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Abstract: Proteoglycans are vital components of the extracellular matrix in articular cartilage, pro-
viding biomechanical properties crucial for its proper functioning. They are key players in chon-
dral diseases, specifically in the degradation of the extracellular matrix. Evaluating proteoglycan
molecules can serve as a biomarker for joint degradation in osteoarthritis patients, as well as assessing
the quality of repaired tissue following different treatment strategies for chondral injuries. Despite
ongoing research, understanding osteoarthritis and cartilage repair remains unclear, making the
identification of key molecules essential for early diagnosis and effective treatment. This review
offers an overview of proteoglycans as primary molecules in articular cartilage. It describes the
various types of proteoglycans present in both healthy and damaged cartilage, highlighting their
roles. Additionally, the review emphasizes the importance of assessing proteoglycans to evaluate the
quality of repaired articular tissue. It concludes by providing a visual and narrative description of
aggrecan distribution and presence in healthy cartilage. Proteoglycans, such as aggrecan, biglycan,
decorin, perlecan, and versican, significantly contribute to maintaining the health of articular cartilage
and the cartilage repair process. Therefore, studying these proteoglycans is vital for early diagnosis,
evaluating the quality of repaired cartilage, and assessing treatment effectiveness.
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1. Introduction

The extracellular matrix (ECM) is widely acknowledged within the scientific commu-
nity as the most complex structural organization present in an organism [1]. Composed of
an intricate and finely organized network of collagens, proteoglycans (PGs), fibronectin,
laminins, elastin, glycosaminoglycans (GAGs), and glycoproteins, the ECM serves as a
vital support system for cells, tissues, and organs, imparting them with their unique me-
chanical and chemical properties [2,3]. This network, along with other proteins and growth
factors [4], gives each tissue its chemical and mechanical properties [5]. The morphologi-
cal integrity of articular cartilage ECM mainly determines the proper functioning of the
joint [6]. The ECM of articular cartilage can be classified into three regions: The PCM, the
territorial matrix, and the interterritorial matrix [7,8]. The PCM is the layer closest to the
cell, while the territorial matrix surrounds the cell with a layer of fibrillar collagen. The
interterritorial matrix is the largest region and contains most of the material located outside
of the cells in cartilage [9]. The unique structure of the PCM allows for chondrocyte–matrix
interactions, thereby regulating chondrocyte phenotype and cell survival [10]. The PCM
is rich in PGs, collagens, basement membrane proteins, and non-collagenous glycopro-
teins, which interact and form a mesh-like structure [7,11,12]. Furthermore, the PCM is
connected with the neighboring tissue through a meshwork of fine collagen fibrils, PGs,
and fibronectin, which together create the territorial matrix [9].
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Articular cartilage is a connective tissue that hides the surface of bones where they
meet in joints. This cartilage is composed of chondrocytes (between 1% and 5% of the
cartilage volume) embedded within an organized ECM of collagen, PGs, and other proteins
(approximately 65%, 15%, and 15%, respectively) [13]. It is endowed with a specialized
structure that confers upon it the necessary biomechanical characteristics to withstand
joint loading. Specifically, this structure imparts compressive strength to the cartilage and
ensures maintenance of fluid and electrolyte balance, both of which are critical for the
optimal functioning of the joint [14]. This structure has limited reparative and regenerative
capabilities due to its lack of vascularity and the fact that mature chondrocytes lose their
ability to migrate, proliferate, and synthesize their surrounding matrix [15,16]. Cartilage
serves two key functions in the body providing near-frictionless movement between bones
and counteracting the compressive forces that are exerted across the joint during move-
ment. These functions are largely attributable to the presence of PGs within the ECM of
cartilage [17].

Chondral injuries in patients with healthy cartilage generally have a traumatic origin
and can evolve with cartilage degeneration and osteoarthritis (OA) [18]. OA is the primary
cause of disability in adults in the United States [19], with the United Nations projecting
that the number of people suffering from OA will reach 130 million by 2050 [20]. Presently,
OA affects more than 10% of the elderly population [19]. A defining characteristic of OA is
the gradual deterioration of articular cartilage due to the permanent degradation of the
cartilage ECM and the remodeling of adjacent joint tissues. This degeneration leads to joint
dysfunction, limited mobility, and excruciating pain during routine activities [21,22].

Despite extensive research efforts aimed at elucidating the molecular mechanisms
responsible for the onset and progression of OA, as well as intrinsic cartilage repair pro-
cesses, many aspects of these processes remain unclear [23]. Determining the key molecules
involved in these processes would enable early diagnosis and preventive treatment of OA,
ideally leading to a 100% effective solution to treat chondral lesions. For these reasons,
the present review provides an overview of PGs as one of the main molecules of articular
cartilage, describing the PGs present in this particular tissue and the role they play in both
healthy and damaged cartilage. Additionally, this review highlights the importance of
including PGs assessment to evaluate the quality of repaired articular tissue. Furthermore,
a visual and narrative description of the distribution and presence of aggrecan in healthy
cartilage is provided.

2. General Characteristics of Proteoglycans

PGs are a class of intricate macromolecules that can be found in various forms within
most tissue [24]. These molecules consist of a central protein that has different quantities
of GAG side chains linked to it. PGs are categorized into multiple families based on their
occurrence in cells and tissues, their interactions with other macromolecular constituents,
and the particular structures of their core proteins [25]. In this way, PGs correspond to a
wide variety of functions, such as structural functions, regulation of enzymatic activity, and
cell surface receptors. During development and tissue repair, PGs play an important role
in regulating gradients and the availability of growth factors, cytokines, chemokines, and
morphogens [26].

PGs have been a subject of study since the 20th century, but it was not until the
late 1960s, when Sajdera and Hascall developed an innovative extraction protocol, that
PGs gained recognition [27]. Throughout the 1970s, a considerable amount of research
was published on the isolation, purification, and characterization of PGs from ECM in
healthy and pathological conditions. During this time, studies primarily focused on tissue
with a high PG content, such as cartilage, the aorta, and skin, due to methodological
limitations. With the advent of molecular biology techniques, research on PGs has become
more accessible, leading to new insights into their structure and function [24].
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2.1. Structure

GAGs are covalently attached to the core protein of the PG. They are unbranched and
often resemble long polysaccharides with a repeating disaccharide structure [26]. In most
PGs, GAGs comprise more than 50% of the total molecular mass and mediate biological
functions. The molecular composition of the GAG chains determines the classification of
PGs as chondroitin sulfate PGs (CSPGs), heparan sulfate PGs (HSPGs), keratan sulfate
PGs (KSPGs), or dermatan sulfate PGs (DSPGs). Some PGs are considered hybrid PGs
since they contain multiple types of chains. For instance, aggrecan is the predominant PG
in cartilage, consisting of a core protein with three disulfide-linked globular regions (G1,
G2, and G3) and an intervening extension region. CSPG is covalently linked from the G3
domain to over half of the protein core, but it also contains KSPG near the G2 domain
(Figure 1A) [17,26].
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Figure 1. Aggrecan and PG aggregates structure. (A) Aggrecan, a hybrid PG consisting of a protein
core with three lobular regions, keratan sulfate, and chondroitin sulfate. (B) PG aggregates composed
of a central hyaluronan filament with numerous aggrecan molecules bound together. Modified from
Roughley et al. [17].

2.2. Biosynthesis

The protein core of PGs is synthesized by ribosomes and transported to the rough
endoplasmic reticulum. Their glycosylation takes place in the Golgi apparatus in multiple
enzymatic stages, requiring different glycosyltransferases. A specialized link of tetrasaccha-
ride is attached to the core protein’s serine side chain to initiate polysaccharide growth. The
PG is subsequently transported to the ECM of the tissue through secretory vesicles. The
production of core proteins and carbohydrate chains can be performed independently, ow-
ing to the intricate nature of the macromolecules. Glycosylation, a process that necessitates
a significant amount of energy, especially in the case of aggrecan, involves the use of several
enzymes in excess. Numerous hydrolases are involved in carbohydrate degradation, either
extracellularly or intracellularly in lysosomes [26].

2.3. Classification

The classification of PGs is a complex process. It involves grouping nearly all known
PGs of the mammalian genome into four major classes based on factors, such as their
cellular localization, similarity in gene/protein structure, and the specific protein units
found within their protein cores. PGs can be classified as intracellular PGs, cell surface PGs,
pericellular PGs, and extracellular PGs (Table 1) [28].
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Table 1. PGs classification. Modified from Iozzo et al. [28].

Location Classification Eponym Predominant GAG

INTRACELLULAR Secretory granules Serglycin Hep

CELL SURFACE Transmembrane

Syndecan, 1–4 HS
NG2 CS

Betaglycan CS/HS
Phosphacan CS

GPI-Anchored Glypican, 1–6 HS

PERICELLULAR Basement membrane
zone

Perlecan HS
Agrin HS

Collagen XVIII HS
Collagen XV CS/HS

EXTRACELLULAR

Hyalectan lectican

Aggrecan CS/KS
Versican CS

Neurocan CS
Brevican CS

Canonical

Biglycan CS
Decorin DS
Asporin
ECM2
ECMX

Fibromodulin KS
Lumican KS
PRELP

Keratocan KS
Osteoadherin KS

Epiphycan DS/CS
Opticin

Osteoglycin

Non-canonical

Chondroadherin
Nyctalopin
Tsukushi
Podocan

Podocan-Like 1

Spock Testican, 1–3 HS
GAG: glycosaminoglycan; Hep: heparin; HS: heparan sulfate; CS: chondroitin sulfate; KS: keratan sulfate; DS:
dermatan sulfate.

Serglycin is the only intracellular PG, usually with heparin side chains. Serglycin is a
PG present in the granules of mast cells and functions as a binding agent for most of the
intracellular proteases that are stored in these granules [29]. This PG is expressed by all
inflammatory cells and is stored within intracytoplasmic granules, where it interacts with
and regulates the activity of various inflammatory mediators, chemokines, cytokines, and
growth factors [30]. Furthermore, serglycin has also been detected in several non-immune
cell types, including chondrocytes, endothelial cells, and smooth muscle cells [31].

Cell surface PGs comprise thirteen genes, of which seven are responsible for encoding
transmembrane PGs and the other six for glycosyl-phosphatidyl-inositol (GPI)-anchored
PGs. All PGs belonging to this group contain heparan sulfate side chains, with the exception
of NG2 and phosphacan [28].

Pericellular and basement membrane region PGs consist of four PGs that are closely
linked to the surfaces of many types of cells through integrins and other receptors. However,
they can also act as components of most basement membranes. Pericellular PGs are mostly
HSPGs and include perlecan and agrin, which will be discussed in this review [28].

Extracellular PGs are the largest group with twenty-five different genes, divided
into three subgroups. The first subgroup contains four genes that encode hyalectans,
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including aggrecan, versican, neurocan, and brevican, which are key structural components
of cartilage, blood vessels, and nervous systems. The second subgroup includes eighteen
small leucine-rich PGs (SLRPs), which perform various functions and signal through
different receptors. The third subgroup consists of three testicans, which are calcium-
binding HSPGs [28].

3. Extracellular Matrix Proteoglycans in Articular Cartilage

Aggrecan and versican form large aggregates that are critical for maintaining the
pericellular environment around the cell. However, the level of versican decreases with
age [7,32]. Apart from large aggregating PGs, non-aggregating PGs, such as biglycan,
decorin, versican, and perlecan are also present [7]. Aggrecan is the most abundant PG
in terms of weight in articular cartilage, however, in young cartilage, similar amounts of
aggrecan, biglycan, and decorin are present on a molecular level [24].

3.1. Aggrecan

Aggrecan is a predominant PG found in typical hyaline cartilage, such as articular
cartilage [33], where it exists as PG aggregates [34]. These aggregates consist of a central
filament of hyaluronan, to which several aggrecan molecules are attached. The filament of
hyaluronan has a protein core of approximately 200 kDa molecular mass, to which chon-
droitin sulfate, keratan sulfate, and 50 N- and O-linked oligosaccharide chains are attached
(Figure 1B) [17,33]. Each PG aggregate can contain over 1000 aggrecan molecules [33].
Aggrecan is responsible for providing the viscoelastic properties of cartilage and plays
an important role in cell–ECM interaction, binding, and the release of growth factors and
morphogens [35].

When exposed to water, the sulfated GAG chains of aggrecan become hydrated,
leading to swelling and the expansion of its molecular domains [17,36]. However, in the
ECM, the swelling is mitigated by collagen fibrils that provide the structural support for
cartilage. In the presence of an adequate quantity of aggrecan, a state of equilibrium is
attained in which the swelling of aggrecan is balanced by the tensile forces generated
by stretching the collagen fibrils. To ensure optimal cartilage function, it is necessary to
have high concentrations of aggrecan to achieve this balance [17]. This mechanism is the
foundation for the hydrodynamic viscoelastic properties of articular cartilage [36].

Although aggrecan is an essential functional element in articular cartilage and plays
an important role in OA and chondral repair processes, it is difficult to find accurate
information and images of aggrecan’s distribution within articular cartilage. For this
reason, samples of healthy sheep articular cartilage from a previous study [37] were used
to describe the distribution of aggrecan via immunohistochemistry (Figure 2). We observed
aggrecan to be present in the cartilage zone, while it was completely absent in bone
tissue (Figure 2A). When aggrecan´s presence was analyzed by zones, this PG was highly
abundant in the upper zones of the cartilage (superficial, middle, and deep zones), but
almost absent in the calcified zone. In the upper zones, aggrecan was found in the territorial
and inter-territorial matrix, in the pericellular matrix (PCM), and in chondrocytes. The
aggrecan presence decreased when the tidemark was approached. In the calcified zone,
this PG was only observed in some chondrocytes and their PCMs (Figure 2B).
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Figure 2. Immunohistochemical staining of aggrecan in healthy sheep articular cartilage [38].
(A) Lower magnification image depicting the cartilage and underlying bone. (B) Higher magni-
fication image revealing intricate details of all cartilage areas. The adivin-biotin-complex method was
used for the immunohistochemistry. Enzymatic pre-treatment with hyaluronidase was used. The
primary antibody used was anti-aggrecan (ab3778, Abcam, Cambride, UK) at 1/100 dilution in PBS
containing 10% normal goat serum.

3.2. Biglycan

Biglycan and decorin belong to SLPRs family of PGs and are characterized by their
small size and abundance of leucine repeats. They are composed of a core protein that has
a molecular mass of about 40 kDa, to which dermatan sulfate chains are attached [39,40]. In
cartilage, biglycan is one of the small PGs present in the ECM, binding to other molecules
and helping in stabilizing the matrix [13]. In particular, this PG is located in the PCM [41].

Biglycan can interact with bone morphogenetic protein, which plays an important
role in the metabolism of cartilage and bone [24]. During skeletal development, biglycan is
present in a rim of chondrocytes close to the articular surface [42]. Furthermore, a study
conducted by Han et al. [41] demonstrated that biglycan does not have a significant role in
regulating cartilage degradation. However, biglycan has a strong function in the structure
of subchondral bone.

Biglycan undergoes proteolytic processing as an individual ages, leading to the re-
moval of the amino-terminal region that carries dermatan sulfate chains. Consequently,
biglycan without glycanation tends to accumulate in the cartilage matrix over time [43].

3.3. Decorin

Decorin, along with biglycan, is the most abundant small PG present in the articular
cartilage ECM. Decorin is distributed in the pericellular, territorial, and interterritorial
matrixes of cartilage [6,41] and has an important role in maintaining the cartilage’s struc-
tural integrity [41]. It functions as a “physical linker” that regulates the assembly of the
aggrecan network in the ECM of the cartilage [6]. Moreover, decorin can also bind to the
transforming growth factor beta and sequester it in the matrix [24]. This PG remains within
intact articular cartilage at all ages [43].

3.4. Versican

In the early stages of chondrocyte differentiation, versican is transiently expressed and
incorporated into the ECM, but disappears as it is replaced by aggrecan [44]. A previous
study showed that mice lacking versican expression achieved endochondral ossification,
indicating that versican was not crucial for cartilage development [45].
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3.5. Perlecan

The cartilage ECM contains perlecan, whose presence in articular cartilage is unex-
pected since this PG is typically associated with basement membranes, which are absent
in cartilage [43]. Perlecan is a multifunctional PG that promotes the proliferation, dif-
ferentiation, and matrix synthesis of chondrocytes through its interactions with growth
factors, morphogens, and ECM-stabilizing glycoproteins [46,47]. It also contributes to the
mechanosensory properties of cartilage through pericellular interactions with fibrillin, type
IV, V, VI, and XI collagen, and elastin [48]. These interactions help in stabilizing and enhanc-
ing the functional properties of mature cartilaginous ECM [49]. Perlecan plays a role in the
maturation of chondroprogenitor stem cells and the development of pluripotent migratory
stem cell lineages that contribute to joint formation and early cartilage development [50].

3.6. Proteoglycan Interaction with Other Molecules in the Extracellular Matrix of Articular
Cartilage

The PCM, located closest to the chondrocytes, contains type VI collagen, which forms
a microfibrillar network anchoring the chondrocyte to the ECM [8]. The PCM binds to
type II collagen, aggrecan, and hyaluronan, and interacts with biglycan, decorin, and
type IX collagen [11,51]. Type VI collagen is related to the PCM PGs, and biglycan and
decorin are essential for the structural integrity of the PCM by connecting it to the territo-
rial/interterritorial matrix. They also serve as functional bridges between type II and VI
collagen [11]. Perlecan, along with type VI collagen, contribute to the organization and
mechanical stability of the PCM, and affect its modulus [49]. Col6a1 inactivation results
in a reduction in genes encoding aggrecan, biglycan, and decorin, which are important
during chondrogenesis [52]. When bound to type VI collagen, perlecan has cytoprotective
properties [53].

4. Role of Proteoglycans in Chondral Injuries

One pathological feature of chondral repair limitations, such OA, is the depletion
of matrix macromolecules from cartilage, particularly PGs [54]. The biosynthesis and
degradation of cartilage PGs entail multiple enzymes, and there is evidence suggesting
that deficiency or disruption of any of these enzymes can lead to severe cellular or organ
dysfunction or damage. The production of deficient PGs can impact their charge density
or interactions with other extracellular components, altering the structure and properties
of the cartilage. The insufficient degradation of PGs can lead to a limited accumulation of
degradation products that can have deleterious effects on organisms [24].

The loss of PGs in the ECM increases hydraulic permeability and decreases solid
charge density, thereby reducing the cartilage´s ability to adequately support mechanical
loads [55,56].

4.1. Aggrecan

The event that triggers the depletion of aggrecan in cartilage could be caused by
trauma, inflammation, or excessive loading of the joint. Once damage has begun, and the
endogenous repair capacity of articular cartilage is low, further damage, such as OA, may
be an inevitable effect [17].

Aggrecan content and composition appear to be strongly related to tissue status. In
aging cartilage, there is a reduction in the overall amount of aggrecan [24]. In the OA
joint, catabolic processes destroy both the hyaluronan backbone of the aggregate and
the core protein of the aggrecan molecules, thus impairing their function and making
articular cartilage susceptible to erosion. Aggrecan degradation is caused by proteinases,
hyaluronidases, and free radicals [17]. Some in vivo studies have indicated that levels of
aggrecan are initially high in the early stages of OA to prevent cartilage loss. However,
over time, the levels of aggrecan decrease due to proteolytic activity, which ultimately leads
to the destruction of cartilage [57,58].
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Proteolytic cleavage of aggrecan produces two fragments, one of which remains
attached to hyaluronan, while the other fragment loses its interaction with hyaluronan
and can easily diffuse through the ECM and become lost in the synovial fluid [55–57].
The fragments that remain bound to hyaluronan can persist in the tissue for many years,
hampering the repair process and occupying space that could be used for binding newly
synthesized aggrecan [17]. Aggrecan fragments that appear in the synovial fluid can serve
as biomarkers for cartilage degradation, with higher concentrations indicating increased
degradation in patients with OA [17,59]. Normal articular cartilage necessitates a high
concentration of aggrecan, a high degree of sulfation, and the capacity to form large
aggregates, all of which are compromised in OA joints [17].

4.2. Biglycan and Decorin

In human cartilage, decorin and biglycan are not typically found on the surface of
articular cartilage, but their levels increase in the deeper regions of the tissue [60]. In
cases of OA, the levels of these PGs are significantly upregulated, which is believed to
be a compensatory mechanism by chondrocytes to counteract cartilage degeneration [61].
This is supported by the finding that decorin acts as a “physical linker” to enhance the
molecular association of aggrecan, which in turn increases the structural integrity of
aggrecan networks in healthy cartilage ECM and reduces the loss of fragmented aggrecan
from degenerative cartilage [41].

At present, it is acknowledged that both SLRPs play a crucial role in cartilage function
and pathology. Nevertheless, it is still unclear how decorin and biglycan function individ-
ually or in conjunction to control the onset and advancement of OA [41]. A recent study
reported that decorin insufficiency leads to altered ECM biomechanical characteristic and
cartilage stiffness [62].

After tissue injury, biglycan and decorin can be released in a soluble form from the
cartilage matrix, which could act as an endogenous warning signal [63,64].

4.3. Perlecan

Perlecan is a molecule that possesses properties that are important for cartilage repair,
including chondrogenesis, regulation of cell signaling, matrix architecture, and new tissue
formation [47,65]. Therefore, perlecan is a promising candidate molecule to investigate for a
better understanding of cartilage repair mechanisms [66]. In adults, perlecan was found to
be highly secreted during articular cartilage repair [48]. The role of perlecan in chondroge-
nesis and cartilage development indicates that it may have a potential function in repairing
cartilage by reproducing its developmental roles in damaged or diseased tissues [66,67].
Perlecan plays a critical role in facilitating the maturation of chondroprogenitor stem cells
and the creation of pluripotent migratory stem cell lineages, which affect joint formation
and early cartilage development [68]. Therefore, heparan sulfate-deficient perlecan may
exert inhibitory control over chondrocytes in mature cartilage, resulting in a poor healing
response related to cartilage [66]. Curiously, in human knee OA cartilage, perlecan levels
are significantly higher in areas close to cartilage defects [69]. Furthermore, collected data
indicated that perlecan in the PCM of cartilaginous tissues is implicated in the regulation
of biomechanical properties that characterize PCM´s various matrices, and may thus have
unique applications in chondral regeneration [67].

4.4. Molecular Biomarkers

A biomarker is defined as “a characteristic that is objectively measured and evaluated
as an indicator of normal biological processes, pathogenic processes, or pharmacologic
responses to a therapeutic intervention” [70]. These molecules are mainly used to diagnose
illness, predict illness, or assess a patient´s physical condition [70,71]. Biomarkers in
chondral injuries can be extracted from serum, urine, or synovial fluid samples [72].

Although radiographs and other types of joint imaging are regularly used as diagnos-
tic techniques for chondral injuries, they do not have the capacity to determine dynamic
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changes in the joint. Therefore, it is important to use molecular biomarkers, which, in addi-
tion to complementing biomedical imaging, allow for the monitoring of disease progression
and the efficacy of treatment [58,73,74]. In chondral injuries, due to the fragmentation of
specific matrix molecules, such as PGs, some of the fragments that are released can be
analyzed. Over time, assays have been developed and successfully used to verify that
PGs are indeed useful as biomarkers for monitoring the activity of the tissue destruction
process [75].

Aggrecan is one of the most commonly studied cartilage proteins for biomarker
development [76]. As previously reported, the proteolysis of aggrecan is an early feature
of cartilage degradation following chondral injury. Therefore, the elevated presence of
aggrecan fragments in synovial fluid is associated with joint injury and/or OA [77]. These
fragments are measurable as an increase in the aggrecan released from the cartilage into the
synovial fluid [78]. Aggrecan fragments present in synovial fluid can be detected via amino
acid sequencing, Western blot, and enzyme-linked immunosorbent assay (ELISA) [77].

The release of soluble forms of biglycan or decorin from the ECM of cartilage into the
synovial fluid following tissue injury may act as an internal danger signal [64]. Soluble
biglycan and decorin in synovial fluid and serum can be detected using ELISA [63,64,78,79].
Barreto et al. [63] observed high levels of biglycan in advanced OA, concluding that soluble
biglycan can serve as a mediator of OA cartilage as well as a potential biomarker. Other
studies determined that increased serum decorin levels may indicate changes in ECM and
are a risk factor associated with OA [79,80].

5. Analysis of Proteoglycans in Repaired Articular Cartilage

Focal cartilage defects are widespread, with up to 63% of the general population
and 36% of athletes affected. In particular, larger defects can be challenging, particularly
for individuals leading an active lifestyle [19,81]. These defects can lead to accelerated
damage, increased pain, and even the progression of OA [82]. Given the high incidence and
associated costs of chondral injuries, it is crucial to identify effective treatments. Finding the
molecules involved in chondral repair processes could be key in the search for a treatment.

A decreased PG concentration was shown to predispose cartilage tissue to micro-
damage from mechanical loading, thereby weakening and altering the matrix´s structural
integrity. Therefore, it is of vital importance to check the concentration and distribution
of PGs in repaired articular cartilage [83], bearing in mind that in order to understand
the properties of articular cartilage, it is necessary to appreciate the composition of the
cartilage according to its layers (superficial, middle, deep, and calcified) and subregions
(peri-cellular, territorial, and interterritorial) [84], as shown in Figure 2.

There are several animal and human studies in the literature that investigate the
effectiveness of different treatment techniques for chondral and/or osteochondral defects.
In human clinical trials and case studies, diagnostic imaging tests are commonly used since
they are non-invasive examinations, whereas only a few studies reported the application
of histological assessments. In animal experimental studies, histological evaluations have
been commonly applied. However, not all these studies included in-depth histological
analyses where molecules of great importance in the ECM, such as PGs, were analyzed.

PG analysis has been included in some publications as part of the evaluation processes
and the PG content in repaired cartilage has been investigated using different methods.
Some techniques, such as Safranin O/fast green staining [84–94], evaluate all PGs as
a whole, while other techniques, such as immunohistochemistry [66,85] (Figure 2) and
real-time PCR [86] (Tables 2 and 3), allow for the evaluation of specific PGs.
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Table 2. Review of human clinical trials and case reports involving PGs analysis in repaired cartilage after different treatments in chondral osteochondral injuries.

Study Species Chondral Lesion Type Reparative Treatment Detection Technique PGs Analyzed Main Results

Garcia et al., 2021 [66] Human n/r Autologous cell therapy IHQ Perlecan
Immunostaining for perlecan was
significantly greater in autologous

cell therapy repair tissues.

Levinson et al., 2019 [87] Human n/r Minced cartilage Safranin O/fast green PGs altogether

Staining with Safranin O was
positive, however, the outgrowth

potential, the viability, and the
matrix deposition were not different

between the mincing techniques.

Hoffman et al., 2015 [88] Human Full-thickness
chondral defect

Marrow stimulation
with a viable

chondral allograft
Safranin O/fast green PGs altogether

The Safranin O staining revealed
ample PG content throughout the

majority of the tissue.

IHQ: immunohistochemical staining; n/r: not reported.

Table 3. Review of animal experimental studies involving PGs analysis in repaired cartilage after different treatments in chondral osteochondral injuries.

Study Species Chondral Lesion Type Reparative Treatment Detection Technique PGs Analyzed Main Results

Yan et al., 2020 [89] Minipg Full-thickness chondral
defect

PRP combined with
injectable HA hydrogel Safranin O/fast green PGs altogether

The HA hydrogel combined with
PRP-treated group showed more
hyaline-like cartilage with histological
staining without formation of hypertrophic
cartilage.

Passino et al., 2017 [90] Ovine PCD Radioelectric
asymmetric conveyor Safranin O/fast green PGs altogether

Histologically, the formation of immature
hyaline articular cartilage was reported but
with some slight irregularities and
deformations on cartilage surface.

Pfeifer et al., 2017 [91] Minipi
Full- and
partial-thickness
chondral defect

Microfracture Safranin O/fast green PGs altogether

Quantification of histology showed equal
overall assessment for the FCD groups and
better overall assessment in juvenile
animals treated with microfracture.
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Table 3. Cont.

Study Species Chondral Lesion Type Reparative Treatment Detection Technique PGs Analyzed Main Results

Shi et al., 2016 [92] Rabbit Full-thickness chondral
defect

Photo-cross-linked
scaffold with kartogenin
nanoparticles

Safranin O/fast green PGs altogether
The regenerated tissues were close to the
natural hyaline cartilage based on the
histological test.

Christensen et al.,
2015 [93] Minipig

Full- and
partial-thickness
chondral defect

MACI, ADTT,
microfracture,
autologous bone graft, or
autologous
cartilage chips

Safranin O/fast green PGs altogether
The histological results did not show
complete regeneration of hyaline cartilage
in any treatment group.

Peck et al., 2015 [94] Minipig n/r LhCG Safranin O/fast green
and DMMB PGs altogether

Microscopic inspection revealed that the
living hyaline cartilaginous graft produces
abundant cartilage-specific matrix
molecules.

Mori et al., 2013 [86] Rabbit Full-thickness chondral
defect

Implantation of the
OP1-SCS

Safranin O/fast green
and real-time PCR

PGs altogether and
Aggrecan

Osteochondral defects treated with
osteogenic protein 1. Salmon-derived
collagen sponge disc showed cartilage
tissue richness in PGs. Furthermore,
histological assessment indicated that the
score was significantly greater.

Pretzel et al., 2013 [64] Bovine Full-thickness chondral
defect

Self-healing of resident
cartilage cells in
conjunction with
bacterial nanocellulose

Safranin O/fast green
and IHQ

PGs altogether and
Aggrecan

Chondrocytes on the bacterial
nanocellulose showed signs of successful
redifferentation over time, including an
increase in aggrecan.

Milán et al., 2010 [95] Ovine Full-thickness chondral
defect PRP combined with MFx Safranin O/fast green PGs altogether

Histological analysis revealed that none of
the experimental treatments produced
hyaline cartilage.

HA: hyaluronic acid; n/r: not reported; ADTT: autologous-dual-tissue transplantation; DMMB: 1,9-dimethylmethylene blue; MACI: matrix-induced autologous chondrocyte implantation;
PCR: polymerase chain reaction; PRP: platelet-rich plasma.
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6. Conclusions

Proper articular function depends significantly on the structural integrity and com-
position of the ECM [15], in which PGs play a major role [18,19]. Aggrecan is the basis of
the viscoelastic properties of cartilage and is crucial in cell–ECM interactions. Biglycan
and decorin stabilize the ECM by regulating cartilage integrity. Versican is a transient
PG present in chondral differentiation and is replaced by aggrecan in the early stages of
chondrocyte differentiation. Perlecan contributes to the mechanosensory and functional
properties of cartilage and to the stabilization of the ECM.

Due to the important role of PGs in articular cartilage, it is of vital importance to assess
the content and distribution of PGs in terms of chondral injury and/or repair. Additionally,
the assessment of PG molecules, such as aggrecan fragments, biglycan, and decorin, could
be used as a joint degradation biomarker for OA in patients. Furthermore, in experimental
studies, PG analysis is a useful determinant to evaluate the quality of repaired tissue after
the application of different treatment strategies for chondral injuries.
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ELISA Enzyme-linked immunosorbent assay
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