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Abstract: Obesity (OB) is a metabolic disorder characterized by adipose tissue dysfunction that
has emerged as a health problem of epidemic proportions in recent decades. OB is associated with
multiple comorbidities, including some types of cancers. Specifically, prostate cancer (PCa) has
been postulated as one of the tumors that could have a causal relationship with OB. Particularly,
a specialized adipose tissue (AT) depot known as periprostatic adipose tissue (PPAT) has gained
increasing attention over the last few years as it could be a key player in the pathophysiological
interaction between PCa and OB. However, to date, no studies have defined the most appropriate
internal reference genes (IRGs) to be used in gene expression studies in this AT depot. In this work,
two independent cohorts of PPAT samples (n = 20/n = 48) were used to assess the validity of a battery
of 15 literature-selected IRGs using two widely used techniques (reverse transcription quantitative
PCR [RT-qPCR] and microfluidic-based qPCR array). For this purpose, ∆Ct method, GeNorm (v3.5),
BestKeeper (v1.0), NormFinder (v.20.0), and RefFinder software were employed to assess the overall
trends of our analyses. LRP10, PGK1, and RPLP0 were identified as the best IRGs to be used for gene
expression studies in human PPATs, specifically when considering PCa and OB conditions.

Keywords: periprostatic adipose tissue (PPAT); gene expression analysis; reference genes; RT-qPCR;
prostate cancer (PCa); weight-related disorders

1. Introduction

Adipose tissue (AT) is a complex and dynamic organ mainly composed of adipocytes
and the stromal vascular fraction, including fibroblast, endothelial cells, preadipocytes,
adipocyte-derived stem cells, and a variable infiltrated immune cell population. AT has
been classified into white adipose tissue (WAT) and brown adipose tissue (BAT) [1].
While BAT is related to non-shivering thermogenesis through the regulation of lipidic
β-oxidation, WAT has been typically conceived as an organ specialized in energy storage.
However, rather than acting as a simple lipidic depot, WAT has been recognized as an
important contributor to endocrine homeostasis [2]. Through the secretion of the termed
adipokines (i.e., any signaling molecule secreted by AT), fat depots are capable of control-
ling metabolism, inflammation, immune function, and energy homeostasis [3]. For those
reasons, studies focused on AT have quickly gained interest, pinpointing it as an active
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contributor to the onset and progression of several types of endocrine/metabolic disorders
such as obesity (OB).

OB is defined as a pathological metabolic condition characterized by an abnormal and
excessive lipid accumulation and whose prevalence has drastically increased during the
last decades, reaching pandemic proportions. OB is characterized by AT dysfunction and a
systemic chronic low-grade inflammatory state which increases the risk for several associ-
ated disorders, including insulin resistance, type 2 diabetes, atherosclerosis, cardiovascular
diseases, hypertension, and importantly, several endocrine-related cancer types [4]. In
fact, according to the International Agency for Research on Cancer (IARC), up to 13 cancer
types have been related to overweight/OB conditions, including breast, uterus, colon,
kidney, gallbladder, pancreas, rectum, and prostate cancer (PCa), the most studied [5,6].
Regarding PCa, in addition to the mentioned increased risk, OB (along with clinical alter-
ations typically associated with metabolic syndrome such as insulin resistance, elevated
blood pressure, and high triglyceride plasma levels) has been linked to a more aggressive
disease [7–9]. Despite that, the molecular bases linking OB and PCa have not been fully
elucidated to date but the number of studies focusing on this pathological association has
increased considerably over the last few years.

In this scenario, a specific depot of WAT that surrounds two-thirds of the prostate,
typically known as periprostatic adipose tissue (PPAT), has been postulated as a putative
active player in the interaction between OB and PCa, not only being a source of bioactive
molecules, such as lipids, adipokines, and growth factors (that contribute to microenvi-
ronment modulation) but also acting as the first tissue susceptible to be invaded by tumor
cells in the early stages of metastasis [10,11]. However, information about the molecular
bases underlying that interaction is scarce. In this regard, to explore such a relationship, it
is crucial to perform gene expression analyses in PPAT samples derived from patients with
different metabolic conditions (e.g., normo-weight [NW] and OB).

Specifically, reverse transcription quantitative PCR (RT-qPCR) is the gold standard
technique for quantifying mRNA expression due to its high accuracy and sensitivity even
using small amounts of samples. However, the identification and validation of reliable
internal reference genes (IRGs) for normalization of RT-qPCR data are critically needed to
correct bias from multiple variables (such as RNA extraction yielding, retrotranscription
performance, or primers efficiency, among others) before conclusions can be drawn. In
fact, the choice of appropriate IRGs must be confirmed in a tissue-dependent manner and
under the specific experimental conditions used in the study. Noteworthily, several studies
using multiple rodent models have proven that the choice of IRGs in different AT subtypes
depends on the metabolic status [12–14]. Regarding humans, although various studies
evaluating the use of IRGs in different AT depots have been published [15,16], to the best
of our knowledge, there are no reports regarding the identification, evaluation, selection,
and validation of suitable IRGs for studying PPAT in expression analyses. Therefore, the
objective of this work was to identify and validate, for the first time, reliable IRGs for the
normalization of gene expression analyses in PPAT samples under health and disease (PCa
and OB) conditions.

2. Results
2.1. Evaluation of Gene Expression Stability in Periprostatic Adipose Tissue (PPAT) of Patients
with Benign Prostate Hyperplasia (BPH) and Prostate Cancer (PCa)

The evaluation of the potential stability in the expression levels of the 15 selected
internal reference genes (IRGs) in two independent cohorts of periprostatic adipose tissue
(PPAT) samples [i.e., analysis of all samples together from cohort 1 and all samples from
cohort 2; Table 1] revealed that the top five IRGs with higher stability (based on changes
in the Standard Deviation [SD]) using the RT-qPCR method were LRP10 (27.99 ± 1.47),
B2M (23.11 ± 1.50), RPLP0 (25.97 ± 1.71), PGK1 (26.64 ± 1.76), and KDM2B (31.66 ± 1.78)
(Figure 1a; expression levels expressed as SD of Cycle threshold [Ct] values). Statistics
details for all IRGs are summarized in Table S1. Similarly, the top five IRGs with the higher



Int. J. Mol. Sci. 2023, 24, 15140 3 of 16

stability using the microfluidic-based qPCR array method were RPS13 (19.21 ± 1.91), PGK1
(20.19 ± 1.99), RPLP0 (18.42 ± 2.01), IPO8 (25.01 ± 2.02), and LRP10 (19.84 ± 2.17) [Figure 1b
(expression levels expressed as SD of Ct values) and Table S1)]. It should be mentioned that
the use of the SD of the Ct value in these types of analyses/representations is widely used as
a first approach since this offers a more visual and direct comparison of the genes by placing
them over a narrow dynamic range of values [13,14,17]. In this regard, a representation of
the linearized values of the Ct of each of the 15 IRGs (expressed in absolute mRNA copy
number) for both techniques used (RT-qPCR and microfluidic-based qPCR array) are also
represented in Figure S1, showing similar results. For this latter purpose, standard curves
for each selected gene were run in parallel to quantify the absolute mRNA copy number
across all the samples analyzed.

Table 1. Periprostatic adipose tissue (PPAT) human cohorts and methodologies employed. BMI—Body
Mass Index; BPH—Benign Prostate Hyperplasia; PCa—Prostate Cancer; PSA—Prostate-Specific
Antigen; SD—Standard Deviation. Data represent the mean ± SD of each group.

Methodology BMI Parameter BPH Group PCa Group

RT-qPCR
Cohort 1
(n = 20)

Normo-weight

n 5 5
BMI (kg/cm2) 23.76 ± 1.71 23.47 ± 1.39
PSA (ng/mL) 4.28 ± 5.67 6.73 ± 4.28
Gleason score - 7 ± 0

Age 69.9 ± 5.59 60.8 ± 4.96
PI-RADS 2.67 ± 1.15 4.25 ± 0.50

Obesity

n 5 5
BMI (kg/cm2) 31.05 ± 2.09 33.63 ± 1.25
PSA (ng/mL) 9.60 ± 17.04 14.29 ± 8.14
Gleason score - 7 ± 0

Age 69.4 ± 7.66 62.2 ± 3.42
PI-RADS 2 ± 0 4.20 ± 1.30

Microfluidic-
based qPCR array

Cohort 2
(n = 48)

Normo-weight

n 6 14
BMI (kg/cm2) 24.161 ± 3.20 23.80 ± 1.12
PSA (ng/mL) 3.99 ± 5.12 8.43 ± 7.35
Gleason score - 7 ± 0

Age 69.33 ± 5.04 59.45 ± 5.15
PI-RADS 2.33 ± 0.81 4.51 ± 0.53

Obesity

n 14 14
BMI (kg/cm2) 31.26 ± 2.07 31.13 ± 1.01
PSA (ng/mL) 6.99 ± 10.31 7 ± 4.95
Gleason score - 6.85 ± 0.37

Age 69.22 ± 6.62 58.85 ± 5.33
PI-RADS 2 ± 0 4.27 ± 0.90

On the other hand, the less stable IRGs in terms of variability were HMBS (29.02 ± 3.17),
PPIG (30.17 ± 2.61), G6PD (23.89 ± 2.32), YWHAZ (26.73 ± 2.21), and GUSB (29.54 ± 2.16) us-
ing the RT-qPCR method and HMBS (23.73 ± 3.46), PPIG (24.78 ± 3.03), GUSB (22.92 ± 3.01),
HSP90AB1 (20.02 ± 2.91), and ACTB (19.71 ± 2.80) using the microfluidic-based qPCR
array method (Table S1).

These results suggest that more stable (less variable) IRG genes using both techniques
are LRP10, PGK1, and RPLP0 while the worst IRGs (with higher variability) were HMBS,
PPIG, and GUSB.

2.2. Influence of BMI (Body Mass Index) and PCa Presence on the Expression of IRGs in PPATs

To evaluate the effect of BMI and PCa presence on the stability of the IRG expression
levels previously analyzed in PPATs, we stratified the data derived from the two available
cohorts of samples under these conditions (Figure 2). Firstly, when BMI was considered
(patients with NW vs. OB) we noted that the IRGs previously observed to be more stable



Int. J. Mol. Sci. 2023, 24, 15140 4 of 16

(less variable) by both techniques did not exhibit statistically significant differences in their
expression levels (i.e., LRP10, PGK1, and RPLP0; Figure 2a), further suggesting that these
IRGs are also appropriated candidates to be used in these analyses. In contrast, statistical
differences were consistently found in the expression levels of ACTB, B2M, GAPDH, GUSB,
HMBS, and PPIG when the samples were classified according to their BMI using both
methodologies (RT-qPCR and microfluidic-based qPCR array; Figure 2a), suggesting that
these IRGs are not good candidates to be used in these expression analyses.
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Figure 1. mRNA levels of 15 evaluated internal reference genes (IRGs) in human PPATs. Data
(mean ± SD of Cycle threshold (Ct) levels) obtained by the reverse transcription quantitative PCR
(RT-qPCR technique) (a) or by the microfluidic-based qPCR array technique (b). Genes are ordered
ascendingly according to the standard deviation.

Secondly, (Figure 2b), when the presence of PCa was considered (patients with BPH
vs. PCa), we again observed that the IRGs previously reported to be more stable (less
variable) in the different analyses showed until this point (i.e., LRP10, PGK1, and RPLP0;
data showed in Figures 1 and 2a) did not exhibit differences in their expression levels
(Figure 2a). In contrast, statistical differences were consistently found in the expression
levels of GUSB, HMBS, IPO8, KDM2B, and PPIG (using both RT-qPCR and microfluidic-
based qPCR array, methodologies) as well as ACTB, HSP90AB1, RPS13, and YWHAZ (using
one of the methodologies) when classifying patients in BPH vs. PCa (Figure 2b), suggesting
that all these IRGs are not good candidates to be used in these expression analyses.

In order to further explore the influence of the different conditions previously studied
[i.e., according to BMI status (NW vs. OB) or presence of PCA (BPH vs. PCa)], different
methods specialized in the evaluation of the suitability of IRGs were used [∆Ct, NormFinder,
GeNorm, and BestKeeper algorithms]. The results are summarized in Figure S2 which shows
how the evaluated IRGs are ranked across the two techniques employed by the different
software. It should be noted that differences were observed in these rankings depending
on the tool used, which was due to the specific algorithms and parameters evaluated
in each case. Moreover, it is important to clarify that, in all cases, the three algorithms
displayed slightly worse parameters for the data obtained by the microfluidic-based qPCR
array compared to the RT-qPCR. This may be due to the fact that, regarding protocol
differences, this methodology uses a much smaller amount of starting genetic material;
so, a previous pre-amplification step is necessary, which may introduce some kind of bias.
Likewise, the pre-amplification step may also explain why the Ct values obtained on the
microfluidic-based qPCR array are substantially lower compared to those of RT-qPCR.
Nonetheless, in order to solve the discrepancies mentioned, we next used the web tool
RefFinder to calculate the geometric mean of ranking values from the weighted values of
each algorithm score for each of the IRGs evaluated. Specifically, a comprehensive ranking
was generated (Figure 3a) which confirmed previous findings indicating that LRP10, PGK1,
and RPLP0 are in the top ranking of the most stable IRGs, which reinforces the idea that
these three IRGs are the most appropriate to be used in expression analysis of PPATs, at
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least when considering the presence PCa and OB. Additionally, a bootstrap step strategy
without replacement and size 100,000 was performed using the weighted scores previously
calculated, confirming that LRP10 is the best reference gene, followed by PGK1 and RPLP0
(Figure 3b).
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Figure 3. Ranking of the most stable IRGs in human periprostatic adipose tissues (PPAT) derived
from the two cohorts of patients BPH and PCa with NW or OB. (a) Weighted gene ranking suitability
of IRGs evaluated across the ∆Ct method, GeNorm (v3.5), BestKeeper (v1.0), and NormFinder (v.20.0)
software. (b) Empirical distribution of ranks shown in percentage (%) for the 15 evaluated IRGs
in bootstrap.

Importantly, it should be also indicated that a more detailed view of the value dis-
tribution of the top three best-ranked IRGs (LRP10, PGK1, and RPLP0) throughout all
experimental subgroups of PPATs indicated no statistically significant changes across the
different groups (Figure 4). Specific software parameters for all evaluated genes are also
listed in Table S1.
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Normo-weight—NW; Obesity—OB; Benign Prostate Hyperplasia (BPH).
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2.3. Validation of RPLP0, PGK1, and LRP10 as Reference Genes

Finally, in order to empirically confirm that the selected IRGs were suitable to be used
in expression analyses of PPATs obtained under different experimental conditions (i.e., pa-
tients with different BMIs or with and without PCa), we measured the expression levels of
six metabolic- and tumor-related genes well-known to be dysregulated in the AT of humans
under cancer-related conditions (i.e., SPP1, IL6R, CD68, AGT, FNDC5, and RETN [18–23];
primers sequences are listed in Table S2). Specifically, gene expression levels of SPP1,
IL6R, CD68, AGT, FNDC5, and RETN were determined using a microfluidic qPCR-based
approach and are represented before and after the adjustment by a normalization factor
generated by the GeNorm software based on the expression levels of the three selected
IRGs (LRP10, PGK1, and RPLP0) (Figure 5). As expected, the expression levels of SPP1,
IL6R, CD68, and AGT were found to be up-regulated while FNDC5 and RETN levels were
down-regulated in PPAT samples from patients with PCa vs. BPH after data normalization.
Importantly, these comparisons (non-normalized vs. normalized data) clearly indicated the
necessity of using suitable IRGs for the normalization of gene expression levels.
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Figure 5. Changes in the expression levels of (a) SPP1, (b) IL6R, (c) CD68, (d) AGT, (e) FNDC5,
and (f) RETN in human PPAT from patients with PCa compared with patients with BPH before
normalization (raw data) and after normalization (norm) with selected IRGs (LRP10, PGK1, and
RPLP0) are shown. Normalization of genes was performed using a normalization factor obtained with
the GeNorm software (v3.5) based on the expression levels of LRP10, PGK1, and RPLP0. Asterisks
(* p < 0.05, and ** p < 0.01) indicate statistically significant differences between groups.

Additionally, to further validate the selection of LRP10, PGK1, and RPLP0 as suitable
IRGs, we empirically determined the expression levels of two genes (ANGPT1 and LEP) that
were previously described to be dysregulated in PPATs of patients with PCa and OB [24].
Specifically, Ribeiro and colleagues indicated that LEP and ANGPT1 were overexpressed in
PPATs of patients with BPH under overweight/obese vs. normo-weight conditions, which
was confirmed in our analyses using RT-qPCR methodology and normalizing the data
with a normalization factor based on the expression levels of LRP10, PGK1, and RPLP0.
Likewise, Ribeiro and colleagues demonstrated that the expression of two metalloproteases
(MMP2 and MMP9) was increased in conditioned media derived from PPAT explants of
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overweight PCa patients as compared with normo-weight patients with BPH [25] which
was also confirmed in our study after normalization of the data by IRGs (Figure 6c,d).
Importantly, these changes observed in the expression levels of ANGPT1, LEP, MMP2, and
MMP9 after normalization were not observed when the data were not normalized (raw
data) (Figure 6a–d), which again clearly indicates the necessity of using suitable IRGs for
normalization of gene expression levels in PPATs under different experimental conditions
(i.e., presence or absence of Ob and PCa).
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Figure 6. Empirical confirmation demonstrates that the selected IRGs (LRP10, PGK1, and RPLP0)
were suitable to be used in expression analyses in human PPAT obtained under different experimental
conditions. Expression levels of (a) LEP, (b) ANGPT1, (c) MMP2, and (d) MMP9 before normalization
(raw data) and after normalization with selected IRGs (LRP10, PGK1, and RPLP0) are shown. Nor-
malization of genes was performed using a normalization factor obtained with the GeNorm software
(v3.5) based on the expression levels of LRP10, PGK1, and RPLP0. Asterisks (* p < 0.05; ** p < 0.01,
and *** p < 0.001) indicate statistically significant differences between groups.

3. Discussion

Gene expression analysis is one of the most used strategies in molecular biology
research. However, selecting inappropriate IRGs for the normalization of the data can
result in misleading or biased findings. Classically, GAPDH or ACTB were two of the most
commonly used IRGs, but it is well known that these genes can exhibit significant variation
in specific cells, tissues, and experimental conditions (such as the metabolic status and/or
tumor presence) [15,26], highlighting the need for rigorous selection of IRGs for accurate
gene expression analyses and reliable results.

In this study, we evaluated the suitability of 15 previously documented IRGs in
order to determine the most appropriate IRGs for standardizing the mRNA data obtained
from PPATs derived from two independent cohorts of samples, using two widely used
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methodologies (RT-qPCR and microfluidic-based qPCR array) and different algorithms
(∆Ct method, GeNorm, BestKeeper, and NormFinder) and also considering the presence
or absence of OB and PCa. We believe that this study is relevant because although the
relationship between OB and cancer is well known in some specific cancer types, it is still
ambiguous in the case of PCa [27] and also because the PPAT has been gaining important
attention in recent years as a metabolic- and tumor-driver tissue associated with the prostate
gland [28]. However, to the best of our knowledge, no works have evaluated the suitability
of different IRGs in PPATs. Moreover, this is also the first study addressing this validation
in PPATs from patients with and without PCa and/or OB.

Firstly, we found that certain IRGs (including HMBS, PPIG, GUSB, and G6PD) pre-
sented a high variability in their expression levels of PPATs. Indeed, the genes with the
greatest variability corresponded to those that presented higher differences in expression
levels when the cohorts were distributed according to their BMI and the presence/absence
of PCa. Among them, some genes were highly dependent on BMI, such as ACTB, B2M,
and GAPDH; some were highly dependent on the PCa existence, such as GUSB, IPO8, and
KDM2B; and others varied in both conditions (e.g., HMBS and PPIG) and were, therefore,
considered as the worst IRGs in PPATs under these different experimental conditions.

To evaluate the best IRGs among all the possible candidates, we used four methods
based on different statistical parameters: the ∆Ct method, GeNorm, BestKeeper, and
NormFinder. These analyses revealed some inconsistencies in the results obtained by
each software which might be due to different considerations when calculating the scores.
For example, the ∆Ct method is exclusively based on the average of the SD through the
relative comparison of the expression of candidate genes by pairs, GeNorm is based on
the arithmetic mean of the pair-wise variation, NormFinder relies on an intra- and inter-
group variation of inputted genes, and BestKeeper considers the standard deviation and
coefficient variance to calculate the stability factor. Thus, we used a fourth software, called
RefFinder, that takes into consideration the weighted contribution score from the previously
mentioned software to calculate a geometric mean ranking of values. As a result, we found
that the highest stability for RT-qPCR determinations corresponded to the genes LRP10,
RPS13, PGK1, KDM2B, and RPLP0 while PGK1, LRP10, RPLP0, B2M, and GAPDH were the
most appropriate for microfluidic-based qPCR arrays; with LRP10, PGK1, and RPLP0 being
common to both analyses. In fact, we performed a bootstrapping analysis based on the
weighted contribution of each software for each gene to their global score which revealed
and confirmed that the best genes to be used as IRGs for gene expression studies are LRP10,
PGK1, and RPLP0.

Specifically, LRP10 encodes a low-density lipoprotein receptor family protein but its
role in humans is poorly explored. Most available studies associate LRP10 with neurode-
generative disorders, especially Parkinson’s disease [29]. In agreement with Gabrielsson
and colleagues who analyzed a battery of potential IRGs in human AT biopsies in the
context of a wide range of commonly studied physiological parameters (including BMI),
LRP10 was found to be the IRG with the highest stability [30]. In the case of PGK1, it
encodes for a glycolytic enzyme that catalyzes the conversion of 1,3-diphosphoglycerate
to 3-phosphoglycerate and exerts an important role in the control of glucose metabolism.
Moreover, this enzyme has been widely explored in various fields, including cancer [31–33],
although it has also been considered a potential IRG in different human tissues under
several experimental conditions and even in distinct animal models [34,35]. In this sense,
and regarding the adipose tissue depots, Neville and co-workers demonstrated that PGK1
was the most stable gene among a set of several cohorts of human AT samples and cells,
although PPAT was not considered in that work [36]. Lastly, RPLP0 encodes a ribosomal
protein that is a component of the 60S subunit of the ribosomes and has been already
proposed to be a suitable IRG across a wide variety of tissues and experimental conditions.
Consistent with our results, Zhang et al. evaluated the potential of some genes in three
different ATs (epididymal white, inguinal beige, and brown adipose tissue) under different
metabolic conditions by using the same software as that used in the present study. Specif-
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ically, they showed that the RPLP0 gene had the lowest variability across all situations
evaluated suggesting that could actually be used as a universal IRG in AT [14].

In summary, this study confirms the importance of selecting suitable IRGs for nor-
malization to obtain reliable results using different gene expression techniques. It also
provides fundamental information regarding a list of potential IRGs that can be used for
the analysis of gene expression patterns in PPATs under different experimental conditions.
Specifically, this study demonstrates, for the first time, that the expression stability of many
IRGs widely used by research laboratories is not valid for the normalization of expression
data since their expression significantly varies in PPATs among different experimental
settings. Importantly, we solidly demonstrated that LRP10 has the lowest variability, the
highest stability, and more consistency across two widely used techniques (RT-qPCR and
microfluidic-based qPCR array); throughout all the analytical software employed, we
showed highly stable expression levels in PPAT samples that are independent of the BMI
and the presence PCa. In addition, in accordance with the minimum information for publi-
cation of quantitative (MIQE) guidelines which recommend the use of multiple reference
genes for normalization [37], we provide compelling evidence demonstrating the use of
LRP10, PGK1, and RPLP0 as the best IRGs for gene expression analyses in human PPATs
under different experimental conditions, especially when considering the metabolic status
(OB) and the presence of PCa.

4. Materials and Methods
4.1. Subjects and Samples

This study was approved by the Reina Sofia University Hospital Ethics Committee and
conducted following the principles of the Declaration of Helsinki. Cordoba Biobank Node
(through Andalusian Biobank) coordinated the collection, processing, and management
of the PPAT samples used. Microdisected samples were immediately frozen in liquid
nitrogen and then stored at −80 ◦C following the standard protocols established for this
purpose. Written informed consent was obtained from all participants. PPAT samples were
obtained from patients who were diagnosed with PCa and immediately treated by radical
prostatectomy. All patients were diagnosed with clinically localized and hormone-naive
PCa, representing a homogenous cohort of patients (Table 1).

Two different cohorts were used in this study. The first one (Cohort 1, n = 20) was used
as a discovery cohort for qPCR determinations. A second larger and independent cohort
(Cohort 2, n = 48) was used to implement the microfluidic-based qPCR array. Available
clinical history details from all patients included in these cohorts are summarized in Table 1,
including BMI, Prostate-Specific Antigen (PSA), Gleason score, age, and PI-RADS (prostate
imaging reporting and data system). Briefly, four different experimental conditions were
analyzed: patients with BPH or PCa and both NW and OB conditions. PI-RADS defines
the standards of high-quality for multi-parametric magnetic resonance imaging (mpMRI),
including image creation and reporting [38]. Briefly, this system is stratified into five
categories which are PIRADS 1, very low (clinically significant cancer is highly unlikely to
be present); PIRADS 2, low (clinically significant cancer is unlikely to be present); PIRADS
3, intermediate (the presence of clinically significant cancer is equivocal); PIRADS 4, high
(clinically significant cancer is likely to be present); and PIRADS 5, very high (clinically
significant cancer is highly likely to be present).

4.2. Total RNA Isolation and cDNA Synthesis

Total RNA was isolated with TRIzol Reagent (ThermoFisher Scientific, Bedford, MA,
USA) from 100 mg of PPAT following supplier instructions. After tissue disruption, an
additional step consisting of two consecutively centrifugations (5 min at 12,200× g-force)
and supernatant discarding was performed to remove cellular debris and fat excess. A
DNAse treatment (RNase-Free DNase Kit—Qiagen, Madrid, Spain) was applied previously
to RNA concentration and purity determination on a Nanodrop One Microvolume UV–Vis
Spectrophotometer (ThermoFisher Scientific, Bedford, MA, USA). A total amount of 1 µg
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per sample was then retrotranscribed using random hexamer primers and the RevertAid
RT reverse transcription kit (ThermoFisher Scientific, Bedford, MA, USA). Retrotranscribed
cDNA was then stored at −20 ◦C until use.

4.3. Potential Reference Gene Selection and Primer Design

For the final selection of the genes included in this study, a combinatorial integration
of different bibliographic approaches was carried out. First, an intensive literature search
was performed in PubMed, SciELO, and Medline databases using the terms “reference
gene” and “housekeeping gene”. Second, we also screened by the terms “adipose tissue”,
“cancer”, and “diet” and evaluated two types of articles: (i) those articles whose main
objective was to specifically assess the validity of reference genes in human adipose tissues
under different cancer and/or diet conditions and (ii) general articles wherein different
reference genes were commonly and routinely used in adipose tissues. Finally, and due
to the clear limitation in finding information/references regarding human PPATs, we
also checked the available information/references of related adipose tissues from rodent
models (mouse and rat), including inguinal or perigonadal adipose tissues. Based on
all these bibliographic searches, as well as preliminary results from our group using
PPATs (unpublished), a list of 15 candidate genes was selected to be studied as potential
IRGs in PPATs. The IRGs consulted in this bibliographic approach are included in Table
S3 while the 15 candidate IRGs selected, primer sequences, amplicon size, and gene
functions are listed in Table 2. Primers that specifically target these genes were designed
with the Primer3 software v.0.4.0 while the validation for the suitability for RT-qPCR
and microfluidic-based qPCR array technology was assessed by checking the specificity
(agarose gel band size, sanger sequencing, and melting curves) as previously reported by
our laboratory [39,40]. Specific custom oligonucleotide sequences were purchased from
Metabion (Munich, Germany).

Table 2. Gene symbol, primers sequences, Amplicon Size (A.S.), official name, and function of
evaluated genes.

Gene Sequence A.S (bp) Official Name Function

ACTB
ACTCTTCCAGCCTTCCTTCCT

176 Actin Beta
Highly conserved proteins involved in

cell motility, structure, and integrityCAGTGATCTCCTTCTGCATCCT

B2M
GCTCGCGCTACTCTCTCTTT

88 Beta-2-Microglobulin MHC class I associated protein that is
found on nearly all cellular surfacesTCCATTCTCTGCTGGATGAC

G6PD
GCAAACAGAGTGAGCCCTTC

89
Glucose-6-Phosphate

Dehydrogenase
Cytosolic enzyme whose main function

is to produce NADPH using glucoseGCCAGCCACATAGGAGTTG

GAPDH
GCCTCAAGATCATCAGCAATG

90
Glyceraldehyde-3-Phosphate

Dehydrogenase
Enzyme related to carbohydrate

metabolism and DNA glycosylationCTTCCACGATACCAAAGTTGT

GUSB
TGACCGCTATGGGATTGT

120 Glucuronidase Beta
Enzyme able to hydrolyze

glycosaminoglycansCTACGCACCACTTCTTCCA

HMBS
TTGCTATGTCCACCACAGG

117 Hydroxymethylbilane Synthase Enzyme involved in the condensation of
porphobilinogenCCAGGTCCACTTCATTCTTCT

HSP90AB1
ATGGAAGAGAGCAAGGCAAAG

114 Heat Shock Protein 90α Family
Class B Member 1

Constitutive form of the cytosolic 90 kDa
heat-shock proteinGCAGCAAGGTGAAGACACAA

IPO8
CCAAGGGGTGGTTCATTCT

120 Importin 8 GTPase involved in the nuclear import
of proteinsTCTTGCCACAGCTCTTCATC

KDM2B
TGGAGGGCAAAGATTTCAAC

86 Lysine Demethylase 2B Component of SCFs complex involved
in ubiquitinationTCCCAGTCCATCCTTTTCTC
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Table 2. Cont.

Gene Sequence A.S (bp) Official Name Function

LRP10
GGCAACGTCACCATCACTT

82 LDL Receptor Related Protein 10 Encodes for a low-density lipoprotein
receptor family proteinAATCTTGGCTGTAGGAGAGCA

PGK1
GGTGGAATGGCTTTTACCTT

83 Phosphoglycerate Kinase 1 Glycolytic enzyme that catalyzes the
conversion of 1,3-diphosphoglycerateATCTTGGCTCCCTCTTCATC

PPIG
TTGCGGAGGTACGGATACT

104 Peptidylprolyl Isomerase G Protein involved in protein
peptidyl-prolyl isomerizationTGAGGAGGAGGAAGATGATG

RPLP0
AACTCTGCATTCTCGCTTCC

119 Ribosomal Protein Lateral Stalk
Subunit P0

Ribosomal protein that is a component of
the 60S subunitGGACTCGTTTGTACCCGTTG

RPS13
CCCACTTGGTTGAAGTTGAC

86 Ribosomal Protein S13 Ribosomal protein that is a component of
the 40S subunitCCGATCTGTGAAGGAGTAAGG

YWHAZ

TACCGTTACTTGGCTGAGGTT

118
Y3-Monooxygenase/

W5-M.oxygenase Act. Prot. Z

Signal transduction mediation by
binding to phosphoserine-containing

proteinsGATGTGTTGGTTGCATTTCC

4.4. RT-qPCR and Microfluidic-Based qPCR Array

Quantitative RT-qPCR was used to determine the mRNA levels of the selected IRGs in
the discovery cohort 1 of PPATs. Specifically, primers for the selected IRGs were used in
combination with Brilliant III Ultra-Fast SYBR Green (ThermoFisher Scientific, Bedford,
MA, USA) using the Stratagene Mx3000P system (Agilent Technologies, Madrid, Spain)
following the manufacturer’s instructions. mRNA levels were determined to analyze the
putative steady levels or the variability in the expression across the different groups of
patients [i.e., with BPH or PCa and both under NW and OB conditions] using the MxPro
3.0 qPCR software (Agilent Technologies, Madrid, Spain).

Likewise, a microfluidic-based qPCR array (Standard BioTools, San Francisco, CA,
USA) was used to simultaneously determine the gene expression levels of the 15 candidate
IRGs in the second cohort of PPAT samples using a 48.48 Dynamic Array Plate (GE 48.48
Dynamic Array Reagent Kit with Control Line Fluid, Standard BioTools, San Francisco, CA,
USA). Preamplification, exonuclease I treatment, and microfluidic-based qPCR array were
implemented as previously described [41,42] following the manufacturer’s instructions
using the Biomark HD System and the Fluidigm Real-Time PCR Analysis v4.8.2 Software.

4.5. Evaluation of Putative IRGs

To study the suitability of the selected IRGs to be used for the normalization of gene
expression analyses as well as to establish a prioritized ranking of these IRGs, a combination
of different software analysis (including ∆Ct method, NormFinder v.20.0, GeNorm v3.5,
and BestKeeper v1.0) were used. Specifically, the ∆Ct method is based on the relative
comparison expression of ‘pairs of genes’ within each sample. On this basis, stability of the
candidate housekeeping genes was ranked according to repeatability of the gene expression
differences [43]. The NormFinder algorithm [44] relies on intra- and inter-group variation
to estimate gene expression stability enabling the ranking of the candidates so that the less
stable genes represent the worse as reference genes. GeNorm [45] calculates the called ‘M’
value using the arithmetic mean of the pair-wise variations of each candidate gene. A low
M value (default value threshold set on 1.5) represents a stable gene expression. In addition,
GeNorm also calculates the normalization factor according to the number of reference
genes inputted. BestKeeper [46] considers the SD as a measure of estimated variability
along with the coefficient of variance (CV) from the direct Ct values of each gene. The Ct is
established as the number of cycles needed to reach the fluorescent signal threshold so that
the lower the Ct level, the greater amount of nucleic sample in an inversely proportional
way. Furthermore, RefFinder (http://blooge.cn/RefFinder/), (accessed on 2 September
2023) a web-based tool, was also used to assign a weighted and individual gene score by

http://blooge.cn/RefFinder/
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calculating the geometric mean of their weights for the overall final ranking, allowing the
integration of the three computational programs cited below [47]. In addition, a bootstrap
step with replacement [48] was performed to evaluate the confidence of the ranking (size
of 100,000) across those weighted scores by using the R (v. 3.5.2) package Boot (v. 1.3-28.1).

4.6. Statistical Analyses

Statistical differences were assessed by a t-test or by two-way ANOVA followed
by Fisher’s correction exact test according to the comparison. All statistical analyses
and plots were generated using Prism software 9.0 (GraphPad Software, La Jolla, CA,
USA). The p-value of < 0.05 was considered statistically significant. Data represent the
median (interquartile range) or means ± SD, wherein asterisks (* p <0.05; ** p < 0.01;
and *** p < 0.001) indicate statistically significant differences between different conditions.
The Metaboanalyst 5.0 online platform was used to perform normalization and density
plot visualization.

4.7. Study Limitations

Limitations of this study include the selection of a defined set of genes mainly based
on a literature search. Additionally, the number of samples (n = 20 in the discovery cohort-1
and n = 48 in the validation cohort-2) might be considered limited. However, it should
be mentioned that the work herein presented represents a collection of PPAT tissues over
a 5-year period where the availability of PPAT is dependent on the written informed
consent from the participants which, in our experience, is not easy to obtain in many cases.
Therefore, it is very difficult to obtain human PPAT samples for research purposes and this
is probably the reason why the publications that include PPAT samples are very limited
and include similar or lower numbers of samples than the one used in our study [49–51].
Furthermore, across the selected patients, other confounding factors such as androgen
dependence, tumor behavior, disease duration, or previous anti-tumor treatments, could
not be considered in this study. Finally, regarding the validation of the three genes selected
as the most suitable IRGs among all the candidates analyzed, part of this validation is based
on gene alterations that were described in other types of adipose tissues. Given the peculiar
nature of periprostatic adipose tissue, the changes observed may not necessarily occur in
the same way as in other depots. Therefore, results herein obtained should be corroborated
in additional cohorts of samples.
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