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AUTHORS: Carmona-Cabezas Rafael, Ariza-Villaverde Ana B., Gutiérrez de Ravé Eduardo, 2 

Jiménez-Hornero Francisco J. 3 

ABSTRACT 4 

A recent method based on the concurrence of complex networks and multifractal 5 

analyses is applied for the first time to explore ground-level ozone behavior. Ozone time 6 

series are converted into 2-D complex networks for their posterior analysis. The 7 

searched purpose is to check the suitability of this transformation and to see whether 8 

some features of these complex networks could constitute a preliminary analysis before 9 

the more thorough multifractal formalism. 10 

Results show effectively that the exposed transformation stores the original 11 

information about the ozone dynamics and gives meaningful knowledge about the time 12 

series. Based on these results, the multifractal analysis of the complex networks is 13 

performed. Looking at the physical meaning of the multifractal properties (such as 14 

fractal dimensions and singularity spectrum), a relationship between those and the 15 

degree distribution of the complex networks is found. 16 

In addition to all the promising results, this novel connection between time series 17 

and complex networks can deal with both stationary and non-stationary time series, 18 

overcoming one of the main limitations of multifractal analysis. Therefore, this 19 

technique can be regarded as an alternative to give supplementary information within 20 

the study of complex signals.21 

http://ees.elsevier.com/stoten/viewRCResults.aspx?pdf=1&docID=93110&rev=0&fileID=2032362&msid={3205EDE5-CA2C-4DE5-B3DA-D6488CF51C04}
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1. INTRODUCTION28 

Many studies have been performed about ground-level ozone over the last decades. 29 

The importance of ozone characterization and analysis lies on the fact that it is one of 30 

the main photochemical oxidants (due to its abundance). This irritant gas has serious 31 

repercussions for human health and harvests when its concentration is high (Doherty et 32 

al., 2009). Those exposed damages have an impact from the economical point of view, 33 

and according to Miao et al. (2017), they lead every year to losses of several billions of 34 

dollars. 35 

Ozone is a secondary pollutant whose chemical formation and destruction 36 

mechanisms are known to be photochemical and nonlinear processes (Graedel and 37 

Crutzen, 1993; Trainer et al, 2000). These mechanisms highly depend on meteorological 38 

variables such as temperature, wind direction and mainly solar radiation (Graedel and 39 

Crutzen, 1993; Guicherit and Van Dop 1977), as it has been studied for the Mediteranean 40 

area in several works (Güsten et al., 1994; Kouvarakis et al., 2000; Ribas y Peñuelas 41 

2004). In addition to that, ozone concentration depends as well on chemical precursors, 42 

such as nitrogen oxides and volatile organic compounds derived from the urban and 43 
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industrial activity (Sillman, 1999). All these factors make the analysis of the temporal 44 

evolution of ozone a very complex task indeed. 45 

Due to the facts exposed above, ozone studies based on traditional statistical 46 

analysis may provide a limited description of more complex dynamics of time series 47 

where the variability is high. The reason for this limitation is that these methods 48 

approximate and smooth the signal by means of fitting to functions, with the derived 49 

loss of information. Besides, they base their results on one (time) scale, while the 50 

physical phenomenon can appear at several scales due to the number of variables in 51 

play (Zeleke and Si 2006). On the contrary, multifractal methods can be used to save this 52 

drawback, since they work directly with the raw data extracting the information from 53 

their singularities. Furthermore, fractals (and multifractals) are characterized for being 54 

self-similar when divided into smaller parts (i.e. they are scale-independent) or at least 55 

their statistical properties (Mandelbrot 1982). That way, if a natural phenomenon can 56 

be characterized by means of multifractal parameters, these will be able to describe it 57 

for a range of scales. 58 

In the presented work, a link between the multifractal analysis and complex 59 

networks has been tested for the description of ground-level ozone dynamics. To that 60 

purpose, ozone concentration time series have been transformed into 2-D visibility 61 

graphs (VG) (whose topology inherits the features of the associated time series) and 62 

then evaluated using two methods for multifractal analysis: the sandbox method in 63 

order to compute the generalized fractal dimensions (Rényi spectrum) and the approach 64 

introduced by Chhabra and Jensen (1989) for the calculation of the α-spectrum as an 65 

independent value from the other. 66 
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With this study, the main purpose is to check the suitability of the multifractal 67 

analysis performed over the VGs by connecting their degree distribution with Rényi and 68 

α-spectra. It could be expected, since the resulting graph stores indeed much of the 69 

original information and properties of the original time series (Lacasa et al., 2008). 70 

71 

2. MATERIALS AND METHODS72 

2.1. Data 73 

The information that has been used in the analysis of this work corresponds to a 10-74 

min ozone concentration data collected for the months of January, April, July and 75 

October in 2007. These time series of ozone concentration can be seen in Figure 1, for 76 

the four months analyzed in this study. 77 

The chosen region is the western part of Andalusia (Spain) since as exposed by 78 

Domínguez-López et al. (2014), this area meets the weather conditions (high 79 

temperatures and solar radiation), orographic (the valley of the Guadalquivir river) and 80 

anthropic (four capitals and two important industrial centers such as the chemical pole 81 

of Huelva and the Bay of Algeciras) to be potentially vulnerable to pollution by surface-82 

level ozone. The measurements were performed at the urban station located in Lepanto, 83 

Córdoba (37.53° N, 4.47° W). The cited station belongs to the regional network in charge 84 

of controlling the air quality in Andalusia, co-finanzed by the Consejería de 85 

Medioambiente (Regional Environmental Department) and the European Union. This 86 

station is located at 117 m of altitude and the average temperature for each moth is 8, 87 

15, 28 and 18 °C (January, April, July and October, respectively). The average direct solar 88 

radiation is 310.2, 577.8, 991.4 and 419.3 MJ/m2 (again for the four months ordered). 89 
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The climate of the zone of study, according to the Köppen-Geiger classification, is 90 

defined as Csa with warm average temperatures and hot and dry summer. 91 

As it can be seen in Figure 1, the ozone concentrations are especially high in summer 92 

(July) and low in Winter (January). As it has been previously discussed for this region by 93 

Adame et al. (2007) and Jiménez-Hornero et al. (2010a), that is due the fact that the 94 

conditions for the ozone creation are more suitable from the end of January. The 95 

progressive raise of temperature and solar radiation that reaches its peak in July allows 96 

those higher creation rates and thus its concentration. One of the reactions that governs 97 

the ozone production can be found below (Graedel and Crutzen, 1993). 98 

𝑁𝑂2 + 𝑂2 ↔ 𝑂3 + 𝑁𝑂 (1) 

It is a reversible photochemical reaction which tends to the ozone production when 99 

there is energy available in form of light (right sense of the arrow) and in the other way 100 

when there is not. For that reason, the higher values of ozone are always found during 101 

the day and vice versa, happening the same with summer and winter respectively, as 102 

discussed before. 103 

104 

2.2. Visibility graph 105 

One of the main fields of application of the multifractal analysis is referred to the 106 

study of graphs and complex networks. A graph can be defined as a set of vertices, points 107 

or nodes connected to each other by lines that are usually called edges. A tool to 108 

transform time series into a graph was presented by Lacasa et al. (2008). This new 109 

complex network receives the name of visibility graph and has been proven to inherit 110 
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many of the properties of the original series (being some multifractal properties among 111 

them). 112 

In order construct the visibility matrix which contains the information of all the 113 

nodes of the new system, it is necessary to stablish a criterion to discern whether two 114 

points would be connected or not. This criterion reads as follows: two arbitrary data 115 

from the time series (𝑡𝑎, 𝑦𝑎) and (𝑡𝑏, 𝑦𝑏) have visibility (and would become two 116 

connected nodes in the graph) if any other data point (𝑡𝑐, 𝑦𝑐) between them (𝑡𝑎< 𝑡𝑐< 𝑡𝑏) 117 

fulfills the following condition: 118 

𝑦𝑐 <  𝑦𝑎 + (𝑦𝑏 − 𝑦𝑎)
𝑡𝑐 − 𝑡𝑎

𝑡𝑏 − 𝑡𝑎
 (2) 

In Figure 2, an application of this method for a simple time series is given as 119 

illustration. As it can be seen, the original time series has been transformed into a 120 

complex network. The complexity of the original series is inherited by the new graph, as 121 

it has been found by Lacasa et al. (2008, 2010), meaning that for instance a periodic time 122 

series, would lead to a regular graph. 123 

The result of applying this visibility method is a NxN adjacency binary matrix, being 124 

N the number of points in the set. Each row of the matrix contains the information of a 125 

different node, such as 𝑎𝑖𝑗 = 1 means that the node 𝑖 and 𝑗 have visibility; whereas 126 

𝑎𝑖𝑗 = 0 means that there is no edge between them. The resulting matrix has several 127 

properties that can be used to simplify the algorithm and thus reduce the computational 128 

required time. 129 
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• Hollow matrix: All the elements in the diagonal are zero (𝑎𝑖𝑖 = 0), because there 130 

is no visibility of an element with itself, since there are no intermediate points to 131 

fulfills the criterion. 132 

• Symmetric matrix: The elements satisfy 𝑎𝑖𝑗 = 𝑎𝑗𝑖, due to the reciprocity of the133 

visibility between two nodes. 134 

• Nearest neighbors: Because each point always sees the closest previous and next135 

node, the elements surrounding the diagonal are always 1 (𝑎𝑖𝑗 = 1 for 𝑗 = 𝑖 ±136 

1). 137 

Taking all of that into account, the visibility matrix A has a general form as shown 138 

below: 139 

𝐴 =  (

0 1 … 𝑎1,𝑁

1 0 1 ⋮
⋮ 1 ⋱ 1

𝑎𝑁,1 … 1 0

) 140 

141 

The degree of a node (𝑘𝑖) can be defined as the number nodes that have 142 

reciprocal visibility with the first one (𝑘𝑖 = ∑ 𝑎𝑖𝑗𝑗 ). In Figure 2, the degree of the first 143 

node is 𝑘 = 3, for the second one 𝑘 = 2, for the third one 𝑘 = 3, and so on. From 144 

the degree of each one of the nodes present in the VG, it is possible to obtain the 145 

degree distribution of the sample (𝑃(𝑘)), which is nothing but the probability that 146 

every degree has. 147 

Previous works have shown how the analysis of this degree distribution built 148 

from the VG can effectively describe the nature of the time series (Lacasa et al., 149 

2008; Mali et al., 2018), distinguishing between periodic, random or fractal series for 150 
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instance. Therefore, by studying the degree distribution, one can get a first insight 151 

on the behavior of the ozone time series before stepping into a more complex 152 

multifractal analysis. As stated by Lacasa et al. (2009, 2010), time-series that have 153 

VGs with degree distributions that follow power laws such as 𝑃(𝑘) ∝ 𝑘−𝛾, can be 154 

considered as scale free.  155 

 156 

2.3. Multifractal measurements 157 

While fractal analysis is based on the complexity of a fractal set, the multifractal 158 

approach can describe the distribution of a given measure over a fractal object 159 

(Mandelbrot, 1974; Halsey et al., 1986). It implies the possibility of having different 160 

densities depending on the region of application.  161 

There are two ways of representing multifractals: the generalized fractal dimensions 162 

𝐷𝑞 and the singularity or multifractal spectrum (𝑓(𝛼)). Both of them are discussed below 163 

separately. Typically, the multifractal analysis has been widely performed by means of 164 

the fixed-size algorithms (FSA), that rely on the subdivision of the system into smaller 165 

parts with equal size and then that size is changed iteratively. The method used in this 166 

work is the “sand-box algorithm” and will be discussed later on. 167 

As stated before, the first of the measurements when it comes to multifractal 168 

analysis are the generalized fractal or Rényi dimensions 𝐷𝑞, which describe the scaling 169 

exponents of the 𝑞𝑡ℎ moments of the system and can be defined (Feder, 1988) as: 170 

 𝐷𝑞 =
1

𝑞 − 1
lim
𝛿→0

ln 𝑍𝑞(𝛿)

ln 𝛿
     ∀ 𝑞 ≠ 1 (3) 

 171 
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 𝐷1 = lim
𝛿→0

∑ 𝜇𝑖(𝛿)
𝑁𝑐(𝛿)
𝑖=1 ln 𝜇𝑖(𝛿)

ln 𝛿
 (4) 

 172 

With 𝑞 the moment order, 𝛿 the size of the used cells to cover the system, 𝑍𝑞(𝛿) the 173 

partition function, 𝑁𝑐(𝛿) the number of cells with length 𝛿 and  𝜇𝑖(𝛿) the probability 174 

measurement of each cell. The expression for 𝐷1 is obtained taking the limit of 𝐷𝑞 when 175 

𝑞 → 1.  176 

From these generalized fractal dimensions, it must be pointed out that 𝐷𝑞=0 177 

corresponds to the fractal dimension of the given system or box-counting dimension, 178 

𝐷𝑞=1 is the so-called information entropy and 𝐷𝑞=2 the correlation dimension. The limits 179 

of 𝐷𝑞 when 𝑞 goes to −∞ and +∞ describe the scaling properties of the regions where 180 

the measure is more rarified and concentrated, respectively.  181 

The other set of multifractal parameters is the so-called singularity spectrum (𝑓(𝛼)), 182 

as commented previously. A frequent method to determine is based on the use of a 183 

Legendre transform from mass exponents 𝜏(𝑞). However, some authors as Chhabra and 184 

Jensen (1989) and Veneziano et al (1995), state that it can lead to some errors due to 185 

the inclusion of spurious points and error amplification from the derivative. 186 

Furthermore, it does not yield independent measurements from the Rényi spectrum, as  187 

𝜏(𝑞) = (1 − 𝑞)𝐷𝑞. As an alternative to this and more focused on experimental data, 188 

Chhabra and Jensen (1989) proposed a direct method to determine the α-spectrum, 189 

overcoming the drawbacks referred before. This technique relies on the normalized 190 

measure 𝛽𝑖(𝑞), 𝜇𝑖 in the original work, for computing the probabilities of the boxes of 191 

radius 𝑟: 192 
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 𝛽𝑖(𝑞, 𝑟) = [𝑃𝑖(𝑟)]𝑞/ ∑[𝑃𝑗(𝑟)]𝑞

𝑗

 (5) 

With 𝑃𝑖(𝑟) the different fractal measurements for each box of radius 𝑟 (number of 193 

nodes in this case). From this, 𝑓(𝛼) and 𝛼 can be retrieved using the next expressions: 194 

 𝑓(𝑞) = lim
𝑟→0

∑ 𝛽𝑖(𝑞, 𝑟) log[𝛽𝑖(𝑞, 𝑟)]𝑖

log 𝑟
 (6) 

 195 

 
𝛼(𝑞) = lim

𝑟→0

∑ 𝛽𝑖(𝑞, 𝑟) log[𝑃𝑖(𝑟)]𝑖

log 𝑟
 

(7) 

Being 𝛼 known as the Lipschitz-Hölder exponent. In practice, those quantities are 196 

computed from the slope of ∑ 𝛽𝑖(𝑞, 𝑟) log[𝛽𝑖(𝑞, 𝑟)]𝑖  over log 𝑟 for 𝑓(𝑞); and 197 

∑ 𝛽𝑖(𝑞, 𝑟) log[𝑃𝑖(𝑟)]𝑖  over log 𝑟 for 𝛼(𝑞). This slope is determined by means of a linear 198 

regression in the same range of radii where the other fractal measures are computed. 199 

 200 

2.4. Sandbox algorithm 201 

The sandbox algorithm (SBA) was firstly introduced by Tél et al. (1989) and 202 

developed by Vicsek et al. (1990), as an improvement of the previously used fixed-size 203 

box-counting methods for computing the generalized fractal dimensions. The main 204 

advantage of this method with respect to other box-counting FSA is that it is capable of 205 

properly determine the side corresponding to the negative values of  𝑞 from both the 206 

Rényi and singularity spectra. 207 

The basic idea behind the SBA is that for each radius, a number of randomly placed 208 

boxes are selected, and they are always centered in a non-zero point of the system (a 209 
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node). In that way the entire network is covered with those boxes by choosing a 210 

sufficiently high number of them. For each box (B), the probability measurement used 211 

is computed as shown in equation (8). 212 

 
𝜇(𝐵) =

𝑀(𝐵)

𝑀0
 (8) 

Once that quantity is computed for each sandbox for a given radius, the generalized 213 

fractal dimensions can be obtained as explained previously in the multifractal 214 

measurement part. Applying it to equation (3), the following formula is obtained for 215 

𝐷𝑞
𝑠𝑏: 216 

 𝐷𝑞
𝑠𝑏 =

1

𝑞 − 1
lim
𝑟→0

ln〈𝜇(𝐵)𝑞−1〉

ln 𝑟
      ∀ 𝑞 ≠ 1 (9) 

And the expression when 𝑞 = 1 for the SBA also can be adapted from equation (4): 217 

 
𝐷1

𝑠𝑏 = lim
𝑟→0

〈ln 𝜇(𝐵)〉

ln 𝑟
 

 

(10) 

With the aim of implementing the SBA on the VG, the steps to follow are: 218 

1) The original time series is transformed into a VG, resulting on a matrix as 219 

described in the previous section. 220 

2) A range of different radii is set in order to cover the entire network. These 221 

radii are chosen between 1 and N, being N the total number of nodes. For 222 

this case, the typical values are 𝑟 ∈ [1, 100], because larger values have 223 

proven to give the same information, since the curves start to saturate. 224 

3) Then, 𝑁𝑐 centers are selected for each radius. This number is inversely 225 

proportional to the radius itself, because the greater the box is, the smaller 226 
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number of boxes will be needed to cover the network. The location of the 227 

centers is randomly chosen within the nodes of the graph. 228 

4)  For each sandbox, the amount of nodes inside the box connected to the 229 

center (𝑀) are counted, giving 𝑁𝑐 values of  𝑀(𝐵). From here, the quantity 230 

𝜇(𝐵) (for every box) is computed by means of dividing the previous 𝑀(𝐵) by 231 

the total amount of nodes connected to the center 𝑀0. Then 𝜇(𝐵) is used to 232 

compute the partition function for all the q values chosen, being the average 233 

in equations (9) and (10) over all the sandboxes created. 234 

5) The steps 3) and 4) are then repeated for all the radii considered, obtaining 235 

a value of the partition function for each one of them and q.  236 

 237 

3. RESULTS AND DISCUSSION 238 

3.1. Degree distribution 239 

Firstly, a fast method to check the fractal nature of the ozone concentration time 240 

series, before performing a deeper study, is described here. This method consists on 241 

analyzing the degree distribution of the VGs.   242 

The mentioned distribution is computed as the number of nodes that have a 243 

given degree and divided by the total number of them in the VG. It is clear that the 244 

greater the degree is, the less likely to be repeated within the network it will be; 245 

because large degrees are exclusive of nodes with the highest concentration (which 246 

we will refer as hub) due to their typically high visibility. As those hubs correspond 247 

normally to the extreme values of ozone concentration of each day, their likeliness 248 

will be lower, since the most repeated ones will be the ones close to the average. 249 
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That leads to an expected distribution with a negative trend, as can be seen in Figure 250 

3.    251 

Once the degree distributions of the different months are computed, a clear 252 

fractal behavior is observed since all of them follow a power law 𝑃(𝑘) ∝ 𝑘−𝛾 as 253 

expected, with a linear part in the last part of the log-log plot.  After computing the 254 

slope for the values of 𝑘 ≥ 30 in all the cases, the 𝛾 parameter can be determined, 255 

obtaining that the biggest and the lowest ones correspond to July and January 256 

respectively. Although this is a fast and direct method to determine whether the 257 

series is fractal or not, it does not give much detailed information about the 258 

differences between each moth, since all of them share a very similar degree 259 

distribution. Hence a deeper analysis devoted to the multifractal properties of the 260 

series has been done with that aim, as will be presented in the following section, in 261 

order to give some light to the usability of this degree distribution and some of its 262 

parameters. 263 

 264 

3.2. Multifractality 265 

In this part, the authors present two independent methods to study the 266 

multifractality of the signal, both previously described: the generalized fractal 267 

(Rényi) dimensions and the 𝛼 spectra. 268 

For the analysis of the Rényi dimensions of the samples, the quantities 269 

ln〈𝜇(𝐵)𝑞−1〉 / (𝑞 − 1) for 𝑞 ≠ 1  and 〈ln 𝜇(𝐵)〉 for 𝑞 = 1 are plotted against ln 𝑟, as 270 

seen in Figure 4. The interval used for the radii goes from 𝑟 = 1 to 𝑟 = 100, as it was 271 

proven to be enough in order to reproduce the expected linear behavior (after 272 
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several tests). It must be pointed out that the interval taken for the linear regression 273 

is always selected so that the Pearson correlation coefficient is 𝑟 ≥ 0.99. For April, 274 

July and October, the chosen range has been from ln 𝑟 = 3  up to end of the curve; 275 

whereas for January the range had to be taken such as ln 𝑟 ∈ [2, 4] because the 276 

linear part is larger and to avoid an artifact that appears for higher radii and made 277 

the results misleading (can be observed in Figure 7). In all those cases, the values 278 

correspond with the higher radii used in the SBA, in accordance with previous studies 279 

that used the same technique (Ariza-Villaverde et al., 2015; De Bartolo et al., 2004; 280 

Jiménez-Hornero et al. 2013). After the linear regressions are performed for all 281 

values of 𝑞 of each month, the Rényi spectrum can be constructed following 282 

equations (9) and (10). In Figure 5 the result of such procedure is shown in the form 283 

of the generalized fractal dimensions. After observing the graph, it can be inferred 284 

that the VG properly reproduces the multifractal behavior of the series, which was 285 

previously demonstrated to be so  (He, 2017; Jiménez-Hornero et al., 2010a, 2010b; 286 

Pavón-Domínguez et al., 2013), since for all the studied months 𝐷0 > 𝐷1 > 𝐷2 (see 287 

Table 1). The difference between the maximum value of 𝐷𝑞 and the minimum (∆𝐷𝑞) 288 

is usually taken as a measure of the multifractality degree of the signal (ozone 289 

concentration in this case) (Ariza-Villaverde, 2013; Telesca et al., 2004). Looking at 290 

Table 1, this degree seems to be sensibly higher for July than the rest of the months, 291 

followed by April and October (with a very similar value) and then the last one is 292 

January.  293 

Now, the fractal dimensions themselves from the Rényi spectrum (𝐷0, 𝐷1 and 294 

𝐷2), are being discussed. Firstly, the capacity dimension or “box-counting” 295 

dimension 𝐷0 is related with the number of boxes needed in order to cover the 296 
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fractal object. The more boxes are needed, the more extended is the fractal object 297 

and then the grater would be D0. Since in this case the fractals are different for each 298 

iteration (each node sees a different visibility network), the final behavior would be 299 

expected to be an average of the whole system. In the context of these complex 300 

networks, a high extension of the object would mean a bigger degree (then related 301 

to hubs).  Following that logic, a higher value of D0 is related with greater number of 302 

hubs in the system, meaning that one could expect the average degree 𝑘̅ of the 303 

distribution increased. This is found in the results as can be observed in Table 1. 304 

Values for the months of January and April are very close to each other, while the 305 

one for July is sensibly the highest and October has an intermediate value. This result 306 

is in accordance to the behavior of the ozone concentration, since for instance the 307 

month of July is the one with the greatest temperature and UV radiation rates and 308 

therefore elevated values are reached more often, producing a major number of 309 

hubs in the VG. 310 

The second parameter is the entropy dimension 𝐷1, which is usually known as 311 

the dimension that is related to the uniformity of the data and how different is the 312 

probability of certain regions to be visited by a randomly chosen box with respect to 313 

others. A way of measuring its uniformity is looking at the difference between 𝐷0 314 

and 𝐷1, because when they are equal it means that the sample is uniform. The 315 

greater (𝐷0 − 𝐷1), the less uniform it is.  Also, another reason to take the difference 316 

instead of the absolute value is because we are interested on comparing the curves 317 

and their behavior, and since the 𝐷0 of each one is different, it is necessary to 318 

stablish a reference point. When it is translated to the context of VG, a greater 319 

uniformity would mean less difference between the degrees of the sample, hence 320 
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the standard deviation of the degree would be decreased. In that case, what should 321 

be observed in the original ozone data is that the differences encountered in the 322 

data are less significative (what is indeed observed for the months with lower (𝐷0 −323 

𝐷1). The most uniform would be January and again the other extreme is found for 324 

July. The reason for this is that in July the differences encountered between day and 325 

night concentrations of ozone are much greater than the other months, since during 326 

the night they remain at their minimum values for all months. In contrast, the 327 

maximum values are much higher in summer than the rest of the year because of 328 

the higher UV exposures and the opposite case for winter.  329 

The last parameter that has been computed from the Rényi spectrum is the 330 

correlation dimension 𝐷2. For the same objective reason as in (𝐷0 − 𝐷1), here (𝐷0 −331 

𝐷2) values are discussed as well. Once again, January and July exhibit the extreme 332 

cases whereas the other two months are located in between. In this case the authors 333 

have not been able to directly relate this magnitude with any property of the degree 334 

distribution of the VGs as for (𝐷0 − 𝐷1) and 𝐷0.  335 

As commented before, another important feature that can be studied is the 336 

spectrum of 𝛼, following the equations (6) and (7).  Applying a similar approach to 337 

the one used to compute 𝐷𝑞, a linear regression is performed for each value of 𝑞  to 338 

compute the corresponding magnitude (𝛼 in Figure 6 and 𝑓(𝛼) in Figure 7). For each 339 

month, the range for the regression has been chosen to be the same that was used 340 

for the Rényi dimensions, in order to conserve the scale used. In this case, the 341 

obtained curves have as well a positive trend that increases with 𝑞 for the case of 342 

the curves of Figure 6; and first increases and then decreases for Figure 7 (as 343 
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expected, because 𝑓(𝛼) should have a maximum and then drop). As commented 344 

before, the artifact that made us change the chosen interval for the regression in 345 

January can be observed in Figure 7 for high values of radius. 346 

Once both 𝛼 and 𝑓(𝛼) are resolved for all the possible values of 𝑞, the spectrum 347 

of every month can be plotted, being the ones shown in Figure 8. All the spectra as 348 

can be seen have their maximum at 𝑓(𝛼) = 1 and start at 𝛼 = 0, while the overall 349 

shape depends on each case. Several properties of the underlying signal can be 350 

extracted from the spectra. The width of the curve W is shown in Table 1, as well as 351 

the position of the curve maximum 𝛼0. As in the case of generalized fractal 352 

dimensions 𝐷𝑞, July is the month with the widest spectrum and highest 𝛼0. January 353 

as well exhibits the lowest values, whereas April and October have intermediate 354 

ones. This width W is related with the multifractality degree of the signal (Ariza-355 

Villaverde, 2013; Telesca et al., 2004). 356 

According to the shapes of the curves, the spectra are strongly non-symmetric, 357 

being the right tail much more pronounced than the left one for all the different 358 

months. The right side is usually associated to the homogeneity of low values in a 359 

temporal distribution of data, whereas the left one is related with the same feature 360 

of the high values instead. Therefore, the behavior of the four months is very similar 361 

for high values (left tail) while it differs significantly for low ones (right tail). In Figure 362 

8, all of them show an heterogenous behavior since the 𝛼 distribution is not uniform 363 

along the curve, being concentrated on the left and right extremes. Nevertheless, it 364 

is possible to extract from that figure that this heterogeneity is more pronounced in 365 

July. This fact suggests an influence of the higher UV radiation that creates a greater 366 
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difference between day and night ozone concentrations. This is in accordance with 367 

what was shown in the previous analysis described above for (𝐷0 − 𝐷1).  368 

 369 

4. CONCLUSIONS 370 

The results of this work show that the multifractal analysis of VGs from ground-371 

level ozone concentration time series is a suitable tool to describe the seasonal 372 

dynamics of this air pollutant. VGs have proven to have several advantages such as: 373 

i) their topology inherits the features of the associated time series, which ends up 374 

resulting on supplementary information through the degree distribution; ii) they can 375 

be use for both stationary and non-stationary time series, removing the multifractal 376 

analysis requirement of dealing only with stationary processes. Besides, VGs filter 377 

out trends in the signal, making unnecessary to apply detrended methods. iii) Also, 378 

they can be applied to multivariate time series, which can be very helpful in order to 379 

find correlations between tropospheric ozone and its precursors for instance; iv) and 380 

finally, this novel connection between time series and complex networks opens a 381 

broad range of possibilities within the study of complex signals. 382 

When it comes to the multifractal analysis performed in this work, both the SBA 383 

and the Chhabra and Jensen method for the Rényi and singularity spectra 384 

respectively, where chosen based on their advantages with respect to other. The 385 

SBA overcomes the drawbacks of the box-counting algorithm for the computation 386 

of the generalized fractal dimensions for negative probability moment orders q. 387 

Furthermore, the Chhabra and Jensen method for the α-spectrum does not need a 388 
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Legendre transform to be applied (with the associated error to it) and gives and 389 

independent measurement from the SBA as well, being more robust for comparison. 390 

After applying the methods mentioned above, clear and coherent results that fits 391 

the expected behavior of the ozone dynamics were found for the different months. 392 

Furthermore, several properties can be directly inferred from the degree 393 

distribution almost at first sight, meaning a powerful tool for predicting results 394 

before any more complex data treatment is performed. The same relations between 395 

multifractal parameters such as capacity dimension, W of the α-spectrum amongst 396 

others are found in simple statistical parameters as the average or standard 397 

deviation of the degree distribution of the VG. 398 

To conclude, authors would like to point out that this promising technique could 399 

be extended to other applications due to the many possibilities that complex 400 

networks have. One possible target would be the relation between ozone and its 401 

precursors, which could be looked by means of relating the VG of each one 402 

separately or using multi-layer networks as proposed by Lacasa et al. (2015). 403 

 404 
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7. FIGURES 545 

8.  546 

Figure 1: Ozone time series for the different analyzed months. 547 
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 548 

Figure 2: Sample time series transformed into a complex network through the visibility 549 
algorithm. Below, all the connections are shown in a more visual way. 550 

 551 

 552 
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Figure 3: Degree distribution of the visibility graph from each month in logarithmic 553 

scale. As it can be observed, the tail of the distribution shows a scale-free behavior 554 

because it can be fitted by a power law. 555 

 556 

Figure 4: Curves of the partition function against ln(r) obtained after applying the 557 

sandbox algorithm. 558 

 559 
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 560 

Figure 5: Rényi dimensions for each month. 561 

 562 

Figure 6: Curves from where α is computed by regression. 563 
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 564 

Figure 7: Curves from where f(α) is computed using linear regressions. 565 

 566 

Figure 8: α-spectra of all the months. 567 

 568 
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9. TABLES569 

Table 1: Relevant values for each month. 570 

MONTH 
Average Direct 

Radiation (MJ/m2) 
𝛾 𝑘̅ 𝜎𝑘 𝐷0 𝐷0 − 𝐷1 𝐷0 − 𝐷2 ∆𝐷𝑞 𝛼0 𝑊 

January 310.2 3.59 14.78 15.00 0.389±0.012 0.12±0.03 0.21±0.02 0.56±0.10 0.291 0.779 

April 577.8 3.62 15.12 13.98 0.37±0.03 0.13±0.04 0.22±0.04 0.69±0.12 0.246 0.934 

July 991.4 3.92 19.94 17.69 0.59±0.02 0.20±0.04 0.33±0.03 0.90±0.12 0.443 1.152 

October 419.3 3.69 17.90 15.91 0.44±0.02 0.15±0.04 0.25±0.04 0.68±0.12 0.333 0.841 

571 



1 

HIGHLIGHTS 1 

- Ground-level ozone concentration time series have a multifractal behavior. 2 

- Visibility graphs can be used to analyze multifractality of ozone time series. 3 

- Many aspects of ozone dynamics can be observed through the degree 4 

distribution. 5 

- This technique gives supplementary information within the study of complex 6 

signals. 7 
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