resistencia al flujo de un fluido aumenta cuando disminuye el radio de la luz del circuito, en nuestro caso la luz vascular, siendo por tanto mayor en el lecho capilar que en los grandes vasos.

Cuando la velocidad en un fluido excede un valor crítico se producen además corrientes locales e irregulares, denominadas vórtices o torbellinos, que originan un gran aumento de la resistencia al movimiento, lo que se denomina “flujo turbulento”. El paso de un régimen laminar a turbulento depende de la combinación de cuatro factores, la densidad del fluido, su velocidad, el diámetro del circuito y la viscosidad. La relación entre estos se expresa mediante el número de Reynolds (NR) (122):

\[NR = \frac{\rho v D}{\eta} \]

(\(\rho \) = densidad del fluido; \(v \) = velocidad media; \(D \) = diámetro del tubo; \(\eta \) = coeficiente de viscosidad)

La experiencia demuestra que cuando el NR es menor de 2000 el comportamiento de un fluido viscoso sigue el régimen laminar, mientras que entre 2000-3000 se produce una situación inestable pasando a un régimen turbulento. En un régimen turbulento la ecuación del teorema de Bernouilli es algo más compleja, teniendo en cuenta la viscosidad: \(E_{total} = E_{potencial} + E_{cinética} + E_{gravitatoria} + E_{de \ viscosidad} \)

En determinados trayectos dentro del lecho vascular el régimen es de tipo laminar. De manera experimental se ha calculado el NR en torno a 2000, aunque se ha
comprobado que se empiezan a formar vórtices a partir de \(N_R = 1600 \). No obstante en presencia de determinados factores que alteren el flujo (estenosis, vasos cortos, geometría compleja del lecho vascular, etc.), la transición de un régimen laminar a otro turbulento puede ocurrir con números de Reynolds más bajos, del orden de 500. Una arteria que tiene su origen en otra de mayor calibre se comporta de manera parecida a una estenosis, con un régimen turbulento y un perfil de flujo inicialmente plano, que progresivamente se va haciendo parabólico. Para que esto ocurra se requiere una distancia determinada que se denomina “longitud de entrada”. Esta longitud se relaciona con el \(N_R \) y el radio del vaso. Las arterias renales son vasos muy cortos y de un calibre relativamente pequeño, 5 a 6 mm, en comparación con la aorta donde tienen su origen, 20 a 25 mm de diámetro. Esta diferencia es aún mayor en caso de aneurisma de aorta o arteriomegalia, dos condiciones que se asocian con frecuencia a la aterosclerosis aorto renal. En esta situación, en condiciones normales aún en ausencia de estenosis, el flujo en la arteria renal difícilmente alcanza un perfil parabólico, manteniéndose el \(N_R \) elevado con un régimen turbulento. Esto puede comprobarse en el análisis espectral, donde se observa un ensanchamiento del espectro en las arterias renales en comparación con el espectro de otras arterias como la femoral o la carótida.

Fig. 1.2 Ondas espectrales de una arteria femoral común (A) y una arteria renal (B) normales. El espectro más ancho revela un flujo turbulento en la arteria renal frente al flujo laminar de la femoral.
Introducción. Diagnóstico

41

Flujo y Estenosis

Consideremos un vaso con una estenosis del 50% de diámetro, lo que supone una reducción del 75% del área de la luz vascular (fig 1.3). Si tomamos dos puntos en la luz vascular, la energía del sistema en esos puntos será E_1 y E_2. Recordando la ecuación de continuidad, en esta situación la velocidad en la estenosis se multiplica por 4.

Si además, para simplificar, consideramos que en este flujo a través de la estenosis no se produce pérdida de energía por rozamiento y viscosidad, y despreciamos la acción de la gravedad, aplicando la ecuación de Bernoulli podemos decir:

$E_1 = P_1 + \frac{1}{2} m v_1^2$

$E_2 = P_2 + \frac{1}{2} m v_2^2$ \quad (E: energía; P: presión; m: masa; v: velocidad)

Como ya sabemos la energía en ambos puntos del sistema debe permanecer sin cambios, es decir $E_1 = E_2$, de donde $P_2 - P_1 = \frac{1}{2} m (v_2^2 - v_1^2)$.

Si aplicamos esta fórmula en nuestra estenosis de 50% del diámetro, comprobaremos que la energía cinética se multiplica en la estenosis, mientras que la presión cae drásticamente en la misma zona. Este fenómeno se denomina efecto Bernoulli, mediante el cual la presión disminuye en una zona donde se produce una aceleración de la velocidad del flujo. Sin embargo en las estenosis reales se produce una pérdida de energía, lo que quiere decir que $E_1 > E_2$. La disminución de la energía potencial puede tener consecuencias catastróficas en determinados órganos como el cerebro o el riñón. La pérdida de energía por viscosidad se transfiere al medio en forma de calor (provocando las vibraciones que pueden auscultarse en forma de soplo). Según la ley de Poiseuille esta pérdida es proporcional a la longitud de la estenosis e inversamente proporcional a la cuarta potencia del radio. Es por esto que el radio es el factor determinante más importante en la pérdida de energía por viscosidad. En nuestro ejemplo de una estenosis del 50%, la resistencia al flujo es 16 veces superior en la estenosis que en el área no estenótica.
Por otro lado se produce una pérdida de energía por inercia a la entrada de la estenosis, cuando la sangre es forzada a un flujo más rápido en el segmento estenosado. La inercia se define como la fuerza necesaria para aumentar o disminuir la velocidad de un cuerpo en movimiento (2ª Ley de Newton). Esta pérdida depende de lo abrupta que sea la estenosis, siendo menor cuando la transición es progresiva y suave. La pérdida de energía por inercia también se transfiere a los tejidos en forma de calor.

Una estenosis severa produce un aumento en la resistencia al flujo, que se suma a las resistencias generales, aunque ésta se considera despreciable en comparación con la resistencia general del lecho vascular. No obstante, cuando la luz residual disminuye aún más, la resistencia se incrementa rápidamente, contribuyendo entonces de manera muy significativa a la resistencia general. Alcanzado este punto el flujo disminuye y se produce una gran caída en la presión a través de la estenosis. Las altas velocidades de flujo en la estenosis, producen una pérdida adicional de energía por turbulencia.

Cabe esperar que hay cierto diámetro de la luz residual (estenosis crítica), por debajo del cual, un pequeño incremento en el grado de estenosis resultará en una gran caída de presión que afecte al flujo de manera significativa. Por debajo de este punto, el flujo cae rápidamente hasta que se produce la oclusión total. Al tiempo que cae el flujo, también cae rápidamente la velocidad. Por eso en el estudio Doppler de una estenosis observaremos un aumento de la velocidad del flujo que alcanza su máximo cerca del punto de estenosis crítica, seguido de una caída de velocidad hasta alcanzar el 0 en la oclusión total (123). En la fig.1.4 podemos observar estos fenómenos. La velocidad empieza a aumentar a partir de una reducción del 30% del diámetro, acelerándose de manera más evidente a partir de 50%, y alcanzando su valor máximo en estenosis del 85%. El flujo sin embargo, permanece prácticamente inalterado hasta que la estenosis llega a 75-80% de reducción del diámetro. Una vez que la estenosis supera el punto crítico de 85% de reducción del diámetro, tanto el flujo como la velocidad caen drásticamente.
Introducción. Diagnóstico

Se ha debatido mucho sobre cuál es el grado de estenosis hemodinámicamente significativa. En los trabajos sobre diagnóstico de la estenosis renal, muchos autores establecen el límite en una reducción >50% de diámetro (124-127), mientras que otros lo refieren en >60% (128;129), y otros en >70% (130-133). Más aún algunos autores indican la revascularización en estenosis de 50% de diámetro (134;135), e incluso 40% (136).

Si sólo consideramos el flujo como factor hemodinámico, deberíamos establecer este límite en el 80% de diámetro, tal y como refleja la gráfica anterior. Si tenemos en cuenta la velocidad en la estenosis, recordando la ecuación de continuidad y la gráfica, comprobaremos que ésta se eleva de manera considerable a partir de grados de estenosis de sólo 30% de diámetro, duplicando su valor en las estenosis de 50%. No obstante en modelos animales se ha observado una caída del flujo significativa y anuria (137) con una reducción del 60% de diámetro.

Algunos autores consideran como medida más fiable el gradiente de presiones a través de la estenosis, aunque tampoco en este caso existe acuerdo. Gross (113) estima un gradiente medio de 22 mm Hg en las estenosis > 50% de diámetro. Wasser (138)
Introducción. Diagnóstico

establece un gradiente de 15 mm Hg. Otros como van der Hulst (114) consideran que
gradientes de 10 mm Hg revelan estenosis significativas, aunque desgraciadamente no
refiere a qué grado de reducción de diámetro corresponde en la angiografía. Baumgartner (139) considera un gradiente de 10 mm Hg equivalente a una estenosis >60% de diámetro, mientras que Bude observa que el 80% de las arterias renales con
gradientes de 10 mm Hg presentan estenosis entre 50% y 59% de diámetro. Estas
discrepancias sugieren que existen otros factores hemodinámicos que no hemos
considerado. Los modelos que hemos estudiado hasta ahora solo pueden aplicarse a
regímenes de flujo laminar, en arterias de mayor longitud, como las arterias del sistema
vascular periférico o la carótida extracraneal (140), y difícilmente reflejan lo que ocurre
en el lecho vascular renal.

La naturaleza pulsátil de la circulación sanguínea introduce nuevas variantes en el
régimen de flujo, ya que provoca cambios de velocidad durante el ciclo cardíaco, es
decir en el tiempo. Estos cambios se expresan mediante la aceleración y la inercia. Además las paredes arteriales son elásticas. En esta situación cuando el fluido entra en
un segmento de la luz vascular, la presión, el volumen de flujo y el radio de la luz
aumentan al mismo tiempo. Estos tres cambios se expresan mediante las fórmulas:

\[\Delta P = P + \delta P; \quad \Delta r = r + \delta r; \quad \Delta Q = Qr + \delta Q. \]

La complianza se define como el ritmo mediante el cual cambia el volumen con
respecto a la presión y se expresa de la siguiente forma \(C = \frac{dQ}{dP} \). La complianza
se relaciona con el radio de la luz y elasticidad de la pared. Ahora podemos volver a
expresar las leyes que estudiábamos en el flujo estacionario, aplicándolas al flujo pulsátil:

Ley de Poiseuille:
(R: resistencia) \(P_2 - P_1 = RQ \)

Ecuación de Continuidad:
(C: complianza) \(Q_2 - Q_1 = C \frac{dP}{dt} \)

Ecuación de Navier:
(L: inercia) \(P_2 - P_1 = L \frac{dQ}{dt} \)
Estos conceptos nos permiten describir los patrones de velocidad del flujo sanguíneo que estudiaremos mediante las técnicas Doppler en el sistema arterial renal.

Fig. 1.5. Onda espectral y complianza

Efecto Windkessel

El flujo arterial es altamente pulsátil, por lo que en el análisis espectral de un segmento de una arteria encontraremos una onda trifásica (fig.1.5), con un pico de máxima velocidad en la sistole, seguido de una caída brusca y un escaso componente diastólico.

Esto se debe a la capacidad de la luz arterial para actuar como reservorio, almacenando y amortiguando la energía pulsátil del corazón, como consecuencia de sus propiedades elásticas. El flujo que entra en la arteria en cuestión presenta una gran pulsatilidad, mientras que el flujo que sale de ella es más continuo, menos pulsátil. Es decir el flujo de salida solo está sometido a la resistencia periférica (*ley de Poiseuille*), mientras que el flujo de entrada está sometido tanto a la resistencia como a la complianza:

\[Q(t) = C \frac{dP}{dt} + \frac{1}{R} P \]

Impedancia

La diferencia entre presión sistólica y diastólica aumenta conforme avanzamos distalmente en el lecho vascular. Por el contrario el pico de velocidad sistólica disminuye (fig.1.6). Esto se explica porque la onda de presión del pulso se refleja en varios puntos en el lecho vascular distal. La superposición de estas ondas reflejadas producen el efecto de incrementar la presión del pulso.
Cuando el flujo es de tipo estacionario la relación entre la presión y el flujo se describe mediante la resistencia, mientras que con un flujo pulsátil, en presencia de la complianza, se describe mediante la impedancia.

La reflexión de la onda de presión del pulso tiene lugar en las ramificaciones del lecho vascular, siendo mayor en los vasos de < 1 mm de diámetro; de éstos las arteriolas son las que más contribuyen a este fenómeno. Cuando se produce vasoconstricción o vasodilatación la impedancia y el coeficiente de reflexión cambian. La relación entre complianza e impedancia varía a lo largo del sistema vascular, disminuyendo la primera y aumentando la segunda, lo que provoca una amortiguación progresiva de la onda espectral, y un paso gradual desde un régimen de flujo altamente pulsátil en las arterias de mayor calibre, hasta un flujo no pulsátil en los capilares (119;141). La morfología de la onda espectral permite distinguir dos patrones básicos de ondas, denominados de alta impedancia (onda trifásica) y de baja impedancia (onda bifásica). También se pueden clasificar estas ondas por métodos cuantitativos utilizando el índice de pulsatilidad.

Teorema de Bernoulli para el flujo pulsátil.

Dado que el teorema de Bernoulli es una manifestación del principio de conservación de la energía debe ser valedero tanto para el flujo estacionario como para el flujo pulsátil variable.

\[E_{total} = E_{potencial} + E_{cinética} + E_{gravitatoria} + E_{de\,viscosidad} + E_{por\,inercia} \]
Turbulencia en el flujo pulsátil.

En el flujo pulsátil es más difícil distinguir entre trastornos del flujo por estenosis y turbulencias debidas a otros factores como la geometría vascular. La pulsatilidad añade un nuevo grado de complejidad al análisis, dado que el número de Reynolds aumenta durante la sistole provocando trastornos del flujo en las arterias en condiciones normales. Por otro lado la turbulencia causada por una estenosis puede provocar una deceleración en la diástole que tiene el efecto de estabilizar el flujo y restablecer un estado de flujo laminar. La aceleración aplaná el perfil del flujo y por tanto tiene también un efecto estabilizador.

La estenosis como ya sabemos provoca además una alteración en la pulsatilidad. Proximal a la estenosis aumenta la pulsatilidad (patrón de alta impedancia), mientras que distal a la misma, la resistencia de la estenosis y la complianza de los vasos distales se combinan para absorber los componentes de alta energía de la presión del pulso, lo que produce una pérdida de pulsatilidad (patrón de baja impedancia). Esto puede conducir a errores en la interpretación de la onda spectral, ya que una onda de baja impedancia podría reflejar tanto una estenosis proximal, como una disminución de la impedancia distal.

Parámetros de la onda spectral

Ahora es el momento de describir la onda spectral renal, objeto de nuestro estudio. La onda se encuentra definida en un eje de coordenadas velocidad (o frecuencia) / tiempo. Podemos por tanto medir parámetros como la velocidad sistólica, la aceleración, o el tiempo, así como la morfología de la misma.
Introducción. Diagnóstico

Complejo ESP (“early systolic peak”):
el pico sistólico precoz está formado por
una línea ascendente correspondiente a la
aceleración sistólica precoz seguido de
una muesca descendente, que indica la
complianza de la arteria. El pico del
complejo ESP debe formar un ángulo
agudo, y elevarse por encima del segundo
componente sistólico formado por una
onda redondeada descendente, de desaceleración, que se prolonga hasta la fase
diastólica. El ángulo entre el primer y segundo componentes de la fase sistólica debe
ser < 180º (fig 1.7).

Patrón morfológico: definiremos 6 patrones basándonos fundamentalmente en el
efecto Windkessel, es decir la presencia del pico de complianza y la forma de la
pendiente sistólica (fig 1.8).

1. Normal. ESP es mayor que el 2º pico sistólico y forma ángulo agudo con él.
2. Normal. ESP es menor que el 2º pico sistólico y forma ángulo agudo con él.
3. Normal. Ausencia de ESP. La pendiente inicial de la sistole es una línea recta y
forma un ángulo agudo con el siguiente trazado de la onda.
4. Indeterminada. Ausencia de ESP. La pendiente inicial de la sistole es una línea
recta, pero forma ángulo obtuso con el siguiente componente de la onda.
5. Anormal: ESP de morfología incongruente o pendiente inicial de la sistole curva.
Fig 1.8. Patrones morfológicos de ondas renales. Clasificación basada en los patrones de Stavros(142), Halpern(143) y René(144).

Indice de aceleración (IA). Determina la pendiente de la onda sistólica. Para calcularlo se traza una línea ascendente al inicio de la onda, que sigue la dirección del componente inicial de la sístole. A continuación se traza una segunda línea vertical, perpendicular al eje del tiempo, 1 segundo después, y se busca la intersección de ambas. El IA es igual al cociente de la altura de la línea en KHz y la frecuencia del transductor en MHz (145).

Fig 1.9. Indice de aceleración
Tiempo de aceleración (TA). Es el tiempo transcurrido desde el inicio de la sistole hasta el pico sistólico (142).

![Diagrama de tiempo de aceleración](image)

Indice de resistividad (IR). Mide la impedancia al flujo, y se expresa mediante la fórmula: \(IR = \frac{(A-B)}{A} \) donde A es la velocidad sistólica pico y B la velocidad diastólica final. Este índice puede expresarse también como un porcentaje (146).

Indice de pulsatilidad (IP). Este índice refleja la relación entre la complianza y la impedancia. Se expresa mediante la fórmula: \(IP = \frac{(A-B)}{C} \) donde A es la velocidad sistólica máxima, B la velocidad diastólica final, y C la velocidad media durante un ciclo cardíaco (146).
1.5.3.2. Ecografía Doppler renal. Métodos directos

La primera aproximación al estudio de la EAR mediante eco Doppler estaba dirigida al estudio del flujo en el lugar de la estenosis, es decir en la arteria renal principal. Este método obliga a valorar ambas arterias renales en toda su extensión, lo que requiere una técnica depurada, diferente para cada arteria.

La arteria renal derecha se origina de la cara anterolateral de la aorta abdominal, y sigue un curso posterior a la vena cava inferior (147). El extremo proximal de la arteria se sitúa por tanto en un plano muy profundo. En un abordaje anterior en plano transverso es difícil de valorar. En esta situación el eje del flujo se sitúa en un plano perpendicular al haz de ultrasonidos. Por esta razón es aconsejable un abordaje lateral u oblicuo a través del flanco derecho, con el paciente en decúbito lateral izquierdo de manera que la dirección de flujo sea paralela al haz Doppler. La arteria renal izquierda tiene su origen en la superficie posterolateral de la aorta, siguiendo un recorrido posterior a la vena renal izquierda. Esta última suele identificarse con facilidad, ya que presenta un mayor calibre que la arteria. El plano de abordaje empleado suele ser el transverso, tanto anterior como lateral, con el paciente en decúbito lateral derecho.

Otro método de abordaje para identificar las arterias renales es el denominado “banana peel”. En este caso se coloca al paciente en la posición decúbito contraria al lado de la arteria en cuestión, y se emplea un plano sagital hasta localizar la aorta; entonces se realiza un barrido en sentido anterior y posterior hasta localizar el origen de la arteria renal (116).

Criterios diagnósticos

La ecografía Doppler de la arteria renal principal ha sido utilizada en el diagnóstico de la EAR desde los años 80. Los criterios diagnósticos clásicos fueron propuestos por Greene (148) y Avasthi (149), e inicialmente incluían una velocidad...
sístólica pico (VSP) en la arteria renal > 100 cm/seg; ratio aorto-sístólica (RAR o velocidad sistólica pico en arteria renal / v. sistólica pico en aorta) ≥ 3,5; ensanchamiento espectral; ausencia de flujo diástólico y ausencia completa de flujo. Con estos criterios los resultados obtenidos son decepcionantes, con una sensibilidad de 0% y una especificidad de 37% (150;151).

Otros estudios presentan mejores resultados empleando como parámetros principales una VSP con un punto de corte > 180 o 200 cm/seg, y una RAR > 3 o 3,5 (130;152;153). Con estos criterios la sensibilidad de la ecografía Doppler se incrementa entre 50% y 98%, y la especificidad entre 62% y 98% (40;131;154;155). Algunos autores han propuesto además como criterio, una velocidad diastólica final (VDF) >150 cm/seg, aunque el uso de este parámetro está menos extendido (128).

Ventajas e inconvenientes

El número de arterias renales es muy variable en la población general. En estudios angiográficos se ha descrito la presencia de arterias accesorias en 15% de riñones (156). Esta variabilidad puede ser aún mayor. Kadir(147) describe una anatomía arterial variante hasta en 40% de los riñones, incluyendo tanto arterias múltiples, como divisiones precoces de la arteria renal principal. Hasta un 30% de individuos presentan más de una arteria, entre 2 y 4 por riñón, y esto ocurre con igual frecuencia en ambos riñones. Pueden encontrarse múltiples arterias unilaterales en 32% , y bilaterales en 12% de individuos. De éstas, aproximadamente el 10% son arterias accesorias, y el 20% son arterias aberrantes. Las arterias accesorias son vasos supernumerarios que entran en el riñón de manera independiente a través del hilio, y suelen tener su origen en la aorta abdominal, y más raramente en la arteria iliaca. Las arterias aberrantes se originan de la aorta o de las propias arterias renales. También se han observado arterias originadas en la mesentérica superior e inferior, sacra media, intercostales, lumbares, adrenales, frénicas, hepática o cólica derecha. Es un hecho que la estenosis aislada de una arteria accesoria puede producir hipertensión (151). Algunos estudios han intentado valorar la prevalencia de esta situación. Bude (157) estudia 68 pacientes con estenosis probada en
arteriografía y encuentra que solo 1,5% de los mismos presentaban estenosis aislada de una arteria accesoria, por lo que considera que los métodos no invasivos como la ecografía Doppler, son útiles a pesar de no detectar estas arterias.

La accesibilidad es una limitación importante sobre todo en la arteria renal derecha. La tortuosidad y elongación de la aorta abdominal, especialmente en los ancianos puede añadir un mayor grado de dificultad (116). Incluso cuando las arterias son accesibles, es posible que no se consiga corregir el ángulo de abordaje. Otros factores como la obesidad, la meteorización intestinal, o la dificultad del paciente para conseguir una pausa de apnea adecuada han sido igualmente aducidos como inconvenientes (117). Esta situación es más frecuente en los varones y en los pacientes con un índice masa corporal superior a 30 kg/m² (158).

El tiempo de exploración requerido en este tipo de estudio es muy elevado, con una media de 50 a 60 minutos (159). Esto se debe a la necesidad de valorar todo el recorrido de las arterias renales desde el ostium hasta el hilio renal, así como las posibles accesorias. Strandness (614) refiere tiempos de exploración de hasta 2 horas y un 10% de estudios no concluyentes por obesidad, interposición de gas intestinal u otros factores.

La variabilidad en los criterios diagnósticos empleados es importante. Como ya se ha expuesto los más usados son una velocidad sistólica pico, VSP > 180-200 cm/seg, una velocidad distal en la arteria renal inferior a ¼ de la VSP en la estenosis (ratio-renal-renal o RRR >4), una ratio aorto renal (RAR) >3-3,5 y el ensanchamiento espectral en el área postestenótica (17;160). Una estenosis > 50% de diámetro se ha relacionado con un punto de corte de VSP >180 cm/seg y una RRR > 4 (84). Este valor se establece de acuerdo a la ecuación de continuidad, de la cual puede inferirse el diámetro de la estenosis según la fórmula:

\[D[\%] = \left(1 - \frac{V_{post	ext{-}estenosis}}{V_{intra	ext{-}estenosis}}\right) \times 100 \]
Esta ecuación es empleada habitualmente en ecocardiografía para la cuantificación de la estenosis de la válvula aórtica (161). Sin embargo este cálculo no es completamente aplicable a nuestra estenosis por las razones que ya explicamos en el capítulo de hemodinámica, ya que solo se cumple en un régimen de flujo laminar. Otro tanto podemos alegar del ensanchamiento de espectro distal a la estenosis, que solo refleja un flujo turbulento, presente en la arteria renal en ausencia de estenosis, ya que en condiciones normales presenta un número de Reynolds muy elevado.

La variabilidad intra e inter-observadores para reproducir los resultados es otro problema reconocido de estas técnicas (131).

Teniendo en cuenta todos estos factores, entendemos que el grado de fracaso técnico para completar el examen llega a alcanzar el 50% de los pacientes. Si excluimos los estudios de Berland (151), y Desberg (150) ambos con pobres resultados, la mayoría de series consiguen valorar las arterias renales en 75% a 90% de los casos (128;160). En la tabla 1.8 se presentan los resultados de 15 estudios que emplean los métodos directos. Como puede observarse los criterios diagnósticos son similares, y la mayoría se refieren a estenosis > 60% de diámetro.

Las series de Kohler (152) (sensibilidad 91%, especificidad 95%) y Taylor (130) (sensibilidad 84%, especificidad 97%), son un referente en todos los trabajos sobre este tema a pesar del tiempo transcurrido desde su publicación. Sin embargo su valor debe ser cuestionado debido al tamaño de ambas muestras, 46 y 29 pacientes respectivamente. Además los autores no refieren el número de fracasos técnicos, lo que induce a sospechar un sesgo de selección.

Desberg (150) y Berland (151) presentan los peores resultados de la tabla. Nuevamente el tamaño muestral es reducido y poco representativo, 30 y 26 pacientes respectivamente. Llama la atención que ambos coinciden en serios problemas para completar sus exámenes, consiguiéndolo solo en 50% a 69% de los pacientes. Además
coinciden en unos pobres resultados, con 0% de sensibilidad y 37% de especificidad, lo que sin duda se debe a que emplean un valor de VSP >100 cm/seg, aunque no está claro en base a qué establecen este punto de corte.

Tabla 1.8. Doppler renal. Métodos directos

<table>
<thead>
<tr>
<th>Referencia</th>
<th>Criterio</th>
<th>Grado (%)</th>
<th>Nº (%)</th>
<th>C (%)</th>
<th>S (%)</th>
<th>E (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kohler (152) 1986</td>
<td>VSP > 180 cm/seg RAR > 3,5</td>
<td>> 60</td>
<td>46</td>
<td>-</td>
<td>91</td>
<td>95</td>
</tr>
<tr>
<td>Taylor (130) 1988</td>
<td>VSP > 180 cm/seg</td>
<td>> 60</td>
<td>29</td>
<td>-</td>
<td>84</td>
<td>97</td>
</tr>
<tr>
<td>Desberg (150) 1990</td>
<td>VSP > 100 cm/seg RAR > 3,5</td>
<td>>50</td>
<td>30</td>
<td>69</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Berland (151) 1990</td>
<td>VSP > 100 cm/seg</td>
<td>> 50</td>
<td>26</td>
<td>50</td>
<td>0</td>
<td>37</td>
</tr>
<tr>
<td>Hansen (154) 1990</td>
<td>VSP > 180 cm/seg</td>
<td>> 60</td>
<td>74</td>
<td>96</td>
<td>93</td>
<td>98</td>
</tr>
<tr>
<td>Hoffman (162) 1991</td>
<td>VSP > 180 cm/seg RAR> 3,5</td>
<td>> 60</td>
<td>41</td>
<td>87</td>
<td>92</td>
<td>62</td>
</tr>
<tr>
<td>Postma (160) 1992</td>
<td>>4 MHz ensanchamiento espectral VSP > 140 cm/seg</td>
<td>> 50</td>
<td>61</td>
<td>75</td>
<td>63</td>
<td>86</td>
</tr>
<tr>
<td>Karasch (163) 1993</td>
<td>VSP > 180 cm/seg</td>
<td>> 50</td>
<td>53</td>
<td>90</td>
<td>92</td>
<td>92</td>
</tr>
<tr>
<td>Strandness (155) 1994</td>
<td>VSP > 180 cm/ seg RAR > 3,5</td>
<td>> 60</td>
<td>41</td>
<td>90</td>
<td>92</td>
<td>62</td>
</tr>
<tr>
<td>Olin (128) 1995</td>
<td>VSP > 200 cm/seg RAR > 3,5</td>
<td>> 60</td>
<td>102</td>
<td>90</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>Miralles (153) 1996</td>
<td>VSP > 198 cm/seg RAR > 3,3</td>
<td>> 60</td>
<td>78</td>
<td>90</td>
<td>87</td>
<td>91</td>
</tr>
<tr>
<td>House (131) 1999</td>
<td>VSP > 180 cm/seg RAR > 3,5</td>
<td>> 60</td>
<td>63</td>
<td>76</td>
<td>81</td>
<td>78</td>
</tr>
<tr>
<td>Leung (159) 1999</td>
<td>RAR> 3,5</td>
<td>> 60</td>
<td>89</td>
<td>80</td>
<td>81</td>
<td>87</td>
</tr>
<tr>
<td>de Haan (40) 2002</td>
<td>VSP > 180 cm/seg RAR> 3,5</td>
<td>> 50</td>
<td>78</td>
<td>93</td>
<td>50</td>
<td>91</td>
</tr>
</tbody>
</table>

Abreviaturas: Grado: grado de estenosis; Nº: número de pacientes; C: estudios concluyentes; S: sensibilidad; E: especificidad.

Hansen (154) presenta unos magníficos resultados en un estudio de 74 pacientes. En su caso sólo el 4% de estudios fueron técnicamente insuficientes. La sensibilidad y especificidad alcanzan 93% y 98% respectivamente, con VPP 98%, VPN 94% y VG
96%. Sin embargo estos resultados se refieren exclusivamente a los pacientes con arterias renales únicas. En su serie la prevalencia de arterias múltiples es considerable, hasta un 19%. Cuando incluye estos casos la sensibilidad desciende hasta 67%. Por otro lado la selección de pacientes incluye un elevado número de pacientes con nefropatía isquémica, sin hipertensión.

Los estudios de Postma (160) y Karasch (163) se refieren a grados de estenosis $>50\%$ de diámetro, con resultados muy diferentes, sensibilidad 63% y 92%, con especificidad 86% y 92% respectivamente. Los diferentes criterios diagnósticos empleados y alta tasa de fracasos técnicos del primero explican esta discrepancia.

Strandness (155) emplea el criterio de VSP $>180\text{ cm/seg}$ de una manera arbitraria. A pesar de conseguir una alta sensibilidad, la especificidad es solo de 62%, reconociendo que es difícil clasificar las estenosis en grados menor y mayor de 60% de diámetro incluso en la arteriografía, necesitando hasta 3 lecturas de diferentes radiólogos.

Olin (128) presenta una sensibilidad y especificidad cercanos a 100%. La tasa de fracasos técnicos fue de 10%, y el tiempo medio de exploración de 1 hora. Llama la atención la elevada prevalencia de estenosis $>60\%$ en su serie (40%) y de oclusiones completas (23 de 187 arterias). Aunque el estudio es prospectivo los resultados hacen suponer que existe un sesgo de selección de pacientes, de hecho de los 102 pacientes de la serie, solo en 60 (58,8%) se realizó el doppler antes de la arteriografía, mientras que en los 42 restantes (41,2%) se realizó después, por lo que no se puede asegurar una lectura ciega. Por otro lado los estudios ecográficos fueron realizados por 4 personas diferentes, asegurando que no hubo diferencias en las lecturas, aunque no se refieren datos de concordancia. Sin embargo esto no puede ser cierto, es más algunos estudios fueron realizados por más de un técnico, ya que se prolongaron excesivamente, por lo que cabe cuestionarse quién realizó estas lecturas.
Miralles (153) mediante análisis de regresión logística encuentra que el mejor parámetro para diagnosticar estenosis es la VSP. En lugar de utilizar un punto de corte definido previamente para las variables, lo calcula mediante análisis de la curva ROC, obteniendo los mejores resultados para un valor de VSP >198 cm/seg en lugar de 180 o 200, y RAR > 3,3.

Hoffman (162) en una serie de 41 pacientes presenta una sensibilidad de 92%, con una tasa de fracasos de 13%. Años más tarde en una serie más numerosa, de 89 pacientes (159) sus resultados empeoran, con un 20% de fracasos y una sensibilidad de 81%. Es importante destacar que solo 60 pacientes fueron contrastados con angiografía, mientras que en el resto se comparó con angio-RM.

de Haan (40) en una serie interesante por ser muy reciente, empleando los criterios clásicos de este tipo de estudios vuelve a tener serios problemas. A pesar de completar el 93% de los exámenes la sensibilidad baja hasta el 50%.

1.5.3.4. Ecografía Doppler renal. Métodos indirectos

Estos métodos están dirigidos a valorar los cambios hemodinámicos producidos en el lecho vascular distal a la estenosis. Estos cambios provocan alteraciones en la onda espectral que se han denominado fenómeno “tardus parvus”. “Tardus” se refiere a un retraso o prolongación en la aceleración sistólica, mientras que “parvus” se refiere a una disminución de la amplitud o aplanamiento del pico sistólico de la onda. Este fenómeno fue descrito inicialmente por Kotval (164) en el territorio vascular carotídeo y por Humphries (165) en el sistema arterial periférico de los miembros inferiores. Más tarde Handa (166) y otros autores (167) han demostrado que la estenosis de la arteria renal produce cambios similares en la arteria renal distal a la estenosis, y en sus ramas intrarrenales.
La ecografía Doppler intrarrenal es un examen relativamente fácil de realizar, con un abordaje lateral o translumbar. Se examinan las arterias segmentarias e interlobares en distintas localizaciones a lo largo del riñón, incluyendo ambos polos renales y el seno renal. De esta manera se pretende descubrir las alteraciones de flujo debidas tanto a una estenosis de la arteria renal principal, como de una arteria accesoria o una rama segmentaria. Para valorar la estenosis se han propuesto varios parámetros de la onda espectral. Su valor diagnóstico ha sido evaluado en numerosas publicaciones con resultados muy dispares. Los principales criterios fueron descritos por Handa (166) y Stavros (142), y podemos dividirlos en dos tipos, cualitativos y cuantitativos.

Criterios diagnósticos cualitativos

Ausencia del complejo ESP (pico de complianza sistólica precoz; “early systolic compliance peak”). La onda espectral de la arteria renal y sus ramas es una onda de baja impedancia, bifásica, como la de todas las arterias que irrigan órganos parenquimatosos (hepática, esplénica, carótida...). Dicha onda en condiciones normales presenta un complejo ESP inicial. La ausencia del complejo ESP tiene un valor en el diagnóstico de la estenosis de la arteria renal variable, con una sensibilidad que oscila entre 57% y 95% y una especificidad de 67% a 97% (142;168).

Patrones morfológicos de la onda espectral. Basándose en la presencia o no del complejo ESP varios autores han propuesto una serie de clasificaciones o tipos morfológicos de ondas. Estas varían desde modelos sencillos, con tres tipos de onda de Stavros, a los cinco descritos por Kliwer (169), o René (144), y los nueve descritos por Oliva (170). A pesar de estas clasificaciones, la mayoría de autores consideran finalmente sólo dos tipos de ondas, normales o patológicas. La validez por tanto de este criterio no ha sido suficientemente establecida.
Criterios cuantitativos

La onda espectral se define en un eje de coordenadas de velocidad (o frecuencia) y tiempo. Por tanto podemos definir varios parámetros de una manera precisa y objetiva. Los más empleados son el tiempo y el índice de aceleración, el índice de resistividad y el índice de pulsatilidad. Otros parámetros como la ratio aceleración / tiempo, el tiempo de aceleración normalizado con el ciclo cardíaco, o la velocidad sistólica en la arteria renal distal son menos aceptados.

El tiempo de aceleración sistólica (TA), es el tiempo transcurrido, en segundos, desde el comienzo de la sistole hasta el pico de sistólico (171). La mayoría de los autores muestran un acuerdo en considerar un TA ≥ 0,07 seg como diagnóstico de estenosis, aunque los límites varían entre 0,05 y 0,1 seg (17;172). Con un punto de corte de 0,07 seg los resultados obtenidos varían desde un 41% a 100% de sensibilidad, y 20% a 100% de especificidad (142;168).

El índice de aceleración sistólica (IA), mide la pendiente de la onda sistólica por unidad de tiempo (cm/seg²). Para calcularlo se traza una línea ascendente al inicio de la onda, que sigue la dirección del componente inicial de la sistole. A continuación se traza una segunda línea vertical, perpendicular al eje del tiempo, 1 segundo después del inicio de la sistole y se busca la intersección de ambas (145). El IA es igual al cociente de la altura de la línea en KHz por la frecuencia del transductor en MHz. Existe una cierta controversia respecto al punto de corte de este criterio. Estudios experimentales sugieren que en situaciones normales el IA tiene un valor de 220 a 425 cm/seg². La mayoría de los autores considera que un valor < 300 cm/seg² es diagnóstico de estenosis, aunque también en este caso encontramos variaciones desde 210 a 378 cm/seg² (167;173). Los resultados diagnósticos empleando este parámetro, en términos de sensibilidad oscilan entre 56% y 100%, con una especificidad de 35% a 95%.
El índice de resistividad (IR) se expresa mediante la fórmula \(\text{IR} = \frac{(A-B)}{A} \)

donde A es la velocidad (o frecuencia) sistólica pico y B la velocidad (o frecuencia) diastólica final. Se postula que en presencia de una estenosis de la arteria renal el IR disminuye su valor. Se ha propuesto que un IR < 0,49 es diagnóstico de estenosis. Sin embargo, los valores normales y patológicos de este parámetro han sido muy discutidos ya que puede mostrar variaciones en función de la edad desde 0,4 a 0,7 (174-177). Por otro lado, también se ha demostrado que puede estar influenciado por diversas patologías como la diabetes (178), la aterosclerosis diseminada y otros factores. Por estas razones se ha propuesto como un parámetro que se relaciona mejor con la estenosis la diferencia entre el IR de ambos riñones o incremento del índice de resistividad (\(\Delta \text{IR} \)). Schwerk (124) considera que un \(\Delta \text{IR} > 5\% \) es diagnóstico de estenosis con una sensibilidad y especificidad de 82% y 92% respectivamente, mientras que un valor de \(\Delta \text{IR} > 10\% \) muestra 100% de sensibilidad y 94% de especificidad.

El índice de pulsatilidad (IP) se expresa mediante la fórmula \(\text{IP} = \frac{(A-B)}{C} \),

donde A es la velocidad sistólica máxima, B la velocidad diastólica final, y C la velocidad media durante un ciclo cardíaco (146). Existen pocas referencias en la literatura respecto al uso del IP en el diagnóstico de la estenosis renal (179), por lo que su papel está por definir. Johansson (41) refiere un menor valor de IP en los riñones con estenosis arterial (IP = 0,96 ± 0,05) que en los no estenóticos (1,1 ± 0,02), y propone que la diferencia entre los IP de ambos riñones (incremento del índice de pulsatilidad) \(\Delta \text{IP} > 20\% \) es un criterio diagnóstico de estenosis con una sensibilidad de 65% y especificidad de 95%. Cuando combina este criterio con un IA < 230 cm/seg² sus resultados mejoran hasta 87% y 92% de sensibilidad y especificidad respectivamente. En la discusión realizaremos un análisis exhaustivo de estos criterios, y compararemos nuestros resultados con los de diferentes series de la literatura.
Ventajas e inconvenientes de los métodos indirectos

La aproximación indirecta presenta una serie de ventajas frente a los métodos descritos anteriormente. Una de las principales es su mayor aplicabilidad, con una tasa de fracasos técnicos casi nula, ya que las arterias segmentarias pueden ser valoradas prácticamente en todos los pacientes mediante un abordaje lateral o translumbar, que permite conseguir un ángulo de incidencia correcto sobre el vaso, con independencia de factores como la obesidad y el índice masa corporal alto, o la meteorización intestinal. El porcentaje de fracasos técnicos general es de 0% a 2% frente al 4% a 50% de los métodos directos (17).

Otra de las ventajas es la independencia con respecto a la localización de la estenosis o al número de arterias renales. Los trastornos del flujo intrarrenal deben ser manifestos tanto para estenosis de las arterias renales principales (ostiales o no), como de arterias accesorias o aberrantes dependen de la aorta o de cualquier otro origen, o de arterias segmentarias. El tiempo medio de examen (20 minutos) es muy inferior al requerido en los estudios directos (133).

Por el contrario esta técnica presenta limitaciones en pacientes con trastornos hemodinámicos externos a la circulación renal, o en aquellos que tienen dificultad para conseguir una pausa de apnea adecuada (116). Otro problema potencial es la variabilidad de patrones de ondas espectrales en la población sin estenosis (177), y el solapamiento que pueden presentar con los patrones patológicos en caso de estenosis. La disparidad de criterios diagnósticos y grado de estenosis valorada, la variabilidad de resultados, la alta dependencia del operador (169), la dificultad para distinguir entre estenosis severas y oclusión total de la arteria, y la complejidad hemodinámica del fenómeno tardus parvus, son otras de las desventajas de estas técnicas.

Patriquin (145), Lafortune (180) y más recientemente Deane (181) piensan que el fenómeno tardus parvus en la circulación renal se debe a la caída de presión a través de
la estenosis, sin embargo estudios como los de Kliewer (169) y el modelo experimental de Bude (120) demuestran que este fenómeno depende de múltiples factores como el grado de estenosis, la complianza distal y factores externos a la circulación renal (insuficiencia cardíaca, o efectos sistémicos de la hipertensión).

La caída de presión a través de la estenosis se relaciona de manera directa con el cuadrado del flujo \(Q^2\). En consecuencia la mayor pérdida de presión se produce en el momento del pico sistólico y disminuye en la diástole. Esto provoca un cambio dinámico de la resistencia a través de la estenosis que amortigua la onda distalmente (181).

La complianza de los vasos intrarrenales distales a la estenosis depende de la distensibilidad, diámetro y longitud del vaso (120). El fenómeno tardus puede ocurrir independientemente de la caída de presión en la estenosis, y aumenta cuando aumenta la complianza distal del segmento post-estenótico. Además el grado del complianza necesario para provocarlo disminuye cuando aumenta el grado de estenosis.

Son fenómenos parvus la disminución de la velocidad y del índice de resistividad (IR) en las arterias distales intrarrenales (124;126), mientras que se consideran fenómenos tardus el enlentecimiento del tiempo de aceleración (84;132;167), un menor índice de aceleración (182), la pérdida del pico sistólico precoz ESP (142), y la detección de un flujo invertido hacia el seno renal en los vasos perforantes corticales (38)

1.5.3.5. Métodos combinados (directos e indirectos)

Muchos autores se han planteado qué enfoque es el más adecuado en el diagnóstico de la estenosis renal. Halpern (183) fue el primero en preguntarse dónde debía mirar. Empleando como criterio directo una RAR > 3.5 y como indirecto un IA $< 210 \text{ cm/seg}^2$ consigue una sensibilidad y especificidad de 86% y 91% respectivamente.
Introducción. Diagnóstico

Krumme (126) y *Voiculescu* (184) combinan una VSP > 200 cm/seg en arteria renal principal y un $\Delta IR > 5\%$ en las arterias intrarrenales, consiguiendo una sensibilidad de 89% a 95% y especificidad de 89% a 92%. Otros autores (84) (127) optan por la combinación de la VSP en la arteria renal y el TA en las arterias segmentarias, o con mejores resultados (sensibilidad 79% a 96%, especificidad 93% a 98%). Por último se han propuesto combinaciones variables de otros parámetros como RAR, IA, IP, IR, e ΔIR (185;186).

1.5.3.6. Ecografía Doppler renal con Captopril

La variabilidad de los resultados descritos hasta el momento ha conducido a algunos autores al desarrollo de nuevas técnicas. *Bude* (120) basándose en observaciones sobre un modelo experimental sugiere que el fenómeno tardus parvus distal a la estenosis dependen de la complianza del lecho vascular distal, más que de la caída de presiones a través de la estenosis.

Como ya es conocido, la Angiotensina II (A-II) produce un incremento en las resistencias del lecho vascular renal. Se ha sugerido que el efecto vasoconstrictor preferencial se produce a nivel de la arteriola eferente, aunque se ha probado que todo el lecho microvascular preglomerular responde igualmente a la acción de la A-II, incluyendo las arterias arcuatas, interlobulares y arteriolas aferentes (187). La acción de los IECA provoca la disminución de la resistencia vascular renal distal, y un aumento de la complianza. *Petrolesi* (188) valoró los cambios en el flujo sanguíneo intrarrenal en una población de voluntarios normotensos tras la administración de Captopril mediante Doppler, encontrado un incremento significativo en la velocidad sistólica y diastólica pico, aunque no observó variaciones en el IR.

En 1995 *René* (144) realizó los primeros estudios en pacientes con sospecha de estenosis renal. A todos los pacientes se les practicó una ecografía Doppler basal tras la cual se les administró una dosis de 25 mg de Captopril v.o. Al cabo de 1 hora se repitió
el examen. Al comparar los resultados de ambos estudios se observó que los pacientes con estenosis arterial renal mostraban un descenso de IR y un realce marcado del patrón morfológico, con mínimas diferencias en otros parámetros como IA y TA. La sensibilidad de la ecografía basal en el diagnóstico de la estenosis fue de 68%, mientras que en el estudio posterior a la administración de Captopril alcanzó el 100%. En el mismo año Veglio (189) refiere hallazgos similares al comparar un grupo de pacientes hipertensos con individuos normotensos.

En 1998 Oliva (170) publica un estudio en pacientes con sospecha de estenosis arterial renal comparando los hallazgos en eco Doppler antes y después de la administración de Captopril con resultados sorprendentes, pasando de sensibilidad y especificidad de 81% y 99% respectivamente en el Doppler basal, a 100% de sensibilidad y especificidad. Estos resultados se obtienen estudiando parámetros indirectos como el patrón morfológico, IA y TA. Más recientemente, en 2001 Qanadli (190) informa de resultados más realistas con esta técnica, presentando una sensibilidad que varía de 62% a 79% y especificidad de 80% a 95%.

1.5.3.7. Ecografía Doppler con potenciadores de señal

Los ecopotenciadores son agentes que actúan aumentando la intensidad de la señal ecográfica y por tanto el rendimiento diagnóstico en eco Doppler. Algunos de estos fármacos como la albúmina humana (Albunex®)(191) y la albúmina con microesferas de octofluoropropano (Optison®) (192) están siendo usados desde hace años en otros territorios vasculares, especialmente el cardíaco.

SH U 508 A (Levovist®, Levograf®) es un compuesto de micropartículas de galactosa y ácido palmítico que tras inyectarse por vía venosa periférica libera pequeñas burbujas de aire adsorbidas en su superficie. Esto tiene el efecto de amplificar la señal acústica entre 16 db y 20 db durante varios minutos, al aumentar la impedancia acústica en la interfase del fluido en movimiento (la sangre circulante) con los tejidos estáticos.
Al tratarse de galactosa, el producto está prácticamente carente de efectos adversos habiéndose descrito tan sólo efectos menores como sensación de frío o calor, dolor en la zona de inyección, o alteraciones del gusto en 5% de pacientes. La única contraindicación formal a su uso es la galactosemia.

Los primeros ensayos en el territorio vascular renal son publicados por Lees (194) y Missouris (195). Estos autores consiguen completar el estudio en todos sus pacientes con sospecha de estenosis arterial renal. Empleando como criterio indirecto un IA < 375 cm/seg², consiguen una sensibilidad de 94% a 95%, y especificidad de 88% a 93%. Posteriormente otros autores han observado hallazgos similares, consiguiendo completar la exploración en 99% de pacientes (196;197).

Claudon (198) refiere un estudio multicéntrico, en el que se valoran criterios directos de diagnóstico de estenosis arterial renal en Doppler. El estudio basal solo pudo completarse en 64% de los pacientes, frente al 84% de los casos realizados con potenciador. Además la sensibilidad diagnóstica se incrementó desde un 80% a 83,7%, y la especificidad de 80,8% a 83,6% en los estudios con potenciador. Otros autores han combinado los potenciadores con técnicas ecográficas de segundo armónico, consiguiendo valorar el 98% de los vasos estudiados con potenciador, frente al 56% antes de su administración (199).
En la actualidad productos como perfenaplent (Echo-Gen®), perfluorhexano (Imagent®), BR1 (Sonovue®) y otros están en fase de ensayo o se empiezan en otros territorios (200-203). Los ensayos de fase III con Sonovue® han mostrado visualización de la arteria renal en 100% de los casos (117).

1.5.3.8. Eco Doppler y revascularización renal.

La revascularización renal en pacientes con estenosis arterial renal, ya sea mediante técnicas quirúrgicas o endovasculares, ha demostrado mejorar el control de la hipertensión y la función renal en un número importante de pacientes (135;136).

La ecografía Doppler puede ser útil en la selección de pacientes candidatos a estas técnicas. *Radermacher* (42;125), ha sugerido que un valor de IR > 0,8 en pacientes con estenosis es un factor de mal pronóstico, e indica que las cifras tensionales y la función renal no mejorarán tras la revascularización renal, ya sea por cirugía o angioplastia.

A pesar de los beneficios de estos tratamientos, es conocido que la permeabilidad a largo plazo tras la revascularización es limitada, existiendo una tendencia a la reestenosis y la oclusión (204). Por esta razón algunos autores han propuesto el uso de la ecografía Doppler en el seguimiento de pacientes sometidos a angioplastia o stent renal (116). *Baumgartner* (139) propone el control de la estenosis mediante métodos directos de análisis de la arteria renal principal. *House* (129)y *Bakker* (205) con un planteamiento similar, consiguen detectar la reestenosis con una sensibilidad de 100% y especificidad de 75% a 90%.

Otros autores proponen incluso el uso de la ecografía Doppler intraoperatoria, durante la cirugía de revascularización, para valorar la estenosis residual o la presencia de un flap intimal que pueden ser de este modo corregidos antes de cerrar el campo quirúrgico (206).
1.6. Tratamiento de la estenosis de la arteria renal

1.6.1. Tratamiento médico

Al igual que otras formas de hipertensión con elevación de niveles de renina, la hipertensión vascular renal no complicada responde de manera adecuada a los agentes beta bloqueantes, los inhibidores de la enzima convertidora de angiotensina (IECA), y los antagonistas de los receptores de angiotensina (ARA). Sin embargo, con el tiempo, el desarrollo de azotemia produce retención de volumen, y aparece un componente de la hipertensión dependiente de la retención de sodio y agua. En este caso se hace necesario el tratamiento diurético y una dieta con restricción de sal. Dado que con frecuencia la hipertensión precede al desarrollo de la nefropatía isquémica, la mayoría de los pacientes reciben tratamiento médico de forma primaria (207).

El tratamiento médico es necesario incluso a pesar de la revascularización quirúrgica o endovascular. Muchos pacientes presentan una hipertensión esencial subyacente que requiere medicación a largo plazo. En otros a pesar de producirse mejoria es necesario mantener un régimen de fármacos a menor dosis o reducir el número de drogas necesarias para el control de la hipertensión tras la revascularización.

1.6.2. Técnicas de revascularización quirúrgicas

Hasta el desarrollo de las técnicas endovasculares, las técnicas quirúrgicas eran las únicas disponibles en el tratamiento de la estenosis de la arteria renal. Las indicaciones actuales de estos procedimientos incluyen aquellas lesiones que no pueden ser tratadas de forma adecuada con técnicas percutáneas, las estenosis recurrentes después de la implantación de un stent, y la cirugía aórtica simultánea en caso de aneurisma o enfermedad oclusiva aorto-iliaca (20). Las técnicas quirúrgicas incluyen:
El by-pass aorto-renal con arteria hipogástrica autógena o safena, es el método más frecuente en los pacientes sin lesiones de la aorta abdominal. Un graft de PTFE puede emplearse cuando no es posible utilizar un injerto autógeno. La endarterectomía renal es otro método que continúa en uso.

En pacientes con una aterosclerosis severa de la aorta la alternativa más eficaz es el by-pass espleno-renal en la revascularización del riñón izquierdo, y el hepato-renal en la del riñón derecho, lo que exige que el origen del tronco celiaco se encuentre libre de lesiones, sin embargo esto no siempre es posible. En algunos estudios se encuentran estenosis significativas del tronco celiaco asociadas a la estenosis renal hasta en 50% de los casos.

Un alternativa más reciente, en pacientes con afectación severa de la aorta abdominal y sus ramas viscerales es el by-pass a la aorta supraceliaca, e incluso a la aorta torácica distal, la cual se encuentra libre de lesiones ateromatosas con más frecuencia. Otros métodos incluyen el autotransplante renal y el by-pass mesentérico-renal (208).

En general los pacientes con estenosis arterial renal por aterosclerosis se consideran candidatos de alto riesgo para la cirugía. La mortalidad quirúrgica varía entre 2,1% y 6,1%. El riesgo es mayor en la cirugía de revascularización bilateral, o cuando la revascularización se realiza junto a otras técnicas mayores, como la cirugía de sustitución aórtica. Varios estudios demuestran una supervivencia a largo plazo de los pacientes tras cirugía vascular renal reducida. La mortalidad a 5 años es de 21%. Esta mortalidad se relaciona fundamentalmente con la enfermedad coronaria y vascular cerebral.

Los resultados clínicos de la cirugía demuestran curación o mejoría de la hipertensión hasta en 72% de los casos, con un descenso significativo de los niveles de
creatinina en suero, y estabilización de la función renal. Tan solo en un 8% de los pacientes se produce una progresión a la insuficiencia renal terminal (209).

1.6.3. Técnicas de revascularización endovascular

La angioplastia con balón y el stent se han convertido en las técnicas de revascularización de primera elección dada la significativa morbi-mortalidad asociada a las técnicas quirúrgicas. Las indicaciones para realizar estos procedimientos incluyen estenosis de grados cada vez menores. Inicialmente se consideraban las estenosis > 70% de diámetro, sin embargo la naturaleza progresiva de la enfermedad, y el reconocimiento de la mejoría tanto de la hipertensión, como de la función renal en estos pacientes, ha generado un uso más amplio, realizándose actualmente en estenosis >50% de diámetro.

El resultado de estas técnicas es similar al de la cirugía, aunque las complicaciones y el coste económico son considerablemente menores. Sin embargo cualquier comparación con las técnicas quirúrgicas sería incorrecta, ya que la selección de pacientes no es la misma. Independientemente del grado de estenosis, muchos de los pacientes tratados por técnicas endovasculares son pacientes no candidatos a cirugía por un riesgo quirúrgico o anestésico elevado. El éxito técnico se cifra entre el 88% a 100%, considerando como tal la resolución de la estenosis o una estenosis residual < 30% de diámetro (210;211). En las lesiones ostiales la implantación de stent se considera como la primera opción, dado que estas lesiones suelen estar intensamente calcificadas y responden parcialmente a la angioplastia (212). Los resultados generales del stent son indiscutiblemente mejores que los de la angioplastia aislada (213), y reducen la tasa de reestenosis.

La permeabilidad general a los 12 meses para estas técnicas se ha cifrado entre 65% y 82%. Es importante distinguir entre lesiones ostiales y lesiones en el tronco de la arteria, ya que los resultados y la permeabilidad a largo plazo varían considerablemente.
En las lesiones ostiales (0-5 mm del ostium) solo alcanza un 34%, en las proximales (5 a 10 mm) un 65%, mientras que en las troncales llega al 83% (139).

Tras la revascularización se ha observado curación o mejora de la tensión arterial entre un 60% y 86% de los pacientes (134;135). La función renal se estabiliza o disminuye su progresión en el 40% a 68% de los casos (214).

La supervivencia a largo plazo de los pacientes es limitada, al igual que ocurría con la cirugía. Wollenberg (215) refiere una supervivencia a 5 años de 66% para pacientes con estenosis de arteria renal en una serie de 112 pacientes. Esto se debe como explicamos antes a que la estenosis renal es una manifestación más de una aterosclerosis diseminada, con afectación cardiaca, cerebral y periférica.

Las complicaciones oscilan entre 13% y 24%, siendo la mayoría menores, incluyendo fundamentalmente hematomas en la zona de punción. Otras complicaciones posibles son, la oclusión de la arteria renal transitoria por vasoespasmo, la disección, o la trombosis arterial renal secundarias a la manipulación con la guía y catéter en la lesión, el pseudoaneurisma femoral, y el fracaso renal agudo por efecto del contraste (216;217). La mortalidad general relacionada con la técnica es de 2% a 3%, algo menor que la de la cirugía, aunque debemos considerar que la mayoría de estos pacientes no hubiesen sido candidatos a cirugía por tener un riesgo elevado.

El mayor problema de estas técnicas radica en determinar qué pacientes se beneficiarán de la revascularización, incluso se ha planteado un debate sobre los beneficios reales de la revascularización (218). Se consideran factores predictivos favorables una hipertensión de corta evolución, la presión diastólica elevada, la estenosis por displasias fibromusculares, un grado de estenosis severo en la angiografía, y una ateromatosis de bajo grado en la aorta (219). Un tamaño renal menor de 8 cm, la presencia de hialinización glomerular difusa en la biopsia, una esclerosis difusa de las arterias intrarrenales en la arteriografía, o la aterosclerosis severa de la
aorta se asocian a un mal pronóstico respecto a la recuperación de la función renal. Sin embargo estos datos no son conocidos a priori (salvo el tamaño renal). *Radermacher* (42) propone emplear la ecografía Doppler con carácter predictivo, y establece que un índice de resistividad $> 0,8$ indica un mal pronóstico en cuanto a la recuperación de la función renal.
2. Hipótesis de Trabajo. Objetivos

2.1. Premisas

La enfermedad vascular renal es una causa importante de morbilidad en nuestro entorno. Sus principales manifestaciones clínicas son la hipertensión vascular renal y la nefropatía isquémica.

La prevalencia de la enfermedad no ha sido claramente definida, aunque se ha demostrado que se incrementa con la edad y con el empleo de métodos de screening de gran difusión.

Los principales test de screening disponibles en la actualidad, presentan resultados insuficientes y no identifican con seguridad a los pacientes con una enfermedad significativa.

La ecografía doppler es un método diagnóstico no invasivo de uso generalizado, con una amplia disponibilidad en la práctica clínica, y que puede aplicarse a amplios grupos de la población general. Ofrece información morfológica y funcional. Su valor diagnóstico es limitado por diversos condicionantes atribuibles a la técnica o al propio paciente, presenta una amplia variabilidad en la práctica, y una correlación dispar entre observadores.
La combinación de Captopril con técnicas isotópicas ha sido utilizada como técnica diagnóstica con resultados igualmente dispares.

Los fármacos potenciadores de señal han demostrado mejorar el rendimiento diagnóstico de la ecografía Doppler en diversos territorios vasculares, con una incidencia de efectos adversos prácticamente nula, por lo que pueden emplearse en la población general con un riesgo mínimo.

2.2. Formulación de la hipótesis:

“La combinación de ecografía Doppler con fármacos potenciadores de señal y test de Captopril permitirá optimizar el rendimiento diagnóstico de la ecografía Doppler, así como la correlación entre observadores, consiguiendo resultados de sensibilidad y especificidad adecuados para su empleo como test de screening generalizado”.

De un lado el uso de potenciadores de señal nos permitirá estudiar a la práctica totalidad de los pacientes, consiguiendo incrementar la señal doppler 20 db durante el tiempo suficiente para completar el análisis espectral, eliminando las limitaciones técnicas por señal inadecuada, incrementando la aplicabilidad del test.

De otro la estimulación con agentes IECA modificará el flujo intrarrenal distal a la estenosis, realzando los hallazgos ecográficos, provocando una mayor amortiguación de la onda espectral, con descenso de la resistividad, disminución de la amplitud de la sistole, realce del patrón morfológico, y disminución de la aceleración, lo que incrementará la sensibilidad diagnóstica.
2.3. Objetivos

2.3.1. Primarios

Establecer el valor real de la ecografía Doppler en el diagnóstico de la estenosis de las arterias renales en pacientes con criterios clínicos de hipertensión vascular renal.

Establecer los criterios de evaluación del análisis espectral de las arterias intrarrenales en diferentes grados de estenosis en arteriografía (50% y 70%).

Incrementar el valor diagnóstico de la ecografía Doppler combinando el uso de potenciadores de señal (SHU 508 A) y el test de Captopril.

2.3.2. Secundarios

Determinar la reproducibilidad de los resultados en diferentes observadores.

Valorar la acción de Captopril en la hemodinámica renal.

Valorar la prevalencia la estenosis arterial renal y describir los factores de comorbilidad asociados a la enfermedad en la población estudiada.
3. Material y Métodos

3.1. Diseño

Diseñamos un estudio transversal descriptivo para la evaluación de una prueba diagnóstica, con lectura doble ciego. Entre noviembre de 1999 y octubre de 2002 estudiamos de manera prospectiva un total de 133 pacientes con sospecha de estenosis de la arteria renal. Los pacientes procedían de la Unidad de Hipertensión y de la consulta de Nefrología del Complejo Hospitalario de Ciudad Real. Estas unidades son las únicas de referencia en la provincia. Todos los pacientes cumplieran al menos uno de los criterios de inclusión definidos a continuación.

3.1.1. Criterios de inclusión y exclusión

Criterios de inclusión:

Hipertensión maligna o acelerada con fondo de ojo grado III o IV.

Hipertensión refractaria a tratamiento, que requiere tres o más drogas antihipertensivas a dosis máximas.

Comienzo de la hipertensión en edades inferiores a 25 años, o superiores a 50 años, especialmente en ausencia de antecedentes familiares.

Hipertensión o insuficiencia renal con asimetría renal superior a 1,5 cm.

Hipertensión en pacientes con aterosclerosis difusa.
Incremento agudo y mantenido de las cifras tensionales superiores al 15% sobre la tensión arterial basal en pacientes con hipertensión arterial previamente controlada.
Insuficiencia renal en ausencia de enfermedad renal previa o proteinuria.
Fracaso renal agudo inducido por la toma de inhibidores de la enzima convertidora de Angiotensina.
Presencia de soplo abdominal.
Edema agudo de pulmón inexplicado o recurrente.

Criterios de exclusión:

Edad inferior a 18 años
Hipersensibilidad a Captopril u otros IECA
Enfermedad oclusiva arterial aguda, cerebral, cardiaca o periférica en los últimos 3 meses.
Cardiopatía isquémica con angina inestable.
Insuficiencia cardiaca congestiva superior al grado II de la NYHA.
Embarazo en mujeres en edad fértil.
Hiperpotasemia con cifras de K en suero > 5.5 mmol/l.
Galactosemia.

A todos los pacientes incluidos se les realizó una ecografía Doppler y una arteriografía como test de referencia. Se elaboró un modelo específico de consentimiento informado, que fue aprobado por el comité ético del centro y firmado por todos los pacientes, sin excepción.

3.1.2. Datos clínicos y analíticos

Antes de realizar las exploraciones radiológicas se recogieron en consulta una serie de datos basales de la historia clínica que incluyeron en todos los casos: edad, sexo, antecedentes familiares de hipertensión, tabaquismo, años de evolución de la hipertensión arterial, número de drogas necesario para el control de la hipertensión,
presencia o ausencia de arteriosclerosis en diferentes territorios como enfermedad coronaria, enfermedad vascular cerebral, y enfermedad vascular periférica, diabetes, y tratamiento hipolipemiante.

La exploración física incluyó igualmente los siguientes registros: determinación de la presión arterial en consulta en situación de sedestación y tras 5 minutos de reposo en 2 ocasiones, hallando la media de ambas; presencia de retinopatía hipertensiva registrándola mediante el sistema de graduación de Keith-Wegener; presencia de soplo abdominal; índice de masa corporal (relación peso / talla²); electrocardiograma de 12 derivaciones.

Las determinaciones analíticas en todos los casos incluyeron: hemograma; estudio de coagulación (tiempo de protrombina, a TTP y fibrinógeno); sodio; potasio; urea; creatinina; colesterol; HDL-colesterol; LDL-colesterol; triglicéridos, y ácido úrico en suero. Las determinaciones en orina incluyeron: sodio; potasio; microalbuminuria de 24 horas y aclaramiento de creatinina (fórmula de Cockcroft). Todas las variables recogidas se relacionan en el anexo 1 y 2.

3.1.3. Eco Doppler renal. Descripción de la técnica

Todos los pacientes recibieron instrucciones para la suspensión de la medicación antihipertensiva al menos 7 días antes de la realización de la prueba. En caso necesario se prescribieron agentes inhibidores de los canales del calcio de acción prolongada, ya que no han mostrado interferencia en los resultados de la prueba. Igualmente se aconsejó una dieta normal en sal en las 48 horas previas al examen, con una ingesta mínima de 3000 cc de agua al día, de no existir contraindicación. El día de la prueba los pacientes acudieron en ayuno de al menos 4 horas, excepto en lo que se refiere a la ingesta líquida.
A todos los pacientes se les realizó una ecografía Doppler renal en situación basal y tras la administración de Captopril en el mismo día, con un intervalo de tiempo entre ambas de 60 a 90 minutos. Ambas ecografías fueron realizadas con potenciador de señal. Antes de iniciar el estudio se registró la tensión arterial basal y se insertó una vía intravenosa periférica. A continuación se inyectó una solución 2g de SHU-508-A (Levovist ®) a concentración 400 mg/ml por cada riñón, procediéndose al examen Doppler basal. Tras finalizar el examen el paciente recibió 50 mg de Captopril por vía oral. Transcurridos entre 60 y 90 minutos se registró nuevamente la tensión arterial y se realizó el segundo eco Doppler con potenciador.

El abordaje ecográfico fue lateral o translumbar para evitar la interposición del tejido hepático o esplénico y corregir el ángulo de incidencia (< 60º). Para optimizar el análisis espectral se aplicaron los siguientes parámetros: transductor de 3,5 MHz; ángulo Doppler < 60º; filtro de pared lo más bajo posible (50-100 Hz); escala de velocidad lo más baja posible; power output 60-100%; volumen de muestra 1-3 mm. Se utilizó el modo color (DCI) y angio (power) para localización de arterias intrarenales. Se obtuvo un trazado de al menos 3 complejos de ondas de morfología similar para realizar los cálculos. Se estudiaron las arterias segmentarias e interlobares, obteniendo al menos 3 muestreos en cada riñón, uno en el polo superior, otro en el tercio medio, y otro en el polo inferior. Con este método se pretendió evitar que pasaran inadvertidas las posibles estenosis en arterias accesorias o en ramas distales de la arteria renal.

Se determinaron los siguientes parámetros: índice de aceleración (AI), tiempo de aceleración (AT), índice de resistividad (IR), índice de pulsatilidad (IP), morfología de la onda espectral (MORFO) y presencia o ausencia de pico sistólico precoz (ESP). Se registraron todos los datos correspondientes a cada muestreo, es decir las 3 series de datos por cada riñón. Todos los estudios fueron realizados en nuestro centro, en un mismo ecógrafo Philips SD-800 por dos radiólogos con experiencia en eco Doppler, obteniendo 2 registros en película radiológica y uno en cinta de vídeo. Los resultados
fueron leídos por dos radiólogos con experiencia en eco Doppler de manera independiente, doble ciego y registrados en una hoja de datos (ver anexo).

Variables ecográficas estudiadas

ESP
Pico sistólico precoz.
Tipo: categórica, dicotómica.
Valores: 1 presencia; 2 ausencia.

MORFO
Patrón morfológico de la onda.
Tipo: categórica, nominal.
Valores 1 al 6 (ver descripción).

RESD
Lectura del observador (resultado de ecografía Doppler).
Tipo: categórica, nominal.
Valores: 1 normal; 2 patológico; 3 no concluyente.

IA
Indice de aceleración (pendiente de la onda sistólica inicial).
Tipo: cuantitativa continua.
Valores: 0 – 2000
Unidades: cm/seg².

TA
Tiempo de aceleración (medido desde el inicio de la sistole hasta el primer pico sistólico).
Tipo: cuantitativa continua.
Valores: 0 – 1
Unidades: seg.

IR
Indice de resistividad (velocidad sistólica pico - velocidad diastólica final / velocidad sistólica pico).
Tipo: (semi)cuantitativa continua.
Valores: 0 – 1
Unidades: -

IP
Indice de pulsatilidad (*Goslin index*).
Tipo: (semi)cuantitativa continua.
Valores: 0 – 10
Unidades: -

TAMR
Tamaño renal
Tipo: cuantitativa continua.
Valores: 0 – 14
Unidades: cm.
Material y Métodos.

<table>
<thead>
<tr>
<th>Tiempo</th>
<th>Tiempo de exploración</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo</td>
<td>cuantitativa</td>
</tr>
<tr>
<td>Valores</td>
<td>1 –30.</td>
</tr>
<tr>
<td>Unidades</td>
<td>minutos.</td>
</tr>
</tbody>
</table>

Intervalo: Intervalo de tiempo transcurrido entre la ecografía basal y la ecografía post captopril.
Tipo: cuantitativa
Unidades: minutos.

Criterios diagnósticos a priori

<table>
<thead>
<tr>
<th>Variable</th>
<th>Valor</th>
<th>Hipótesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESP</td>
<td>1 (presencia)</td>
<td>Prueba negativa = no estenosis</td>
</tr>
<tr>
<td></td>
<td>2 (ausencia)</td>
<td>Prueba positiva = estenosis</td>
</tr>
<tr>
<td>MORFO</td>
<td>1</td>
<td>Prueba negativa = no estenosis</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Prueba negativa = no estenosis</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Prueba negativa = no estenosis</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Prueba negativa = no estenosis</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Prueba positiva = estenosis</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Prueba positiva = estenosis</td>
</tr>
<tr>
<td>IA</td>
<td>≥ 300</td>
<td>Prueba negativa = estenosis</td>
</tr>
<tr>
<td></td>
<td>< 300</td>
<td>Prueba positiva = estenosis</td>
</tr>
<tr>
<td>TA</td>
<td>< 0.07</td>
<td>Prueba negativa = no estenosis</td>
</tr>
<tr>
<td></td>
<td>≥ 0.07</td>
<td>Prueba positiva = estenosis</td>
</tr>
<tr>
<td>IR</td>
<td>≥ 0.49</td>
<td>Prueba negativa = no estenosis</td>
</tr>
<tr>
<td></td>
<td>< 0.49</td>
<td>Prueba positiva = estenosis</td>
</tr>
</tbody>
</table>

La lectura del observador (variable RESD) es un criterio subjetivo, por lo que convencionalmente se establecieron unos criterios de lectura para esta variable. Uno de estos criterios aislado se consideró suficiente para establecer el diagnóstico.

<table>
<thead>
<tr>
<th>Estudio positivo o patológico</th>
<th>Estudio negativo o normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>MORFO : 5 – 6</td>
<td>MORFO: 1 – 2</td>
</tr>
<tr>
<td>AI < 200 cm/seg2</td>
<td>AI ≥ 300 cm/ seg2</td>
</tr>
<tr>
<td>AT ≥ 0.09 seg</td>
<td>AT ≤ 0.07 seg</td>
</tr>
</tbody>
</table>

Todos los pacientes incluidos fueron sometidos a un angiografía que se realizó en nuestro centro en la unidad de Radiología Vascular Intervencionista en un plazo máximo de tres meses, para lo cual los pacientes ingresaron durante 24 horas. Los estudios se realizaron en un angiógrafo digital Siemens Digitron.

Se utilizó el abordaje por vía arterial femoral o axilar mediante la técnica de Seldinger. Se realizó un aortograma abdominal no selectivo en proyecciones anteroposterior y oblicuas con un catéter de calibre 5F tipo pig tail, seguido de cateterización selectiva de las arterias renales con catéter Cobra 5F.

Se valoró el nº de arterias renales, grado de estenosis y su localización diferenciando arteria renal principal, ramas segmentarias, y arterias accesorias. El grado de estenosis se clasificó en 5 grupos: grado 1, no estenosis o < 30% de diámetro; grado 2, estenosis 30-50%; grado 3, estenosis de 50% a 70%; grado 4, estenosis > 70%; grado 5, oclusión. En caso de estenosis en más de una arteria renal, el riñón se clasificó de acuerdo a la de mayor grado.

3.1.5. Análisis estadístico

Se diseñaron hojas de recogida de datos clínicos, analíticos, ecográficos y angiográficos (anexo 5). Los datos se registraron en una base de datos Microsoft Access 2000. El análisis estadístico se realizó empleando el software SPSS versión 10.0 para Windows. Para el análisis de los datos se empleó tan sólo una de las tres series de datos obtenidas en cada riñón, por defecto la más patológica, despreciando las otras dos. Todos los resultados, por tanto se refieren a estos datos.
Se determinó la concordancia entre los observadores realizando el índice kappa. Se calculó la significación estadística de las distintas variables diagnósticas en eco Doppler empleando el test \(\chi^2 \) (chi-cuadrado) para las variables categóricas y la t de Student para las variables continuas. Se calcularon la sensibilidad, especificidad, valor predictivo positivo, valor predictivo negativo y valor global para cada criterio. Las variables categóricas se analizaron mediante tablas de contingencia, mientras que para las variables continuas se empleó el test T de comparación de muestras independientes o el análisis de varianza (ANOVA). Para las variables continuas se calcularon los puntos de corte más óptimos para el diagnóstico mediante curvas ROC (receiver operating characteristic), calculando el área bajo la curva y la sensibilidad y especificidad para los mismos. Las variables nominales se estudiaron mediante análisis de regresión logística calculando la razón de oportunidades (odds ratio) entre las diferentes categorías. Finalmente se realizó un análisis multivariante incluyendo los criterios individuales más significativos mediante diversos modelos de regresión logística.

Todos los cálculos se realizaron para el estudio basal y para el estudio tras administración de captopril, y se refirieron a tres grados de estenosis en la angiografía, >30%, >50% y >70% de diámetro, con un intervalo de confianza, IC = 95%.
3.2. Descripción de la serie pacientes

El estudio comprendió un total de 133 pacientes con sospecha de estenosis de la arteria renal que cumplían los criterios de inclusión descritos, registrados de manera prospectiva desde noviembre de 1999 a octubre de 2002. De los 133 pacientes, 69 eran hombres (52%), y 64 eran mujeres (48%), con edades comprendidas entre 19 y 86 años, con una edad media de 64 años (63,91 ± 13,77). La edad media de las mujeres fue de 61 años (61 ± 14,76) y la de los hombres de 66 años (66,61 ± 12,27), no mostrando diferencias significativas de distribución por edades según el sexo (p= 0,018).

Un total de 127 pacientes (95%) eran hipertensos en tratamiento, y 63 (47%) presentaban antecedentes familiares de hipertensión. Un total de 43 pacientes (32,3%) eran fumadores. En cuanto a la afectación por aterosclerosis, 46 casos (35%) presentaban aterosclerosis de otros territorios extrarreales, 16 en carótidas (12%), y 30 en el sistema vascular periférico de los miembros inferiores (23%). Además 29 pacientes presentaban cardiopatía isquémica (22%), y en 73 casos hipertrofia ventricular izquierda (55%). Se registraron 38 pacientes con diabetes tipo II (29%), y 1 solo caso de diabetes tipo I. En 23 pacientes (17%) se objetivó un soplo abdominal.

Se calculó el peso, la talla y el índice masa corporal (IMC) para estimar la población de pacientes obesos. El peso medio fue de 71 kg (71,7 ± 12,57), y el IMC de 27 kg/m² (27,2 ± 4,35). Las características clínicas generales de la serie se detallan en las tablas 3.1 y 3.2.
Material y Métodos.

<table>
<thead>
<tr>
<th>Tabla 3.1. características clínicas de la serie (133 pacientes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>Hombres</td>
</tr>
<tr>
<td>Mujeres</td>
</tr>
<tr>
<td>Hipertensión previa</td>
</tr>
<tr>
<td>Antecedentes familiares HTA</td>
</tr>
<tr>
<td>Fumadores</td>
</tr>
<tr>
<td>Aterosclerosis otros territorios</td>
</tr>
<tr>
<td>Carótidas</td>
</tr>
<tr>
<td>Enfermedad vascular periférica</td>
</tr>
<tr>
<td>Cardiopatía isquémica</td>
</tr>
<tr>
<td>Diabetes tipo II</td>
</tr>
<tr>
<td>Hipertrofia ventricular izda.</td>
</tr>
<tr>
<td>Soplo abdominal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabla 3.2. Valores medios de determinadas características</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parámetros</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>Edad en años (total)</td>
</tr>
<tr>
<td>Edad (hombres)</td>
</tr>
<tr>
<td>Edad (mujeres)</td>
</tr>
<tr>
<td>TA sistólica</td>
</tr>
<tr>
<td>TA diastólica</td>
</tr>
<tr>
<td>Peso</td>
</tr>
<tr>
<td>IMC</td>
</tr>
<tr>
<td>Tratamiento HTA, nº de fármacos</td>
</tr>
</tbody>
</table>

3.2.2. Distribución de pacientes por grados de estenosis

Según la arteriografía se demostró la presencia de al menos una estenosis de las arterias renales superior al 30% de diámetro en 59 de los 133 pacientes (44,4%); estenosis superiores al 50% en 39 pacientes (29,3%), y superiores al 70% en 24 pacientes (18%). Considerando sólo las estenosis > 50% de diámetro, en 27 pacientes fueron unilaterales (20,3%), y en 12 bilaterales (9%) (tabla 3.3).

<table>
<thead>
<tr>
<th>Tabla 3.3. Distribución de paciente por grados de estenosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grado de estenosis</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Sin estenosis</td>
</tr>
<tr>
<td>> 30%</td>
</tr>
<tr>
<td>> 50% (total)</td>
</tr>
<tr>
<td>unilaterales</td>
</tr>
<tr>
<td>Bilaterales</td>
</tr>
<tr>
<td>> 70%</td>
</tr>
</tbody>
</table>
3.3. Descripción de la serie riñones

Consideramos a continuación los hallazgos en función de los riñones, no en función de los pacientes. Describiremos los riñones con respecto a los resultados generales de la angiografía. La lectura de la angiografía se realizó por un radiólogo vascular con experiencia que desconocía los hallazgos de la ecografía Doppler.

El grado de estenosis se clasificó como:
1. normal o estenosis $\leq 30\%$ de diámetro
2. 30%-50% de estenosis
3. 51%-70% de estenosis
4. 71%-99%
5. oclusión.

Para la localización de la estenosis se consideraron 5 posibilidades:
1. arterias segmentarias del polo superior
2. arterias segmentarias del tercio medio del riñón
3. arterias segmentarias del polo inferior
4. arteria renal principal
5. otras arterias renales (accesorias o polares)

Finalmente cada riñón se clasificó de acuerdo al grado de máxima estenosis, independientemente de su localización.

Nº de riñones

De los 133 pacientes, 8 eran monorrenos, por lo que el número total de riñones estudiados en angiografía fue de 258. Los riñones se clasificaron de acuerdo a los hallazgos en la angiografía, estudiando el número de arterias presentes en cada riñón, grado de estenosis, su localización, y su causa.
Material y Métodos

Numero de arterias
Se contabilizaron un total de 298 arterias en 258 riñones, de los cuales 224 riñones presentaban 1 sola arteria (86,8%); 28 riñones 2 arterias (10,9%), y 6 riñones tenía 3 arterias (2,3%). Es decir se encontraron un total de 74 arterias accesorias en 34 de los 258 riñones (13,2%) (tabla 3.7).

Fig 3.1. Arterias renales múltiples. Se contabilizan hasta 3 arterias en cada riñón. Las dos polares inferiores se originan en la aorta terminal

Grado de estenosis

Una cuestión importante antes valorar los resultados fue la determinación del grado de estenosis significativa. Como hemos expuesto en el capítulo de hemodinámica no existe acuerdo al respecto. Tras valorar los diferentes factores que determinan el flujo en la estenosis consideramos que ni la velocidad en la estenosis, ni el gradiente de presión, ni el diámetro de la luz arterial deben ser criterios absolutos para establecer el diámetro límite de una estenosis hemodinámicamente significativa. En nuestra opinión en la práctica clínica, teniendo en cuenta la historia natural progresiva de la estenosis arterial renal y las posibilidades terapéuticas, nos parece razonable establecer el diagnóstico en límites próximos al 50%. En nuestro caso consideramos tres grados de estenosis, siguiendo un criterio similar al de otras publicaciones. Aunque la estenosis de 30% a 50% de diámetro no se considera significativa y a efectos terapéuticos no tiene relevancia, esta iniciativa nos permite valorar hasta qué punto la técnica es sensible a las alteraciones del flujo renal. Los límites de 50% y 70% son ampliamente aceptados en la literatura. Un último elemento fue tenido en cuenta, la sensibilidad de la angiografía para discriminar entre los diferentes grados de estenosis en nuestro medio. Ya que esta es la técnica de referencia nos pareció más adecuado proceder con este planteamiento.

Los riñones se clasificaron de acuerdo al grado de máxima estenosis, en cualquier localización. Se encontraron 165 riñones sin estenosis; 93 riñones (36%) con estenosis
Material y Métodos.

> 30% diámetro; 53 riñones (20,5%) con estenosis > 50%; 32 riñones (12,4) con estenosis > 70%, y 4 riñones (1,6%) con oclusión total.

Fig. 3.2. *A*, La imagen muestra una estenosis de una arteria segmentaria aislada. *B*, De manera más frecuente la estenosis de las segmentarias acompaña a la de la arteria principal.

Localización de la estenosis

Según la localización, la estenosis fue más frecuente en la arteria renal principal, y en concreto en el ostium o tercio proximal. De los 258 riñones, 87 (30,5%) tenían estenosis > 30% de diámetro; 49 (17,2%) estenosis > 50% de diámetro; 31 (10,8%) estenosis > 70% de diámetro (10,8%), y 4 oclusión total (1,6%). La estenosis en otras localizaciones, cuando estaba presente, a menudo fue concomitante con la estenosis de la arteria renal principal (fig. 3.2). Se contabilizaron tan sólo aquellas que aparecieron aisladas, o que eran más severas que las de la arteria principal. Se incluyeron arterias accesorias, polares y segmentarias. En 6 riñones se encontraron estenosis > 30% de diámetro (2,3%), en 4 riñones estenosis > 50% de diámetro (1,5%), y en 1 riñón estenosis > 70% de diámetro. Los resultados generales de la angiografía se representa en la tabla 3.7 por grados de estenosis y distribución.
Causa de la estenosis

La causa más frecuente de estenosis fue la aterosclerosis en el 98% de los casos.

Solo en 2 casos fue debida a displasia fibromuscular en mujeres jóvenes (2%).

Tabla 3.4. Estenosis en la angiografía

<table>
<thead>
<tr>
<th>Generales: cualquier localización</th>
<th>nº riñones</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 30%</td>
<td>165</td>
<td>64</td>
</tr>
<tr>
<td>> 30%</td>
<td>93</td>
<td>36</td>
</tr>
<tr>
<td>> 50%</td>
<td>53</td>
<td>20,5</td>
</tr>
<tr>
<td>> 70%</td>
<td>32</td>
<td>12,4</td>
</tr>
<tr>
<td>Oclusión</td>
<td>4</td>
<td>1,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Arteria renal principal</th>
<th>nº riñones</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 30%</td>
<td>171</td>
<td>66,3</td>
</tr>
<tr>
<td>> 30%</td>
<td>87</td>
<td>30,5</td>
</tr>
<tr>
<td>> 50%</td>
<td>49</td>
<td>17,2</td>
</tr>
<tr>
<td>> 70%</td>
<td>31</td>
<td>10,8</td>
</tr>
<tr>
<td>Oclusión</td>
<td>4</td>
<td>1,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Otras localizaciones</th>
<th>nº riñones</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 30%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>> 30%</td>
<td>6</td>
<td>2,3</td>
</tr>
<tr>
<td>> 50%</td>
<td>4</td>
<td>1,5</td>
</tr>
<tr>
<td>> 70%</td>
<td>1</td>
<td>0,4</td>
</tr>
<tr>
<td>Oclusión</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
3.4. Análisis de concordancia entre observadores.

Todo el estudio fue diseñado con una estrategia de lectura doble ciego entre los observadores. Las ecografías fueron realizadas indistintamente por dos radiólogos con experiencia en ecografía Doppler, y registradas en dos copias de película radiográfica, así como en una copia de cinta de vídeo.

Tras la exploración, cada paciente fue registrado en una base de datos Microsoft Acces 2000 asignándole un número de identificación automático único. Cada copia en película radiográfica se identificó con ese número y se entregó a los dos observadores, los cuales realizaron la lectura de manera ciega. La lectura se realizó de manera normalizada en la hoja de recogida de datos en la que figuraba sólo el número de identificación del paciente. En un registro independiente se relacionó el numero de identificación con los datos de filiación del paciente (nombre y número de historia clínica). Cada hoja de recogida de datos de la exploración ecográfica consta de 116 campos de registro de las diversas variables (anexo 5).

Para valorar la posibilidad de sesgos de variabilidad entre observadores, tras la lectura de los primeros 99 pacientes se estableció la concordancia entre los mismos mediante el cálculo del índice kappa. Para realizarlo se tomó como referencia la variable nominal “RESD”, resultado de la lectura del observador, en la cual el observador debía clasificar cada riñón según tres únicas posibilidad: patológico, es decir con estenosis de la arteria renal o alguna de sus ramas; normal, es decir sin estenosis; o lectura no concluyente.

El índice kappa mostró los siguientes resultados: concordancia bruta = 0.93, kappa = 0.82, con un intervalo de confianza de 95% [IC] = 0.687 – 0.945. La correlación entre ambas lecturas se estimó adecuada, y a partir de ese momento se consideró una única lectura como herramienta para realizar el análisis estadístico.
Anexo de variables

1. Variables clínicas

<table>
<thead>
<tr>
<th>ID</th>
<th>Variable</th>
<th>abrev.</th>
<th>Tipo</th>
<th>Escala</th>
<th>Unidad</th>
<th>Intervalo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Número de Identificación</td>
<td>ID</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Apellidos</td>
<td>APE</td>
<td>Texto</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Nombre</td>
<td>NOM</td>
<td>Texto</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Iniciales</td>
<td>INI</td>
<td>Texto</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Número de historia clínica</td>
<td>HNC</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Edad</td>
<td>EDAD</td>
<td>Cuantitativa discreta</td>
<td>Numérica</td>
<td>Años</td>
<td>18-100</td>
</tr>
<tr>
<td>7</td>
<td>Sexo</td>
<td>SEX</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td></td>
<td>1-varón 2-mujer</td>
</tr>
<tr>
<td>8</td>
<td>Fecha de consulta</td>
<td>DATEC</td>
<td>Fecha</td>
<td>Nominal</td>
<td></td>
<td>1-si 2-no</td>
</tr>
<tr>
<td>9</td>
<td>Antecedentes familiares HTA</td>
<td>AFHTA</td>
<td>Cualitativa</td>
<td>Numérica</td>
<td></td>
<td>N° cigarros</td>
</tr>
<tr>
<td>10</td>
<td>Fumador</td>
<td>TABAC</td>
<td>Cuantitativa discreta</td>
<td>Numérica</td>
<td></td>
<td>0-80</td>
</tr>
<tr>
<td>11</td>
<td>Alergia a IECA</td>
<td>ALIECA</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td></td>
<td>1-si 2-no</td>
</tr>
<tr>
<td>12</td>
<td>Diabetes</td>
<td>DM</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td></td>
<td>1-si 2-no</td>
</tr>
<tr>
<td>13</td>
<td>HTA previa</td>
<td>HTAPREV</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td></td>
<td>1-si 2-no</td>
</tr>
<tr>
<td>14</td>
<td>Tiempo de HTA</td>
<td>THTA</td>
<td>Cuantitativa discreta</td>
<td>Numérica</td>
<td>Años</td>
<td>1-40</td>
</tr>
<tr>
<td>15</td>
<td>Embarazo</td>
<td>GEST</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td></td>
<td>1-si 2-no</td>
</tr>
<tr>
<td>16</td>
<td>Enfermedad oclusiva</td>
<td>OCLU</td>
<td>Cuantitativa discreta</td>
<td>Numérica</td>
<td>Meses</td>
<td>0-400</td>
</tr>
<tr>
<td>17</td>
<td>Angina inestable</td>
<td>ANGOR</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td></td>
<td>1-si 2-no</td>
</tr>
<tr>
<td>18</td>
<td>Insuficiencia cardiaca</td>
<td>ICAR</td>
<td>Cualitativa</td>
<td>Ordinal</td>
<td></td>
<td>1-si 2-no</td>
</tr>
<tr>
<td>19</td>
<td>Peso</td>
<td>PESO</td>
<td>Cuantitativa continua</td>
<td>Numérica</td>
<td>Kg</td>
<td>40-150</td>
</tr>
<tr>
<td>20</td>
<td>Talla</td>
<td>TALLA</td>
<td>Cuantitativa continua</td>
<td>Numérica</td>
<td>Cm</td>
<td>140-200</td>
</tr>
<tr>
<td>21</td>
<td>Indice masa corporal</td>
<td>IMC</td>
<td>Cuantitativa continua</td>
<td>Numérica</td>
<td>Peso/talla^2</td>
<td>20-50</td>
</tr>
<tr>
<td>22</td>
<td>TA sistólica en consulta</td>
<td>TAS</td>
<td>Cuantitativa continua</td>
<td>Numérica</td>
<td>Mm Hg</td>
<td>60-240</td>
</tr>
<tr>
<td>23</td>
<td>TA diastólica en consulta</td>
<td>TAD</td>
<td>Cuantitativa continua</td>
<td>Numérica</td>
<td>Mm Hg</td>
<td>40-150</td>
</tr>
<tr>
<td>24</td>
<td>Fondo de ojo</td>
<td>FOJO</td>
<td>Cualitativa</td>
<td>Ordinal</td>
<td></td>
<td>1-si 2-no</td>
</tr>
<tr>
<td>25</td>
<td>Soplo abdominal</td>
<td>SOPLO</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. Variables bioquímicas

<table>
<thead>
<tr>
<th>ID</th>
<th>Variable</th>
<th>Abrev</th>
<th>Tipo</th>
<th>Escala</th>
<th>Unidad</th>
<th>Intervalo</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Glucemia</td>
<td>GLUC</td>
<td>Cuantitativa continua</td>
<td>Numérica</td>
<td>mg/dl</td>
<td>40-500</td>
</tr>
<tr>
<td>27</td>
<td>Urea sangre</td>
<td>UREA</td>
<td>Cuantitativa continua</td>
<td>Numérica</td>
<td>mg/dl</td>
<td>20-300</td>
</tr>
<tr>
<td>28</td>
<td>Creatinina en sangre</td>
<td>CR</td>
<td>Cuantitativa continua</td>
<td>Numérica</td>
<td>mg/dl</td>
<td>0.5-12</td>
</tr>
<tr>
<td>29</td>
<td>Aclaramiento de creatinina</td>
<td>CCR</td>
<td>Cuantitativa continua</td>
<td>Numérica</td>
<td>mg/dl</td>
<td>0-150</td>
</tr>
<tr>
<td>30</td>
<td>Colesterol</td>
<td>COL</td>
<td>Cuantitativa continua</td>
<td>Numérica</td>
<td>mg/dl</td>
<td>100-500</td>
</tr>
<tr>
<td>31</td>
<td>Triglicéridos</td>
<td>TG</td>
<td>Cuantitativa continua</td>
<td>Numérica</td>
<td>mg/dl</td>
<td>50-400</td>
</tr>
<tr>
<td>32</td>
<td>HDL colesterol</td>
<td>HDL</td>
<td>Cuantitativa continua</td>
<td>Numérica</td>
<td>mg/dl</td>
<td>25-100</td>
</tr>
<tr>
<td>33</td>
<td>LDL colesterol</td>
<td>LDL</td>
<td>Cuantitativa continua</td>
<td>Numérica</td>
<td>mg/dl</td>
<td>75-250</td>
</tr>
<tr>
<td>34</td>
<td>Sodio en sangre</td>
<td>Na</td>
<td>Cuantitativa continua</td>
<td>Numérica</td>
<td>mmol/l</td>
<td>120-160</td>
</tr>
<tr>
<td>35</td>
<td>Potasio en sangre</td>
<td>K</td>
<td>Cuantitativa continua</td>
<td>Numérica</td>
<td>mmol/l</td>
<td>2.5-7</td>
</tr>
<tr>
<td>36</td>
<td>Proteinuria</td>
<td>PROTO</td>
<td>Cuantitativa continua</td>
<td>Numérica</td>
<td>mg/24h</td>
<td>0-8000</td>
</tr>
<tr>
<td>37</td>
<td>Tiempo de Protrombina</td>
<td>PROTROMB</td>
<td>Cuantitativa discreta</td>
<td>Numérica</td>
<td>%</td>
<td>40-100</td>
</tr>
<tr>
<td>38</td>
<td>Tiempo de Cefalina</td>
<td>TCEF</td>
<td>Cuantitativa continua</td>
<td>Numérica</td>
<td>Segundos</td>
<td>10-30</td>
</tr>
<tr>
<td>39</td>
<td>Electrocardiograma</td>
<td>ECG</td>
<td>Descriptiva</td>
<td>Texto</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Ecocardiograma</td>
<td>ECOCAR</td>
<td>Descriptiva</td>
<td>Texto</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. Variables en ecografía Doppler

<table>
<thead>
<tr>
<th>ID</th>
<th>Variable</th>
<th>Abrev</th>
<th>Tipo</th>
<th>Escala</th>
<th>Unidad</th>
<th>Intervalo</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>Fecha eco doppler</td>
<td>DATEDOP</td>
<td>Fecha</td>
<td>Numérica</td>
<td>Mn/Hg</td>
<td>60-240</td>
</tr>
<tr>
<td>42</td>
<td>TA sistólica basal</td>
<td>TASB</td>
<td>Cuantitativa continuada</td>
<td>Numérica</td>
<td>Mn/Hg</td>
<td>40-150</td>
</tr>
<tr>
<td>43</td>
<td>TA diastólica basal</td>
<td>TADB</td>
<td>Cuantitativa continuada</td>
<td>Numérica</td>
<td>Mn/Hg</td>
<td>60-240</td>
</tr>
<tr>
<td>44</td>
<td>TA sistólica post-estímulo</td>
<td>TASS</td>
<td>Cuantitativa continuada</td>
<td>Numérica</td>
<td>Mn/Hg</td>
<td>40-150</td>
</tr>
<tr>
<td>45</td>
<td>TA diastólica post-estímulo</td>
<td>TADS</td>
<td>Cuantitativa continuada</td>
<td>Numérica</td>
<td>Mn/Hg</td>
<td>40-150</td>
</tr>
<tr>
<td>46</td>
<td>Onda ESP basal</td>
<td>ESPBD1</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>1-Si</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Onda ESP basal</td>
<td>ESPBD2</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>1-Si</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Onda ESP basal</td>
<td>ESPBD3</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>1-Si</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Onda ESP basal</td>
<td>ESPBD0</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>1-Si</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Onda ESP basal</td>
<td>ESPBI1</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>1-Si</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Onda ESP basal</td>
<td>ESPBI2</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>1-Si</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Onda ESP basal</td>
<td>ESPBI3</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>1-Si</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Onda ESP basal</td>
<td>ESPBI0</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>1-Si</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Onda ESP post-IECA</td>
<td>ESPSD1</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>1-Si</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Onda ESP post-IECA</td>
<td>ESPSD2</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>1-Si</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Onda ESP post-IECA</td>
<td>ESPSD3</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>1-Si</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Onda ESP post-IECA</td>
<td>ESPSD0</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>1-Si</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Onda ESP post-IECA</td>
<td>ESPSI1</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>1-Si</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Onda ESP post-IECA</td>
<td>ESPSI2</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>1-Si</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Onda ESP post-IECA</td>
<td>ESPSI3</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>1-Si</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Patrón morfológico basal</td>
<td>MORFBD1</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>1-6</td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Variable</td>
<td>Abrev</td>
<td>Tipo</td>
<td>Escala</td>
<td>Unidad</td>
<td>Intervalo</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
<td>-------</td>
<td>------------</td>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>65</td>
<td>Patrón morfológico basal</td>
<td>MORFOBI1</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>1-6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón izqdo. Polo superior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Patrón morfológico basal</td>
<td>MORFOBI2</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>1-6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón izqdo. Tercio medio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>Patrón morfológico basal</td>
<td>MORFOBI3</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>1-6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón izqdo. Polo inferior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Patrón morfológico basal</td>
<td>MORFOBI0</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>1-6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón izqdo. Global</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Patrón morfológico postIECA</td>
<td>MORFOSD1</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>1-6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón dcho. Polo superior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Patrón morfológico postIECA</td>
<td>MORFOSD2</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>1-6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón dcho. Tercio medio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Patrón morfológico postIECA</td>
<td>MORFOSD3</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>1-6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón dcho. Polo inferior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Patrón morfológico postIECA</td>
<td>MORFOSD0</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>1-6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón dcho. Global</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Patrón morfológico postIECA</td>
<td>MORFOSI1</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>1-6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón izqdo. Polo superior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Patrón morfológico postIECA</td>
<td>MORFOSI2</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>1-6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón izqdo. Tercio medio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Patrón morfológico postIECA</td>
<td>MORFOSI3</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>1-6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón izqdo. Polo inferior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Patrón morfológico postIECA</td>
<td>MORFOSI0</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>1-6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón izqdo. Global</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Índice aceleración basal</td>
<td>AIBD1</td>
<td>Cuantitativa continua</td>
<td>Numérica</td>
<td>cm/seg²</td>
<td>0-1000</td>
</tr>
<tr>
<td></td>
<td>Riñón dcho. Polo superior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Índice aceleración basal</td>
<td>AIBD2</td>
<td>Cuantitativa continua</td>
<td>Numérica</td>
<td>cm/seg²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón dcho. Tercio medio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Índice aceleración basal</td>
<td>AIBD3</td>
<td>Cuantitativa continua</td>
<td>Numérica</td>
<td>cm/seg²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón dcho. Polo inferior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Índice aceleración basal</td>
<td>AIBD0</td>
<td>Cuantitativa continua</td>
<td>Numérica</td>
<td>cm/seg²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón dcho. Global</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>Índice aceleración basal</td>
<td>AIBI1</td>
<td>Cuantitativa continua</td>
<td>Numérica</td>
<td>cm/seg²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón izqdo. Polo superior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Índice aceleración basal</td>
<td>AIBI2</td>
<td>Cuantitativa continua</td>
<td>Numérica</td>
<td>cm/seg²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón izqdo. Tercio medio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>Índice aceleración basal</td>
<td>AIBI3</td>
<td>Cuantitativa continua</td>
<td>Numérica</td>
<td>cm/seg²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón izqdo. Polo inferior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>Índice aceleración basal</td>
<td>AIBI0</td>
<td>Cuantitativa continua</td>
<td>Numérica</td>
<td>cm/seg²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón izqdo. Global</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Índice aceleración postIECA</td>
<td>AISD1</td>
<td>Cuantitativa continua</td>
<td>Numérica</td>
<td>cm/seg²</td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Variable</td>
<td>Abrev</td>
<td>Tipo</td>
<td>Escala</td>
<td>Unidad</td>
<td>Intervalo</td>
</tr>
<tr>
<td>----</td>
<td>----------------------------------</td>
<td>-------</td>
<td>--------------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>86</td>
<td>Índice aceleración post-IECA</td>
<td>AISD2</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>cm/seg²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón dcho. Tercio medio</td>
<td></td>
<td>continua</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Índice aceleración post-IECA</td>
<td>AISD3</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>cm/seg²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón dcho. Polo inferior</td>
<td></td>
<td>continua</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>Índice aceleración post-IECA</td>
<td>AISD0</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>cm/seg²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón dcho. Global</td>
<td></td>
<td>continua</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>Índice aceleración post-IECA</td>
<td>AISI1</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>cm/seg²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón izqdo. Polo superior</td>
<td></td>
<td>continua</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>Índice aceleración post-IECA</td>
<td>AISI2</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>cm/seg²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón izqdo. Tercio medio</td>
<td></td>
<td>continua</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>Índice aceleración post-IECA</td>
<td>AISI3</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>cm/seg²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón izqdo. Polo inferior</td>
<td></td>
<td>continua</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>Índice aceleración post-IECA</td>
<td>AISI0</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>cm/seg²</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón izqdo. Global</td>
<td></td>
<td>continua</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>Tiempo aceleración basal</td>
<td>ATBD1</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>Seg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón dcho. Polo superior</td>
<td></td>
<td>continua</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>Tiempo aceleración basal</td>
<td>ATBD2</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>Seg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón dcho. Tercio medio</td>
<td></td>
<td>continua</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>Tiempo aceleración basal</td>
<td>ATBD3</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>Seg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón dcho. Polo inferior</td>
<td></td>
<td>continua</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>Tiempo aceleración basal</td>
<td>ATBD0</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>Seg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón dcho. Global</td>
<td></td>
<td>continua</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>Tiempo aceleración basal</td>
<td>ATBI1</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>Seg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón izqdo. Polo superior</td>
<td></td>
<td>continua</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>Tiempo aceleración basal</td>
<td>ATBI2</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>Seg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón izqdo. Tercio medio</td>
<td></td>
<td>continua</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>Tiempo aceleración basal</td>
<td>ATBI3</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>Seg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón izqdo. Polo inferior</td>
<td></td>
<td>continua</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Tiempo aceleración basal</td>
<td>ATBI0</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>Seg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón izqdo. Global</td>
<td></td>
<td>continua</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>Tiempo aceleración post-IECA</td>
<td>ATSD1</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>Seg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón dcho. Polo superior</td>
<td></td>
<td>continua</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>Tiempo aceleración post-IECA</td>
<td>ATSD2</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>Seg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón dcho. Tercio medio</td>
<td></td>
<td>continua</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>Tiempo aceleración post-IECA</td>
<td>ATSD3</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>Seg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón dcho. Polo inferior</td>
<td></td>
<td>continua</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>Tiempo aceleración post-IECA</td>
<td>ATSD0</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>Seg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón dcho. Global</td>
<td></td>
<td>continua</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>Tiempo aceleración post-IECA</td>
<td>ATSI1</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>Seg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón izqdo. Polo superior</td>
<td></td>
<td>continua</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Variable</td>
<td>Abrev</td>
<td>Tipo</td>
<td>Escala</td>
<td>Unidad</td>
<td>Intervalo</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>-------</td>
<td>----------------</td>
<td>------------</td>
<td>--------</td>
<td>-----------</td>
</tr>
<tr>
<td>106</td>
<td>Tiempo aceleración post-IECA</td>
<td>ATSI2</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>Seg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón izqdo. Tercio medio</td>
<td></td>
<td>continua</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>Tiempo aceleración post-IECA</td>
<td>ATSI3</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>Seg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón izqdo. Polo inferior</td>
<td></td>
<td>continua</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>Tiempo aceleración post-IECA</td>
<td>ATSI0</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>Seg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón izqdo. Global</td>
<td></td>
<td>continua</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>Índice resistividad basal</td>
<td>RIBD1</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón dcho. Polo superior</td>
<td></td>
<td>discreta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>Índice resistividad basal</td>
<td>RIBD2</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón dcho. Tercio medio</td>
<td></td>
<td>discreta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>Índice resistividad basal</td>
<td>RIBD3</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón dcho. Polo inferior</td>
<td></td>
<td>discreta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>Índice resistividad basal</td>
<td>RIBD0</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón dcho. Global</td>
<td></td>
<td>discreta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>Índice resistividad basal</td>
<td>RIBI1</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón izqdo. Polo superior</td>
<td></td>
<td>discreta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>Índice resistividad basal</td>
<td>RIBI2</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón izqdo. Tercio medio</td>
<td></td>
<td>discreta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>Índice resistividad basal</td>
<td>RIBI3</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón izqdo. Polo inferior</td>
<td></td>
<td>discreta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>Índice resistividad basal</td>
<td>RIBI0</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón izqdo. Global</td>
<td></td>
<td>discreta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>Índice resistividad post-IECA</td>
<td>RISD1</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón dcho. Polo superior</td>
<td></td>
<td>discreta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>Índice resistividad post-IECA</td>
<td>RISD2</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón dcho. Tercio medio</td>
<td></td>
<td>discreta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>Índice resistividad post-IECA</td>
<td>RISD3</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón dcho. Polo inferior</td>
<td></td>
<td>discreta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>Índice resistividad post-IECA</td>
<td>RISD0</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón dcho. Global</td>
<td></td>
<td>discreta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>Índice resistividad post-IECA</td>
<td>RISI1</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón izqdo. Polo superior</td>
<td></td>
<td>discreta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>Índice resistividad post-IECA</td>
<td>RISI2</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón izqdo. Tercio medio</td>
<td></td>
<td>discreta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>Índice resistividad post-IECA</td>
<td>RISI3</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón izqdo. Polo inferior</td>
<td></td>
<td>discreta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>Índice resistividad post-IECA</td>
<td>RISI0</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón izqdo. Global</td>
<td></td>
<td>discreta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>Incremento RI basal</td>
<td>∆RIBD1</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riñón dcho. Polo superior</td>
<td></td>
<td>discreta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Variable</td>
<td>Abrev</td>
<td>Tipo</td>
<td>Escala</td>
<td>Unidad</td>
<td>Intervalo</td>
</tr>
<tr>
<td>-----</td>
<td>---------------------------------------</td>
<td>-------</td>
<td>------------------------</td>
<td>----------</td>
<td>--------</td>
<td>-----------</td>
</tr>
<tr>
<td>126</td>
<td>Incremento RI basal</td>
<td>ΔRIBD2</td>
<td>Cuantitativa discreta</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>Incremento RI basal</td>
<td>ΔRIBD3</td>
<td>Cuantitativa discreta</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>Incremento RI basal</td>
<td>ΔRIBD0</td>
<td>Cuantitativa discreta</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>Incremento RI basal</td>
<td>ΔRIBI1</td>
<td>Cuantitativa discreta</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>Incremento RI basal</td>
<td>ΔRIBI2</td>
<td>Cuantitativa discreta</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>Incremento RI basal</td>
<td>ΔRIBI3</td>
<td>Cuantitativa discreta</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>Incremento RI basal</td>
<td>ΔRIBI0</td>
<td>Cuantitativa discreta</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>Incremento RI post-IECA</td>
<td>ΔRISD1</td>
<td>Cuantitativa discreta</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>Incremento RI post-IECA</td>
<td>ΔRISD2</td>
<td>Cuantitativa discreta</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>Incremento RI post-IECA</td>
<td>ΔRISD3</td>
<td>Cuantitativa discreta</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>Incremento RI post-IECA</td>
<td>ΔRISD0</td>
<td>Cuantitativa discreta</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>Incremento RI post-IECA</td>
<td>ΔRISI1</td>
<td>Cuantitativa discreta</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>Incremento RI post-IECA</td>
<td>ΔRISI2</td>
<td>Cuantitativa discreta</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>Incremento RI post-IECA</td>
<td>ΔRISI3</td>
<td>Cuantitativa discreta</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>Incremento RI post-IECA</td>
<td>ΔRISI0</td>
<td>Cuantitativa discreta</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>Indice de pulsatilidad basal</td>
<td>PIBD1</td>
<td>Cuantitativa discreta</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>Indice de pulsatilidad basal</td>
<td>PIBD2</td>
<td>Cuantitativa discreta</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>Indice de pulsatilidad basal</td>
<td>PIBD3</td>
<td>Cuantitativa discreta</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>Indice de pulsatilidad basal</td>
<td>PIBD0</td>
<td>Cuantitativa discreta</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>Indice de pulsatilidad basal</td>
<td>PIBI1</td>
<td>Cuantitativa discreta</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>146</td>
<td>Indice de pulsatilidad basal</td>
<td>PIBI2</td>
<td>Cuantitativa discreta</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>Indice de pulsatilidad basal</td>
<td>PIBI3</td>
<td>Cuantitativa discreta</td>
<td>Numérica</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>Variable</td>
<td>Abrev</td>
<td>Tipo</td>
<td>Escala</td>
<td>Unidad</td>
<td>Intervalo</td>
</tr>
<tr>
<td>----</td>
<td>---------------------------------------</td>
<td>-------</td>
<td>------------------</td>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>148</td>
<td>Índice de pulsatilidad basal</td>
<td>PIBI0</td>
<td>Cuantitativa</td>
<td>Discreta</td>
<td>Numérica</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>Ríñon izqdo. Global</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>149</td>
<td>Índice de pulsatilidad post-IECA</td>
<td>PISD1</td>
<td>Cuantitativa</td>
<td>Discreta</td>
<td>Numérica</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>Ríñon dcho. Polo superior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>Índice de pulsatilidad post-IECA</td>
<td>PISD2</td>
<td>Cuantitativa</td>
<td>Discreta</td>
<td>Numérica</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>Ríñon dcho. Tercio medio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>Índice de pulsatilidad post-IECA</td>
<td>PISD3</td>
<td>Cuantitativa</td>
<td>Discreta</td>
<td>Numérica</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>Ríñon dcho. Polo inferior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>152</td>
<td>Índice de pulsatilidad post-IECA</td>
<td>PISD0</td>
<td>Cuantitativa</td>
<td>Discreta</td>
<td>Numérica</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>Ríñon dcho. Global</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>Índice de pulsatilidad post-IECA</td>
<td>PISI1</td>
<td>Cuantitativa</td>
<td>Discreta</td>
<td>Numérica</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>Ríñon izqdo. Polo superior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>Índice de pulsatilidad post-IECA</td>
<td>PISI2</td>
<td>Cuantitativa</td>
<td>Discreta</td>
<td>Numérica</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>Ríñon izqdo. Tercio medio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>Índice de pulsatilidad post-IECA</td>
<td>PISI3</td>
<td>Cuantitativa</td>
<td>Discreta</td>
<td>Numérica</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>Ríñon izqdo. Polo inferior</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>Índice de pulsatilidad post-IECA</td>
<td>PISI0</td>
<td>Cuantitativa</td>
<td>Discreta</td>
<td>Numérica</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>Ríñon izqdo. Global</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>Tiempo de exploración basal</td>
<td>TiempoB</td>
<td>Cuantitativa</td>
<td>Continua</td>
<td>Numérica</td>
<td>Minutos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>Tiempo de exploración post-IECA</td>
<td>TiempoS</td>
<td>Cuantitativa</td>
<td>Continua</td>
<td>Numérica</td>
<td>Minutos</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>159</td>
<td>Resultado Doppler basal</td>
<td>RDBRD</td>
<td>Cualitativa</td>
<td></td>
<td>Ordinal</td>
<td>1-positivo</td>
</tr>
<tr>
<td></td>
<td>Ríñon dcho</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2-negativo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3-no concluyente</td>
</tr>
</tbody>
</table>

Abreviaturas: B: basal, previo a estimulación farmacológica; S: post estimulación con IECA; D: rínón derecho; I: rínón izquierdo; 1: polo superior del rínón; 2: tercio medio; 3: polo inferior; 0: se aplica al rínón en conjunto, sin especificar localización, o a la arteria renal principal; 4: arterias renales accesorias.
4. Variables en angiografía

<table>
<thead>
<tr>
<th>ID</th>
<th>Variable</th>
<th>Abrev</th>
<th>Tipo</th>
<th>Escala</th>
<th>Unidad</th>
<th>Intervalo</th>
</tr>
</thead>
<tbody>
<tr>
<td>159</td>
<td>Fecha arteriografía</td>
<td>DATEANG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>Nº arterias renales</td>
<td>NARD</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>161</td>
<td>Grado estenosis, Riñón dcho.</td>
<td>ESTEND0</td>
<td>Cualitativa</td>
<td>Ordinal</td>
<td>1-normal</td>
<td>2 (<50%) 1-normal 3 (51-70%) 4(71-99%) 5-oclusión</td>
</tr>
<tr>
<td></td>
<td>Grado estenosis, Riñón dcho. Renal principal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grado estenosis, Riñón dcho. Polo superior</td>
<td>ESTEND1</td>
<td>Cualitativa</td>
<td>Ordinal</td>
<td>1-5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grado estenosis, Riñón dcho. Tercio medio</td>
<td>ESTEND2</td>
<td>Cualitativa</td>
<td>Ordinal</td>
<td>1-5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grado estenosis, Riñón dcho. Polo inferior</td>
<td>ESTEND3</td>
<td>Cualitativa</td>
<td>Ordinal</td>
<td>1-5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grado estenosis, Riñón dcho. Accesorias</td>
<td>ESTEND4</td>
<td>Cualitativa</td>
<td>Ordinal</td>
<td>1-5</td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>Nº arterias renales</td>
<td>NARID</td>
<td>Cuantitativa</td>
<td>Numérica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>Grado estenosis, Riñón izqdo. Renal principal</td>
<td>ESTENI0</td>
<td>Cualitativa</td>
<td>Ordinal</td>
<td>1-5</td>
<td></td>
</tr>
<tr>
<td>167</td>
<td>Grado estenosis, Riñón izqdo. Polo superior</td>
<td>ESTENI1</td>
<td>Cualitativa</td>
<td>Ordinal</td>
<td>1-5</td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>Grado estenosis, Riñón izqdo. Tercio medio</td>
<td>ESTENI2</td>
<td>Cualitativa</td>
<td>Ordinal</td>
<td>1-5</td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>Grado estenosis, Riñón izqdo. Polo inferior</td>
<td>ESTENI3</td>
<td>Cualitativa</td>
<td>Ordinal</td>
<td>1-5</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>Grado estenosis, Riñón izqdo. Accesorias</td>
<td>ESTENI4</td>
<td>Cualitativa</td>
<td>Ordinal</td>
<td>1-5</td>
<td></td>
</tr>
</tbody>
</table>
5. Cuaderno de recogida de datos

<table>
<thead>
<tr>
<th>ECO DOPPLER BASAL (B)</th>
<th>Fecha:</th>
</tr>
</thead>
<tbody>
<tr>
<td>RINÓN DERECHO</td>
<td>CRITERIO</td>
</tr>
<tr>
<td>ESP</td>
<td>1(sí) : 2 (no)</td>
</tr>
<tr>
<td>MORFO</td>
<td>1-6</td>
</tr>
<tr>
<td>AI</td>
<td>cm/seg^2</td>
</tr>
<tr>
<td>AT</td>
<td>seg</td>
</tr>
<tr>
<td>RI</td>
<td>0-2</td>
</tr>
<tr>
<td>PI</td>
<td>0-2</td>
</tr>
<tr>
<td>Tamaño</td>
<td>cm</td>
</tr>
<tr>
<td>Resultado</td>
<td>1(+) ; 2 (-)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RINÓN IZQUIERDO</th>
<th>CRITERIO</th>
<th>Unidad</th>
<th>I1</th>
<th>I2</th>
<th>I3</th>
<th>I0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESP</td>
<td>1(sí) : 2 (no)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MORFO</td>
<td>1-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AI</td>
<td>cm/seg^2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT</td>
<td>seg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RI</td>
<td>0-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI</td>
<td>0-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>∆RI</td>
<td>0-100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamaño</td>
<td>cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resultado</td>
<td>1(+) ; 2 (-)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA</td>
<td>mm Hg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiempo</td>
<td>(min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECO DOPPLER POST-IECA (S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RINÓN DERECHO</td>
</tr>
<tr>
<td>ESP</td>
</tr>
<tr>
<td>MORFO</td>
</tr>
<tr>
<td>AI</td>
</tr>
<tr>
<td>AT</td>
</tr>
<tr>
<td>RI</td>
</tr>
<tr>
<td>PI</td>
</tr>
<tr>
<td>Resultado</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RINÓN IZQUIERDO</th>
<th>CRITERIO</th>
<th>Unidad</th>
<th>I1</th>
<th>I2</th>
<th>I3</th>
<th>I0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESP</td>
<td>1(sí) : 2 (no)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MORFO</td>
<td>1-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AI</td>
<td>cm/seg^2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT</td>
<td>seg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RI</td>
<td>0-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI</td>
<td>0-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>∆RI</td>
<td>0-100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resultado</td>
<td>1(+) ; 2 (-)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA</td>
<td>mm Hg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tiempo</td>
<td>(min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D: derecho; I: izquierdo; S: post-IECA; 1: polo superior; 2: tercio medio; 3: polo inferior; 0: global; (+): patológico; (-): normal
ARTERIOGRAFIA

<table>
<thead>
<tr>
<th>CRITERIO</th>
<th>Unidad</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D0</th>
<th>D4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESTEN</td>
<td>1-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAR</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RINON DERECHO

<table>
<thead>
<tr>
<th>CRITERIO</th>
<th>Unidad</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D0</th>
<th>D4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESTEN</td>
<td>1-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAR</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RINON IZQDO

<table>
<thead>
<tr>
<th>CRITERIO</th>
<th>Unidad</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D0</th>
<th>D4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESTEN</td>
<td>1-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAR</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ESTEN (grado de estenosis): 1 (normal); 2 (<50%); 3 (50-70); 4 (>70%); 5 (oclusión)

NAR (n° arterias renales)

D0: arteria renal principal
D1: segmentaria polo superior
D2: segmentaria tercio medio
D3: segmentaria polo inferior
D4: polar o accesoria

DATOS DE FILIACION

<table>
<thead>
<tr>
<th>ID</th>
<th>APELLIDOS</th>
<th>NOMBRE</th>
<th>NHC</th>
<th>EDAD</th>
<th>SEXO</th>
</tr>
</thead>
</table>

4. Resultados

A continuación expondremos los resultados comenzando con las variables de carácter epidemiológico, clínico, y determinaciones bioquímicas. Se expone la frecuencia de las mismas, su asociación a la presencia de estenosis en la angiografía, y la significación estadística. A continuación se exponen las variables de la ecografía Doppler.

4.1. Variables epidemiológicas, clínicas y bioquímicas.

Para presentar estos resultados consideraremos las estenosis > 50% de diámetro en angiografía, obteniendo de este modo dos grupos de nuestra población de pacientes, uno sin estenosis, y otro con estenosis, en los que podremos comparar determinadas condiciones y su asociación con la estenosis (tablas 4.1. y 4.2).

<table>
<thead>
<tr>
<th>Característica</th>
<th>Estenosis ≤ 50%</th>
<th>Estenosis > 50%</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad (años)</td>
<td>62,63</td>
<td>67,00</td>
<td>0,069</td>
</tr>
<tr>
<td>Tiempo de HTA (años)</td>
<td>10,81</td>
<td>9,28</td>
<td>0,334</td>
</tr>
<tr>
<td>Tratamiento HTA (nº fármacos)</td>
<td>2,37</td>
<td>2,72</td>
<td>0,071</td>
</tr>
<tr>
<td>Fumador (nº cigarrillos / día)</td>
<td>4,41</td>
<td>7,49</td>
<td>0,090</td>
</tr>
<tr>
<td>IMC</td>
<td>27,73</td>
<td>26,00</td>
<td>0,036</td>
</tr>
<tr>
<td>TAS (en consulta)</td>
<td>144,84</td>
<td>155,54</td>
<td>0,002</td>
</tr>
<tr>
<td>TAD (en consulta)</td>
<td>83,10</td>
<td>83,41</td>
<td>0,084</td>
</tr>
</tbody>
</table>

*p: significación estadística de variables continuas. Calculado mediante test t de Student para un intervalo de confianza IC = 95%. N= nº de pacientes.
Tabla 4.2. Características de pacientes según estenosis >50%. Variables categóricas.

<table>
<thead>
<tr>
<th>Característica</th>
<th>Estenosis ≤50% (N (%))</th>
<th>Estenosis >50% (N (%))</th>
<th>p*</th>
<th>Odds ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexo: Hombres</td>
<td>42 (44,7)</td>
<td>27 (69,2)</td>
<td>0.010</td>
<td>2.786</td>
</tr>
<tr>
<td>Mujeres</td>
<td>52 (55,3)</td>
<td>12 (30,8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antecedentes familiares de HTA</td>
<td>45 (47,9)</td>
<td>18 (46,2)</td>
<td>0.857</td>
<td></td>
</tr>
<tr>
<td>DM tipo II</td>
<td>29 (30,9)</td>
<td>9 (23,1)</td>
<td>0.212</td>
<td></td>
</tr>
<tr>
<td>Enfermedad vascular periférica</td>
<td>17 (18,1)</td>
<td>13 (33,3)</td>
<td>0.004</td>
<td>5.294</td>
</tr>
<tr>
<td>Aterosclerosis carotidea</td>
<td>7 (7,4)</td>
<td>9 (23,1)</td>
<td>0.012</td>
<td>3.149</td>
</tr>
<tr>
<td>Cardiopatía isquémica</td>
<td>13 (13,8)</td>
<td>16 (41,0)</td>
<td>0.001</td>
<td>4.198</td>
</tr>
<tr>
<td>Fumador</td>
<td>67 (71,3)</td>
<td>23 (59,0)</td>
<td>0.167</td>
<td></td>
</tr>
<tr>
<td>Fondo ojo (grados KW)</td>
<td>12 (12,8)</td>
<td>3 (7,7)</td>
<td>0.092</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>39 (41,5)</td>
<td>9 (23,1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grado I</td>
<td>37 (39,4)</td>
<td>22 (56,4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grado III</td>
<td>6 (6,4)</td>
<td>4 (10,3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grado IV</td>
<td>0 (0)</td>
<td>1 (2,6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soplo abdominal</td>
<td>5 (5,3)</td>
<td>18 (46,2)</td>
<td>0.000</td>
<td>15.256</td>
</tr>
</tbody>
</table>

*p: significación estadística de variables categóricas. Calculado mediante test χ^2 para un intervalo de confianza IC = 95%. N= nº de pacientes. Los valores en paréntesis reflejan porcentajes respecto al total de cada grupo.

Tabla 4.3. Valores medios de las determinaciones bioquímicas basales en pacientes sin y con estenosis >50% de diámetro.

<table>
<thead>
<tr>
<th>Parámetros bioquímicos</th>
<th>Unidad</th>
<th>Estenosis ≤50% (N = 94)</th>
<th>Estenosis >50% (N = 39)</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucemia</td>
<td>mg/dl</td>
<td>109,50</td>
<td>100,59</td>
<td>0.106</td>
</tr>
<tr>
<td>Urea en suero</td>
<td>mg/dl</td>
<td>55,24</td>
<td>71,72</td>
<td>0.002</td>
</tr>
<tr>
<td>Creatinina en suero</td>
<td>mg/dl</td>
<td>1,33</td>
<td>1,83</td>
<td>0.000</td>
</tr>
<tr>
<td>Aclaración de creatinina</td>
<td>ml/min</td>
<td>62,12</td>
<td>43,72</td>
<td>0.000</td>
</tr>
<tr>
<td>Triglicéridos suero</td>
<td>mg/dl</td>
<td>120,56</td>
<td>118,82</td>
<td>0.879</td>
</tr>
<tr>
<td>Colesterol suero</td>
<td>mg/dl</td>
<td>193,77</td>
<td>192,18</td>
<td>0.817</td>
</tr>
<tr>
<td>HDL colesterol</td>
<td>mg/dl</td>
<td>51,87</td>
<td>46,58</td>
<td>0.031</td>
</tr>
<tr>
<td>LDL colesterol</td>
<td>mg/dl</td>
<td>129,73</td>
<td>130,95</td>
<td>0.858</td>
</tr>
<tr>
<td>Ac. Úrico en suero</td>
<td>mg/dl</td>
<td>5,68</td>
<td>6,66</td>
<td>0.004</td>
</tr>
<tr>
<td>Sodio en suero</td>
<td>mmol/l</td>
<td>140,76</td>
<td>140,33</td>
<td>0.378</td>
</tr>
<tr>
<td>Potasio en suero</td>
<td>mmol/l</td>
<td>4,33</td>
<td>4,63</td>
<td>0.005</td>
</tr>
<tr>
<td>Sodio en orina</td>
<td>mmol/24 h</td>
<td>148,64</td>
<td>108,41</td>
<td>0.000</td>
</tr>
<tr>
<td>Potasio en orina</td>
<td>mmol/24h</td>
<td>63,07</td>
<td>60,85</td>
<td>0.560</td>
</tr>
<tr>
<td>Proteinuria</td>
<td>mg/24h</td>
<td>514,39</td>
<td>644,18</td>
<td>0.593</td>
</tr>
</tbody>
</table>

*p: significación estadística de variables continuas. Calculado mediante test t de Student para un intervalo de confianza IC = 95%.
En la tabla se evidencia que los pacientes con EAR en general mostraron un mayor deterioro de la función renal, existiendo una asociación significativa entre la estenosis y las cifras elevadas de creatinina \((p=0.000)\), un aclaramiento de creatinina deficiente \((p=0.000)\), niveles de ácido úrico en suero elevados y una descenso de las cifras de sodio en orina \((p=0.000)\). Por el contrario no se observó correlación entre la EAR y parámetros bioquímicos de aterosclerosis.
4.2. Variables en eco Doppler.

4.2.1. Descripción general.

Tal y como explicamos con anterioridad, se recogieron 3 series de datos por cada riñón, una en el polo superior, otra en el tercio medio, y otra en el polo inferior (ver anexo). Para el análisis de los datos se empleó tan sólo una de las tres series obtenidas en cada riñón, por defecto la más patológica, despreciando las otras dos. Todos los resultados, por tanto se refieren a estos datos. Las tablas 4.4 y 4.5. recogen los valores de las diferentes variables en la ecografía Doppler basal y post-captopril (referidas a riñones).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Doppler basal</th>
<th>Doppler post-captopril</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nº</td>
<td>(%)</td>
</tr>
<tr>
<td>ESP 1 (presencia)</td>
<td>145</td>
<td>56,4</td>
</tr>
<tr>
<td>ESP 2 (ausencia)</td>
<td>112</td>
<td>43,6</td>
</tr>
<tr>
<td>MORFO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo 1</td>
<td>90</td>
<td>35</td>
</tr>
<tr>
<td>Tipo 2</td>
<td>55</td>
<td>21,4</td>
</tr>
<tr>
<td>Tipo 3</td>
<td>17</td>
<td>6,6</td>
</tr>
<tr>
<td>Tipo 4</td>
<td>66</td>
<td>25,7</td>
</tr>
<tr>
<td>Tipo 5</td>
<td>11</td>
<td>4,3</td>
</tr>
<tr>
<td>Tipo 6</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>RESD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negativo (normal)</td>
<td>199</td>
<td>77,1</td>
</tr>
<tr>
<td>Positivo (patológico)</td>
<td>56</td>
<td>21,8</td>
</tr>
<tr>
<td>No concluyente</td>
<td>3</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Según la lectura del observador, 56 de los 258 riñones presentaban estenosis en el estudio basal (21,8%). No pudieron completarse el estudio en 3 casos en la eco basal. En el estudio post-captopril se diagnosticaron sólo 53 riñones con estenosis (20,6%), pudiendo completarse todos los estudios excepto uno por la escasa colaboración del paciente. El complejo ESP se visualizó con más frecuencia tras la administración de
captopril (62,3% de los casos frente a 56%), y los patrones morfológicos se delimitaron con más claridad.

Tabla 4.5. Valores medios de las variables cuantitativas.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Doppler basal</th>
<th>Doppler post captopril</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Media</td>
<td>Min</td>
</tr>
<tr>
<td>IA</td>
<td>467,23</td>
<td>41,2</td>
</tr>
<tr>
<td>TA</td>
<td>0,067</td>
<td>0,01</td>
</tr>
<tr>
<td>RI</td>
<td>0,713</td>
<td>0,06</td>
</tr>
<tr>
<td>PI</td>
<td>1,55</td>
<td>0,12</td>
</tr>
<tr>
<td>Tiempo</td>
<td>11,37</td>
<td>6</td>
</tr>
<tr>
<td>Intervalo</td>
<td>73,88</td>
<td>45</td>
</tr>
<tr>
<td>Tamaño</td>
<td>9,826</td>
<td>5,10</td>
</tr>
</tbody>
</table>

Las variables cuantitativas muestran un aumento del valor medio del índice de aceleración (IA) tras la administración de Captopril, sin cambios significativos en el resto de parámetros. El tamaño renal osciló entre 5 y 13 cm, con una media de 9,8 cm. El tiempo de exploración disminuyó en el estudio posterior a la administración de Captopril, de 11 a 9 minutos de media.

4.2.2. Variables en eco Doppler. Significación estadística por grados de estenosis

 Una vez obtenidos los datos se estudió la significación estadística de las distintas variables ecográficas referidas a estenosis >30%, >50% y >70% de diámetro en la arteriografía. Para las variables categóricas el cálculo de “p” se realizó mediante el test χ^2, mientras que para las cuantitativas se empleó el test t de Student, considerando como significativa una $p <0,05$. Todos los cálculos se realizan para un intervalo de confianza IC de 95%. Las tablas siguientes (4.6 y 4.7) muestran de manera resumida los valores de p para las variables en los distintos grados de estenosis. Se emplean las abreviaturas de las variables seguidas de “B” en los estudios basales, y de “S” en los estudiosposteriores al estímulo con Captopril.
Resultados

Tabla 4.6. Variables categóricas. Significación estadística y grado de estenosis

<table>
<thead>
<tr>
<th>Variable</th>
<th>Nombre</th>
<th>>30%</th>
<th>>50%</th>
<th>>70%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESPB</td>
<td>Onda ESP basal</td>
<td>0,019</td>
<td>0,000</td>
<td>0,001</td>
</tr>
<tr>
<td>ESPS</td>
<td>Onda ESP post-captopril</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>MORFB</td>
<td>Patrón morfológico basal</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>MORFS</td>
<td>Patrón morfológico post-captopril</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
</tbody>
</table>

*p: significación estadística de variables categóricas. Calculado mediante test χ^2 para un IC = 95%.

En la tabla anterior se comprueba que todas las variables categóricas muestran correlación significativa con los diferentes grados de estenosis de la arteria renal.

Tabla 4.7. Variables cuantitativas. Significación y grado de estenosis

<table>
<thead>
<tr>
<th>Variable</th>
<th>Nombre</th>
<th>>30%</th>
<th>>50%</th>
<th>>70%</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAB</td>
<td>Índice aceleración basal</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>IAS</td>
<td>Índice aceleración post-captopril</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>TAB</td>
<td>Tiempo aceleración basal</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>TAS</td>
<td>Tiempo aceleración post-estímulo</td>
<td>0,004</td>
<td>0,000</td>
<td>0,004</td>
</tr>
<tr>
<td>IRB</td>
<td>Índice resistividad basal</td>
<td>0,390</td>
<td>0,747</td>
<td>0,212</td>
</tr>
<tr>
<td>IRS</td>
<td>Índice resistividad post-estímulo</td>
<td>0,191</td>
<td>0,007</td>
<td>0,000</td>
</tr>
<tr>
<td>IPB</td>
<td>Índice pulsatilidad basal</td>
<td>0,231</td>
<td>0,545</td>
<td>0,500</td>
</tr>
<tr>
<td>IPS</td>
<td>Índice pulsatilidad post-estímulo</td>
<td>0,123</td>
<td>0,051</td>
<td>0,096</td>
</tr>
<tr>
<td>TAMR</td>
<td>Tamaño renal en eco</td>
<td>0,030</td>
<td>0,424</td>
<td>0,102</td>
</tr>
</tbody>
</table>

*p: significación estadística de variables cuantitativas. Test t de Student para un IC = 95%.

La tabla 4.7 muestra que las variables que mejor se correlacionan con los diferentes grados de estenosis son el índice de aceleración (IA), y el tiempo de aceleración (TA), tanto en los estudios basales como tras la administración de Captopril.

El índice de resistividad (IR) no muestra correlación con el grado de estenosis excepto en la eco post Captopril y para las estenosis de mayor grado, superiores a 70%.

El índice de pulsatilidad (IP) y el tamaño renal (TAMR) obtienen los peores resultados. El IP sólo muestra una débil correlación con las estenosis de 50% de diámetro en las ecografías post-captopril.
A continuación se explican de manera pormenorizada los cálculos para los distintos grados de estenosis. Seguiremos el siguiente esquema de trabajo:

Análisis multivariante. Regresión logística.
4.3. Resultados de la ecografía Doppler basal y post-captopril para estenosis > 30% de diámetro.

4.3.1. Variables dicotómicas. Análisis univariante.

Iniciamos el análisis con la variable dicotómica ESP. Al tratarse de una variable categórica emplearemos un “test de contraste de hipótesis”. En este test se establece a priori una hipótesis acerca del valor de un parámetro. A continuación se realiza el estudio y se analiza la coherencia entre la hipótesis y los hallazgos encontrados, para lo cual se utiliza una prueba de referencia. En nuestro caso esta prueba es la angiografía, cuyos resultados se han referido a estenosis de la arteria renal principal o en cualquier otra localización > 30% de diámetro. Los resultados del test se expresan en “tablas de contingencia”, a partir de las cuales calcularemos la sensibilidad, especificidad, valor predictivo positivo, valor predictivo negativo y valor global de la prueba por medio del teorema de Bayes (220), con un intervalo de confianza IC = 95%. La significación estadística se calcula mediante la prueba \(\chi^2 \) (Chi-cuadrado de Pearson).
Onda ESP basal y estenosis >30%

Test de contraste de hipótesis

<table>
<thead>
<tr>
<th>Variable</th>
<th>Valores</th>
<th>Hipótesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prueba diagnóstica ESPB</td>
<td>ESPB = 1 (presencia)</td>
<td>Prueba negativa (no estenosis)</td>
</tr>
<tr>
<td></td>
<td>ESPB = 2 (ausencia)</td>
<td>Prueba positiva (estenosis)</td>
</tr>
<tr>
<td>Prueba de referencia angiografía</td>
<td>≤ 30%</td>
<td>Prueba negativa</td>
</tr>
<tr>
<td></td>
<td>> 30%</td>
<td>Prueba positiva</td>
</tr>
</tbody>
</table>

Tabla de contingencia

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estenosis ≤ 30%</th>
<th>Estenosis > 30%</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESPB = 1</td>
<td>102 (61,8%)</td>
<td>43 (46,7%)</td>
<td>145</td>
</tr>
<tr>
<td>ESPB = 2</td>
<td>63 (38,2%)</td>
<td>49 (53,3%)</td>
<td>112</td>
</tr>
<tr>
<td>Total</td>
<td>165 (100%)</td>
<td>92 (100%)</td>
<td>257</td>
</tr>
</tbody>
</table>

Resultados. Teorema de Bayes

<table>
<thead>
<tr>
<th>Resultados</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensibilidad</td>
<td>43,15</td>
</tr>
<tr>
<td>Especificidad</td>
<td>61,46</td>
</tr>
<tr>
<td>VPP</td>
<td>43,75</td>
</tr>
<tr>
<td>VPN</td>
<td>70,34</td>
</tr>
<tr>
<td>VG</td>
<td>58,75</td>
</tr>
<tr>
<td>Significación (χ^2)</td>
<td>0,019</td>
</tr>
</tbody>
</table>

Onda ESP post-captopril y estenosis >30%

Tabla de contingencia

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estenosis ≤ 30%</th>
<th>Estenosis > 30%</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESPS = 1</td>
<td>121 (73,3%)</td>
<td>39 (42,4%)</td>
<td>160</td>
</tr>
<tr>
<td>ESPS = 2</td>
<td>44 (26,7%)</td>
<td>53 (57,6%)</td>
<td>97</td>
</tr>
<tr>
<td>Total</td>
<td>165 (100%)</td>
<td>92 (100%)</td>
<td>257</td>
</tr>
</tbody>
</table>

Resultados.

<table>
<thead>
<tr>
<th>Resultados</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensibilidad</td>
<td>56,60</td>
</tr>
<tr>
<td>Especificidad</td>
<td>73,33</td>
</tr>
<tr>
<td>VPP</td>
<td>54,63</td>
</tr>
<tr>
<td>VPN</td>
<td>75,62</td>
</tr>
<tr>
<td>VG</td>
<td>67,70</td>
</tr>
<tr>
<td>Significación (χ^2)</td>
<td>0,000</td>
</tr>
</tbody>
</table>
Resultado Doppler basal (lectura del observador) y estenosis >30%

Test de contraste de hipótesis

<table>
<thead>
<tr>
<th>Variable</th>
<th>Valores</th>
<th>Hipótesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prueba diagnóstica RESDB</td>
<td>RESDB = 1</td>
<td>Prueba positiva (estenosis)</td>
</tr>
<tr>
<td>Prueba de referencia angiografía</td>
<td>≤ 30%</td>
<td>Prueba negativa</td>
</tr>
<tr>
<td></td>
<td>> 30%</td>
<td>Prueba positiva</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estenosis ≤ 30%</th>
<th>Estenosis > 30%</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESDB = 1</td>
<td>(8,5%)</td>
<td>(46,2%)</td>
<td>22,0%</td>
</tr>
<tr>
<td>RESDB = 2</td>
<td>(91,5%)</td>
<td>(53,8%)</td>
<td>78,0%</td>
</tr>
<tr>
<td>Total</td>
<td>(100%)</td>
<td>(100%)</td>
<td>(100%)</td>
</tr>
</tbody>
</table>

Resultados

<table>
<thead>
<tr>
<th>Variable</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensibilidad</td>
<td>46,15</td>
</tr>
<tr>
<td>Especificidad</td>
<td>61,46</td>
</tr>
<tr>
<td>VPP</td>
<td>75,00</td>
</tr>
<tr>
<td>VPN</td>
<td>75,37</td>
</tr>
<tr>
<td>VG</td>
<td>75,29</td>
</tr>
<tr>
<td>Significación (χ²)</td>
<td>0,000</td>
</tr>
</tbody>
</table>

Resultado Doppler post-captopril (lectura del observador) y estenosis >30%

Tabla de contingencia

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estenosis ≤ 30%</th>
<th>Estenosis > 30%</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESDS = 1</td>
<td>(3,0%)</td>
<td>(52,2%)</td>
<td>(20,6%)</td>
</tr>
<tr>
<td>RESDS = 2</td>
<td>(97,0%)</td>
<td>(47,8%)</td>
<td>(79,4%)</td>
</tr>
<tr>
<td>Total</td>
<td>(100%)</td>
<td>(100%)</td>
<td>(100%)</td>
</tr>
</tbody>
</table>

Resultados

<table>
<thead>
<tr>
<th>Variable</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensibilidad</td>
<td>52,17</td>
</tr>
<tr>
<td>Especificidad</td>
<td>96,97</td>
</tr>
<tr>
<td>VPP</td>
<td>90,56</td>
</tr>
<tr>
<td>VPN</td>
<td>78,43</td>
</tr>
<tr>
<td>VG</td>
<td>80,93</td>
</tr>
<tr>
<td>Significación (χ²)</td>
<td>0,000</td>
</tr>
</tbody>
</table>
4.3.2. Variables cuantitativas continuas. Análisis univariante.

Las variables cuantitativas continuas se analizan mediante una prueba T para comparar muestras independientes, o mediante análisis de varianza (ANOVA). En este caso emplearemos la prueba T, mediante la cual clasificaremos los casos (riñones) en dos grupos, uno con estenosis > 30% de diámetro y otros sin estenosis. A continuación en cada grupo se calculan los valores medios de cada variable, desviación típica, y la “p” de significación estadística expresada mediante la prueba t de Student.

Para calcular el punto de corte de mayor discriminación diagnóstica en cada variable utilizaremos las curvas de rendimiento diagnóstico (curvas ROC tipo III), las cuales expresan la sensibilidad y especificidad para cada valor de la variable. En el eje Y se representa la sensibilidad, y en el eje X la proporción de falsos positivos (1- especificidad).

La línea que se sitúa a 45º del eje de las X y del eje de las Y, es la línea de no discriminación. Todos los puntos que se sitúen en esta línea tendrán la misma proporción de verdaderos positivos (sensibilidad) y de falsos positivos. El área por encima de la línea de 45º en la que la proporción de probabilidades es mayor de 1, indica un resultado del test positivo, mientras que el área por debajo de la línea indica un resultado del test negativo. El punto optimo de mayor discriminación es el que más se aproxime al ángulo superior izquierdo, donde la sensibilidad y especificidad alcanzan su valor máximo (221). Además la curva nos permite elegir un valor de corte para una sensibilidad o especificidad determinada por el observador. Representaremos simultáneamente las curvas de cada variable en el estudio basal y en el estudio post-Captopril, obteniendo una representación gráfica comparativa del rendimiento de la misma variable en ambos estudios. Todos los cálculos se realizan para un intervalo de confianza IC = 95%.
Tabla 4.8. Valores medios de las variables cuantitativas continuas y EAR >30% de diámetro.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estenosis ≤ 30% (N = 165)</th>
<th>Estenosis > 30% (N= 92)</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Media</td>
<td>d.e.</td>
<td>Media</td>
</tr>
<tr>
<td>IAB (cm/seg²)</td>
<td>533,09</td>
<td>327,87</td>
<td>349,11</td>
</tr>
<tr>
<td>IAS (cm/seg²)</td>
<td>579,96</td>
<td>503,89</td>
<td>362,67</td>
</tr>
<tr>
<td>TAB (seg)</td>
<td>0,058</td>
<td>0,059</td>
<td>0,084</td>
</tr>
<tr>
<td>TAS (seg)</td>
<td>0,065</td>
<td>0,082</td>
<td>0,096</td>
</tr>
<tr>
<td>IRB</td>
<td>0,07</td>
<td>0,12</td>
<td>0,72</td>
</tr>
<tr>
<td>IRS</td>
<td>0,71</td>
<td>0,13</td>
<td>0,68</td>
</tr>
<tr>
<td>IPB</td>
<td>1,45</td>
<td>1,10</td>
<td>1,72</td>
</tr>
<tr>
<td>IPS</td>
<td>1,45</td>
<td>1,27</td>
<td>1,23</td>
</tr>
<tr>
<td>TAMR</td>
<td>9,93</td>
<td>1,09</td>
<td>9,62</td>
</tr>
</tbody>
</table>

*p significación estadística de variables continuas. Calculado mediante test t de Student para un intervalo de confianza IC = 95%.

En la tabla anterior puede comprobarse que las variables índice de aceleración (IA) y tiempo de aceleración (TA) presentan valores de “p” significativos (p < 0,05), tanto en la ecografía basal, como en el estudio post-Captopril, lo que indica que estas variables tienen valor diagnóstico. El tamaño renal muestra una débil significación (p= 0,030), ya que apenas existe diferencia de tamaño entre ambos grupos, mientras que los índices de resistividad (IR) y pulsatilidad (IP), no presentan significación.

A continuación representaremos las curvas ROC de las variables que mostraron significación estadística.
Curvas ROC. Indice de aceleración basal (IAB) y post-Captopril (IAS) y EAR> 30% de diámetro.

Los segmentos diagonales son producidos por los empates.

<table>
<thead>
<tr>
<th>Variable resultado de contraste</th>
<th>área</th>
<th>significación</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAB (cm/seg²)</td>
<td>0,703</td>
<td>0,000</td>
</tr>
<tr>
<td>Indice de aceleración basal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAS (cm /seg²)</td>
<td>0,734</td>
<td>0,000</td>
</tr>
<tr>
<td>Indice de aceleración postcaptopril</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resultados

Tras el análisis de las coordenadas de las curvas se determinaron los puntos de corte, que en ambos casos correspondió a un valor de < 300 cm/seg². Una vez obtenidos estos puntos conocemos automáticamente la sensibilidad, especificidad y valor global de la prueba, determinada esta última por el área bajo la curva.
Para calcular los valores predictivos positivo (VPP) y negativo (VPN), se recodificaron las variables como dicotómicas, en función de cada punto de corte, obteniendo así dos grupos de riñones, uno con estenosis, y otro sin estenosis, según el criterio del punto de corte. A partir de aquí se realizaron los cálculos empleando nuevamente el teorema de Bayes.

<table>
<thead>
<tr>
<th>Resultados</th>
<th>IAB < 300 (%)</th>
<th>IAS < 300 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensibilidad</td>
<td>54,34</td>
<td>55,43</td>
</tr>
<tr>
<td>Especificidad</td>
<td>78,18</td>
<td>82,42</td>
</tr>
<tr>
<td>VPP</td>
<td>58,14</td>
<td>63,75</td>
</tr>
<tr>
<td>VPN</td>
<td>75,43</td>
<td>76,83</td>
</tr>
<tr>
<td>VG</td>
<td>70,30</td>
<td>72,83</td>
</tr>
<tr>
<td>Significación (t de Student)</td>
<td>0,000</td>
<td>0,000</td>
</tr>
</tbody>
</table>
Resultados para estenosis > 30%

Curvas ROC. Tiempo de aceleración basal (TAB) y post-Captopril (IAS) y EAR> 30% de diámetro.

Los segmentos diagonales son producidos por los empates.

Área bajo la curva

<table>
<thead>
<tr>
<th>Variable resultado de contraste</th>
<th>área</th>
<th>significación</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAB (cm/seg²)</td>
<td>0,689</td>
<td>0,000</td>
</tr>
<tr>
<td>Tiempo de aceleración basal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAS (cm /seg²)</td>
<td>0,704</td>
<td>0,000</td>
</tr>
<tr>
<td>Tiempo de aceleración postcaptopril</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resultados

Se determinaron igualmente los puntos de corte, que en ambos casos correspondió a un valor de > 0,07 seg.

<table>
<thead>
<tr>
<th>Resultados</th>
<th>TAB > 0,07 (%)</th>
<th>TAS > 0,07 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensibilidad</td>
<td>41,30</td>
<td>47,82</td>
</tr>
<tr>
<td>Especificidad</td>
<td>93,33</td>
<td>92,12</td>
</tr>
<tr>
<td>VPP</td>
<td>77,55</td>
<td>77,19</td>
</tr>
<tr>
<td>VPN</td>
<td>74,03</td>
<td>76,00</td>
</tr>
<tr>
<td>VG</td>
<td>68,90</td>
<td>70,40</td>
</tr>
<tr>
<td>Significación (t de Student)</td>
<td>0,000</td>
<td>0,000</td>
</tr>
</tbody>
</table>
4.3.3. Variables nominales. Análisis univariante.

La variable patrón morfológico MORF es una variable categórica de tipo nominal. Se han considerado 6 patrones morfológicos numerados del 1 al 6. Como categórica podemos calcular la significación estadística de la misma mediante la prueba de χ^2. No obstante esta es una estimación genérica, que no refleja la significación de un patrón concreto.

En este caso se realizó un análisis de regresión logística incluyendo todos los patrones y se calculó la razón de oportunidades (odds ratio) de cada tipo morfológico, para una EAR > 30% de diámetro.

La odds ratio es la razón de oportunidades de prevalencia de la enfermedad. Consideramos que cada tipo morfológico se asocia un riesgo diferente de estenosis. Podemos saber el número de riñones con cada tipo de patrón morfológico, y calcular el cociente entre la proporción de EAR > 30% y la de ausencia de estenosis, en cada cohorte. Este es un concepto similar al de riesgo relativo. Podemos además calcular el riesgo de aparición de estenosis, en presencia de un patrón, con respecto a otro (221).

A priori consideramos que los patrones de tipo 1 a 4 se asocian a riñones sin estenosis, mientras que los tipos 5 y 6 se asocian a estenosis. Inicialmente realizamos la regresión incluyendo los 6 tipos, y calculando la odds para cada tipo.
Patrón morfológico basal (MORFB) y estenosis >30%

Tabla de contingencia

<table>
<thead>
<tr>
<th>Variable</th>
<th>MORFB</th>
<th>Estenosis ≤ 30%</th>
<th>Estenosis > 30%</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo 1</td>
<td>66</td>
<td>(40%)</td>
<td>24</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(26,1%)</td>
<td>(21,8%)</td>
<td></td>
</tr>
<tr>
<td>Tipo 2</td>
<td>36</td>
<td>(21,8%)</td>
<td>19</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(20,7%)</td>
<td>(9,7%)</td>
<td></td>
</tr>
<tr>
<td>Tipo 3</td>
<td>16</td>
<td>(9,7%)</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1,1%)</td>
<td>(1,8%)</td>
<td></td>
</tr>
<tr>
<td>Tipo 4</td>
<td>22</td>
<td>(25,2%)</td>
<td>24</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(26,1%)</td>
<td>(1,2%)</td>
<td></td>
</tr>
<tr>
<td>Tipo 5</td>
<td>3</td>
<td>(1,8%)</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8,7%)</td>
<td>(1,8%)</td>
<td></td>
</tr>
<tr>
<td>Tipo 6</td>
<td>2</td>
<td>(1,2%)</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(17,4%)</td>
<td>(2,0%)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>165</td>
<td>(100%)</td>
<td>92</td>
<td>257</td>
</tr>
</tbody>
</table>

Regresión logística. MORFB y estenosis > 30%

Iniciamos el análisis incluyendo los 6 tipos morfológicos.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Valores</th>
<th>Hipótesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prueba diagnóstica NMORFB</td>
<td>MORFB = 1, 2, 3 = normal</td>
<td>Prueba negativa (no estenosis)</td>
</tr>
<tr>
<td></td>
<td>MORFB = 4 probablemente normal</td>
<td>Prueba negativa (no estenosis)</td>
</tr>
<tr>
<td></td>
<td>MORFB = 5 y 6 = patológico</td>
<td>Prueba positiva (estenosis)</td>
</tr>
<tr>
<td>Prueba de referencia</td>
<td>≤ 30%</td>
<td>Prueba negativa</td>
</tr>
<tr>
<td>angiografía</td>
<td>> 30%</td>
<td>Prueba positiva</td>
</tr>
</tbody>
</table>

1º Paso.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sig. (odds ratio)</th>
<th>Exp (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paso 1º</td>
<td>MORFB</td>
<td>0,000</td>
</tr>
<tr>
<td>MORFB(1)</td>
<td>0,315</td>
<td>1,451</td>
</tr>
<tr>
<td>MORFB(2)</td>
<td>0,096</td>
<td>0,172</td>
</tr>
<tr>
<td>MORFB(3)</td>
<td>0,196</td>
<td>1,571</td>
</tr>
<tr>
<td>MORFB(4)</td>
<td>0,006</td>
<td>7,333</td>
</tr>
<tr>
<td>MORFB(5)</td>
<td>0,000</td>
<td>22,000</td>
</tr>
<tr>
<td>Constante</td>
<td>0,000</td>
<td>0,364</td>
</tr>
</tbody>
</table>

Se considera significativo un valor de odds ratio < 0,05

No hay diferencias entre los patrones 1 a 4, por lo que podemos agrupar los casos.
2º Paso.
Recodificamos la variable en tres grupos:
Grupo 1 tipos 1,2,3,4
Grupo 2 tipo 5
Grupo 3 tipo 6

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sig. (odds ratio)</th>
<th>Exp (B)</th>
<th>Comentario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paso 1º</td>
<td>0,000</td>
<td>6,275</td>
<td>Riesgo significativo</td>
</tr>
<tr>
<td>RMORFB(1)</td>
<td>0,008</td>
<td>18,773</td>
<td>Riesgo muy significativo</td>
</tr>
<tr>
<td>RMORFB(2)</td>
<td>0,000</td>
<td>0,425</td>
<td></td>
</tr>
<tr>
<td>Constante</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3º Paso.
Los análisis previos demuestran que el riesgo relativo (odds ratio) se incrementa progresivamente entre los tres grupos. No obstante podemos considerar que la diferencia más significativa se da entre los grupos 1 y 2 (patrones 1 al 5) con respecto al 3 (patrón 6). Por otro lado podemos considerar que el escaso número de casos con patrón 5 puede alterar el análisis.

Para simplificar reagruparemos nuevamente los patrones en dos grupos:
Grupo 1: tipo 1 a 4
Grupo 2: tipo 5 y 6

En este caso la variable se convierte en dicotómica y podríamos realizar una análisis mediante tablas de contingencia. No obstante continuaremos con la regresión aunque el resultado será el mismo.

<table>
<thead>
<tr>
<th>Tabla de contingencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed</td>
</tr>
<tr>
<td>Estenosis ≤ 30%</td>
</tr>
<tr>
<td>Estenosis ≤ 30%</td>
</tr>
<tr>
<td>Estenosis > 30%</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sig. (odds ratio)</th>
<th>Exp (B)</th>
<th>Comentario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paso 1º</td>
<td>0,000</td>
<td>11,293</td>
<td>Riesgo muy significativo</td>
</tr>
<tr>
<td>Constante</td>
<td>0,000</td>
<td>0,038</td>
<td></td>
</tr>
</tbody>
</table>
En resumen:

Los patrones 1 al 4 presentan una escasa asociación a la EAR >30% de diámetro, mientras que los patrones 5 y 6 se asocian de manera significativa a la estenosis (odds = 0,000), con un riesgo 11, 2 veces superior con respecto a los anteriores, siendo muy específico. No obstante la sensibilidad de la prueba es demasiado baja (26,1%), y el valor global de la prueba es relativo (71,6%). A partir de la tabla de contingencia podemos calcular también el VPP y VPN (ver resumen de resultados, Pág. 123).

Patrón morfológico post-Captopril (MORFS) y estenosis > 30%

<table>
<thead>
<tr>
<th>Variable</th>
<th>MORFS</th>
<th>Estenosis ≤ 30%</th>
<th>Estenosis > 30%</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo 1</td>
<td>81</td>
<td>(49,1%)</td>
<td>24</td>
<td>105</td>
</tr>
<tr>
<td>Tipo 2</td>
<td>39</td>
<td>(23,6%)</td>
<td>15</td>
<td>54</td>
</tr>
<tr>
<td>Tipo 3</td>
<td>16</td>
<td>(9,7%)</td>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td>Tipo 4</td>
<td>25</td>
<td>(15,2%)</td>
<td>17</td>
<td>42</td>
</tr>
<tr>
<td>Tipo 5</td>
<td>3</td>
<td>(1,8%)</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>Tipo 6</td>
<td>1</td>
<td>(0,6%)</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>Total</td>
<td>165</td>
<td>(100%)</td>
<td>92</td>
<td>257</td>
</tr>
</tbody>
</table>

Regresión logística. MORFS y estenosis > 30%

Procederemos de igual forma que en el caso anterior.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Valores</th>
<th>Hipótesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prueba diagnóstica N MORS</td>
<td>MORFS = 1, 2, 3 = normal</td>
<td>Prueba negativa (no estenosis)</td>
</tr>
<tr>
<td></td>
<td>MORFS = 4 probablemente normal</td>
<td>Prueba negativa (no estenosis)</td>
</tr>
<tr>
<td></td>
<td>MORFS = 5 y 6 = patológico</td>
<td>Prueba positiva (estenosis)</td>
</tr>
<tr>
<td>Prueba de referencia</td>
<td>≤ 30%</td>
<td>Prueba negativa</td>
</tr>
<tr>
<td>angiografía</td>
<td>> 30%</td>
<td>Prueba positiva</td>
</tr>
</tbody>
</table>
1º Paso

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sig. (odds ratio)</th>
<th>Exp (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paso 1º</td>
<td>MORFS</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td>MORFS(1)</td>
<td>0,495</td>
</tr>
<tr>
<td></td>
<td>MORFS(2)</td>
<td>0,925</td>
</tr>
<tr>
<td></td>
<td>MORFS(3)</td>
<td>0,034</td>
</tr>
<tr>
<td></td>
<td>MORFS(4)</td>
<td>0,001</td>
</tr>
<tr>
<td></td>
<td>MORFS(5)</td>
<td>0,000</td>
</tr>
<tr>
<td></td>
<td>Constante</td>
<td>0,000</td>
</tr>
</tbody>
</table>

No se objetivan diferencias de riesgo significativas entre los patrones 1 al 3, por lo que podemos agruparlos. Por otro lado el escaso número de casos con patrón 5 permite agruparlo con el 6.

2º Paso.

Recodificamos la variable en tres grupos:
Grupo 1 tipos 1,2,3,
Grupo 2 tipo 4
Grupo 3 tipo 5 y 6

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sig. (odds ratio)</th>
<th>Exp (B)</th>
<th>Comentario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paso 1º</td>
<td>RMORFS</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RMORFS(1)</td>
<td>0,039</td>
<td>2,102</td>
</tr>
<tr>
<td></td>
<td>RMORFS(2)</td>
<td>0,000</td>
<td>23,899</td>
</tr>
<tr>
<td></td>
<td>Constante</td>
<td>0,000</td>
<td>0,324</td>
</tr>
</tbody>
</table>

En resumen

El análisis demuestra también en este caso que los patrones 1 al 3 presentan una escasa asociación a la EAR >30% de diámetro, y que finalmente, tampoco existe diferencias entre los tres primeros y el tipo 4, por lo que podemos agruparlos. A partir de la tabla de contingencia anterior se calculan también el VPP y VPN. Los patrones 5 y 6 mantienen una correlación con la presencia de EAR >30%, [odds= 0,000] con un riesgo con respecto a los anteriores 23,8 veces superior de presentar estenosis > 30%. En cuanto a
los valores de especificidad son altos (97,6%), mientras que la sensibilidad se mantiene muy baja (33,7%), con un valor global similar al del estudio basal (74,7%).

4.3.4. Resultados globales del análisis univariante para estenosis >30% de diámetro.

<table>
<thead>
<tr>
<th>Tabla 4.9. Eco Doppler basal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>ESPB</td>
</tr>
<tr>
<td>RESDB</td>
</tr>
<tr>
<td>IAB < 300</td>
</tr>
<tr>
<td>TAB > 0,07</td>
</tr>
<tr>
<td>MORFB (5-6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabla 4.9. Doppler post captopril</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>ESPS</td>
</tr>
<tr>
<td>RESDS</td>
</tr>
<tr>
<td>IAS < 300</td>
</tr>
<tr>
<td>TAS</td>
</tr>
<tr>
<td>MORFS (5-6)</td>
</tr>
</tbody>
</table>

4.3.5. Análisis Multivariante

Dada el escaso valor de los resultados obtenidos en el análisis univariante, y dado que estamos considerando estenosis > 30%, no parece de utilidad avanzar en este análisis. Explicaremos la metodología en el estudio de las estenosis de > 50% y > 70% de diámetro.
4.4. Resultados de la ecografía Doppler basal y post-captopril para estenosis > 50% de diámetro.

Onda ESP basal y estenosis > 50%

<table>
<thead>
<tr>
<th>Test de contraste de hipótesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>Prueba diagnóstica ESPB</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Prueba de referencia</td>
</tr>
<tr>
<td>angiografía</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tabla de contingencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>ESPB = 1</td>
</tr>
<tr>
<td>Estenosis ≤ 50%</td>
</tr>
<tr>
<td>Estenosis > 50%</td>
</tr>
<tr>
<td>ESPB = 2</td>
</tr>
<tr>
<td>Estenosis ≤ 50%</td>
</tr>
<tr>
<td>Estenosis > 50%</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Resultados. Teorema de Bayes

<table>
<thead>
<tr>
<th>Resultados</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensibilidad</td>
<td>67,30</td>
</tr>
<tr>
<td>Especificidad</td>
<td>62,43</td>
</tr>
<tr>
<td>VPP</td>
<td>31,25</td>
</tr>
<tr>
<td>VPN</td>
<td>88,27</td>
</tr>
<tr>
<td>VG</td>
<td>63,42</td>
</tr>
<tr>
<td>Significació (χ^2)</td>
<td>0,000</td>
</tr>
</tbody>
</table>

Onda ESP post-Captopril y estenosis > 50%

<table>
<thead>
<tr>
<th>Tabla de contingencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>ESPS = 1</td>
</tr>
<tr>
<td>Estenosis ≤ 50%</td>
</tr>
<tr>
<td>Estenosis > 50%</td>
</tr>
<tr>
<td>ESPS = 2</td>
</tr>
<tr>
<td>Estenosis > 50%</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Resultados. Teorema de Bayes

<table>
<thead>
<tr>
<th>Resultados</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensibilidad</td>
<td>78,84</td>
</tr>
<tr>
<td>Especificidad</td>
<td>72,68</td>
</tr>
<tr>
<td>VPP</td>
<td>42,26</td>
</tr>
<tr>
<td>VPN</td>
<td>93,12</td>
</tr>
<tr>
<td>VG</td>
<td>73,93</td>
</tr>
<tr>
<td>Significación (χ^2)</td>
<td>0,000</td>
</tr>
</tbody>
</table>

Resultado Doppler basal, RESDB, (lectura del observador) y estenosis >50%

Test de contraste de hipótesis

<table>
<thead>
<tr>
<th>Variable</th>
<th>Valores</th>
<th>Hipótesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prueba diagnóstica RESDB</td>
<td>RESDB = 1</td>
<td>Prueba positiva (estenosis)</td>
</tr>
<tr>
<td></td>
<td>RESDB = 2</td>
<td>Prueba negativa (no estenosis)</td>
</tr>
<tr>
<td>Prueba de referencia</td>
<td>≤ 50%</td>
<td>Prueba negativa</td>
</tr>
<tr>
<td>angiografía</td>
<td>> 50%</td>
<td>Prueba positiva</td>
</tr>
</tbody>
</table>

Tabla de contingencia

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estenosis ≤ 50%</th>
<th>Estenosis > 50%</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESDB = 1</td>
<td>Estenosis > 50%</td>
<td>23</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>11,3%</td>
<td>64,7%</td>
<td>22,0%</td>
</tr>
<tr>
<td>RESDB = 2</td>
<td>Estenosis ≤ 50%</td>
<td>181</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>88,7%</td>
<td>35,3%</td>
<td>78,0%</td>
</tr>
<tr>
<td>Total</td>
<td>204</td>
<td>51</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Resultados

<table>
<thead>
<tr>
<th>Resultados</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensibilidad</td>
<td>64,70</td>
</tr>
<tr>
<td>Especificidad</td>
<td>88,72</td>
</tr>
<tr>
<td>VPP</td>
<td>58,92</td>
</tr>
<tr>
<td>VPN</td>
<td>90,95</td>
</tr>
<tr>
<td>VG</td>
<td>83,92</td>
</tr>
<tr>
<td>Significación (χ^2)</td>
<td>0,000</td>
</tr>
</tbody>
</table>
Resultados Doppler y estenosis > 50%

Resultado Doppler post-Captopril, RESDS, (lectura del observador) y estenosis >50%

Tabla de contingencia

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estenosis ≤ 50%</th>
<th>Estenosis > 50%</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESDS = 1</td>
<td>11</td>
<td>42</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>5,4%</td>
<td>80,8%</td>
<td>20,6%</td>
</tr>
<tr>
<td>RESDS = 2</td>
<td>194</td>
<td>10</td>
<td>204</td>
</tr>
<tr>
<td></td>
<td>94,6%</td>
<td>19,2%</td>
<td>79,4%</td>
</tr>
<tr>
<td>Total</td>
<td>205</td>
<td>52</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Resultados

<table>
<thead>
<tr>
<th></th>
<th>Resultados (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensibilidad</td>
<td>80,76</td>
</tr>
<tr>
<td>Especificidad</td>
<td>94,63</td>
</tr>
<tr>
<td>VPP</td>
<td>79,24</td>
</tr>
<tr>
<td>VPN</td>
<td>95,09</td>
</tr>
<tr>
<td>VG</td>
<td>91,82</td>
</tr>
<tr>
<td>Significación (χ^2)</td>
<td>0,000</td>
</tr>
</tbody>
</table>
4.4.2. Variables cuantitativas continuas. Análisis univariante.

Tabla 4.10. Valores medios de las variables cuantitativas continuas y EAR >50% de diámetro.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estenosis ≤ 50% (N = 205)</th>
<th>Estenosis > 50% (N= 52)</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAB (cm/seg²)</td>
<td>525,77 323,50</td>
<td>236,44 145,67</td>
<td>0,000</td>
</tr>
<tr>
<td>IAS (cm/seg²)</td>
<td>577,12 501,85</td>
<td>206,73 214,55</td>
<td>0,000</td>
</tr>
<tr>
<td>TAB (seg)</td>
<td>0,059 0,055</td>
<td>0,100 0,051</td>
<td>0,000</td>
</tr>
<tr>
<td>TAS (seg)</td>
<td>0,064 0,074</td>
<td>0,125 0,104</td>
<td>0,000</td>
</tr>
<tr>
<td>IRB</td>
<td>0,714 0,128</td>
<td>0,707 0,174</td>
<td>0,747</td>
</tr>
<tr>
<td>IRS</td>
<td>0,714 0,132</td>
<td>0,655 0,167</td>
<td>0,007</td>
</tr>
<tr>
<td>IPB</td>
<td>0,517 1,552</td>
<td>1,680 2,305</td>
<td>0,545</td>
</tr>
<tr>
<td>IPS</td>
<td>1,444 1,208</td>
<td>1,104 0,611</td>
<td>0,051</td>
</tr>
<tr>
<td>TAMR</td>
<td>9,854 1,071</td>
<td>9,714 1,332</td>
<td>0,424</td>
</tr>
</tbody>
</table>

*p significación estadística de variables continuas. Calculado mediante test *t de Student* para un intervalo de confianza IC = 95%.

En la tabla anterior puede comprobarse que las variables índice de aceleración (IA) y tiempo de aceleración (TA) presentan valores de “*p*” significativos (*p < 0,05*), tanto en la ecografía basal, como en el estudio post-captopril, lo que indica que estas variables tienen valor diagnóstico. El índice de resistividad en la ecografía post-captopril (IRS) también muestra una buena asociación con la EAR > 50% (*p=0.007*), mientras que en el caso del índice de pulsatilidad (IPS) es más débil (*p=0.051*). El resto de parámetros no se correlacionan con la EAR.
Curvas ROC. Indice de aceleración basal (IAB) y post-captopril (IAS) y EAR > 50% de diámetro.

Los segmentos diagonales son producidos por los empates.

<table>
<thead>
<tr>
<th>Variable resultado de contraste</th>
<th>Área</th>
<th>Significación</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAB (cm/seg2)</td>
<td>0,817</td>
<td>0,000</td>
</tr>
<tr>
<td>Índice de aceleración basal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAS (cm/seg2)</td>
<td>0,856</td>
<td>0,000</td>
</tr>
<tr>
<td>Índice de aceleración postcaptopril</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resultados

El análisis de ambas curvas estableció los puntos de corte en < 300 cm/seg2 para el IAB, mientras que en el caso del IAS fue < 220 cm/seg2. Una vez obtenidos los puntos de corte se procedió igual que en el caso de estenosis >30% de diámetro para calcular la sensibilidad, especificidad, y valores predictivos.
Curvas ROC. Tiempo de aceleración basal (TAB) y post-captopril (TAS) y EAR > 50% de diámetro.

Área bajo la curva

<table>
<thead>
<tr>
<th>Variable resultado de contraste</th>
<th>Área</th>
<th>significación</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAB (cm/seg2)</td>
<td>0,801</td>
<td>0,000</td>
</tr>
<tr>
<td>Tiempo de aceleración basal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAS (cm/seg2)</td>
<td>0,843</td>
<td>0,000</td>
</tr>
<tr>
<td>Tiempo de aceleración postcaptopril</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resultados

En ambos casos los puntos de corte se establecieron en 0,07 seg. Procedemos igual que en el caso del índice de aceleración.

<table>
<thead>
<tr>
<th>Resultados</th>
<th>TAB > 0,07 (%)</th>
<th>TAS > 0,07 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensibilidad</td>
<td>65,40</td>
<td>78,80</td>
</tr>
<tr>
<td>Especificidad</td>
<td>80,97</td>
<td>78,53</td>
</tr>
<tr>
<td>VPP</td>
<td>47,29</td>
<td>48,83</td>
</tr>
<tr>
<td>VPN</td>
<td>90,21</td>
<td>93,60</td>
</tr>
<tr>
<td>VG</td>
<td>80,1</td>
<td>84,30</td>
</tr>
<tr>
<td>Significación (t de Student)</td>
<td>0,000</td>
<td>0,000</td>
</tr>
</tbody>
</table>
Resultados Doppler y estenosis > 50%

Curva ROC. Indice de resistividad basal (IRB) y post captopril (IRS) y estenosis > 50% de diámetro.

<table>
<thead>
<tr>
<th>Variable resultado de contraste</th>
<th>Área</th>
<th>significación</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRB</td>
<td>0,492</td>
<td>0,860</td>
</tr>
<tr>
<td>Índice de resistividad basal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRS</td>
<td>0,616</td>
<td>0,010</td>
</tr>
<tr>
<td>Índice de resistividad pos-captopril</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 - Especificidad

Los segmentos diagonales son producidos por los empates.

El área bajo la curva para IRB es 0,492, y para IRS es 0,616 muy próxima a 0,5, es decir a la hipótesis nula, con un trayecto casi paralelo a la línea de 45º, por lo que no podemos establecer un punto de corte óptimo. No calcularemos sensibilidad y especificidad.
Incremento del Indice de resistividad basal (ΔIRB) y post Captopril (ΔIRS) y estenosis > 50% de diámetro.

<table>
<thead>
<tr>
<th>Variable resultado de contraste</th>
<th>Área</th>
<th>significación</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔIRB incremento del IRB</td>
<td>0,627</td>
<td>0,025</td>
</tr>
<tr>
<td>ΔIRS incremento del IRS</td>
<td>0,648</td>
<td>0,009</td>
</tr>
</tbody>
</table>

El área bajo la curva en ambos casos es muy baja, próxima a 0,5, es decir la hipótesis nula, por lo que no se define un punto de corte óptimo. Para un valor teórico >5% los resultados son:

<table>
<thead>
<tr>
<th></th>
<th>Sensibilidad (%)</th>
<th>Especificidad (%)</th>
<th>VG (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔIRB</td>
<td>78,9</td>
<td>32,9</td>
<td>62,7</td>
</tr>
<tr>
<td>ΔIRS</td>
<td>73,7</td>
<td>37,6</td>
<td>64,8</td>
</tr>
</tbody>
</table>
4.4.3. Variables nominales. Análisis univariante.

Patrón morfológico basal (MORFB) y estenosis > 50%

<table>
<thead>
<tr>
<th>Variable</th>
<th>MORFB</th>
<th>Estenosis ≤ 50%</th>
<th>Estenosis > 50%</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo 1</td>
<td>84</td>
<td>6</td>
<td>35,0%</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>41,0%</td>
<td>11,5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipo 2</td>
<td>4</td>
<td>11</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21,5%</td>
<td>21,2%</td>
<td>21,4%</td>
<td></td>
</tr>
<tr>
<td>Tipo 3</td>
<td>17</td>
<td>0</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8,3%</td>
<td></td>
<td>6,6%</td>
<td></td>
</tr>
<tr>
<td>Tipo 4</td>
<td>52</td>
<td>14</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25,4%</td>
<td>26,9%</td>
<td>25,7%</td>
<td></td>
</tr>
<tr>
<td>Tipo 5</td>
<td>5</td>
<td>6</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,4%</td>
<td>11,5%</td>
<td>4,3%</td>
<td></td>
</tr>
<tr>
<td>Tipo 6</td>
<td>3</td>
<td>15</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,5%</td>
<td>28,8%</td>
<td>7,0%*</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>205</td>
<td>52</td>
<td>257</td>
<td></td>
</tr>
</tbody>
</table>

Valores:

Prueba diagnóstica MORFB
- MORFB = 1, 2, 3 = normal
- MORFB = 4 probablemente normal
- MORFB = 5 y 6 = patológico

Prueba de referencia
- Prueba negativa (no estenosis)
- Prueba positiva (estenosis)

Regresión logística. MORFB y estenosis > 50%

Iniciamos el análisis incluyendo los 6 tipos morfológicos.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Valores</th>
<th>Hipótesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>MORFB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≦ 50%</td>
<td>Prueba negativa (no estenosis)</td>
</tr>
<tr>
<td></td>
<td>> 50%</td>
<td>Prueba positiva (estenosis)</td>
</tr>
</tbody>
</table>

1º Paso.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sig. (odds ratio)</th>
<th>Exp (B)</th>
<th>Comentario</th>
</tr>
</thead>
<tbody>
<tr>
<td>MORFB</td>
<td>0,000</td>
<td>3,5000</td>
<td></td>
</tr>
<tr>
<td>MORFB(1)</td>
<td>0,200</td>
<td>3,5000</td>
<td></td>
</tr>
<tr>
<td>MORFB(2)</td>
<td>0,704</td>
<td>0,004</td>
<td></td>
</tr>
<tr>
<td>MORFB(3)</td>
<td>0,011</td>
<td>3,769</td>
<td></td>
</tr>
<tr>
<td>MORFB(4)</td>
<td>0,000</td>
<td>16,800</td>
<td></td>
</tr>
<tr>
<td>MORFB(5)</td>
<td>0,000</td>
<td>70,000</td>
<td></td>
</tr>
<tr>
<td>Constante</td>
<td>0,000</td>
<td>0,071</td>
<td>Artefacto*</td>
</tr>
</tbody>
</table>

*el artefacto se debe a los pocos casos de patrón morfológico de tipo 3.

No hay diferencias entre los patrones 1 a 4, por lo que podemos agrupar los casos.
2º Paso.
Recodificamos la variable en tres grupos:
Grupo 1 tipos 1,2,3,4
Grupo 2 tipo 5
Grupo 3 tipo 6

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sig. (odds ratio)</th>
<th>Exp (B)</th>
<th>Comentario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paso 1° RMORFB</td>
<td>0,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMORFB(1)</td>
<td>0,001</td>
<td>7,626</td>
<td>Riesgo significativo</td>
</tr>
<tr>
<td>RMORFB(2)</td>
<td>0,000</td>
<td>31,774</td>
<td>Riesgo muy significativo</td>
</tr>
<tr>
<td>Constante</td>
<td>0,000</td>
<td>0,157</td>
<td></td>
</tr>
</tbody>
</table>

3º Paso.
Los análisis previos demuestran que el riesgo relativo (odds ratio) se incrementa progresivamente entre los tres grupos. No obstante podemos considerar que la diferencia más significativa se da entre los grupos 1 y 2 (patrones 1 al 5) con respecto al 3 (patrón 6). Por otro lado podemos considerar que el escaso número de casos con patrón 5 puede alterar el análisis. Para simplificar reagruparemos nuevamente los patrones en dos grupos:
Grupo 1: tipo 1 a 4
Grupo 2: tipo 5 y 6
La variable se convierte en dicotómica como en el caso de las estenosis >30%.

<table>
<thead>
<tr>
<th>Observado</th>
<th>Estenosis ≤ 50%</th>
<th>Estenosis > 50%</th>
<th>Predicho</th>
<th>Especificidad</th>
<th>Sensibilidad</th>
<th>Valor global</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estenosis ≤ 50%</td>
<td>197</td>
<td>8</td>
<td>96,1</td>
<td>Especificidad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estenosis > 50%</td>
<td>31</td>
<td>21</td>
<td>40,4</td>
<td>Sensibilidad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porcentaje global</td>
<td>84,8</td>
<td></td>
<td></td>
<td>Valor global</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sig. (odds ratio)</th>
<th>Exp (B)</th>
<th>Comentario</th>
</tr>
</thead>
<tbody>
<tr>
<td>RRMORFB</td>
<td>0,000</td>
<td>16,681</td>
<td>Riesgo muy significativo</td>
</tr>
<tr>
<td>Constante</td>
<td>0,000</td>
<td>0,009</td>
<td></td>
</tr>
</tbody>
</table>

En resumen
Al igual que ocurriría en las estenosis > 30% de diámetro, los patrones 1 al 4 presentan una escasa asociación a la EAR >50%, mientras que los patrones 5 y 6 se asocian de manera significativa a la estenosis (odds = 0,000), con un riesgo 16,68 veces superior con respecto a los anteriores, siendo muy específico (96,1%). La sensibilidad aumenta
respecto a las estenosis de 30%, pero se mantiene baja (40,4%). El valor global de la prueba también aumenta con el grado de estenosis (84,8%).

Patrón morfológico post-Captopril y estenosis > 50%

<table>
<thead>
<tr>
<th>Variable</th>
<th>MORFS</th>
<th>Estenosis ≤ 50%</th>
<th>Estenosis > 50%</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo 1</td>
<td>99</td>
<td>48,3%</td>
<td>11,5%</td>
<td>105</td>
</tr>
<tr>
<td>Tipo 2</td>
<td>49</td>
<td>23,9%</td>
<td>9,6%</td>
<td>54</td>
</tr>
<tr>
<td>Tipo 3</td>
<td>19</td>
<td>9,3%</td>
<td>3,8%</td>
<td>21</td>
</tr>
<tr>
<td>Tipo 4</td>
<td>31</td>
<td>15,1%</td>
<td>21,2%</td>
<td>42</td>
</tr>
<tr>
<td>Tipo 5</td>
<td>6</td>
<td>2,9%</td>
<td>13,5%</td>
<td>13</td>
</tr>
<tr>
<td>Tipo 6</td>
<td>1</td>
<td>0,5%</td>
<td>40,4%</td>
<td>22</td>
</tr>
<tr>
<td>Total</td>
<td>205</td>
<td>100%</td>
<td>100%</td>
<td>257</td>
</tr>
</tbody>
</table>

Regresión logística. MORFS y estenosis > 50%

Procederemos de igual forma que en el caso anterior.

1º Paso.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sig. (odds ratio)</th>
<th>Exp (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MORFS</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>MORFS(1)</td>
<td>0,409</td>
<td>1,682</td>
</tr>
<tr>
<td>MORFS(2)</td>
<td>0,519</td>
<td>1,736</td>
</tr>
<tr>
<td>MORFS(3)</td>
<td>0,001</td>
<td>5,851</td>
</tr>
<tr>
<td>MORFS(4)</td>
<td>0,000</td>
<td>19,236</td>
</tr>
<tr>
<td>MORFS(5)</td>
<td>0,000</td>
<td>345,371</td>
</tr>
<tr>
<td>Constante</td>
<td>0,000</td>
<td>0,061</td>
</tr>
</tbody>
</table>

No se objetiva diferencias de riesgo significativas entre los patrones 1 al 3, por lo que podemos agruparlos. Por otro lado el escaso número de casos con patrón 5 permite agruparlo con el 6.

2º Paso.

Recodificamos la variable en tres grupos:
- Grupo 1 tipos 1,2,3,
- Grupo 2 tipo 4
- Grupo 3 tipo 5 y 6
<table>
<thead>
<tr>
<th>Variable</th>
<th>Sig. (odds ratio)</th>
<th>Exp (B)</th>
<th>Comentario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paso 1º</td>
<td>RMORFS</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RMORFS(1)</td>
<td>0,001</td>
<td>1,558</td>
</tr>
<tr>
<td></td>
<td>RMORFS(2)</td>
<td>0,000</td>
<td>51,377</td>
</tr>
<tr>
<td></td>
<td>Constante</td>
<td>0,000</td>
<td>0,078</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sig. (odds ratio)</th>
<th>Exp (B)</th>
<th>Comentario</th>
</tr>
</thead>
<tbody>
<tr>
<td>3º paso</td>
<td>Si agrupamos finalmente los patrones 5 y 6, frente a los 4 primeros el análisis ofrece la misma sensibilidad y especificidad con la siguiente odds ratio:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paso 1º</td>
<td>RMORFS(1)</td>
<td>0,000</td>
<td>33,000</td>
</tr>
<tr>
<td></td>
<td>Constante</td>
<td>0,000</td>
<td>0,121</td>
</tr>
</tbody>
</table>

En resumen

El análisis demuestra también en este caso que los patrones 1 al 3 presentan una escasa asociación a la EAR >50% de diámetro, y que finalmente, tampoco existe diferencias entre los tres primeros y el tipo 4. Los patrones 5 y 6 mantienen una correlación con la presencia de EAR >50%, (odds = 0,000) con un riesgo 1,5 veces superior del patrón tipo 5 con respecto a los 4 primeros, y de hasta 51,37 veces superior del patrón 6. La agrupación de los patrones 5 y 6 disminuye ligeramente la odds ratio hasta un riesgo 33 veces superior a los patrones 1 a 4. La especificidad se mantiene alta (96,6%), mientras que la sensibilidad aumenta con el grado de estenosis (53,8%), siendo más sensible el estudio post-captopril que el basal. El valor global de la prueba es también significativo (87,9%).
4.4.4. Resultados globales del análisis univariante para estenosis >50% de diámetro.

Finalmente hemos reducido todas las variables a categóricas, dicotómicas, incluso las continuas (IA, TA) al establecer un punto de corte, o las nominales, al agrupar los patrones morfológicos sólo en 2 categorías. Empleando tablas de contingencia frente al evento (estenosis en la angiografía) podemos calcular el valor diagnóstico de cada variable.

<table>
<thead>
<tr>
<th>Tabla 4.11. Eco Doppler basal</th>
<th>Variable</th>
<th>Sensibilidad (%)</th>
<th>Especificidad (%)</th>
<th>VPP (%)</th>
<th>VPN (%)</th>
<th>VG (%)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESPB</td>
<td>67,30</td>
<td>62,43</td>
<td>31,25</td>
<td>88,27</td>
<td>63,42</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>RESDB</td>
<td>64,70</td>
<td>88,72</td>
<td>58,92</td>
<td>90,95</td>
<td>83,92</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>IAB < 300</td>
<td>73,07</td>
<td>76,58</td>
<td>44,18</td>
<td>91,81</td>
<td>81,70</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>TAB > 0,07</td>
<td>65,40</td>
<td>80,97</td>
<td>47,29</td>
<td>90,21</td>
<td>80,10</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>MORFB (5-6)</td>
<td>40,38</td>
<td>96,09</td>
<td>72,41</td>
<td>86,40</td>
<td>84,82</td>
<td>0,000</td>
<td></td>
</tr>
</tbody>
</table>

*p: significación estadística expresada mediante la prueba χ^2 con un intervalo de confianza IC= 95%

<table>
<thead>
<tr>
<th>Tabla 4.12. Doppler post captopril</th>
<th>Variable</th>
<th>Sensibilidad (%)</th>
<th>Especificidad (%)</th>
<th>VPP (%)</th>
<th>VPN (%)</th>
<th>VG (%)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESPS</td>
<td>78,84</td>
<td>72,68</td>
<td>42,26</td>
<td>93,12</td>
<td>73,93</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>RESDS</td>
<td>80,76</td>
<td>94,63</td>
<td>79,24</td>
<td>95,09</td>
<td>91,82</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>IAS < 220</td>
<td>75,00</td>
<td>91,70</td>
<td>69,64</td>
<td>93,53</td>
<td>85,60</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>TAS > 0,07</td>
<td>78,80</td>
<td>78,53</td>
<td>48,83</td>
<td>93,60</td>
<td>84,30</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>MORFS (5-6)</td>
<td>53,84</td>
<td>96,58</td>
<td>80,00</td>
<td>89,18</td>
<td>87,93</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>IRS</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>61,60</td>
<td>0,007</td>
</tr>
<tr>
<td>ΔIRS</td>
<td>73,7</td>
<td>37,6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>64,8</td>
<td>0,009</td>
</tr>
</tbody>
</table>

*p: significación estadística expresada mediante la prueba χ^2 con un intervalo de confianza IC= 95%
4.4.5. Análisis Multivariante

En el análisis univariante se observa que el mejor resultado se obtiene en la lectura del observador. En el análisis multivariante se realiza un análisis de regresión logística de dos o más variables simultáneamente. Por razones prácticas realizamos el análisis sólo en el estudio Doppler post captopril, y empleamos las variables que mejores resultados obtuvieron individualmente.

El modelo de regresión se inicia con una variable, en este caso el tiempo de aceleración, TAS > 0,07 seg, y se van integrando sucesivamente nuevas variables, el índice de aceleración IAS < 220 cm/seg², y finalmente el patrón morfológico MORFS = 5 ó 6. Los resultados son los siguientes:

<table>
<thead>
<tr>
<th>Tabla 4.13. Análisis multivariante</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>Sensibilidad (%)</td>
</tr>
<tr>
<td>Especificidad (%)</td>
</tr>
<tr>
<td>VG (%)</td>
</tr>
<tr>
<td>TAS >0,07</td>
</tr>
<tr>
<td>TAS >0,07 / IAS <220</td>
</tr>
<tr>
<td>TAS >0,07 / IAS <220 / MORFS (5-6)</td>
</tr>
</tbody>
</table>

La asociación de criterios incrementa la especificidad de la prueba, sin embargo la sensibilidad empeora. Por otro lado no se alcanzan los resultados de la variable lectura del observador. Esta última puede considerarse en realidad como un análisis multivariante subjetivo. Se realizó un modelo de regresión asociando algunas variables clínicas significativas incluyendo sexo (varón), tensión arterial sistólica, y soplo abdominal junto a las anteriores. El resultado arrojó un ligero incremento de la sensibilidad de 75%, y la especificidad de 95,6%, con un valor global de 91,4%.
4.5. Resultados de la ecografía Doppler basal y post-Captopril para estenosis > 70% de diámetro.

Onda ESP basal y estenosis > 70%

Tabla de contingencia

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estenosis ≤ 70%</th>
<th>Estenosis > 70%</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESPB = 1</td>
<td>136</td>
<td>9</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>60,2%</td>
<td>29,0%</td>
<td>56,4%</td>
</tr>
<tr>
<td>ESPB = 2</td>
<td>90</td>
<td>22</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>39,8%</td>
<td>71,0%</td>
<td>43,6%</td>
</tr>
<tr>
<td>Total</td>
<td>226</td>
<td>31</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Resultados. Teorema de Bayes

<table>
<thead>
<tr>
<th>Resultados</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensibilidad</td>
<td>70,96</td>
</tr>
<tr>
<td>Especificidad</td>
<td>60,17</td>
</tr>
<tr>
<td>VPP</td>
<td>19,64</td>
</tr>
<tr>
<td>VPN</td>
<td>93,79</td>
</tr>
<tr>
<td>VG</td>
<td>61,47</td>
</tr>
<tr>
<td>Significación (χ²)</td>
<td>0,001</td>
</tr>
</tbody>
</table>
Onda ESP post-Captopril y estenosis >70%

Tabla de contingencia

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estenosis ≤ 70%</th>
<th>Estenosis > 70%</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESPS = 1 Estenosis ≤ 70%</td>
<td>155</td>
<td>5</td>
<td>160</td>
</tr>
<tr>
<td></td>
<td>68,6%</td>
<td>16,1%</td>
<td>62,3%</td>
</tr>
<tr>
<td>ESPS = 2 Estenosis > 70%</td>
<td>71</td>
<td>26</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>31,4%</td>
<td>83,9%</td>
<td>37,7%</td>
</tr>
<tr>
<td>Total</td>
<td>226</td>
<td>31</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Resultados

<table>
<thead>
<tr>
<th>Resultados</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensibilidad</td>
<td>83,87</td>
</tr>
<tr>
<td>Especificidad</td>
<td>68,58</td>
</tr>
<tr>
<td>VPP</td>
<td>26,80</td>
</tr>
<tr>
<td>VPN</td>
<td>96,87</td>
</tr>
<tr>
<td>VG</td>
<td>70,42</td>
</tr>
<tr>
<td>Significación (χ^2)</td>
<td>0,000</td>
</tr>
</tbody>
</table>

Resultado Doppler basal (lectura del observador) y estenosis >70%

Test de contraste de hipótesis

<table>
<thead>
<tr>
<th>Variable</th>
<th>Valores</th>
<th>Hipótesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prueba diagnóstica RESDB</td>
<td>RESDB = 1</td>
<td>Prueba positiva (estenosis)</td>
</tr>
<tr>
<td></td>
<td>RESDB = 2</td>
<td>Prueba negativa (no estenosis)</td>
</tr>
<tr>
<td>Prueba de referencia angiografía</td>
<td>≤ 70%</td>
<td>Prueba negativa</td>
</tr>
<tr>
<td></td>
<td>> 70%</td>
<td>Prueba positiva</td>
</tr>
</tbody>
</table>

Tabla de contingencia

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estenosis ≤ 70%</th>
<th>Estenosis > 70%</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESDB = 1 Estenosis > 70%</td>
<td>33</td>
<td>23</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>14,7%</td>
<td>76,7%</td>
<td>22,0%</td>
</tr>
<tr>
<td>RESDB = 2 Estenosis ≤ 70%</td>
<td>192</td>
<td>7</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>85,3%</td>
<td>23,3%</td>
<td>78,0%</td>
</tr>
<tr>
<td>Total</td>
<td>225</td>
<td>30</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Resultados

<table>
<thead>
<tr>
<th>Resultados</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensibilidad</td>
<td>76,66</td>
</tr>
<tr>
<td>Especificidad</td>
<td>85,33</td>
</tr>
<tr>
<td>VPP</td>
<td>41,07</td>
</tr>
<tr>
<td>VPN</td>
<td>96,48</td>
</tr>
<tr>
<td>VG</td>
<td>84,31</td>
</tr>
<tr>
<td>Significación (χ^2)</td>
<td>0,000</td>
</tr>
</tbody>
</table>
Resultado Doppler post-Captopril (lectura del observador) y estenosis >70%

Tabla de contingencia

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estenosis ≤ 70%</th>
<th>Estenosis > 70%</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESDS = 1</td>
<td>27</td>
<td>26</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>11,9%</td>
<td>83,9%</td>
<td>20,6%</td>
</tr>
<tr>
<td>RESDS = 2</td>
<td>199</td>
<td>5</td>
<td>204</td>
</tr>
<tr>
<td></td>
<td>88,1%</td>
<td>16,1%</td>
<td>79,4%</td>
</tr>
<tr>
<td>Total</td>
<td>226</td>
<td>31</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Resultados

<table>
<thead>
<tr>
<th>Resultados</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensibilidad</td>
<td>83,87</td>
</tr>
<tr>
<td>Especificidad</td>
<td>88,05</td>
</tr>
<tr>
<td>VPP</td>
<td>49,05</td>
</tr>
<tr>
<td>VPN</td>
<td>97,54</td>
</tr>
<tr>
<td>VG</td>
<td>87,54</td>
</tr>
<tr>
<td>Significación (χ^2)</td>
<td>0,000</td>
</tr>
</tbody>
</table>
4.5.2. Variables cuantitativas continuas. Análisis univariante.

Tabla 4.14. Valores medios de las variables cuantitativas continuas y EAR > 70% de diámetro.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estenosis ≤ 70% (N = 226)</th>
<th>Estenosis > 70% (N= 31)</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Media d.e.</td>
<td>Media d.e.</td>
<td></td>
</tr>
<tr>
<td>IAB (cm/seg²)</td>
<td>502,419 318,564</td>
<td>210,713 158,230</td>
<td>0,000</td>
</tr>
<tr>
<td>IAS (cm/seg²)</td>
<td>546,976 492,177</td>
<td>175,584 196,090</td>
<td>0,000</td>
</tr>
<tr>
<td>TAB (seg)</td>
<td>0,062 0,057</td>
<td>0,104 0,045</td>
<td>0,000</td>
</tr>
<tr>
<td>TAS (seg)</td>
<td>0,071 0,129</td>
<td>0,684 0,191</td>
<td>0,004</td>
</tr>
<tr>
<td>IRB</td>
<td>0,717 0,129</td>
<td>0,684 0,191</td>
<td>0,212</td>
</tr>
<tr>
<td>IRS</td>
<td>0,716 0,133</td>
<td>0,684 0,191</td>
<td>0,000</td>
</tr>
<tr>
<td>IPB</td>
<td>1,523 1,512</td>
<td>1,747 2,874</td>
<td>0,500</td>
</tr>
<tr>
<td>IPS</td>
<td>1,418 1,167</td>
<td>1,061 0,632</td>
<td>0,096</td>
</tr>
<tr>
<td>TAMR</td>
<td>9,868 1,074</td>
<td>9,514 1,443</td>
<td>0,102</td>
</tr>
</tbody>
</table>

*p significación estadística de variables continuas. Calculado mediante test de Student para un intervalo de confianza IC = 95%.

En la tabla anterior puede comprobarse que las variables índice de aceleración (IA) y tiempo de aceleración (TA) presentan valores de “p” significativos (p=0,000), tanto en la ecografía basal, como en el estudio post-captopril, lo que indica que estas variables tienen valor diagnóstico. El índice de resistividad en la ecografía post-captopril (IRS) también muestra significación con la EAR > 70 (p=0,000). El índice de pulsatilidad (IPS), al igual que en los grados menores de estenosis, se mantiene sin significación.
Resultados Doppler y estenosis > 70%

Curvas ROC. Indice de aceleración basal (IAB) y post-captopril (IAS) y EAR > 70% de diámetro.

1 - Especificidad

Los segmentos diagonales son producidos por los empates.

<table>
<thead>
<tr>
<th>Variable resultado de contraste</th>
<th>área</th>
<th>significación</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAB (cm/seg^2)</td>
<td>0,831</td>
<td>0,000</td>
</tr>
<tr>
<td>Índice de aceleración basal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IAS (cm /seg^2)</td>
<td>0,860</td>
<td>0,000</td>
</tr>
<tr>
<td>Índice de aceleración postcaptopril</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resultados

Los puntos de corte se establecieron en IAB < 300 cm/seg^2 y en IAS < 200 cm/seg^2.

<table>
<thead>
<tr>
<th>Resultados</th>
<th>IAB < 300 (%)</th>
<th>IAS < 200 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensibilidad</td>
<td>80,64</td>
<td>77,41</td>
</tr>
<tr>
<td>Especificidad</td>
<td>73,00</td>
<td>88,49</td>
</tr>
<tr>
<td>VPP</td>
<td>29,07</td>
<td>48,00</td>
</tr>
<tr>
<td>VPN</td>
<td>96,49</td>
<td>96,61</td>
</tr>
<tr>
<td>VG</td>
<td>83,10</td>
<td>86,00</td>
</tr>
<tr>
<td>Significación (t de Student)</td>
<td>0,000</td>
<td>0,000</td>
</tr>
</tbody>
</table>
Curvas ROC. Tiempo de aceleración basal (TAB) y post-captopril (TAS) y EAR > 70% de diámetro.

1 - Especificidad
Los segmentos diagonales son producidos por los empates.

Área bajo la curva

<table>
<thead>
<tr>
<th>Variable resultado de contraste</th>
<th>área</th>
<th>Significación</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAB (seg)</td>
<td>0,847</td>
<td>0,000</td>
</tr>
<tr>
<td>Tiempo de aceleración basal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAS (seg)</td>
<td>0,840</td>
<td>0,000</td>
</tr>
<tr>
<td>Tiempo de aceleración postcaptopril</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resultados
Los puntos de corte se establecieron en ambos casos en TA > 0,07 seg

<table>
<thead>
<tr>
<th>Resultados</th>
<th>TAB > 0,07 (%)</th>
<th>TAS > 0,07 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensibilidad</td>
<td>65,00</td>
<td>74,19</td>
</tr>
<tr>
<td>Especificidad</td>
<td>87,16</td>
<td>84,95</td>
</tr>
<tr>
<td>VPP</td>
<td>40,81</td>
<td>40,35</td>
</tr>
<tr>
<td>VPN</td>
<td>94,71</td>
<td>96,00</td>
</tr>
<tr>
<td>VG</td>
<td>84,00</td>
<td>84,70</td>
</tr>
</tbody>
</table>
Curva ROC. Indice de resistividad basal (IRB) y post Captopril (IRS) y estenosis > 70% de diámetro.

Al igual que en el caso de la estenosis de 50% de diámetro, el IRB presenta un área bajo la curva próximo a la hipótesis nula. Solo consideraremos el IRS, para el cual se establece el punto de corte en 0,655.

<table>
<thead>
<tr>
<th>Variable resultado de contraste</th>
<th>Área</th>
<th>Significación</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRB</td>
<td>0,548</td>
<td>0,000</td>
</tr>
<tr>
<td>Índice de resistividad basal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRS</td>
<td>0,733</td>
<td>0,000</td>
</tr>
<tr>
<td>Índice de resistividad postcaptopril</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Resultados</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Resultados (%)</td>
<td>IRS < 0,65</td>
</tr>
<tr>
<td>Sensibilidad</td>
<td>71,87</td>
</tr>
<tr>
<td>Especificidad</td>
<td>69,91</td>
</tr>
<tr>
<td>VPP</td>
<td>25,27</td>
</tr>
<tr>
<td>VPN</td>
<td>94,61</td>
</tr>
<tr>
<td>VG</td>
<td>73,30</td>
</tr>
<tr>
<td>Significación (t de Student)</td>
<td>0,000</td>
</tr>
</tbody>
</table>
Incremento del Indice de resistividad basal (ΔIRB) y post captopril (ΔIRS) y estenosis > 70% de diámetro.

Curva ROC

Los segmentos diagonales son producidos por los empates.

Área bajo la curva

<table>
<thead>
<tr>
<th>Variable resultado de contraste</th>
<th>Área</th>
<th>Significación</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔIRB</td>
<td>0,668</td>
<td>0,012</td>
</tr>
<tr>
<td>Incremento del IRB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRS</td>
<td>0,665</td>
<td>0,067</td>
</tr>
<tr>
<td>Incremento del IRS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

El área bajo la curva en ambos casos es muy baja, próxima a 0,5, es decir la hipótesis nula, por lo que no se define un punto de corte óptimo. Para un valor teórico >5% los resultados son:

<table>
<thead>
<tr>
<th></th>
<th>Sensibilidad (%)</th>
<th>Especificidad (%)</th>
<th>VG (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔIRB</td>
<td>91,3</td>
<td>34,0</td>
<td>66,8</td>
</tr>
<tr>
<td>ΔIRS</td>
<td>78,3</td>
<td>35,0</td>
<td>66,5</td>
</tr>
</tbody>
</table>
4.5.3. Variables nominales. Análisis univariante.

Patrón morfológico basal (MORFB) y estenosis > 70%

<table>
<thead>
<tr>
<th>Variable</th>
<th>MORFB</th>
<th>Estenosis ≤ 70%</th>
<th>Estenosis > 70%</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo 1</td>
<td>88</td>
<td>2</td>
<td>2</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>38,9%</td>
<td>6,5%</td>
<td>35,0%</td>
<td></td>
</tr>
<tr>
<td>Tipo 2</td>
<td>48</td>
<td>7</td>
<td>7</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>21,2%</td>
<td>22,6%</td>
<td>21,4%</td>
<td></td>
</tr>
<tr>
<td>Tipo 3</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>7,5%</td>
<td></td>
<td>6,6%</td>
<td></td>
</tr>
<tr>
<td>Tipo 4</td>
<td>58</td>
<td>8</td>
<td>8</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>25,7%</td>
<td>25,8%</td>
<td>25,7%</td>
<td></td>
</tr>
<tr>
<td>Tipo 5</td>
<td>9</td>
<td>2</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>4,0%</td>
<td>6,5%</td>
<td>4,3%</td>
<td></td>
</tr>
<tr>
<td>Tipo 6</td>
<td>6</td>
<td>12</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>2,7%</td>
<td>38,7%</td>
<td>7,0%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>226</td>
<td>31</td>
<td>31</td>
<td>257</td>
</tr>
</tbody>
</table>

Regresión logística. MORFB y estenosis > 70%

Iniciamos el análisis incluyendo los 6 tipos morfológicos.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Valores</th>
<th>Hipótesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prueba diagnóstica MORFB</td>
<td>MORFB = 1, 2, 3 = normal</td>
<td>Prueba negativa (no estenosis)</td>
</tr>
<tr>
<td></td>
<td>MORFB = 4 probablemente normal</td>
<td>Prueba negativa (no estenosis)</td>
</tr>
<tr>
<td></td>
<td>MORFB = 5 y 6 = patológico</td>
<td>Prueba positiva (estenosis)</td>
</tr>
<tr>
<td>Prueba de referencia</td>
<td>≤ 70%</td>
<td>Prueba negativa</td>
</tr>
<tr>
<td>angiografía</td>
<td>> 70%</td>
<td>Prueba positiva</td>
</tr>
</tbody>
</table>

1º Paso.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sig. (odds ratio)</th>
<th>Exp (B)</th>
<th>Comentario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paso 1º</td>
<td>MORFB</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MORFB(1)</td>
<td>0,024</td>
<td>6,417</td>
</tr>
<tr>
<td></td>
<td>MORFB(2)</td>
<td>0,823</td>
<td>0,004</td>
</tr>
<tr>
<td></td>
<td>MORFB(3)</td>
<td>0,026</td>
<td>6,063</td>
</tr>
<tr>
<td></td>
<td>MORFB(4)</td>
<td>0,031</td>
<td>9,778</td>
</tr>
<tr>
<td></td>
<td>MORFB(5)</td>
<td>0,000</td>
<td>88,000</td>
</tr>
<tr>
<td>Constante</td>
<td></td>
<td>0,000</td>
<td>0,023</td>
</tr>
</tbody>
</table>

*el artefacto se debe a los pocos casos de patrón morfológico de tipo 3.

No hay diferencias entre los patrones 1 a 4, por lo que podemos agrupar los casos.
2° Paso.
Recodificamos la variable en tres grupos:
Grupo 1 tipos 1,2,3,4
Grupo 2 tipo 5
Grupo 3 tipo 6

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sig. (odds ratio)</th>
<th>Exp (B)</th>
<th>Comentario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paso 1º</td>
<td>RMORFB</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>RMORFB(1)</td>
<td>0,217</td>
<td>2,758</td>
<td>Riesgo significativo</td>
</tr>
<tr>
<td>RMORFB(2)</td>
<td>0,000</td>
<td>24,821</td>
<td>Riesgo muy significativo</td>
</tr>
<tr>
<td>Constante</td>
<td>0,000</td>
<td>0,081</td>
<td></td>
</tr>
</tbody>
</table>

3° Paso.
Los análisis previos demuestran que el riesgo relativo (odds ratio) se incrementa progresivamente entre los tres grupos. No obstante podemos considerar que la diferencia más significativa se da entre los grupos 1 y 2 (patrones 1 al 5) con respecto al 3 (patrón 6).
Por otro lado podemos considerar que el escaso número de casos con patrón 5 puede alterar el análisis. Para simplificar reagruparemos nuevamente los patrones en dos grupos:
Grupo 1: tipo 1 a 4
Grupo 2: tipo 5 y 6
En este caso la variable se convierte en dicotómica y podríamos realizar una análisis mediante tablas de contingencia. No obstante continuaremos con la regresión aunque el resultado será el mismo.

<table>
<thead>
<tr>
<th>Observado</th>
<th>Estenosis ≤ 70%</th>
<th>Estenosis > 70%</th>
<th>Pronosticado</th>
<th>Especificidad</th>
<th>Sensibilidad</th>
<th>Valor global</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>211</td>
<td>17</td>
<td>93,36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>14</td>
<td>45,16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>226</td>
<td>31</td>
<td>87,9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sig. (odds ratio)</th>
<th>Exp (B)</th>
<th>Comentario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paso 1º</td>
<td>RRMORFB</td>
<td>0,000</td>
<td>11,583 Riesgo muy significativo</td>
</tr>
<tr>
<td>Constante</td>
<td>0,000</td>
<td>0,007</td>
<td></td>
</tr>
</tbody>
</table>

En resumen:
Al igual que ocurría en otros grados de estenosis, los patrones 1 al 4 presentan una escasa asociación a la EAR >70%, mientras que los patrones 5 y 6 se asocian de manera significativa a la estenosis (odds = 0,000), con un riesgo 11,58 veces superior con respecto
a los anteriores, siendo muy específico (93,36%). La sensibilidad aumenta ligeramente respecto a las estenosis de 50%, pero se mantiene baja (45,16%). El valor global de la prueba también aumenta con el grado de estenosis (87,9%).

Patrón morfológico post-Captopril y estenosis > 70%

<table>
<thead>
<tr>
<th>Variable</th>
<th>MORFS</th>
<th>Estenosis ≤ 70%</th>
<th>Estenosis > 70%</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo 1</td>
<td>101</td>
<td>44,7%</td>
<td>12,9%</td>
<td>40,9%</td>
</tr>
<tr>
<td>Tipo 2</td>
<td>53</td>
<td>23,5%</td>
<td>3,2%</td>
<td>21,0%</td>
</tr>
<tr>
<td>Tipo 3</td>
<td>20</td>
<td>8,8%</td>
<td>3,2%</td>
<td>8,2%</td>
</tr>
<tr>
<td>Tipo 4</td>
<td>35</td>
<td>15,5%</td>
<td>22,6%</td>
<td>16,3%</td>
</tr>
<tr>
<td>Tipo 5</td>
<td>11</td>
<td>4,9%</td>
<td>6,5%</td>
<td>5,1%</td>
</tr>
<tr>
<td>Tipo 6</td>
<td>6</td>
<td>2,7%</td>
<td>51,6%</td>
<td>8,6%</td>
</tr>
<tr>
<td>Total</td>
<td>226</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Regresión logística. MORFS y estenosis > 70%

1º Paso.

<table>
<thead>
<tr>
<th>Variable</th>
<th>MORFS</th>
<th>Sig. (odds ratio)</th>
<th>Exp (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paso 1º</td>
<td>MORFS</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>MORFS(1)</td>
<td>0,513</td>
<td>0,447</td>
<td></td>
</tr>
<tr>
<td>MORFS(2)</td>
<td>0,839</td>
<td>1,262</td>
<td></td>
</tr>
<tr>
<td>MORFS(3)</td>
<td>0,014</td>
<td>5,050</td>
<td></td>
</tr>
<tr>
<td>MORFS(4)</td>
<td>0,098</td>
<td>4,591</td>
<td></td>
</tr>
<tr>
<td>MORFS(5)</td>
<td>0,000</td>
<td>67,332</td>
<td></td>
</tr>
<tr>
<td>Constante</td>
<td>0,000</td>
<td>0,04</td>
<td></td>
</tr>
</tbody>
</table>

No se objetiva diferencias de riesgo significativas entre los patrones 1 al 3, por lo que podemos agruparlos. Por otro lado el escaso número de casos con patrón 5 permite agruparlo con el 6.

2º Paso.
Recodificamos la variable en tres grupos:
Grup 1 tipos 1,2,3,
Grupo 2 tipo 4
Grupo 3 tipo 5 y 6
<table>
<thead>
<tr>
<th>Observado</th>
<th>Pronosticado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estenosis ≤ 70%</td>
</tr>
<tr>
<td>Estenosis ≤ 70%</td>
<td>209</td>
</tr>
<tr>
<td>Estenosis > 70%</td>
<td>13</td>
</tr>
<tr>
<td>Total</td>
<td>222</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sig. (odds ratio)</th>
<th>Exp (B)</th>
<th>Comentario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paso 1°</td>
<td>RMORFS</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RMORFS(1)</td>
<td>0,003</td>
<td>5,800</td>
</tr>
<tr>
<td></td>
<td>RMORFS(2)</td>
<td>0,000</td>
<td>30,704</td>
</tr>
<tr>
<td></td>
<td>Constante</td>
<td>0,000</td>
<td>0,034</td>
</tr>
</tbody>
</table>

3° paso

Si agrupamos finalmente los patrones 5 y 6, frente a los 4 primeros el análisis ofrece la misma sensibilidad y especificidad con la siguiente odds ratio:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sig. (odds ratio)</th>
<th>Exp (B)</th>
<th>Comentario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paso 1°</td>
<td>RMORFS(1)</td>
<td>0,000</td>
<td>17,023</td>
</tr>
<tr>
<td></td>
<td>Constante</td>
<td>0,000</td>
<td>0,062</td>
</tr>
</tbody>
</table>

En resumen:

El análisis demuestra también en este caso que los patrones 1 al 3 presentan una escasa asociación a la EAR >70% de diámetro, y que finalmente, tampoco existe diferencias significativas entre estos y el tipo 4. Los patrones 5 y 6 mantienen una importante asociación con la presencia de EAR >70%, (odds = 0,000) con un riesgo 5,8 veces superior del patrón 5 con respecto a los anteriores, y hasta 30,7 veces superior del patrón tipo 6. La agrupación de patrones 5 y 6 no ofrece ventaja, ya que disminuye la odds ratio hasta 17 veces. La especificidad se mantiene alta (92,5%), mientras que la sensibilidad aumenta con el grado de estenosis (58,1%), siendo más sensible el estudio post-captopril que el basal. El valor global de la prueba es también significativo (88,3%).
4.5.4. Resultados globales del análisis univariante para estenosis > 70% de diámetro.

Finalmente hemos vuelto a reducir todas las variables a categóricas, dicotómicas, incluso las continuas (IA, TA) al establecer un punto de corte, o las nominales, al agrupar los patrones morfológicos sólo en 2 categorías. Empleando tablas de contingencia frente al evento (estenosis en la angiografía > 70%) podemos calcular el valor diagnóstico de cada variable.

<table>
<thead>
<tr>
<th>Tabla 4.15. Eco Doppler basal</th>
<th>Variable</th>
<th>Sensibilidad (%)</th>
<th>Especificidad (%)</th>
<th>VPP (%)</th>
<th>VPN (%)</th>
<th>VG (%)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESPB</td>
<td>70,96</td>
<td>69,17</td>
<td>19,64</td>
<td>93,79</td>
<td>61,47</td>
<td>0,001</td>
<td></td>
</tr>
<tr>
<td>RESDB</td>
<td>76,66</td>
<td>85,33</td>
<td>41,07</td>
<td>96,48</td>
<td>84,31</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>IAB < 300</td>
<td>80,64</td>
<td>73,00</td>
<td>29,07</td>
<td>96,49</td>
<td>83,10</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>TAB > 0,07</td>
<td>65,00</td>
<td>87,16</td>
<td>40,81</td>
<td>94,71</td>
<td>84,00</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>MORFB (5-6)</td>
<td>45,16</td>
<td>93,36</td>
<td>48,27</td>
<td>92,54</td>
<td>87,54</td>
<td>0,000</td>
<td></td>
</tr>
</tbody>
</table>

p: significación estadística expresada mediante la prueba χ^2 con un intervalo de confianza IC= 95%.

<table>
<thead>
<tr>
<th>Tabla 4.16. Doppler post captopril</th>
<th>Variable</th>
<th>Sensibilidad (%)</th>
<th>Especificidad (%)</th>
<th>VPP (%)</th>
<th>VPN (%)</th>
<th>VG (%)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESPS</td>
<td>83,87</td>
<td>68,58</td>
<td>26,80</td>
<td>96,87</td>
<td>70,42</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>RESDS</td>
<td>83,87</td>
<td>88,05</td>
<td>49,05</td>
<td>97,54</td>
<td>87,54</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>IAS < 200</td>
<td>77,41</td>
<td>88,49</td>
<td>48,00</td>
<td>96,61</td>
<td>86,00</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>TAS > 0,07</td>
<td>74,19</td>
<td>84,95</td>
<td>40,35</td>
<td>96,00</td>
<td>84,70</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>MORFS (5-6)</td>
<td>58,06</td>
<td>92,47</td>
<td>51,42</td>
<td>94,14</td>
<td>88,30</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>IRS</td>
<td>71,87</td>
<td>69,91</td>
<td>25,61</td>
<td>94,61</td>
<td>73,30</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>∆IRS</td>
<td>91,30</td>
<td>35,00</td>
<td>-</td>
<td>-</td>
<td>66,5</td>
<td>0,014</td>
<td></td>
</tr>
</tbody>
</table>

p: significación estadística expresada mediante la prueba χ^2 con un intervalo de confianza IC= 95%.
4.5.5. Análisis Multivariante

En el análisis univariante se observa que el mejor resultado se obtiene en la lectura del observador. En el análisis multivariante se realiza un análisis de regresión logística de dos o más variables simultáneamente. Realizamos el análisis sólo en el estudio Doppler post captopril, y empleamos las variables que mejores resultados obtuvieron individualmente. El modelo de regresión se inicia con una variable, en este caso el tiempo de aceleración, TAS > 0,07 seg, y se van integando sucesivamente nuevas variables, el índice de aceleración IAS < 200 cm/seg², y finalmente el patrón morfológico MORFS = 5 ó 6. Los resultados son los siguientes:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sensibilidad (%)</th>
<th>Especificidad (%)</th>
<th>VG (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAS >0,07</td>
<td>74,19</td>
<td>84,95</td>
<td>84,70</td>
</tr>
<tr>
<td>TAS >0,07 / IAS <200</td>
<td>71,0</td>
<td>90,7</td>
<td>88,3</td>
</tr>
<tr>
<td>TAS >0,07 / IAS <200 / MORFS (6)</td>
<td>58,1</td>
<td>94,7</td>
<td>90,3</td>
</tr>
</tbody>
</table>

La asociación de criterios incrementa la especificidad de la prueba, sin embargo la sensibilidad empeora. No obstante el valor global mejora sensiblemente. El valor global expresa el porcentaje de riñones clasificados adecuadamente por el test. Como en el caso de las estenosis > 50% de diámetro, los modelos multivariantes de regresión no alcanzan los resultados de la lectura del observador. Se realizaron otros modelos de regresión asociando algunas variables clínicas, pero ninguno superó al anterior.
5. Discusión

Nuestro estudio pretende valorar algunos cuestiones sobre la estenosis arterial renal que a nuestro modo de ver no han sido suficientemente esclarecidas, incluyendo desde aspectos epidemiológicos y clínicos, hasta aspectos diagnósticos, para lo cual se intentó obtener una muestra amplia de pacientes. Incluimos un total de 133 pacientes registrados de manera prospectiva, con una media de edad de 64 años. La distribución por sexos fue equilibrada, con 69 hombres y 64 mujeres. No se observaron diferencias significativas en cuanto a la edad en ambos sexos \((p=0,018)\). La mayoría de los pacientes (95%) cumplían criterios de hipertensión vascular renal, y solo un 5% presentaban exclusivamente datos de insuficiencia renal y nefropatía isquémica.

El estudio determinó el valor de la prueba, ecografía Doppler, en el diagnóstico de la estenosis de las arterias renales. Para ello se establecieron 3 grados posibles de estenosis, >30%, >50% y >70% de diámetro. Los resultados de la ecografía se valoraron en función de la prueba de referencia estandarizada, la angiografía con catéter, que se realizó en todos los casos, lo que incrementa el valor del análisis de los datos a diferencia de lo que ocurre en muchos trabajos recientes (35;37;38).
5.1. Aspectos epidemiológicos y clínicos

5.1.1. Prevalencia de la estenosis renal

En nuestra serie la arteriografía demostró la presencia de estenosis en el 44,4% de los pacientes (59 de los 133), con un 29,3% de casos de estenosis consideradas hemodinámicamente significativas, es decir >50%, y un 18% de estenosis severas >70% de diámetro. Nuestros datos (serie A) son similares a los de otros estudios (tabla 5.1)

<table>
<thead>
<tr>
<th>Referencia</th>
<th>Nº pacientes</th>
<th>Todos (%</th>
<th><50% (%</th>
<th>>50% (%)</th>
<th>>70% (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marín (23)</td>
<td>417</td>
<td>27,0</td>
<td>-</td>
<td>14,8</td>
<td>(17)</td>
</tr>
<tr>
<td>Missouri (28)</td>
<td>127</td>
<td>44,9</td>
<td>17,3</td>
<td>33,0</td>
<td>11,8</td>
</tr>
<tr>
<td>Rihal (32)</td>
<td>297</td>
<td>47,0</td>
<td>28,0</td>
<td>19,2</td>
<td>7</td>
</tr>
<tr>
<td>Serie A</td>
<td>133</td>
<td>44,4</td>
<td>15,1</td>
<td>29,3</td>
<td>18</td>
</tr>
</tbody>
</table>

Las series de la tabla anterior se refieren a pacientes con hallazgo incidental de estenosis en el curso de otros estudios vasculares, no obstante las cifras de prevalencia son comparables a las encontradas por nuestro grupo. Llama la atención los datos de Marín (23) el cual refiere una prevalencia general de 27% (114 de 418 pacientes). Aunque no se refiere a grados menores de estenosis, sí informa de un 14,8% de pacientes con estenosis > 50% de diámetro, y un 17% de pacientes con estenosis > 75%. Sin embargo esto supone una prevalencia total de 31,8% en lugar de 27%. Esto se debe probablemente a que se contabilizan indistintamente riñones y pacientes, lo que nos puede inducir a error. La prevalencia debe referirse a pacientes, no a riñones o arterias aisladas.

Entre los estudios de prevalencia encontramos algunos con resultados aún más llamativos. Takeji (35) refiere una prevalencia de 50% en una serie de pacientes con edad superior a 50 años, nefropatía isquémica y otras condiciones asociadas. Sin embargo estos datos son poco representativos, ya que se refieren a una muestra de 44 pacientes, que además fueron estudiados mediante angio-RM, no angiografía.
Curiosamente, la prevalencia descrita en las series en las que la indicación primaria del estudio fue la estenosis renal, es más baja que en las series de hallazgos incidentales, oscilando entre 18 y 22% (39-41). A nuestro entender esta discrepancia revela dos hechos, de un lado que la estenosis renal se presenta como una manifestación más de una aterosclerosis diseminada, y de otro que los criterios clínicos de sospecha no son suficientes como método de screening. En este sentido merecen un comentario aparte los datos del grupo DRASTIC (43;44). Este grupo realiza un screening basado en una selección de 12 criterios clínicos y un modelo probabilístico realizado mediante análisis de regresión logística, con una sensibilidad (68%) y especificidad (87%) similares a la de algunas pruebas diagnósticas. Aplicando esta metodología encuentran una prevalencia de estenosis renal de 22,4%. En nuestro población de pacientes, con criterios clínicos similares la prevalencia es superior a la de este grupo y otros (29,3%) .

5.1.2. Factores de riesgo y co-morbilidad

Determinados factores o condiciones clínicas se han considerado asociadas a la estenosis. En nuestra muestra de pacientes las factores que mostraron una mejor correlación con la estenosis renal fueron el sexo (varón), la aterosclerosis en otros territorios, la presencia de soplo abdominal, la TA sistólica elevada, y los datos bioquímicos de insuficiencia renal. La relación con otros factores como la edad, el tabaquismo, y la diabetes fueron menos evidentes (ver resultados: tablas 4.2 y 4.3).

Respecto al sexo la EAR es más frecuente en los varones. Entre los pacientes con estenosis, el 69,2 % son hombres, y sólo el 30,8% son mujeres ($p= 0.010$). Expresándolo de otro modo, el 39,1% de todos los varones de la serie (27 de 69) tienen estenosis, por sólo el 18,8% de las mujeres (12 de 64). La razón de oportunidades (odds ratio) para los hombres de tener estenosis respecto a las mujeres es de 2,786, de los que podemos concluir que la condición de varón es un factor de co-morbilidad asociado a la EAR. A diferencia de estos datos algunos estudios han mostrado un asociación
significativa entre la estenosis y el sexo femenino (23;28). Esto no obstante puede explicarse porque la edad media de las mujeres en esas series fue mayor que la de los varones.

La aterosclerosis de otros territorios es otro factor asociado a la EAR. La enfermedad carotidea estaba presente en el 23,1% de los pacientes con estenosis, frente a sólo un 7,4% del grupo sin estenosis ($p=0,012$). La odds ratio para este grupo fue de 3,149. La enfermedad vascular periférica se asoció aún con más frecuencia a la EAR, con un 33,3% de pacientes en el grupo de estenosis frente a un 18% en el grupo sin estenosis ($p=0,004$), y una odds igualmente mayor, de 5,294. Estos datos son similares a los descritos en la literatura. Olin (18) refiere una prevalencia de EAR en pacientes con arteriopatía periférica de 39%. Missouris (28;33) encuentra una prevalencia en pacientes similares de 27% a 44%, y una odds de 3,71 a 7,41 según el grado de arteriopatía periférica (nº de vasos afectados). Por su parte Marín (23) presenta una prevalencia de 27%, y una odds de 2,01 a 4,96.

La cardiopatía isquémica mostró igualmente una importante asociación a la estenosis encontrándose en un 41% en el grupo de pacientes con EAR y 13,8% en los pacientes del grupo sin estenosis ($p=0,001$). El riesgo relativo fue de 4,198. Este dato contrasta con los de series como la de Harding (15) que mostró una prevalencia de 15%, o la de Rihal (32) que refiere una prevalencia de estenosis > 50% de diámetro de 19%.

Es especialmente significativa la presencia de soplo abdominal que se mostró como la condición que más se asoció a la estenosis, estando presente en el 46,2% de los pacientes con estenosis frente al 5,3% en los pacientes sin estenosis ($p=0,000$). Lógicamente la odds ratio fue la más significativa con un valor de 15,256. Esto pone de manifiesto una excelente exploración clínica. Como ya se ha descrito el soplo es un signo de gran valor diagnóstico, especialmente cuando tiene un componente diastólico (61).
Las cifras elevadas de tensión arterial sistólica en consulta se correlacionaron bien con la estenosis, con un valor medio de 155 mm Hg en el grupo de pacientes con estenosis frente a 144 mm Hg en el resto de paciente \((p=0,002)\). Con la TA diastólica no ocurrió lo mismo, ya que presentó el mismo valor en ambos grupos de pacientes (83 mm Hg, \(p= 0,084\)). Datos muy similares son recogidos recientemente por Rihal (32) en su serie, con TAS de 149 versus 141 mm Hg \((p= 0,01)\), y TAD de 81 versus 79 \((p= 0,2)\). No obstante deben interpretarse con cautela, ya que todos los pacientes estaban sometidos a tratamiento antihipertensivo en el momento de registrar estos datos.

Respecto a la edad, la estenosis fue más frecuente en pacientes mayores, presentando este grupo una edad media de 67 años, frente a los 62 años de los pacientes sin estenosis. A pesar de esta diferencia, en nuestra serie la edad muestra una débil correlación con la estenosis \((p=0,069)\), lo que puede ser debido al tamaño o la distribución de la muestra. No obstante una edad media superior a 65 años es un factor que aparece asociado a la estenosis en la mayoría de las series publicadas (34;43), lo cual es debido a la mayor confluencia de factores asociados como aterosclerosis, diabetes e insuficiencia renal. Coen (36;37) encuentra una distribución de estenosis en relación con la edad de 3,2% a 11% en pacientes de 50 a 59 años, 18% a 20% entre los 60 y 69 años, y 23% a 25% en mayores de 70 años.

Un número de fármacos necesarios para el control de la hipertensión superior a 2 es otro dato importante para establecer la sospecha diagnóstica. En nuestro caso solo se observa una discreta asociación no significativa \((p=0,071)\), aunque podemos afirmar que los pacientes que requieren una mayor combinación de fármacos en su tratamiento tienen EAR con más frecuencia.

La condición de fumador no muestra relación con la estenosis \((p= 0,167)\) como puede comprobarse en la tabla 3.5, lo que puede deberse a la distribución de la muestra, ya que en el grupo de estenosis hay menos fumadores que en el grupo de pacientes sin
estenosis. Sin embargo cuando valoramos la relación entre el número de cigarrillos diarios y la estenosis, la asociación se hace algo más evidente \(p=0.090\), ya que los pacientes con estenosis fuman más cigarrillos que los del grupo sin estenosis (7,49 cigarrillos al día frente a 4,41).

Otro factor de riesgo asociado fue un menor índice de masa corporal, con un valor medio de 26 kg/m\(^2\) en el grupo de pacientes con estenosis, frente a 27,73 en el resto \(p=0.036\).

Llama la atención la ausencia de relación de la diabetes con la estenosis. La proporción de diabéticos fue mayor en el grupo de pacientes sin estenosis, 31% versus 23%. La relación de esta enfermedad con la EAR es conocida. Sawicki (22) en su serie de 5194 necropsias encuentra que el 53% de los casos que presentan estenosis eran diabéticos. Nicholls (141) en un reciente estudio cuestiona la importancia de esta asociación, y estima una prevalencia de estenosis en los diabéticos de 16%.

La retinopatía hipertensiva ha sido descrita como factor de riesgo (16;44). Sin embargo en nuestra experiencia no mostró correlación significativa con la EAR \(p=0.092\).

Finalmente todos los parámetros bioquímicos relacionados con el deterioro de función renal mostraron una importante significación estadística. La relación entre la nefropatía isquémica, hipertensión vascular renal y estenosis es compleja como se describió en la introducción. Es evidente la relación entre estas entidades (207;222). Sin embargo en nuestra serie, la nefropatía isquémica aislada ha presentado un menor peso específico, ya que el 95% de los pacientes presentaban hipertensión, y sólo un 5% insuficiencia renal como único criterio clínico de sospecha.

A nuestro modo de ver la valoración clínica ha jugado un importante papel en el diagnóstico en nuestra población de pacientes. Como ya hemos descrito la prevalencia
de estenosis es más alta que la de las series publicadas, 29% frente a 18% a 22%. Además el análisis multivariante de los factores clínicos y analíticos de riesgo o comorbilidad, nos permite utilizarlos como método de screening con resultados similares a los de otros grupos. Comparando nuestros resultados con la serie de Krijnen (44) (grupo DRASTIC) comprobaremos que sólo con esta herramienta se alcanzan resultados similares a los suyos (tabla 5.2).

<table>
<thead>
<tr>
<th>Referencia</th>
<th>Prevalencia (%)</th>
<th>Sensibilidad (%)</th>
<th>Especificidad (%)</th>
<th>Valor global (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRASTIC (1998)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renograma</td>
<td>22,4</td>
<td>72</td>
<td>90</td>
<td>-</td>
</tr>
<tr>
<td>screening clínico</td>
<td>22,4</td>
<td>68</td>
<td>87</td>
<td>-</td>
</tr>
<tr>
<td>screening clínico</td>
<td>29,3</td>
<td>59</td>
<td>93,6</td>
<td>83,5</td>
</tr>
</tbody>
</table>

* datos propios referidos a estenosis > 50% de diámetro
5.2. Ecografía Doppler renal.

5.2.1. Eco Doppler basal. Métodos indirectos.

El número de estudios basales que pudimos completar fue 130 de un total de 133 pacientes, lo que supone una tasa de fracasos técnicos < 2%, similar a la descrita en la literatura (17). En nuestro estudio los resultados de la ecografía Doppler demuestran una sensibilidad muy baja para estenosis de >30% de diámetro (RESDS 57%), sin embargo mejoran de una manera muy evidente en estenosis superiores a 50% de diámetro (RESDS 81%), lo que indica que el método es sensible, y que este grado de estenosis puede considerarse el límite de la repercusión hemodinámicamente significativa. El valor diagnóstico de cada uno de los parámetros es variable en la literatura. En nuestro caso todos los criterios estudiados mostraron significación estadística en los diferentes grados de estenosis excepto los índices de resistividad (IR) y pulsatilidad (IP).

Pico sistólico precoz (ESP)

La ausencia del complejo ESP en los estudios basales obtiene una sensibilidad y especificidad de 67% y 62% respectivamente para estenosis >50% de diámetro, y de 71% y 69% respectivamente para estenosis >70% de diámetro. Este fue uno de los primeros criterios empleados por Stavros (142). Según el autor este complejo está presente en el 97% de los individuos sanos. En su estudio de 56 pacientes la ausencia del complejo es el mejor criterio para el diagnóstico de estenosis > 60% de diámetro, con una sensibilidad y especificidad de 95% y 97% respectivamente. Sin embargo estos resultados fueron más tarde rebatidos por otros autores.

Para Kliewer (168;169) la sensibilidad y especificidad de este parámetro es sólo de 66% y 67%. Según Halpern (173) la presencia del complejo es un signo excluyente de estenosis, pero su ausencia en contra de lo propuesto por Stavros, sucede hasta en el 50% de los casos, especialmente en personas jóvenes.
Esto se explica gracias a los estudios en modelos experimentales que reproducen un circuito de flujo supuestamente análogo a la circulación renal. Según Halpern el primer componente del complejo no expresa la complianza de la arteria, sino que más bien depende del efecto de la onda de presión del pulso transmitido. Mientras que el segundo componente dependería de la complianza. Si ésta no existiera la onda sería transmitida sin cambios a lo largo del vaso. No obstante a medida que aumenta la complianza este primer componente es absorbido progresivamente por la distensión de la pared, lo que produce la amortiguación de la onda. Pero esta energía regresa al sistema rápidamente por lo que se produce el segundo componente de la sistole.

La resistencia del lecho distal también contribuye a este fenómeno. Si no existiera resistencia distal no actuaría la complianza. Cuando la resistencia distal es pequeña la energía del pulso es almacenada en la pared vascular en forma de complianza; pero cuando la resistencia aumenta, el incremento de presión distiende la pared del vaso disminuyendo la complianza residual. Dado que el volumen del flujo no cambia (recordemos la ecuación de continuidad y el Teorema de Bernoulli) disminuye la velocidad y la aceleración.

En nuestra experiencia la ausencia de ESP en un criterio con una sensibilidad relativamente alta en las estenosis más severas (84%), sin embargo se muestra poco específico (68%), lo que apoya la teoría de Halpern. Posiblemente esto se debe a que en nuestra población de pacientes con estenosis la media de edad no era demasiado elevada (67 años), y el porcentaje de diabéticos era muy bajo (23%), factores estos que se asociarían a una menor complianza del lecho vascular renal, y por tanto a la ausencia de ESP con más frecuencia.

Patrón morfológico

El empleo de diferentes patrones morfológicos en la onda espectral ha demostrado una altísima especificidad en el diagnóstico de la estenosis en nuestros pacientes, tanto
en los estudios basales como en los realizados tras administración de captopril. Incluso en los grados menores de estenosis la especificidad alcanza 97%. Desgraciadamente la sensibilidad es muy baja, solo 40% para estenosis >50% de diámetro, y 45% para estenosis >70%, en los estudios basales.

La interpretación de la morfología de la onda es muy dispar. Stavros definió tan solo 3 tipos que interpretó como normal, con complejo ESP; con estenosis moderada en ausencia de ESP, pero con una transición definida entre sístole y diástole; y una última correspondiente a estenosis severas, completamente amortiguada. Empleando esta clasificación sus resultados son los expuestos en el apartado anterior referente al complejo ESP. Garel (223) utilizando solo 2 tipos de ondas sugiere que el patrón morfológico es un factor pronóstico que puede predecir la respuesta a la revascularización.

Kliwer (168) propuso nuevos tipos morfológicos hasta un total de 5, y más tarde René (144) y Oliva (170) han propuesto hasta 9 modelos. Este último, basándose solo en la clasificación morfológica obtiene una sensibilidad de 81% y especificidad de 99% para el diagnóstico de estenosis >50% de diámetro. El autor llega a la conclusión de que los diferentes patrones pueden reagruparse en 2 grandes grupos, normales y patológicos. Nosotros empleando una clasificación de 6 tipos hemos llegado a esta misma conclusión. Sin embargo, aunque nuestros datos arrojan una gran especificidad (96%) nuestra sensibilidad es muy baja en comparación con los resultados de Oliva. No obstante si encontramos una odds muy significativa para los patrones 5 y 6 respecto a los patrones 1 a 4, lo que quiere decir que en presencia de uno de estos patrones la posibilidad de estenosis es muy elevada, hasta 30 veces superior respecto a los demás. El trabajo de Oliva merecerá un comentario más adelante, cuando valoremos los estudios Doppler con Captopril.

Nosotros consideramos que nuestros resultados se ajustan más a la realidad, ya que los patrones morfológicos del análisis espectral no solo dependen de la presencia o
ausencia de una estenosis proximal, sino que se ven afectados por múltiples factores, tanto renales como extrarrenales.

Entre los renales los principales son la interacción entre complianza e impedancia de las arterias intrarrenales. Halpern (121) en un modelo experimental ha reproducido esta situación. Un incremento de la resistividad distal (por ejemplo en la insuficiencia renal) o la disminución de la complianza (por ejemplo en la aterosclerosis) resultan en un aumento de la aceleración sistólica. Estos factores pueden enmascarar el fenómeno tardus parvus. Entre los factores externos a la circulación renal podemos destacar la insuficiencia cardiaca izquierda que provoca un descenso de la aceleración del flujo sistólico inicial, mientras que la miocardiopatía hipertrófica, el ductus arterioso, los estados hipercinéticos, la insuficiencia aórtica y las grandes fistulas arteriovenosas lo incrementan, alterando la morfología de la onda (169). La prevalencia de aterosclerosis diseminada, o de hipertrofia ventricular izquierda en nuestra serie de pacientes podría influir en estos resultados.

Por otro lado se ha establecido una amplia variabilidad de patrones en individuos sanos, que se solaparian con los patrones patológicos de los pacientes con estenosis, lo que explicaría una menor sensibilidad de este criterio (177). Además se reconoce una concordancia relativa entre distintos observadores a la hora de clasificar este tipo de parámetros (224).

Indice de aceleración

En nuestra experiencia el IA en el estudio basal ofrece datos comparables a los de la literatura. El análisis de las curvas ROC determinó el mejor punto de corte que resultó ser 300 cm/seg\(^2\) tanto para las estenosis > 50% como las > 70% de diámetro. Este valor coincide con el descrito en el clásico estudio de Kliewer (168). Con este corte en las estenosis >50% de diámetro obtuvimos una sensibilidad de 73% y especificidad de 77%, frente al 79% y 35% de Kliewer (Tabla 5.3).
Otros autores han empleado valores diferentes para este parámetro. Halpern (173) con un IA < 210 cm/seg² obtiene una sensibilidad similar a la nuestra (76%) con una especificidad superior (95%). Para un punto de corte similar, nuestras coordenadas de la curva ROC ofrecen una especificidad de 99% a expensas de disminuir la sensibilidad hasta un 50% (los resultados de nuestra serie post Captopril son muy similares a estos y serán comentados más adelante). No obstante debemos conceder un escaso valor al estudio de Halpern ya que el tamaño de su muestra no es significativo, tan solo incluyó 22 pacientes.

La serie de Johansson (41) es más interesante. Con una muestra de 121 pacientes, los autores realizan Doppler y renograma comparando los resultados con angiografía en todos los casos. Con un punto corte para IA <230 cm/seg² los resultados arrojan una sensibilidad de 83% y especificidad de 95%. En este caso el valor del IA se estableció a priori, buscando obtener una especificidad de al menos un 90% para estenosis > 50% de diámetro.

Otros estudios de interés para nosotros son los de Handa (167) y Nazzal (172). Ambos emplean un valor de IA <378 cm/seg² con resultados parecidos, sensibilidad de 89% a 100% y especificidad de 92% a 93%. Si utilizamos este valor de corte en nuestra tabla de coordenadas ROC, nuestra sensibilidad pasa de 73% a 85%, pero perderíamos especificidad, pasando de 77% a 60%. Los datos de Handa deben valorarse con precaución dada la escasa representatividad de la muestra (20 pacientes).

Patriquin (145) obtiene los mejores resultados. Sin embargo sus datos también son cuestionables. Nuevamente encontramos una muestra sin significación estadística por su tamaño, solo 20 casos, y por presentar un muy evidente sesgo de selección. Se trata de un grupo inicial de 62 pacientes jóvenes (sin especificar la edad), con neurofibromatosis o portadores de injertos renales, todos con sospecha fundada de estenosis, de los que se seleccionan sólo aquellos a los que realizan arteriografía. Por
otro lado resulta llamativo un punto de corte tan elevado, lógicamente esto debe incrementar la sensibilidad, pero implicaría necesariamente una disminución de la especificidad, cosa que no observamos.

Los diferentes resultados observados responden a causas como el empleo de distintos criterios diagnósticos y puntos de corte diferentes para las variables medidas, al tratamiento estadístico de los datos, o al diseño de los estudios, muchos son solo series de casos, y no auténticos estudios de validación de una prueba diagnóstica. Además otros condicionantes pueden influir en esta variabilidad. Como ya hemos explicado al tratar los patrones morfológicos, la aceleración sistólica inicial depende de múltiples factores. La edad del paciente puede ser un elemento importante, ya que en el anciano, la aterosclerosis y otras condiciones asociadas disminuyen la complianza y aumentan la impedancia intrarrenal. Esta situación es muy diferente a la de los pacientes de Patriquin, todos “chicos jóvenes”.

Por otro lado no hay acuerdo entre todos los autores a la hora de determinar cómo se mide el índice (y por tanto también el tiempo) de aceleración, lo que implica una dependencia del operador excesiva, que impide cualquier comparación posible de los datos (fig. 5.1). Stavros, Handa y Halpern entre otros, marcan este trazado desde el inicio de la sistole hasta el punto final de la sistole precoz, mientras que Kliewer lo hace hasta el pico sistólico máximo. Como ya hemos explicado antes al referirnos a la morfología de ESP, el segundo componente sistólico se relaciona con la complianza, por lo que consideramos más correcto medir la aceleración de la sistole precoz, la cual muestra una mayor relación con el grado de estenosis.

Respecto al análisis de los datos es necesario un comentario adicional. Decidimos tomar para el análisis el registro más patológico de todos los realizados, es decir el IA más bajo de los 3 muestreos obtenidos en cada riñón, siguiendo el mismo criterio que autores como Halpern (183). Con este planteamiento se pretende evitar que posibles estenosis de arterias accesorias y segmentarias pasen desapercibidas. Otros autores no
obstante, utilizan una media de todos los valores registrados (84;185). Lógicamente esta manipulación puede arrojar resultados muy diferentes.

Tiempo de aceleración

Nuestros resultados con este parámetro son inferiores a los que encontramos en la literatura. El análisis de nuestra curva ROC establece el punto de corte en 0,07 segundos, coincidiendo con los valores más ampliamente aceptados. Sin embargo la sensibilidad obtenida es sólo de 65%, curiosamente es la misma en las estenosis de 50% y 70% de diámetro, mientras que la especificidad es de 81% a 87%. En la tabla 5.3 se puede comprobar que los resultados publicados oscilan entre una sensibilidad de 75% a 100%, y una especificidad de 20% a 100% (142;167;168;171). Es importante valorar el escaso valor estadístico de la mayoría de estas series, con tamaños muestrales de 15 a 50 pacientes. Entre todas estas debemos destacar varios estudios.

Baxter (132) presenta una serie de 73 pacientes, con buenos resultados (sensibilidad de 89%, especificidad 97%). No obstante obtiene un alto índice de fracasos técnicos que alcanza hasta el 16% de los casos. Además sus datos se refieren a estenosis > 70% de diámetro.
Strunk (225) emplea un valor de corte de 0,12 seg a pesar de lo cual sus resultados no son buenos. Nazzal (172) con un valor de 0,1 seg presenta una sensibilidad inferior a la nuestra. Llama la atención en este caso la disparidad entre los resultados obtenidos con el TA y el IA.

Tabla 5.3. Eco Doppler renal. Métodos indirectos

<table>
<thead>
<tr>
<th>Referencia</th>
<th>Criterio</th>
<th>Grado (%)</th>
<th>Nº</th>
<th>C (%)</th>
<th>S (%)</th>
<th>E (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handa (167)1988</td>
<td>TA ≥ 0,07 seg IA ≤ 378 cm/seg²</td>
<td>> 50</td>
<td>20</td>
<td>98</td>
<td>100</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stavros (142) 1992</td>
<td>TA ≥ 0,07 seg</td>
<td>> 60</td>
<td>56</td>
<td>100</td>
<td>78</td>
<td>94</td>
</tr>
<tr>
<td>Patricia (145)1992</td>
<td>IA ≤ 400 cm/seg²</td>
<td>> 75</td>
<td>20</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Kliwer (168)1993</td>
<td>TA > 0,07 seg</td>
<td>> 50</td>
<td>46</td>
<td>100</td>
<td>82</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 79</td>
<td></td>
<td></td>
<td>79</td>
<td>35</td>
</tr>
<tr>
<td>Kliwer (168)1993</td>
<td>IA ≤ 300 cm/seg²</td>
<td>> 50</td>
<td>46</td>
<td>100</td>
<td>79</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 79</td>
<td></td>
<td></td>
<td>100</td>
<td>37</td>
</tr>
<tr>
<td>Schwerk (124)1994</td>
<td>ΔIR ≥ 5%</td>
<td>> 50</td>
<td>72</td>
<td>100</td>
<td>82</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 60</td>
<td></td>
<td></td>
<td>100</td>
<td>94</td>
</tr>
<tr>
<td>Gottlieb (171)1995</td>
<td>TA ≥ 0,07 seg</td>
<td>> 50</td>
<td>15</td>
<td>100</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>Halpern (173)1995</td>
<td>IA < 210 cm/seg²</td>
<td>> 50</td>
<td>22</td>
<td>100</td>
<td>76</td>
<td>95</td>
</tr>
<tr>
<td>Strunk (225)1995</td>
<td>TA > 0,12 seg</td>
<td>> 50</td>
<td>50</td>
<td>100</td>
<td>77</td>
<td>46</td>
</tr>
<tr>
<td>Baxter (132)1996</td>
<td>TA > 0,07 seg</td>
<td>> 70</td>
<td>73</td>
<td>84</td>
<td>89</td>
<td>97</td>
</tr>
<tr>
<td>Nazzal (172)1997</td>
<td>TA > 0,1 seg IA < 378 cm/seg²</td>
<td>> 50</td>
<td>114</td>
<td>93</td>
<td>62</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>89</td>
<td>92</td>
</tr>
<tr>
<td>Riehl (133)1997</td>
<td>IR < 0,45 ΔIR ≥ 8%</td>
<td>> 70</td>
<td>214</td>
<td>100</td>
<td>93</td>
<td>96</td>
</tr>
<tr>
<td>Johansson (41)2000</td>
<td>IA < 230 cm/seg²</td>
<td>> 50</td>
<td>121</td>
<td>100</td>
<td>83</td>
<td>95</td>
</tr>
<tr>
<td>Serie A 2003</td>
<td>IA* < 300 cm/seg²</td>
<td>> 50</td>
<td>133</td>
<td>98</td>
<td>73</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>IA** < 220 cm/seg²</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>TA* > 0,07 seg</td>
<td>> 50</td>
<td>133</td>
<td>98</td>
<td>65</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>TA** > 0,07 seg</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>ΔIR* > 5%</td>
<td>> 50</td>
<td>133</td>
<td>98</td>
<td>79</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>ΔIR* > 8%</td>
<td></td>
<td></td>
<td></td>
<td>74</td>
<td>54</td>
</tr>
</tbody>
</table>

*datos correspondientes a los estudios basales de nuestra serie. **datos correspondientes a estudios postcaptopril. Abreviaturas: Grado: grado de estenosis; Nº: número de pacientes; C: estudios concluyentes; S: sensibilidad; E: especificidad.
En nuestra opinión estos resultados se explican por las dificultades observadas a la hora de determinar el punto de inflexión de la sistole precoz. Esto es especialmente importante en ondas de muy baja amplitud, velocidades sistólicas muy bajas, y con patrones morfológicos equivocados en los que no se identifica el pico ESP. En este caso un pequeño desplazamiento en la posición del cursor puede influir notablemente en los cálculos. Este problema es menos evidente cuando la amplitud de la onda es mayor (como comentaremos más adelante la definición morfológica de la onda mejora tras la administración de Captopril, con lo que el valor de este criterio aumenta).

Indice de resistividad

El índice de resistividad no mostró valor en los estudios basales (IRB). Tanto en las estenosis >50% como en las >70% de diámetro presentó una nula significación estadística con un valor de p en la prueba *t de Student* de 0,747 y 0,212 respectivamente. Para comprobarlo de una manera más gráfica se realizaron sendas curvas ROC comparándolo con el índice de resistividad tras la administración de Captopril que sí mostró significación estadística (Págs. 130 y 144). Como es lógico el área bajo la curva para el IRB presentó valores muy próximos a 0,5 es decir la hipótesis nula, lo que quiere decir que en nuestro caso este criterio no permite discriminar la presencia de estenosis.

El valor de IR en el diagnóstico de la estenosis ha sido muy criticado por su falta de especificidad, aunque ha mostrado una mayor utilidad como marcador pronóstico (125). Este parámetro se relaciona mal con la estenosis, ya que se obtiene a partir de un cálculo que incluye tanto la velocidad sistólica como la diastólica (ver hemodinámica). Teóricamente los criterios estimados a partir del componente sistólico de la onda espectral (IA y TA) se alteran de manera más selectiva en presencia de una estenosis, mientras el componente diastólico está estrechamente relacionado con la resistividad intrarrenal, y tiende a aumentar progresivamente a medida que se deteriora la función renal como ocurre en la nefropatía isquémica, situación que se asocia a la estenosis.
Como ya explicamos múltiples factores hemodinámicos sistémicos pueden influir en el valor de este parámetro. Se ha comprobado incluso que el IR tiende a ser más bajo en el riñón izquierdo que en el derecho, y en territorios que están irrigados por arterias accesorias (176). Por esta razón se ha propuesto que debe considerarse un valor promedio en lugar de un valor aislado. Esta podría ser una de las causas que expliquen nuestros resultados. Como ya explicamos anteriormente en todos los casos elegimos el valor más patológico de cada criterio en lugar de un promedio.

En nuestra serie se encontraron un total de 74 arterias accesorias en los 258 riñones (13,2%). Cuando analizamos detenidamente nuestros datos descubrimos que en 11 riñones el resultado de la eco Doppler fue falso positivo (5,4%), con todos los parámetros patológicos, incluyendo no solo en IR sino también el IA y TA. En 4 de estos riñones (40%) se identificaron múltiples arterias renales (fig 5.2.), y en otros 2, quistes de un tamaño > 5 cm.

La presencia de estenosis bilateral también puede limitar el valor diagnóstico del IR. De los 39 pacientes con estenosis significativas superiores a 50% de diámetro de nuestra serie, 12 pacientes (30%) presentaban estenosis bilaterales, ambas > 50% de diámetro, y 6 pacientes adicionales (15%) presentaban una estenosis > 50% en un riñón y otra de 30% y 50% en el riñón contralateral.

Algunos autores han propuesto utilizar una razón que relaciona los valores del índice en ambos riñones, el incremento del índice de resistividad ΔIR. De este modo se postula que las posibles influencias de factores ajenos a la circulación renal se anularían.
Schwerk (124) y Riehl (133) obtienen excelentes resultados diagnósticos con valores de ∆IR > 5% y > 8% (tabla 5.3). Schwerk propone incluso un método para estimar el grado de estenosis a partir del valor del ∆IR:
\[
\%\text{estenosis} = (0.6 \cdot \Delta \text{IR}) + 57
\]
. En nuestro caso para las estenosis > 50% de diámetro un ∆IR > 5% obtuvo una sensibilidad de 79% y especificidad de 33%, muy lejos de los resultados de Schwerk, mientras que para un ∆IR > 8% la sensibilidad fue de 74% y la especificidad de 54%.

Otros parámetros

El índice de pulsatilidad del estudio basal (IPB) no mostró significación en el análisis estadístico. Parece lógico ya que este parámetro expresa más bien la complianza intrarrenal, por lo que su relación con la estenosis es cuestionable.

Por lo que respecta al tamaño renal tampoco se observaron diferencias entre el los riñones sin estenosis (9,8 cm) y aquellos que sí la tenían (9,7 cm). No obstante en este caso la relación si debería existir. Un mayor grado de estenosis se ha relacionado con una reducción del tamaño del riñón < 9 cm (155). Sin embargo no siempre ocurre así. Radermacher (84) no observa una relación tan evidente. Probablemente el tamaño renal depende de múltiples factores asociados como el tiempo de evolución de la estenosis, el desarrollo de nefropatía isquémica, la diabetes, o la nefroangiosclerosis entre otros. Recordemos que en nuestra serie la nefropatía isquémica y la diabetes presentaron un peso específico relativo, la prevalencia de la diabetes fue mayor en el grupo de pacientes sin estenosis, y sólo un 5% de los pacientes presentaban como único criterio de inclusión datos de nefropatía. Estos datos podrían explicar nuestros resultados.

5.2.2. Eco Doppler basal. Métodos combinados

Actualmente hay una tendencia creciente a realizar una doble aproximación al estudio de la estenosis renal en eco Doppler, considerando que esta es la metodología más correcta (116). Las ventajas son evidentes, una vez reconocidas las limitaciones del
diagnóstico directo, en aquellos pacientes en los que no pueda valorarse la arteria renal. El estudio de las arterias intrarrenales facilitará el diagnóstico. De este modo debería alcanzarse un diagnóstico definitivo en la práctica totalidad de los casos, aunque como veremos esto no es cierto. En nuestra opinión este método combinado presenta un serio inconveniente, la prolongación excesiva de los tiempos de exploración. Este es un aspecto que nos preocupa, ya que en nuestro medio la demanda asistencial es muy alta, y pretendemos desarrollar un método fiable, aplicable al mayor número de pacientes posible, que pueda emplearse como screening.

Varios autores han aplicado este método con buenos resultados (tabla 5.4). Los criterios empleados son los mismos que los descritos hasta ahora. La metodología de estos trabajos es variable, por lo que es difícil establecer comparaciones. En algunos de los estudios los resultados se obtienen mediante un análisis multivariante de regresión logística, mientras que en otros se combinan libremente los criterios que aportan mejores resultados, excluyendo del análisis aquellos datos que entran en contradicción y que oscurecen el resultado final.

En nuestro caso, aunque no realizamos estudios directos, podemos comparar nuestros resultados con los de estos autores, ya que incluyen criterios diagnósticos indirectos. Para ello emplearemos los resultados de nuestro análisis multivariante de regresión logística que incluye como criterios el tiempo e índice de aceleración, y el patrón morfológico. En este análisis los resultados para estenosis > 50% de diámetro muestran una sensibilidad de 71% y una especificidad de 95%, con un valor global de 90%.

Halpern (183) fue el primero en plantear esta doble técnica. Partiendo inicialmente de una serie de 186 pacientes finalmente sólo refiere los resultados de 21 pacientes estudiados con ecografía y angiografía. En el caso del IA, para cada riñón registró el valor mínimo, medio y máximo, aunque en el análisis solo empleó el valor mínimo. La sensibilidad y especificidad aislada del IA fue de 76% y 95%
respectivamente, y la de RAR 71% y 91%. Sin embargo la combinación de ambos criterios obtiene una sensibilidad de 86% con especificidad de 91%. En su estudio también valoró como criterio la ausencia del complejo ESP, que de manera aislada presentó una sensibilidad de 86%, con una baja especificidad (57%). El autor no emplea el TA porque encuentra dificultades para medirlo de manera objetiva, un problema que nosotros también hemos encontrado. El autor reconoce que sus resultados están influenciados por la selección de los pacientes.

<table>
<thead>
<tr>
<th>Referencia</th>
<th>Criterio</th>
<th>Grado (%)</th>
<th>Nº</th>
<th>C (%)</th>
<th>S (%)</th>
<th>E (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halpern (183)1995</td>
<td>RAR > 3,5 IA < 210 cm/seg ²</td>
<td>> 50</td>
<td>21</td>
<td>100</td>
<td>86</td>
<td>91</td>
</tr>
<tr>
<td>Krumme (126)1996</td>
<td>VSP > 200 cm/seg (∆RI > 0,05)</td>
<td>> 50</td>
<td>135</td>
<td>82</td>
<td>89</td>
<td>92</td>
</tr>
<tr>
<td>House (131)1999</td>
<td>VSP > 180 cm/seg RAR > 3,5</td>
<td>> 60</td>
<td>63</td>
<td>76</td>
<td>80</td>
<td>78</td>
</tr>
<tr>
<td>Radermacher (84)2000</td>
<td>VSP > 180 cm/seg RRR > 4</td>
<td>> 50</td>
<td>226</td>
<td>100</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>de Cobelli (127)2000</td>
<td>VSP > 200 cm/seg TA > 0,07 seg</td>
<td>> 50</td>
<td>45</td>
<td>98</td>
<td>79</td>
<td>93</td>
</tr>
<tr>
<td>Voiculescu (184)2001</td>
<td>VSP > 200 cm/seg (∆RI > 0,05)</td>
<td>> 60</td>
<td>36</td>
<td>-</td>
<td>95</td>
<td>89</td>
</tr>
<tr>
<td>Zeller (186)2001</td>
<td>RAR > 3,5 (∆RI > 0,05)</td>
<td>> 70</td>
<td>500</td>
<td>90</td>
<td>76</td>
<td>97</td>
</tr>
<tr>
<td>Serie A* 2003</td>
<td>TA > 0,07 IA < 220 Morfo (5-6)</td>
<td>> 50</td>
<td>133</td>
<td>100</td>
<td>71</td>
<td>95</td>
</tr>
</tbody>
</table>

* resultados del análisis multivariante. Abreviaturas: Grado: grado de estenosis; Nº: número de pacientes; C: estudios concluyentes; S: sensibilidad; E: especificidad.

Krumme (126) emplea una VSP > 200 cm/seg en la arteria renal principal y un ∆RI > 5% en arterias segmentarias consiguiendo una sensibilidad y especificidad de 89% y 92% respectivamente. Sin embargo también en este caso el autor reconoce un sesgo de selección de pacientes. 88 de los 135 pacientes de la serie presentaban estenosis >50% de diámetro en la angiografía (prevalencia de 65%), siendo bilaterales en 17 casos. Además llama la atención el elevado número de estenosis por displasias
fibromusculares (19). Los resultados de ambos criterios individualmente son más pobres. VSP presenta un 71% de sensibilidad y 96% de especificidad. Además sólo pudo ser registrada en el 82% de las arterias renales, no siendo posible identificar la mayoría de las arterias accesorias (75%). El ΔRI presenta una sensibilidad de 64% y especificidad de 82%, lo que se explica en función del alto número de estenosis bilaterales. Es especialmente significativo que ΔRI se muestra como un parámetro ineficaz en la mayoría de las estenosis severas por aterosclerosis (52%), mientras que su valor aumenta en las fibrodisplasias.

House (131) en este estudio sólo hace referencia a 63 pacientes de una serie general de 425 pacientes estudiados mediante eco doppler renal. Se seleccionan sólo aquellos que tenían angiografía, de una manera retrospectiva. Los criterios de inclusión son muy variables. De los 63 pacientes sólo 42 eran hipertensos, y 19 presentaban una progresión de su insuficiencia renal IR. Además se incluyen otros 2 pacientes sin sospecha de EAR, a los que se había realizado angiografía como donantes potenciales, probablemente para incrementar la serie. Es importante observar que la ecografía sólo fue concluyente el 76% de los pacientes, y que el tiempo medio de exploración fue de 1 hora. Respecto a los resultados, los mejores se obtienen con la combinación de VSP > 180 cm/seg o RAR > 3,5. Sin embargo debemos prestar atención a estos criterios, ya que esta combinación no corresponde a un análisis de regresión logística multivariante, sino que el autor utiliza aquel que más le interesa en cada caso, el que resulte positivo. Cuando se analizan los resultados individuales en el análisis univariante, la VSP > 180 cm/seg es el criterio más útil, con sensibilidad y especificidad de 80% y 77% respectivamente. Respecto a los parámetros indirectos, el autor emplea el TA > 0,07 seg y el IA < 300 cm/seg², con resultados visiblemente peores 41% y 56% de sensibilidad y 85% y 62% de especificidad respectivamente. Aunque los mejores resultados se refieren a los métodos directos, no queda claro si se registraron estos parámetros en todos los pacientes. Finalmente los autores reconocen una importante variabilidad entre los observadores e intra-observador, aunque no refieren datos de concordancia.
Radermacher y col (84) presenta unos resultados difícilmente mejorables, con una sensibilidad y especificidad de 96%. Con una muestra de 226 pacientes la significación de estos datos es muy importante. Los autores estudian 1933 pacientes mediante eco Doppler por sospecha de estenosis arterial renal, de los cuales seleccionaron 226 para arteriografía, en función de los hallazgos ecográficos (136 casos), y de criterios clínicos y hallazgos en renograma previo (90 pacientes). En este sentido la selección de pacientes es criticable, ya que se excluyeron 1707 pacientes inicialmente sospechosos de estenosis. De hecho la prevalencia de estenosis >50% de diámetro fue muy elevada, 58% de los pacientes, con 34% de estenosis bilaterales. Es importante destacar varios aspectos de este trabajo. El porcentaje de estudios técnicamente satisfactorio fue de 100%, aunque la valoración de ambas arterias renales solo fue posible en el 84% de los casos. El tiempo medio de exploración sorprendentemente fue de 17 minutos, a pesar de tratarse de un método combinado. No obstante creemos que este dato no es real. Los autores explican que tras la exploración renal completaron el estudio con una ecografía abdominal que consumió 30 minutos adicionales, lo que supone 47 minutos de media por paciente. En nuestra experiencia una ecografía abdominal rutinaria no supone más de 15 minutos, por lo que posiblemente parte de este tiempo se dedicó a completar la eco Doppler renal. El mejor criterio aislado fue el \(TA < 0,07 \) seg, con una sensibilidad de 87% y especificidad de 86%, mientras que el \(\Delta IR \) solo obtuvo un 71% y 73% respectivamente. Los autores concluyen que debe realizarse una doble aproximación en todos los pacientes con sospecha de estenosis.

Resultados más próximos a los nuestros son los de de Cobelli (226) y Zeller (186). El primero compara la eco Doppler y angio-RM con la angiografía convencional, obteniendo resultados similares en ambos casos. El segundo publica una serie retrospectiva de 500 pacientes, sin embargo solo 69 tienen angiografía, por lo que no podemos considerar sus resultados como significativos.
5.2.3. Eco Doppler renal y potenciadores de señal

Tras revisar la literatura, decidimos desde el inicio realizar todas las exploraciones con potenciador de señal para asegurar los mejores resultados, y evitar en lo posible los exámenes no concluyentes por razones técnicas. No nos interesa por tanto establecer un estudio comparativo entre ecografía sin y con potenciador de señal. En este sentido ya existen datos suficientes a nuestro entender, que avalan el mejor rendimiento de los estudios con potenciador, frente a los realizados sin él, en el territorio vascular renal (227;228). Para facilitar una presentación más clara de los resultados de estos agentes en la tabla 5.5 se exponen varias publicaciones referentes a estudios de ecografía Doppler renal con potenciador.

Tabla 5.5. Eco Doppler renal y potenciadores de señal.

<table>
<thead>
<tr>
<th>Referencia</th>
<th>Criterio</th>
<th>Grado (%)</th>
<th>Nº</th>
<th>C¹ (%)</th>
<th>S¹ (%)</th>
<th>E¹ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lees (194)1996</td>
<td>IA < 375 cm/seg²</td>
<td>> 60</td>
<td>72</td>
<td>83 / 100</td>
<td>83 / 95</td>
<td>81 / 93</td>
</tr>
<tr>
<td>Missouri (195)1996</td>
<td>IA < 375 cm/seg²</td>
<td>> 60</td>
<td>21</td>
<td>100</td>
<td>85 / 94</td>
<td>79 / 88</td>
</tr>
<tr>
<td>Lencioni (117)1999</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>> 90</td>
<td>-</td>
</tr>
<tr>
<td>Claudon (198)2000</td>
<td>VSP >140 – 200 cm/seg</td>
<td>> 50</td>
<td>198</td>
<td>64 / 84</td>
<td>80 / 84</td>
<td>81 / 84</td>
</tr>
<tr>
<td></td>
<td>RAR > 3 - 3,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lacourciere (197)2002</td>
<td>RAR > 3</td>
<td>> 60</td>
<td>78</td>
<td>100</td>
<td>82 / 99</td>
<td>-</td>
</tr>
<tr>
<td>Serie A* 2003</td>
<td>IA < 300 cm/seg²</td>
<td>> 50</td>
<td>133</td>
<td>98</td>
<td>73</td>
<td>77</td>
</tr>
</tbody>
</table>

* Datos correspondientes a los estudios basales de nuestra serie. ¹ Resultados antes y después de administración de SH U 508 A. Abreviaturas: Grado: grado de estenosis; Nº: número de pacientes; C: estudios concluyentes; S: sensibilidad; E: especificidad.

Si comparamos estos datos con los de la tabla 5.3 observaremos pocas diferencias. Podríamos deducir que el uso de los agentes de contraste ecográfico no aporta una ventaja sustancial. No obstante hay dos aspectos que no aparecen reflejados en la tabla, y que consideramos importantes, el rendimiento del equipo y el tiempo de exploración. Existen notables diferencias técnicas en el mercado, y la resolución de la ecografía ha cambiado en los últimos años. La introducción de nuevos recursos como la imagen de armónicos tisulares puede marcar diferencias importantes. El empleo de estos agentes debería permitir una mayor independencia de estos factores y homogeneizar los
resultados de distintos observadores y equipos. Por otro lado la reducción del tiempo de exploración nos parece la ventaja más evidente como discutiremos. A continuación comentaremos algunos datos de la tabla 5.5.

Los trabajos de Lees (194) y Missouris (195) forman parte de los estudios del ensayo en fase III del producto. Son muy interesantes ya que ambos emplean el mismo criterio y obtienen resultados muy parecidos aunque el tamaño de sus muestras sea muy diferente. En ambos casos los resultados de la ecografía fueron comparados con arteriografía. Un dato de interés es el tiempo medio de examen que varió desde 24,5 minutos en la eco sin potenciador a 13,5 minutos tras la administración de Levovist®.

En cuanto a Lencioni (117), en realidad se trata de un artículo de revisión, en el que no aporta datos concretos de una serie de pacientes. Claudon (198) presenta los resultados de un estudio multicéntrico europeo sobre una serie de 198 pacientes, en 14 centros de Austria, Francia, Alemania, Italia, Portugal y Reino Unido. En todos los casos se realizó eco Doppler sin y con potenciador, y arteriografía. Este tipo de estudios permite manejar datos de una muestra de pacientes mayor, pero como veremos, presenta serios problemas de diseño por la presencia de importantes sesgos de clasificación y confusión:

El número de observadores es muy alto, y ni siquiera está definido. Si asumimos un solo observador en cada centro deberíamos considerar un mínimo de 14, aunque en la práctica clínica este número es más elevado. De manera intencionada no se refieren datos sobre concordancia entre las distintas lecturas por ser inviable la realización de un estudio de concordancia en estas condiciones. Respecto a los equipos ecográficos podríamos argumentar en el mismo sentido.

Los resultados se refirieron a estenosis >50% de diámetro en angiografía. Los criterios diagnósticos en el Doppler fueron múltiples y con puntos de corte variables. Cada centro fue libre de elegir uno o varios de los siguientes: VSP > 140, 150, 180 y 200 cm/seg; RAR > 3 – 3,5 cm/seg². No se establecieron restricciones respecto a la
dosis del potenciador SH U 508 A, empleando diferentes concentraciones de Levovist®, (200, 300 y 400 mg/ml), con un número de dosis variable hasta un máximo de 6 viales. Tampoco se restringió el tiempo de exploración. A pesar de todas estas condiciones el número de estudios en los que se pudo lograr un diagnóstico (porcentaje de estudios técnicamente fiables o concluyentes) solo alcanzó un 84% en el mejor de los casos.

Lacourcier (197) nos ofrece un estudio similar. Se trata de un multicéntrico en el que participan 7 hospitales canadienses, que incluye a 78 pacientes, y que presenta problemas de diseño análogos a los ya descritos. El estudio compara los resultados de la eco sin potenciador y el renograma isotópico, con los de la eco con potenciador. Al igual que en el caso anterior no hubo restricciones en la dosis de potenciador, administrando hasta 6 viales de 4 g de Levovist a concentraciones de 300 mg /dl. Un único vial fue empleado en 47% de los pacientes, 2 viales en 38%, y 3 a 6 viales en el 15% restante. El grado de estenosis considerado significativo fue > 60% de diámetro. El criterio empleado fue una ratio RAR >3. La sensibilidad en el diagnóstico de estenosis pasó de 82% sin potenciador a 99% con potenciador. Sin embargo estos son datos comparativos entre las dos pruebas, no tienen validez, ya que sólo se realizó angiografía en 11 de 78 pacientes, por lo que la no es posible conocer la proporción real de falsos negativos y positivos. Además cuando se estudia la concordancia en el diagnóstico entre los resultados de ambos estudios los resultados son muy pobres (*kappa* = 0.242). En definitiva este trabajo sólo demuestra que el empleo de potenciadores incrementa la visualización de las arterias renales considerablemente, pero no aporta datos en cuanto a su valor en el diagnóstico de la estenosis.

A primera vista nuestra serie muestra peores resultados comparativamente. A nuestro entender esto se explica por la metodología de trabajo. Desde el principio nos propusimos utilizar una dosis única de potenciador (4g de Levovist® a concentración de 400 mg/ml), para todos los pacientes, y limitar el tiempo de exploración. De este modo creemos que los resultados obtenidos son más objetivos. Además consideramos que
cualquier exploración que se prolongue en exceso sería inviable en la práctica clínica, sin tener en cuenta aspectos de rentabilidad (coste/beneficio). El tiempo de exploración en el estudio basal fue de 11,3 minutos. Este tiempo contrasta con la duración de los estudios directos (entre 1 y 2 horas), e indirectos (20 a 25 minutos) descritos hasta ahora, y se aproxima más al obtenido por Lees (13,5 minutos). Los tiempos de exploración de Claudon y Lacourciere obviamente no son referidos dada su sistemática de trabajo.

5.2.4. Ecografía Doppler renal con Captopril

La combinación de la ecografía Doppler renal con Captopril en el diagnóstico de la estenosis renal es una metodología muy reciente basada en la experiencia del empleo de Captopril en los estudios isotópicos. La experiencia científica en este campo es muy escasa. Los trabajos más importantes en este sentido son los del grupo canadiense de Oliva (170) y Qanadli (190). En estos estudios se comparan los resultados de los métodos Doppler indirectos tradicionales, antes y después de la administración de Captopril (tabla 5.6).

<table>
<thead>
<tr>
<th>Referencia</th>
<th>Criterio</th>
<th>Grado (%)</th>
<th>N⁰</th>
<th>C¹ (%)</th>
<th>S¹ (%)</th>
<th>E¹ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>René (144)1995</td>
<td>Morfológico</td>
<td>> 50</td>
<td>31</td>
<td>68 / 100</td>
<td>100 / 100</td>
<td></td>
</tr>
<tr>
<td>Oliva (170)1998</td>
<td>Morfológico, IA, TA</td>
<td>> 50</td>
<td>48</td>
<td>81 / 100</td>
<td>77 / 100</td>
<td>99 / 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>77 / 81</td>
<td>77 / 100</td>
<td>93 / 94</td>
</tr>
<tr>
<td>Qanadli (190)2001</td>
<td>Morfológico, IA, TA</td>
<td>> 50</td>
<td>41</td>
<td>- / 62</td>
<td>- / 95</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serie A* 2003</td>
<td>ESP, IA, TA</td>
<td>> 70</td>
<td>133</td>
<td>67 / 79</td>
<td>62 / 73</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>73 / 75</td>
<td>76 / 92</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>65 / 79</td>
<td>81 / 78</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>65 / 81</td>
<td>89 / 95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RESD</td>
<td>> 70</td>
<td>133</td>
<td>77 / 84</td>
<td>70 / 88</td>
<td></td>
</tr>
</tbody>
</table>

¹Resultados antes y después de la administración de Captopril.
En el trabajo preliminar de René (144) se creó una nueva expectativa en las posibilidades diagnósticas de la eco Doppler renal. Empleando como único criterio el patrón morfológico espectral se consiguió diagnosticar correctamente a todos los pacientes con una certeza absoluta, 100% de sensibilidad y especificidad. Años más tarde en un segundo artículo Oliva (170) presenta nuevos resultados que avalan la técnica. En esta ocasión el estudio es más completo e incluye además de los criterios morfológicos, parámetros más objetivables como el índice y el tiempo de aceleración. Con estos datos los autores consiguen una técnica prácticamente infalible. Sin embargo en su último artículo los autores no consiguen reproducir los mismos resultados. Un análisis detallado nos ofrece las claves de lo ocurrido.

Todos los estudios se refieren a series muy cortas que presentan sesgos de selección de pacientes. René incluyó 31 pacientes, de los cuales encontró estenosis en 15 (48% de los casos). Oliva nos habla de 71 pacientes, cuando en realidad los resultados se refieren solo a 48 casos en los que se realizó arteriografía. Además 31 de los 48 casos son los mismos de la serie anterior. La prevalencia de estenosis en este grupo fue de 30%. Por último Qanadli estudia sólo 41 pacientes de los cuales el 52% presentan estenosis. En definitiva sólo disponemos de datos 89 pacientes estudiados mediante este método. Es realmente sorprendente que en un período de 6 años este equipo de investigadores solo aporte datos de un número tan reducido de casos, especialmente cuando comparamos con otros grupos (125;133).

La selección de pacientes para administración de captopril se hizo en base a criterios clínicos (aclaramiento de creatinina > 40 ml/min), lo que sugiere que en su población la prevalencia de nefropatía isquémica es muy elevada, y que muchos pacientes no reúnen criterios de hipertensión vascular renal. Para ampliar su serie Oliva incluye 26 pacientes adicionales a los que se realizó angiografía, hasta un total de 71 pacientes, aunque no se les administró Captopril. Los resultados de la ecografía basal se refieren por tanto a un total de 135 riñones, mientras que los de la ecografía post
captopril incluyen solo 96 riñones. Los resultados se comparan con estenosis en angiografía > 50% y > 70% de diámetro.

Los mejores resultados se refieren a los patrones morfológicos. Ya hemos explicado que se consideran hasta 9 modelos, aunque finalmente todos pueden agruparse en solo 2 tipos. Aunque este es un criterio que podría considerarse subjetivo el análisis de concordancia entre observadores demostró un índice kappa de 0,96, por lo que podemos asumir que es un criterio fiable y reproducible.

El análisis de las curvas ROC establece los puntos de corte de las distintas variables, donde encontramos aspectos que nos llaman la atención. El autor distingue un punto de corte para el índice de aceleración basal (IAB) de <473 cm/seg² en la serie general incluyendo todos los pacientes, y otro diferente para los 48 pacientes seleccionados, de <390 cm/seg². Otro tanto sucede cuando observamos el tiempo de aceleración basal (TAB), que en el primer grupo es > 0,05 seg, y en el segundo > 0,065. Cuando observamos los resultados tras la administración de Captopril en las estenosis > 50% el punto de corte del TA es mayor, pasando de 0,065 a 0,095 seg, pero nos sorprende que en el IA se eleva desde 390 a 440 cm/seg². Por último en el artículo de Qanadli utilizando los mismos criterios los resultados difieren mucho de los iniciales (sensibilidad de 62% y especificidad de 95%) aunque los autores no dan ninguna explicación de lo ocurrido. En su lugar parecen más interesados en destacar los resultados de la angio-RM frente a otros métodos diagnósticos.

Si a continuación valoramos nuestros resultados descubrimos que al igual que ocurre en la serie de Oliva, todos los parámetros muestran un mayor rendimiento diagnóstico tras la administración de Captopril, pero observamos una contradicción con respecto a sus datos:

En nuestra serie los puntos de corte de las variables cuantitativas en la ecografía basal son los mismos que los descritos en la literatura (IA < 300 cm/seg², TA > 0,07
seg), mientras que tras la administración de Captopril observamos un descenso del valor de corte del IA < 220 cm/seg² para las estenosis de 50% de diámetro. Por el contrario en la serie de Oliva se produce un aumento del punto de corte tras el estímulo con Captopril, con un IA < 440 cm/seg². Respecto al TA en nuestro caso se mantiene en > 0,07 seg tanto en las ecografías basales como tras el estímulo con Captopril, mientras que para los autores se prolonga con TA > 0,095 seg.

Nuestros resultados para los criterios aislados en el modelo univariante son intermedios entre los de Oliva y Qanadli. Nuestro mejor parámetro es el IA < 220 cm/seg² con una sensibilidad de 75% y especificidad de 92%. El patrón morfológico se muestra como el menos eficaz (sensibilidad 54% y especificidad 96%). A pesar de esto los patrones morfológicos se definieron con más claridad, aumentando la proporción de patrones tipo 5 y 6 con respecto a la ecografía basal.

![Fig. 5.3](image)
El análisis multivariante incluyendo los criterios TA $>$ 0,07 seg, IA $<$ 220 cm/seg2, y patrón morfológico (5-6) incrementó la especificidad hasta un 95%, y el valor global de la prueba hasta un 90%, sin embargo la sensibilidad fue menor que para algunos criterios aislados (71%). Si consideramos la lectura del observador como variable, obtenemos los mejores resultados, con 81% y 95% de sensibilidad y especificidad respectivamente, y un valor global de 92%. Aunque este criterio es menos objetivo no debemos despreciarlo. En este caso el observador es libre de elegir el criterio más patológico en cada caso, o una combinación de los mismos, al igual que hacen otros autores (131). Además estos datos se explican probablemente porque el observador maneja aún más información que el sistema, ya que como recordaremos, el análisis solo incluyó un registro de cada riñón. En definitiva consideramos que nuestros datos presentan una mayor significación que los de los estudios citados por referirse a una muestra mayor, con criterios de selección más estrictos y por estar contrastados con arteriografía en todos los casos.

Existen pocos datos que expliquen las alteraciones inducidas por Captopril en el espectro Doppler intrarrenal. Petrolesi (188) describió sus efectos en pacientes normotensos, en los que observó un incremento de las velocidades sistólica y diastólica sin cambios del índice de resistividad (IR). René (144) y Veglio (189) describen lo que ocurre en pacientes con estenosis, observando un descenso del IR y un realce del patrón morfológico sin cambios significativos en el IA y TA.

Nuestro estudio, como el de Oliva, demuestra que Captopril provoca un realce del fenómeno tardus parvus distal a la estenosis, aunque la explicación fisiológica no es clara. Se han propuesto dos mecanismos posibles: un incremento de la complianza de la pared arterial (229) y un descenso de la impedancia intrarrenal (230). Este último mecanismo ha sido cuestionado por Bude (118), en un estudio experimental. Este autor considera el sistema vascular renal análogo a un circuito eléctrico de resistencia-capacitancia, en el que una caída de la resistencia distal (efecto comparable a la acción de Captopril) debería disminuir el producto resistencia –capacitancia, e incrementar la
pulsatilidad de la onda, con descenso del efecto *tardus parvus* y aumento del índice de resistividad, cuando la complianza se mantiene constante. En conclusión si Captopril produce un descenso de la resistencia vascular periférica en el riñón debería incrementar la pulsatilidad de la onda y disminuir el grado de *tardus parvus* en lugar de hacerse más evidente. Esto es exactamente lo contrario de lo que postulan René y Veglio.

En nuestra opinión, la teoría propuesta por Bude es errónea, la analogía entre el sistema vascular y el modelo del circuito eléctrico es totalmente teórica. Nosotros al igual que otros autores (144;189), consideramos que un descenso de la resistencia vascular renal distal en presencia de una estenosis proximal tiene el efecto contrario e incrementa el grado del fenómeno *tardus parvus*. El efecto de Captopril no es análogo al modelo electrónico de Bude, sino que más bien se asemeja a la situación que ocurre en el sistema arterial de las extremidades, en el lecho distal a una estenosis, como consecuencia de la vasodilatación posterior al ejercicio.

Para comprobar esta teoría procederemos igual que Oliva comprobando las variaciones de distintos parámetros, para lo cual compararemos los valores medios de

Fig 5.4.
A. Arteriografía selectiva de a. renal derecha que muestra estenosis proximal >70% de diámetro.
B. El análisis espectral basal presenta complejos de morfología tipo 4, el TA es de 0,06 seg, y un IA de 958 cm/seg².
C. Tras la administración de Captopril se acentúa el fenómeno *tardus parvus*, apareciendo un patrón de tipo 6, con TA 0,15 seg, e IA de 75,6 cm/seg².
las variables cuantitativas en el estudio basal y tras la administración de Captopril y determinaremos si existen diferencias significativas entre ambos valores. Para comprobar la distribución de los datos utilizaremos la prueba de Kolmogorov-Smirnov, empleando el test de Wilcoxon para determinar la significación estadística en caso de una distribución anormal, y la t de Student para distribuciones normales.

Como podemos comprobar (tablas 5.7. y 5.8) en los riñones sin estenosis el IR no cambia tras la administración de Captopril, sin embargo se observa un descenso significativo en caso de estenosis, pasando de un valor de 0,707 a 0,655 (p=0,004). El IP muestra un comportamiento similar, sin alteraciones en ausencia de estenosis y con un descenso significativo en la estenosis (p= 0,010). Respecto al TA el valor medio en presencia de estenosis varía desde 0,1 seg hasta 0,12 seg, lo que representa un enlentecimiento significativo (p=0,05). El IA también mostró una deceleración desde 236 cm/seg2 hasta 206 cm/seg2, aunque su significación fue menor.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Basal</th>
<th>Post Captopril</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indice de resistividad</td>
<td>IR</td>
<td>0,707</td>
<td>0,655</td>
</tr>
<tr>
<td>Indice de pulsatilidad</td>
<td>IP</td>
<td>1,680</td>
<td>1,104</td>
</tr>
<tr>
<td>Tiempo de aceleración</td>
<td>TA</td>
<td>0,100</td>
<td>0,125</td>
</tr>
<tr>
<td>Indice de aceleración</td>
<td>IA</td>
<td>236</td>
<td>206</td>
</tr>
<tr>
<td>Tensión arterial sistólica</td>
<td></td>
<td>166</td>
<td>141</td>
</tr>
<tr>
<td>Tensión arterial diastólica</td>
<td></td>
<td>87</td>
<td>77</td>
</tr>
</tbody>
</table>

Significación ($p<0,05$): * test de Wilcoxon; ** t de Student

Si a continuación valoramos los cambios producidos en los parámetros morfológicos observaremos que la ausencia del complejo ESP es más frecuente en las ecografías posteriores a la administración de Captopril, (66% antes y 77% después), aunque este cambio es menos significativo ($p= 0,092$). En este caso al tratarse de
variables categóricas dicotómicas la significación se expresa mediante un test de *McNemar*. Otro tanto ocurre con el patrón morfológico, siendo más frecuentes los tipos 5 y 6 en el estudio post captopril (*p* = 0,070).

Finalmente valoramos los cambios producidos en la tensión arterial, comprobando un descenso de la TA sistólica de 166 a 146 mmHg, y en la diastólica de 87 a 77 mmHg. En el grupo de pacientes sin estenosis no se produjeron cambios significativos en ninguna de las variables estudiadas, excepto en las cifras de tensión arterial (tabla 5.8).

<p>| Tabla 5.8. Valores medios de variables cuantitativas pre y post-captopril referidos a estenosis < 50% |</p>
<table>
<thead>
<tr>
<th>Variable</th>
<th>Basal</th>
<th>Post captopril</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indice de resistividad IR</td>
<td>0,741</td>
<td>0,741</td>
<td>0,476*</td>
</tr>
<tr>
<td>Indice de pulsatilidad IP</td>
<td>1,517</td>
<td>1,444</td>
<td>0,976*</td>
</tr>
<tr>
<td>Tiempo de aceleración TA</td>
<td>0,05</td>
<td>0,06</td>
<td>0,154*</td>
</tr>
<tr>
<td>Indice de aceleración IA</td>
<td>525</td>
<td>577</td>
<td>0,976*</td>
</tr>
<tr>
<td>Tensión arterial sistólica</td>
<td>159</td>
<td>146</td>
<td>0,000**</td>
</tr>
<tr>
<td>Tensión arterial diastólica</td>
<td>87</td>
<td>81</td>
<td>0,000**</td>
</tr>
</tbody>
</table>

Significación (*p* < 0,05): * test de Wilcoxon; ** t de Student.

Cambios similares han sido observados por Oliva, salvo en lo referente a la tensión arterial. Esto demuestra claramente que el modelo electrónico de Bude no puede aplicarse a la estenosis arterial, y que el efecto inhibidor de Captopril provoca un realce del efecto *tardus parvus* por dos mecanismos, uno directo en el riñón al disminuir la impedancia, con descenso del IR y alteración de todos los parámetros relacionados con la aceleración, y otro indirecto al producir un descenso generalizado de la presión arterial. También podemos comprobar que la complianza arterial intrarrenal, expresada por el índice de pulsatilidad, no aumenta, sino que disminuye.
En definitiva podemos concluir que la administración de Captopril incrementa el rendimiento diagnóstico de la ecografía Doppler renal en la estenosis, con una sensibilidad de 81%, especificidad de 95%, valor predictivo positivo de 80%, valor predictivo negativo de 95% y valor global de 92%, mientras que no produce cambios significativos en los riñones sanos. Además los valores de corte del índice de aceleración disminuyen con respecto a la ecografía basal, mientras que el tiempo de aceleración no cambia. El patrón morfológico de manera aislada es un criterio poco sensible, sin embargo incrementa la especificidad de la prueba.
5.3. Limitaciones

Debemos reconocer algunas limitaciones en nuestro estudio:

El elevado número de variables clínicas y radiológicas estudiadas, así como la prevalencia de la enfermedad en nuestro medio, y los datos previos disponibles sobre sensibilidad y especificidad de la prueba en estudio (ecografía Doppler), exigían un gran tamaño de la muestra, que permitiera obtener datos representativos de la población general. Inicialmente se estimó un tamaño muestral que incluyera al menos 60 casos de estenosis significativa, lo que supondría 300 a 330 arterias y entre 150 y 170 pacientes. Por desgracia realizar tal número de pacientes ha resultado realmente difícil, debido a las condiciones de la práctica clínica en nuestro medio y a las dificultades iniciales para conseguir el potenciador de señal. Por todo esto finalmente no se consiguió el tamaño de muestra esperado. En este sentido cabría preguntarse si nuestro rendimiento diagnóstico de la prueba sería susceptible de mejorar.

En cuanto a la metodología se diseñó un estudio transversal prospectivo para evaluar el rendimiento de la ecografía, así como un estudio de prevalencia. Sin embargo en nuestra opinión, también hubiera sido oportuno un estudio de seguimiento que valorase la evolución de los pacientes dada la naturaleza progresiva de la enfermedad.

La selección de pacientes se realizó conforme a los criterios clínicos aceptados en la literatura de sospecha de estenosis de arteria renal. No obstante a diferencia de otras series, la nefropatía isquémica fue menos relevante que la hipertensión vascular renal en nuestros pacientes, y la prevalencia de otras condiciones asociadas como la diabetes, difiere igualmente de los datos encontrados en la literatura.

Los datos de concordancia entre observadores se realizaron tras la lectura inicial de los primeros 99 casos, considerándola adecuada. La variable empleada para estimar el índice kappa fue la lectura del observador. En esta variable el radiólogo debía decidir
si el estudio era normal (sin estenosis) o patológico (estenosis). Aunque según nuestro criterio es la más representativa, ya que representa una lectura integral de todo el estudio, no es un criterio completamente objetivo. Para incrementar la objetividad de esta variable se establecieron unos criterios de lectura a priori. En otros estudios de correlación se determina el grado de concordancia en la lectura de los parámetros morfológicos. Sin embargo consideramos que este también es un criterio poco objetiviable.

El rendimiento diagnóstico de la prueba fue menor que el de algunos de los estudios descritos a pesar de la combinación de un potenciador de señal y Captopril. Sin embargo consideramos que nuestro estudio la selección de la muestra y el tratamiento de los datos es más riguroso que el de muchos de estas publicaciones, y los resultados se ajustan más a la realidad.

Inicialmente pensamos que los métodos indirectos evitarían que el diagnóstico de estenosis de arterias accesorias quedara inadvertido. Nuestros datos no obstante, sugieren que la presencia de múltiples arterias probablemente artefacta la prueba y provoca la aparición de falsos positivos, aunque no muestren estenosis. Sería necesaria una valoración más amplia de este aspecto que no hemos realizado al tratarse de un número insuficiente de casos.

No se ha valorado la influencia de otras condiciones que podrían afectar a los resultados de la ecografía, como la presencia de quistes renales, litiasis, pielonefritis, glomerulonefritis u otras patologías renales. Aunque la incidencia de estas patologías se recogió de manera adicional, fue muy baja en nuestros pacientes, y se desestimó como variable en el análisis. No obstante podrían tener algún efecto sobre el espectro Doppler.

No encontramos explicación a los resultados falsos negativos, es decir Doppler normal en presencia de estenosis significativa. A nuestro entender esto implica la
participación de factores hemodinámicos no controlados que probablemente dependen de los mecanismos de autorregulación del flujo renal y se escapan a nuestro análisis.

Un estudio Doppler más completo debería incluir tanto métodos directos como indirectos. No obstante inicialmente desestimamos esta posibilidad ya que el tiempo de exploración hubiera sido excesivo y probablemente no se hubiesen completado muchas exploraciones por limitaciones logísticas. Del mismo modo hubiese sido de interés practicar una ecografía Doppler dirigida a carótidas y sistema arterial periférico de los miembros inferiores como estudio de posibles lesiones asociadas.

En nuestra opinión la ecografía Doppler con Captopril podría emplearse como método de screening, teniendo en cuenta su disponibilidad en comparación con otras técnicas diagnósticas, y el tiempo de exploración reducido. Consideramos que el principal requisito de una técnica de screening es un valor predictivo negativo elevado, como en nuestro caso (95%). Sin embargo su empleo en este sentido exigiría un estudio coste-beneficio que no hemos realizado.
6. Conclusiones

1. La ecografía Doppler de las arterias intrarrenales es una prueba diagnóstica que puede aplicarse prácticamente a todos los pacientes.

2. El empleo de potenciadores de señal no altera significativamente el valor diagnóstico de la ecografía Doppler renal. Sus principales ventajas son un incremento de la aplicabilidad de la prueba, entre 98% y 99% de los estudios son técnicamente satisfactorios, una reducción del tiempo de exploración, y la minimización de posibles limitaciones técnicas o anatómicas.

3. La concordancia de los resultados de la eco Doppler renal realizada por diferentes operadores es óptima, lo que implica que la técnica es reproducible.

4. La prevalencia de la estenosis de la arteria renal en nuestro medio, en una población que cumple criterios de clínicos de sospecha, es ligeramente superior a la descrita en la literatura (29%).

5. En ausencia de estenosis de la arteria renal, Captopril no produce cambios hemodinámicos significativos en la circulación renal, ni alteraciones del espectro en la eco Doppler renal.
6. En presencia de estenosis de la arteria renal, Captopril provoca cambios en la hemodinámica renal que incrementan el rendimiento diagnóstico de la ecografía Doppler renal. La sensibilidad en el diagnóstico de estenosis > 50% de diámetro varía desde un 65% en la ecografía sin Captopril, hasta un 81% en la ecografía tras la administración de Captopril, mientras que la especificidad varía desde un 89% hasta un 95%.

7. Los criterios diagnósticos de estenosis de la arteria renal > 50% de diámetro, en la eco Doppler renal más fiables son, un IA < 220 cm/seg², y un TA > 0,07 seg.

8. En las estenosis más severas (> 70%) los criterios diagnósticos en la eco Doppler renal son ligeramente diferentes, con un IA < 200 cm/seg², y un TA > 0,07 seg.

9. Los criterios morfológicos de la eco Doppler renal, de manera aislada, son menos sensibles que los criterios cuantitativos, en el diagnóstico de la estenosis de la arteria renal. Sin embargo cuando se usan en combinación con los anteriores incrementan la especificidad de la prueba.

10. El fenómeno *tardus parvus* en la circulación renal se produce como consecuencia de la combinación de factores como el gradiente de presiones a través de la estenosis y el descenso de la impedancia del lecho vascular intrarrenal distal a la estenosis.

11. El efecto de Captopril, en presencia de estenosis arterial renal, realza el fenómeno *tardus parvus* por una acción directa en la circulación renal, acentuando la caída de la impedancia renal como lo demuestra el descenso de
IR, y por una acción indirecta al provocar un descenso generalizado de la tensión arterial. Sin embargo Captopr il no tiene efecto sobre la complianza arterial intrarrenal.

12. El test de Captopril combinado con la ecografía renal y el uso de potenciadores de señal es una prueba segura, sin riesgos ni efectos secundarios para la práctica totalidad de los pacientes.

Fdo.

Rafael Oteros Fernández
7. Bibliografía

Bibliografía

Bibliografía

