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1. Introduction

The growing human population and climate change are imposing unprecedented
challenges on the global food supply [1]. To cope with these pressures, crop improvement
demands enhancing important agronomical traits beyond yield, such as adaptation, re-
sistance, and nutritional value, by pivoting direct and indirect selection approaches [2].
The development of next-generation high-throughput screening technologies, referred
to as ‘omics’, promises to speed up plant trait improvement [3] while producing more
sustainable crops.

Large-scale techniques, such as genomics, transcriptomics, proteomics, metabolomics,
and phenomics, have already provided large datasets for that purpose. Meanwhile, modern
bioinformatic and machine-learning approaches are helping us to process this heteroge-
neous hyper-dimensional data [4] while ultimately understanding the mechanisms behind
agronomic features within the contemporary plant breeding triangle (i.e., genomics vs. phe-
nomics vs. enviromics) [5]. ‘Omics’ datasets are also being generated to study macro-scale
interactions and deepen our knowledge of crop behavior across the microbial [6] and envi-
ronmental [7,8] continua. However, despite these massive technological and computational
developments [4], systemic efforts to integrate ‘omics’ studies to understand biochemical
pathways and cellular networks of crop systems are in their infancy [9], especially in
orphan species [10].

Therefore, this Special Issue envisions offering updated emergent views on large-scale
‘omics’-based approaches. Specifically, the compilation explores the conceptual framework
of the ‘omics’ paradigm [11], the practical uses of multiple ‘omics’ technologies, and their
integration through trans-disciplinary bioinformatics as tools to improve qualitative and
quantitative traits in a diverse panel of crop species.

2. Genomic-Enabled Crop Traceability and Improvement

Genomics is speeding up multiple steps in the breeding scheme (Table 1). For instance,
in the downstream extreme of the breeding pipeline, Campuzano-Duque et al. [12] demon-
strated the utility of high-throughput single nucleotide polymorphism (SNP) genotyping
using SNP arrays to trace varietal purity of single plant selections (SPS). The authors
assessed the relationships and ancestry of plant selections from three inbreed origins
(one original variety and two additional multi-lines) of forage oat (Avena sativa) and priori-
tized SNP candidates to ensure the genetic purity of these varieties. Meanwhile, in a more
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upstream introgression-breeding step, Pandit et al. [13] exemplified genomic-assisted selec-
tion within backcrossing schemes. The team pyramided three quantitative trait loci (QTLs)
for submergence tolerance and grain yield in the rice (Oryza sativa) ‘Maudamani’ variety
background, sourcing pyramided lines as novel cultivars or potential ‘bridge’ donors for
further backcrossed generations.

Table 1. Collection of 10 studies in the Special Issue ‘Omics Approaches for Crop Improvement’.

Plant Species ‘Omics’ Research Goal Sampling Key Finding Reference
Review

Papaya
(Carica papaya)

Transversal to
‘omics’ and

systems biology

Review omics and
bioinformatics

advances
for Papaya

Diverse cultivars
and germplasm

‘Omics’ improved
ripening, tolerance,

and fruit quality

Zainal-Abidin
et al. [11]

Genomics

Forage Oat
(Avena sativa)

iSelect 6K
Bead-Chip

Evaluate the purity
and relationships

of SPS

AV-25 original, and
AV25-T and

AV25-S multi-lines

SNPs are a suitable
tool to ensure
genetic purity

of oats

Campuzano-Duq
ue et al. [12]

Rice
(Oryza sativa)

Sub1, OsSPL14,
and GW5 QTLs for
tolerance and yield

Pyramid QTLs for
submergence

tolerance and yield

‘Maudamani’
variety

background

Pyramided lines
are useful as
cultivars and

as donors

Pandit et al. [13]

Transcriptomics

Cacao
(Theobroma cacao)

Phylogenetic, gene
structure, and in
silico expression

Report and
characterize

tcGASA genes in
cacao

Cacao reference
genome

tcGASA genes are
target for resistant

cacao varieties
Abdullah et al. [14]

Malvaceae family:
Cacao, cotton, and

jute fiber

Phylogenetic,
synteny, and in

silico expression

Characterize MGT
genes in the

Malvaceae family

T. cacao, Gossypium
hirsutum, and

Corchorus capsularis

MGTs interact with
lipid/cell wall and
photo-protection

Heidari et al. [15]

Rice
(Oryza sativa)

In-house
micro-array and

mGCN

Unveil the
mechanism of

drought tolerance
in ABP57

Drought-tolerant
transgenic

Abp57-OE line

MAPK, IAA and
SA co-determine

tolerance response
Abdullah-Zawa wi

et al. [16]

Proteomics

Faba bean
(Vicia faba)

2DE, MAL-DI-
TOF/TOF, and
zymography

Test leaf proteome
effects to Botrytis

fabae fungus

‘Baraca’
susceptible

genotype, and
resistant BPL710

Chloroplast PSII
protein repair cycle
linked to resistance

Castillejo et al. [17]

Tomato (Solanum
lycopersicum) TMT, HPLC, MS

Identify the effects
of EFI vs. TSI on

roots’ protein level

Seedlings from the
pure tomato

cultivar
‘Ouxiu-201’

EFI induces 513
DAPs adapted

responses in roots
Wang et al. [18]

Phenomics

Bean (Phaseolus
vulgaris) × Tepary

(P. acutifolius)
Multi-locality trials

Assess abiotic
tolerance in inter-
specific crosses

Interspecific
backcross (86)
between beans

and Tepary

Interspecific
backcrosses

pyramid polygenic
tolerance

Burbano-Erazo
et al. [19]

Peanut
(Arachis hypogaea) HTP

Assess
morphological

variation in a CSSL

A total of 26 lines
from a CSSL
population

Chromosome
segment from
CWR sources

variation
Gimode et al. [20]

Table is sorted bottom-up by ‘omics’ and species. ABP: auxin-binding protein, CSSL: chromosome segment
substitution line, CWR: crop wild relatives, DAPs: differentially accumulated proteins, 2DE: two-dimensional gel
electrophoresis, EFI: Ebb-and-flow sub-irrigation, GASA: gibberellic acid-stimulated Arabidopsis, HPLC: high-
performance liquid chromatography, HTTP: high-throughput phenotyping, IAA: indole-3-acetic acid, MALDI-
TOF/TOF: matrix-assisted laser desorption/ionization-time of flight, MAPK: mitogen-activated protein kinase,
mGCN: modular gene co-expression network, MGT: magnesium (Mg) transporter, MS: mass-spectrometry, OE:
overexpressed, SA: salicylic acid, SPS: single plant selections, TMT: tandem mass tag, TSI: top sprinkle irrigation.
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3. Transcriptomic-Based Characterization and Validation

Studies at the genomic-transcriptomic interface prove insightful for gene-oriented
phylogenetics [21], structural mapping [22], and functional characterizations [23]. In this
regard, two studies from this Special Issue merged genome-based gene family screening
with in silico expression analyses. First, Abdullah et al. [14] characterized tcGASA paralo-
gous in cacao (Theobroma cacao) and identified targets to customize fungi-resistant varieties.
Similarly, Heidari et al. [15] described MGT (O-6-Methylguanine-DNA Methyltransferase)
genes also in cacao, and they expanded the search to orthologous in two other species of
the Malvaceae family with economic importance, cotton (Gossypium hirsutum), and jute
fiber (Corchorus capsularis). In silico expression analysis enabled the authors to pinpoint that
MGT targets the network as part of the lipid/cell wall metabolism and photoprotection
pathways. Both studies demonstrate how well consolidated genomic and transcriptomic
resources can be combined in silico to source ad hoc gene and allelic mining.

Transcriptomic screenings are equally informative of functional gene validation and
tissue/environment-conditioned expression profiling. For instance, in rice, Abdullah-
Zawawi et al. [16] used in-house microarray technology to determine the subjacent regula-
tory machinery of drought tolerance in an Abp57-overexpressing transgenic line. The team
recovered the MAPK, IAA, and SA pathways as co-determinants of the stress response.
This way, transcriptomic resources offer detailed mechanistic understating underlying
agronomical relevant phenotypes.

4. Proteomics Meets Orphan Species

Proteomics is a powerful tool that allows the identification of proteins that can be used
as markers in breeding programs. The development of new methodologies, and genomics
and transcriptomics databases has provided a rapid advance in plant proteomics in recent
decades, including orphan species. The gel-free based techniques (shotgun or LC-MSMS),
DDA (data dependent acquisition), and DIA (data-independent acquisition), and targeted
strategies are the most frequently chosen methods.

Identifying proteins and derived prototypic peptides throughout shotgun proteomics
has already lit up feasible paths to improve or select tolerant individuals to abiotic stresses,
such as drought [24] and heavy metal toxicity [25]. By using a DIA strategy, a panel of pep-
tides and proteins has been proposed as putative markers of resistance to Peyronellaea pinodes
in peas [26]. However, classical gel-based proteomics techniques, such as 2DE, remain
the method of choice in many experiments. Castillejo et al. [17] explored the proteomic
consequences of biotic stresses using 2DE-MALDI/TOF MSMS analysis combined with
protease activity assays. The authors evaluated leaf proteome responses to Botrytis fabae
necrotrophic fungus in susceptible and resistant Faba bean (Vicia faba) genotypes, finding
a predominant role in the chloroplast PSII protein repair cycle. More interestingly, these
studies reinforce that proteomics advancements are already permeating orphan species [10],
even in the forestry sector [3].

Meanwhile, in a slightly more studied crop system (Solanum lycopersicum), Wang
et al. [18] traced the effects of ebb-and-flow sub-irrigation (EFI) at roots’ protein level as
compared to top sprinkle irrigation (TSI). The team identified 513 differentially accumulated
proteins between treatments. Overall, these two studies are promising for un-leashing
plant improvements via proteomics. We are looking forward to similar developments in
proteomics and also in metabolomics on non-model crop species [27].

Meanwhile, a more challenging research gap remains open in the long term, regardless
the crop species. An unanswered question until now is how upstream genomic, tran-
scriptomic, proteomic, and metabolomic layers collide and jointly interact across climates
and through time to finally shape downstream multi-dimensional phenomic expression in
the field.



Agronomy 2023, 13, 1401 4 of 9

5. Phenomics Leverage Crop Wild Gene pools

A long-standing research gap in phenomic screening is its factual implementation
in crop wild gene pools [28], which typically exhibit more environmentally dependent
trait segregation [29,30]. Fortunately, in this collection, two studies have harnessed crop-
wild diversity through phenomics. First, Gimode et al. [20] studied the morphological
consequences of a chromosome segment in peanuts (Arachis hypogaea) inherited from a
wild relative. The authors demonstrated that this chromosome segment sources valuable
trait variation from the exotic gene pool into the cultivated background. This work is also
outstanding because it sidesteps the main bottlenecks of interspecific crossing, which are
recurrent species incompatibility [31] and polygenic variation [32]. To do so, the study
relied on a panel of chromosome segment substitution lines (CSSL) that narrowed the
introgression to discrete chromosome segments, which are easier to be retained within
the recurrent parental species while conferring the desired phenotypic novelty (by defi-
nition, it would be highly desirable that the substituted chromosome segment matched a
single haplotype block with strong internal linkage disequilibrIum (LD) to avoid spurious
recombination events that may jeopardize its integrity and phenotypic determinism).

Another crop-wild innovation was the one by Burbano-Erazo et al. [19], who utilized
multi-locality phenomics trials to characterize heat and drought tolerance in 86 interspecific
backcross lines between the common bean (Phaseolus vulgaris) × the Tepary bean (P. acutifolius).
The team managed to unlock interspecific adaptive variation, despite the natural incompat-
ibility, throughout ‘bridge’ genotypes (those with comparatively lower incompatibility),
and eventually delivered candidate introgressed lines capable of pyramiding polygenic
abiotic tolerance. The latter example adds to a robust list of studies that have aimed to break
interspecific barriers between the two species [33], genomically characterize the nature of
the hybridization, and re-discover naturally occurring ecological adaptive variation for
drought and heat stresses [34].

Overall, throughout this Special Issue, the works by Pandit et al. [13], Gimode et al. [20],
and Burbano-Erazo et al. [19], respectively illustrated in rice, peanuts, and beans, the fea-
sibility and power to update classical introgression breeding [35] with modern ‘omics’
approaches, such as genomics and phenomics. This integration enables guiding more
rapidly and with better precision the pyramiding of exotic variation into elite commercial
backgrounds. Other alternatives to utilize and recombine interspecific genomic variability
include grafting [36]. This ancient horticultural technique capable of physically merging
two distinct species can be optimized for desirable trait variation using genomics [37], tran-
scriptomics [38,39], phenomics, epigenomics [40,41], and beyond [42–44]. These promising
examples amalgamate species diversity via introgression breeding and grafting, and update
it to last-generation high-throughput standards. This way, they corroborate the utility of
‘omics’ technologies for crop improvement without denying more classical, yet still very
timing, schemes.

So far, the ultimate consequence of the bottom-up genomic, transcriptomic, proteomic,
and metabolomic continuum is the phenotype. However, additional phenotypic modula-
tion may be conferred by the emerging layers of the enviromics [7,8], epigenomics [45], and
soil metagenomics [6] fields, as we envision in the next section.

6. Perspectives

Despite the effort of this Special Issue in compiling a diverse array of ‘omics’ sub-
disciplines for crop improvement (Figure 1), high-throughput screening technologies have
also permeated other promising fields that do not necessarily exhibit prominence in the
present collection. For instance, as introduced in the previous section, scaling phenomics
across the environmental continuum gradient would offer a more accurate prediction
of the G × E interaction as part of the nascent enviromics framework [7,8], which ul-
timately merges [46] multi-environment phenomics screening [47] with genomic-based
prediction [5,48,49]. Similarly, embracing an epigenomic footprint profiling [45] could also
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mechanistically disentangle a great proportion of crop phenotypic variance in reaction
norms and plasticity gradients [50] naturally seen across climates [51,52].

ENVIROMICS

PHENOMICS
[19-20]

PROTEOMICS
[17-18]

GENOMICS
[12-13]

TRANSCRIPTOMICS
[14-16]

METABOLOMICS

ENVIROME

PHENOME

PROTEOME

GENOME

TRANSCRIPTOME

METABOLOME

Envirotype

Phenotype

Protein

Genotype (DNA)

RNA Expression

Metabolite

High-throughput Characterization Technique

Realized Set of 
Markers

Paradigm
Layer

Unitary Target 
Feature

Multi-‘Omics’ Data Integration [11] 
Merging Hyper-Dimensional Heterogeneous Layers via Systems Biology, Machine Leaning, etc.  

SYNTHESIZED ‘OMICS’ APPROACHES FOR CROP IMPROVEMENT  

Figure 1. Synthesized ‘Omics’ Approaches for Crop Improvement.

At another level, soil metagenomics on ‘environmental’ DNA [6] is boosting the
retrieval of synergistic microorganisms for agriculture, given a growing sustainability
requirement [53]. Backward ‘omics’ tools are also improving our understanding of crops’
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evolution [54,55] and their cultural heritage [56] by updating archeological records [57]
with genomics [58] and phylogenomics [59,60] into modern paleogenomics [61,62].

While heterogeneous ‘omics’ data piles up across sub-disciplines, effective trans-
disciplinary data merging and bioinformatics processing demands revolutionizing open-
source record access [63,64], novel statistical algorithms [65], and unprecedented com-
putational resources [66–68]. Speed breeding [69,70] through ‘omics’-enabled [48,49,71],
systems biology [9,72], and machine learning [4,73] predictions exemplify the promises
of fast-forward customized crop breeding [2,74] by bridging the curse of dimensionality
inherent from multi-‘omics’ data [10,75,76], while matching the modern seed delivery
requirements [77]. This trend of analytical innovation may proceed further into the inflec-
tion point of the artificial general intelligence (AGI) hypothesis [78], eventually enabling
human-unguided ‘omics’-based plant improvement at an unforeseen pace.
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