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1 
Abbreviations: VOCs (Volatile Organic Compounds), VG (Visibility Graph), UDVG (Upside-Down 
Visibility Graph), SP (Shortest Path)      

ABSTRACT 1 

Recently, a set of graph-based tools have been introduced for the 2 

identification of singular events of   ,    and temperature time series, as well 3 

as description of their dynamics. These are based on the use of the Visibility 4 

Graphs (VG). In this work, an improvement of the original approach is 5 

proposed, being called Upside-Down Visibility Graph (UDVG). It adds the 6 

possibility of investigating the singular lowest episodes, instead of the highest. 7 

Results confirm the applicability of the new method for describing the 8 

multifractal nature of the underlying   ,   , and temperature. Asymmetries in 9 

the    degree distribution are observed, possibly due to the interaction with 10 

different chemicals. Furthermore, a comparison of VG and UDVG has been 11 

performed and the outcomes show that they describe opposite subsets of the 12 

time series (low and high values) as expected. The combination of the results 13 

from the two networks is proposed and evaluated, with the aim of obtaining all 14 

the information at once. It turns out to be a more complete tool for singularity 15 

detection in photochemical time series, which could be a valuable asset for 16 

future research. 17 
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1. INTRODUCTION23 

Among the problems related to atmospheric pollution, there is a matter of 24 

special concern studied by environmental scientists in the recent years, the so-25 

called photochemical smog. Also known as “Los Angeles smog”, since it was 26 

firstly noticed in that city in 1944, as a result of the observed damage on the 27 

vegetation (NAPCA, 1970). It can be defined as the accumulation of gases and 28 

aerosols as a result of reactions between nitrogen oxides (   ), certain volatile 29 

organic compounds (VOCs) and oxygen under the influence of solar radiation. 30 

A wide range of chemicals (ozone, aldehydes or hydrogen peroxides among 31 

them) are created in the process (Guicherit and van Dop, 1977). Typically, this 32 

phenomenon is more prominent when a city is more populated and warmer. 33 

Among the gases involved, there are two which are extensively researched due 34 

to the many harms associated to them and their quantitative importance: the 35 

tropospheric ozone (  ) and the nitrogen dioxide (  ), being the second a 36 

precursor of the first one. It must be stressed that both of them (   and   ) 37 

have a serious impact on human health (Cheng et al., 2020; Kampa and 38 

Castanas, 2008; Yue et al., 2018). Furthermore, a recent study has 39 

demonstrated that   produces harsh effects on the economy due to a 40 

reduction of the crop yield (Miao et al., 2017). 41 
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During the last decades, investigation on complex networks and their 42 

applications has been carried out in many works (Boccaletti et al., 2006; Gan et 43 

al., 2014; Newman, 2003; Stam, 2010). A complex network can be understood 44 

as a graph (a set of nodes and edges as will be further explained) which 45 

exhibits nontrivial topological properties and is often used to model and 46 

describe real systems. Furthermore, in the recent years there have been a 47 

considerable amount of works seeking ways to represent nonlinear time series 48 

as complex networks (Zou et al., 2019). This includes manuscripts based on 49 

recurrence networks, transition networks and visibility graphs. The main 50 

potential of these approaches is the vast number of tools that there exist to 51 

analyze networks from a computational perspective. Authors highlight the 52 

centrality parameters, since they are essential to this work. They are used to 53 

quantify the importance of the nodes within a graph and will be introduced and 54 

used later in the text. 55 

Among the new methodologies previously described, there is one that has 56 

been recently used to investigate environmental time series (Carmona-Cabezas 57 

et al., 2019b; Donner and Donges, 2012; Pierini et al., 2012). This methodology 58 

received the denomination of Visibility Graph (VG) algorithm (Lacasa et al., 59 

2008). As it has been demonstrated several times, the complex networks 60 

obtained through this method inherit the main features of the original time series 61 

and therefore can be used to describe them (Lacasa et al., 2009; Lacasa and 62 

Toral, 2010). 63 

Besides describing the nature and main features of the time series, another 64 

possibility implies the detection of singularities within these signals. For that 65 

purpose, many techniques have been used. One example is the Hölder 66 
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exponent, which is based on multifractal properties of the system (Loutridis, 67 

2007; Shang et al., 2006). By looking at the information retrieved from the 68 

transformed complex network, it is also possible to detect singular points, as it 69 

has been explored in several works recently (Bielinskyi and Soloviev, 2018; 70 

Carmona-Cabezas et al., 2019b, 2020). In particular, the unusually large values 71 

of the cited centrality parameters associated to each node, can provide much of 72 

the information that could be derived from the time series. 73 

In the presented work, a new approach is introduced to improve this 74 

detection of singular points in a time series from photochemical smog variables 75 

(pollutant concentration and temperature), using the VG. The motivation behind 76 

it was the fact that regular VG criterion associates the highest connectivity to 77 

the points with largest concentration. Therefore, singular events that have low 78 

value are overlooked by the original technique. The proposed improvement 79 

analyzes the original and inverted series and combines their parameters for a 80 

wider point of view. 81 

The pursued aim with this work is to test the application range and possible 82 

advantages or pitfalls of the proposed improvement. By doing that, authors 83 

intend to explore how this advance could complement the identification of 84 

singular episodes of pollutant time series (which could be potentially extended 85 

to others apart from    and   ). Being that the case, future researchers will 86 

benefit from a more thorough technique for detecting unusual low and high gas 87 

concentrations, with different criteria, as a result. 88 

2. MATERIALS AND METHODS89 

2.1. Data 90 
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For this work, measurements of tropospheric ozone (  ), nitrogen dioxide 91 

(  ) and temperature have been used. All of them correspond to hourly time 92 

series, being recorded in 2017. In the last part of this manuscript, months 93 

corresponding to different seasons are selected. The reason for this lies in the 94 

fact that, as explained before, this work seeks improving a previous one 95 

(Carmona-Cabezas et al., 2020), and therefore the same months have been 96 

used for clearer comparison. The station where they were collected is called 97 

San Fernando (36°27' N, 6°12' W), which is located in the province of Cádiz 98 

(southern Iberian Peninsula) and administered by the Consejería de 99 

Medioambiente (Regional Environmental Department) of Andalusia and the 100 

European Union. 101 

According to the Köppen-Geiger classification, the zone where the data is 102 

collected is labelled as “Csa”, as it is most of the Mediterranean basin. “Csa” 103 

regions are characterized by warm temperatures with summers that are 104 

regularly hot and dry. Furthermore, two of the most important industrial centers 105 

in the region (Huelva and Bay of Algeciras) are located relatively close to the 106 

study area. As a result of the mentioned conditions, this selected place is 107 

propense to accumulation of tropospheric ozone (  ) and nitrogen dioxide (  ) 108 

(Domínguez-López et al., 2014). 109 

2.2. Visibility Graph 110 

As it was introduced before, in the last decade, a new method to analyze 111 

one dimensional series was introduced (Lacasa et al., 2008). This technique 112 

transforms these series into a different mathematical entity: a graph or network. 113 

Therefore, it was given the name Visibility Graph, because of its resemblance to 114 
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the original one used in architecture for space analysis (Lozano-Pérez and 115 

Wesley, 1979; Turner et al., 2001). One of the main features of the VG is that it 116 

has been demonstrated that it inherits properties of the original time series that 117 

it is obtained from (Lacasa et al., 2009, 2008; Lacasa and Toral, 2010). For 118 

instance, a periodic series would result on a regular graph after applying it. 119 

In general, a graph can be understood as a set of nodes and edges that link 120 

them. In the context of VG, the nodes correspond to the points in the time 121 

series. Thus, it is necessary to stablish the criterion for linking them and so 122 

stablishing the edges. The basic idea is that two nodes are connected to each 123 

other if a line between them can be drawn and it does not pass below any other 124 

point in the signal. That is, two points (  ,   ) and (  ,   ) are connected in the 125 

graph (have visibility) if any point (  ,   )  between them (  <   <   )  fulfills: 126 

              
     
     

(1) 

From the VG method described, it is easy to see that the nodes with highest 127 

connectivity (also known as hubs) will be usually the ones with the unusual 128 

greatest values in the time series. This approach comes in handy in order to 129 

describe these points with higher magnitude; nevertheless, if one is interested 130 

on what happens with the opposite case (i.e. minimal unlikely values), the 131 

indicated technique is not suitable for describing them. That is indeed one 132 

disadvantage of employing VG for detecting singular points in a time series. 133 

In a recent work, a variation of VG was presented (Soni, 2019) in order to 134 

explore new approaches to gain information about a time series. There, the 135 

concept of a signed complex network is introduced. The basic idea behind that 136 

method is that some of the edges will have a positive sign, while some other will 137 
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be negative. The regular VG computed as explained before corresponds to the 138 

positive edges of this signed graph. On the other hand, the negative 139 

connections are obtained also from the regular VG but performed this time over 140 

the “upside-down” time series. That is, instead of using the original series     , 141 

the converted series       is used. This new graph was employed as a whole, 142 

in order to obtain series of clusters from the network and to analyze multivariate 143 

correlations, as an extension of previous works (Lacasa et al., 2015; Sannino et 144 

al., 2017). Nevertheless, the purpose of the work introduced here is to 145 

investigate the possibility of applying this idea for improving the detection of 146 

singular points in a time series, such as   and   concentration, or 147 

temperature. For that reason, the positive and negative parts need to be 148 

obtained separately, as some of the parameters that will be further explained 149 

cannot be retrieved from a signed network (e.g. the betweenness centrality). 150 

For clarity reasons, the “positive” network will be given the name of regular VG 151 

in the text; while for the “negative” one, the term Upside-Down VG (UDVG) will 152 

be used. In Figure 1, an example of the two types of network is shown. 153 
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154 

Figure 1: Example of computation of the regular VG (blue lines) and the UDVG 155 
(red lines) to a sample time series and resulting graphs. Black lines indicate the 156 

common edges. 157 

158 

It must be highlighted as well that all the edges of the two graphs are different, 159 

except for those connecting each node to it nearest neighbors in the time 160 

series. In Figure 1, the first statement is seen by looking at the blue and red 161 

edges, while the second one reflects in the black ones that both regular VG and 162 

UDVG have in common. In other words, the elements of the adjacency matrices 163 

fulfill:    
      

      ;       . This means that the elements surrounding 164 

the main diagonal are equal and the others cannot be       simultaneously in 165 

the two matrices. 166 

2.3. Centrality parameters 167 

One of the most widely used approaches to characterize graphs and 168 

complex networks is based on the analysis of the most important nodes within. 169 

It is done by employing the so-called centrality parameters, which are evaluated 170 

at each node, giving an idea about how “central” each one is, in relation to the 171 
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rest of them. This concept was firstly used for studying social networks and 172 

transferred to other fields of research afterwards (Agryzkov et al., 2019; Joyce 173 

et al., 2010; Liu et al., 2015). The actual meaning of a central node may vary 174 

depending on the actual parameter used to evaluate the network. Here, authors 175 

focus on three of them: the degree, betweenness and closeness centrality, 176 

which have been used to describe physical systems in previous works 177 

(Carmona-Cabezas et al., 2020; Donner and Donges, 2012; Mali et al., 2018). 178 

The first centrality parameter that will be explained is the degree. In a graph, 179 

the number of edges which are connected to a given node   is defined as the 180 

degree of that node (  ), i.e.,         , being     the elements of the 181 

adjacency matrix. Once the degree for each node is obtained, the degree 182 

distribution      can be computed. This quantity has been proven to be able to 183 

characterize the nature of the studied signal (Lacasa et al., 2008; Mali et al., 184 

2018). In fact, degree distributions that can be adjusted to a power law      185 

    correspond to scale free networks which comes from fractal series, as it 186 

was discussed by (Lacasa et al., 2009; Lacasa and Toral, 2010). The reason for 187 

this is the effect of hub repulsion (Song et al., 2006). A hub is a node from a 188 

graph with unlikely greater number of links, and so, higher degree. Therefore, 189 

the right tail of degree distributions is dominated by these nodes and, after 190 

being represented in a log-log plot, they can be fitted by a simple linear 191 

regression.  192 

The other two employed parameters cannot be understood without defining 193 

the shortest path (SP) quantity first. SP is a measurement of the number of 194 

different edges that connect two distant nodes. Given a pair of nodes      , 195 

different possible paths between them are available. Some of them (not 196 
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necessarily unique) will have the minimum possible number of edges and, thus, 197 

they will be the minimal paths known as SP. It must be regarded that it has an 198 

important presence in the definition of the betweenness and closeness 199 

centrality. The betweenness of a node   can be computed by the following 200 

expression: 201 

     
      

   

 

   
     

 

   
   

(2) 

Where     is the number of SP’s from node   to  , whereas        is the 202 

number of those SP’s that contain the node  . A high betweenness can be 203 

interpreted as a node which is passed through by SP’s connecting the rest of 204 

nodes. 205 

Lastly, the closeness centrality is obtained as shown in the following 206 

expression: 207 

   
 

     
 
   

(3) 

There, the closeness of each node   is computed from the so-called 208 

distance matrix  , where each element      corresponds to the SP from node   209 

to  . Therefore, this quantity accounts for how close a given node is to the rest 210 

of the network, in terms of edges needed for other nodes to be reached. 211 

212 

3. RESULTS AND DISCUSSION213 

3.1. Degree distributions 214 
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After the proposed methodology has been explained, authors have analyzed 215 

firstly how the UDVG degree distribution differs from the regular VG with the 216 

same time series. It served as a preliminary study, before tackling the 217 

identification of relevant points in the signal, which is the main objective of this 218 

work. 219 

Figure 2 represents two theoretical time series have been employed to test 220 

the method. The first one of them is obtained from a fractional Brownian motion 221 

with Hurst exponent       and     points. The second one corresponds to a 222 

random series with     points. The reason for choosing them is that they are 223 

standard well-known series that are frequently used within this type of studies 224 

with VGs. This figure shows the series (a and b) and their respective degree 225 

distribution computed for both approaches (c and d). It can be inferred that the 226 

distributions that arise from using the UDVG are almost identical to the VG 227 

ones. Therefore, at least for these types of series, the VG and UDVG degree 228 

distributions describe the same properties of the underlying time series. 229 

In the case of the fractional Brownian motion, they also present curves 230 

which can be adjusted to the same power law. Thus, this might indicate that 231 

UDVG would be also suitable for describing scale-free networks, such as those 232 

extracted from these type of series, which are fractal (Lacasa et al., 2009). For 233 

the random time series, the result is a distribution with a tail that follows an 234 

exponential trend, as expected (Lacasa et al., 2008). 235 
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 236 

Figure 2: Top: fractional Brownian motion signal with Hurst exponent       237 

and     points (a) and 500 points from a random series (b). Bottom: The degree 238 

distribution computed from the complex networks obtained for both series, by 239 

employing the VG and UDVG.  240 

 241 

 242 

Once it was observed that UDVG and VG obtain the same results for the 243 

theoretical time series, authors have tested the photochemical time series, 244 

which are the focus of this study. These correspond to three different signals: 245 

two from    and     concentration, and the other one temperature, all of them 246 

from the same year (2017), as previously stated. The reason behind choosing 247 

one complete year in this particular part of the study is that for a reliable 248 

comparison of degree distributions, a considerable amount of points in the time 249 

series is required (Carmona-Cabezas et al., 2019a). Since the resolution of the 250 

measurements is one hour, it has been observed after several tests that taking 251 

only monthly samples for comparison could give misleading results. It should be 252 
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underscored that the same is not true for the later analysis of singular episodes, 253 

since that is a local study and does not depend in the extension of the pollutant 254 

time series. 255 

The three signals are depicted in the upper part of Figure 3 (a1, b1 and c1). 256 

Conversely to what was observed in the previous case, now Figure 3 (a2, b2 257 

and c2) display slight differences between the degree distributions of the classic 258 

VG and the UDVG. Nevertheless, a clear power law behavior is observed in 259 

every case. This is in accordance with previous works, where ozone (  ) and 260 

nitrogen dioxide (  ) time series exhibited scale-free behavior, as a 261 

consequence of the multifractal nature of its dynamics (He, 2017; Pavón-262 

Domínguez et al., 2015). The observed contrasts are more pronounced in the 263 

case of the nitrogen dioxide (  ) concentration time series, clearly showing a 264 

marked difference in the slope of the distribution tail (the  -exponent). Authors 265 

attribute this effect to the difference between the three underlying time series. 266 

The ground-level ozone signal exhibits a pattern that equally presents singular 267 

minima and maxima, and the same can be said about the temperature. 268 

Therefore, the frequency distributions of their concentrations will have roughly 269 

symmetric shapes. On the other hand, the same cannot be argued for the 270 

nitrogen dioxide (  ) concentration. Minima and maxima values are not 271 

distributed evenly along the time series, which is clear in Figure 3c. The maxima 272 

are rather infrequent and singular in comparison to the minima, which are much 273 

more common, as most of the values are very close to zero. Therefore, one 274 

could expect the probability distribution of the concentration of nitrogen dioxide 275 

(  )  to be non-symmetric. To investigate that, the most suitable method is to 276 

inspect the skewness ( ) for each time series. This quantity describes the 277 
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asymmetry of the probability distribution of a given real measure around its 278 

mean. When skewness is equal to zero, it means that the distribution is 279 

symmetric respect to its mean, being the opposite case (   ) for non-280 

symmetric distributions. In Figure 3, probability distributions of concentrations 281 

and temperature are depicted with their respective skewness value. In the case 282 

of   and temperature (Figure 3 a3 and c3), the distributions are almost 283 

symmetric, as mentioned before, with skewness close to zero (   
       and 284 

          ). Despite this, a mild deviation between the regular and inverted 285 

distributions can be observed, leading to the low negative skewness that is 286 

observed. On the contrary, a positive skewness value (    
     ) of nitrogen 287 

dioxide (  )  concentration is clearly seen (Figure 3b3), i.e. low values with 288 

respect to the mean are highly frequent. Therefore, the concentration of 289 

nitrogen dioxide (  ) in San Fernando reaches low peaks many times during 290 

the month, while the high accumulations of this noxious gas are much rarer. 291 

For the case of temperature, this symmetry can be interpreted as the 292 

relatively regular behavior of day and night values, meaning that the 293 

appearances of singular episodes of low and high temperature will be linked 294 

during the year, depending on the meteorological conditions of each season. 295 

On the other hand, one could expect this difference between nitrogen dioxide 296 

(  ) and tropospheric ozone (  ), regarding the symmetry of the degree 297 

distribution. Both gases are correlated through the simplified photochemical 298 

reaction           . Production and destruction of ozone will occur 299 

during day and night times respectively. The photolysis that leads to the ozone 300 

accumulation and the reach of the photostationary state regularly happens 301 

during mid-day, when there is radiation available. The sense of the reaction is 302 
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reverted during nighttime in the absence of light. Although the quantitative 303 

concentration levels may vary depending on factors such as wind speed, 304 

temperature or mixing height, the distributions of maxima and minima could be 305 

expected to be symmetric as it is seen for the   . However, the nitrogen dioxide 306 

(  ) intervenes in other reactions that could lead to the appearance of singular 307 

minima in its concentration. One example is the aldehyde production through 308 

interaction with VOCs, which results on a lower rate of   -   reaction. For a 309 

deeper understanding of this, further analysis with    and VOCs time series 310 

would be necessary. 311 

Authors would like to point out that, for the previous theoretical series this 312 

relation is also observed, being their computed skewness values very close to 313 

zero (               and                  ), as expected since their 314 

distribution where almost perfectly coincident for VG and UDVG. 315 
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316 

Figure 3: Top: Ozone (  ), nitrogen dioxide (   )  concentration and 317 

temperature annual temporal series (a1, b1 and c1). Middle: Degree 318 
distributions computed with regular VG and UDVG (a2, b2 and c2). Bottom: 319 
frequency distributions of the pollutant concentrations and temperature time 320 

series (a3, b3 and c3).321 

322 

3.2. Identification of hubs 323 

After the preliminary study of probability distributions has been carried out, a 324 

pointwise study of    and    concentrations and temperature is undertaken 325 

here. Figure 4 depicts a comparison between the hubs computed by applying 326 

the VG on the unvaried time series and those of the inverted one. Now only one 327 

real time series is shown, because the actual interest here is to observe the 328 

differences between UDVG and regular VG when detecting the singular 329 

extremes. In this case, only one month (July) from the ozone concentration time 330 

series was chosen for the sake of clarity (see Figure 4a). This month was 331 

chosen because, in this location, July is the period of the year were the most 332 
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severe episodes of ozone pollution occur. In the next two figures (Figure 4b and 333 

c), the normalized betweenness and degree values are shown for both 334 

networks (blue is for the original VG, while red for the UDVG). Only these two 335 

centrality parameters were chosen in this case because they have clearer 336 

signals. The three centrality parameters presented in the methodology section 337 

of this work will be used in later discussions. 338 

It can be regarded in Figure 4 the fact that both networks (the regular and 339 

inverted one) are able to identify extrema in the time series in a complementary 340 

manner, as anticipated. While the regular VG hubs correspond maximal 341 

episodes of tropospheric ozone concentration (which has been already used), 342 

the UDVG obtained ones do the same with minima of the concentration. These 343 

latter correspond to the nighttime, when the photochemical reaction is 344 

unbalanced towards   formation in the absence of radiation. The actual 345 

physical interpretation of the different centrality parameters can be observed in 346 

the previous related work (Carmona-Cabezas et al., 2020) for the regular VG 347 

hubs. Additionally, it will be explained for the UDVG case in the last figures. 348 

Moreover, it must be noticed how the hubs from betweenness coincide with 349 

those of the degree, while the opposite case is not always true. Therefore, the 350 

first one may be a more selective approach to identify singular nodes in a 351 

signal, as it has been discussed in a previous work (Carmona-Cabezas et al., 352 

2019b). This filtering feature might be useful for the use of this technique on 353 

environmental series where the density of extrema is considerably high. 354 
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355 

Figure 4: a) Ozone concentration time series from a selected month (July). b) 356 
and c) Normalized betweenness and degree centrality values, respectively, for 357 

each point in the time series, from the two graphs studied (VG in blue and 358 

UDVG in red). The dashed lines are used to highlight the hubs positions and 359 

compare them in the three plots.360 

Once the difference between the VG and UDVG hubs has been discussed, 361 

authors propose an approach for combining the information given by both 362 

networks. The aim is to yield a more complete technique for future 363 

investigations to analyze pollutant time series. The combined parameters tested 364 

here simply consist on adding each VG centrality parameter to the opposite of 365 

the one computed using UDVG. To make it clearer, for the betweenness, 366 

degree and closeness: 367 

 

  
       

     
    

  
       

     
    

  
       

     
    

 (4) 

This transformation is useful for the identification of singularities or extreme 368 

values, considering both the minima and maxima values. It is based on the fact 369 

that when the VG maps a hub, the UDVG will not, since they are 370 
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complementary, as exposed in the Methodology section. Thus, the hubs 371 

information is not lost by this procedure, because their values will not be 372 

canceled out for the case of extremes. Consequently, it improves the 373 

differentiation between regular and singular values. This results in the derived 374 

combined degree signal being smoother and clearer than in the separated case. 375 

For the combined betweenness, there will be almost no difference in the 376 

smoothness, since the values that do not correspond to skyline hubs are 377 

practically zero in any case. 378 

For clarity reasons, the same structure as in a previous work (Carmona-379 

Cabezas et al., 2020) has been followed for the plots. Hence, the combined 380 

betweenness is computed first and from it, the five most pronounced peaks are 381 

chosen automatically. Equivalent results can be yielded by selecting a greater 382 

number of peaks, as it has been tested. A criterion for it was indicated in the 383 

mentioned previous work (Carmona-Cabezas et al., 2020). Afterwards, the 384 

remaining centrality measures were analyzed in the positions where the first 385 

peaks are located. It must be highlighted that all the plotted parameters are 386 

normalized to the maximum absolute value of each one, for the sake of 387 

comparison. 388 

In Figure 5, this explained procedure is performed using the series of 389 

tropospheric ozone previously introduced. As it is easily seen, the accordance 390 

between the different studied parameters is adequate, as it was expected. The 391 

combination of the VG and UDVG still preserve the capability to identify 392 

extrema by the different centrality parameters. The smoothest series 393 

corresponds to that of the betweenness as previously explained, followed by the 394 

degree and finally by the closeness. It is in accordance to what was observed 395 
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using the less complete method in the previous paper (Carmona-Cabezas et al., 396 

2020). It must be stressed that the order of the magnitude of the different peaks 397 

is not conserved in the different combined centrality parameters. For instance, 398 

in Figure 5c, the peak 2 is the most negative one, while in Figure 5d and Figure 399 

5e are the peaks 3 and 5 respectively. This is due to the different physical 400 

meanings of each parameter related to the concentration time series. Therefore, 401 

this should be taken in consideration if different parameters are used to 402 

compare ozone (or other pollutant) extreme concentration episodes in future 403 

studies. 404 

The first one of them is the combined betweenness (Figure 5c). In order to 405 

understand the usefulness of this parameter to the photochemical pollution, it 406 

must be pointed out that in a previous study (Carmona-Cabezas et al., 2019b) 407 

skyline hubs were related to values of the series which can give more 408 

information about its upper envelope. In short, one of the detected   409 

singularities may be considered as an unlikely high episode of ozone 410 

concentration in relation to other maxima in the same series. This means that if 411 

ozone daily maximal concentrations were raising for several consecutive days, 412 

a peak in the betweenness indicates that after this encountered, the trend is 413 

likely to change to a downwards one. Conversely, translating this to the inverted 414 

series (and the resulting UDVG), the same could be inferred about minimal 415 

night    concentrations. Environmentally speaking, a change in the tendency 416 

could be a pointer to an alteration of the previous ambient conditions that would 417 

lead to an abnormal shift in the height of the mixing layer, for instance. 418 

Therefore, the combined betweenness can serve as a more complete warning 419 

tool, pointing changes in the conditions that affect the temporal evolution of 420 
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pollutants concentration, while the previous approach would only yield insight 421 

on the upper one, limiting the analysis. 422 

Regarding the next complex network indicator, the combined degree (Figure 423 

5d), many works have been devoted to its study (Pierini et al., 2012; Zhou et al., 424 

2017). It is known that a degree hub is associated to a specially high ozone 425 

concentration episode (Carmona-Cabezas et al., 2019a). At the position where 426 

the hubs are encountered, the gas has reached a peculiarly high concentration. 427 

This condition is less restrictive, as every day it is fulfilled. As a result, the 428 

number of this type of peaks is greater, compared to the betweenness. In this 429 

case, a peak would not be necessarily associated to a change in the prior 430 

tendency of the    concentrations. When the regular VG results are combined 431 

with the UDVG, the unlikely low values of concentration can be identified as 432 

well. Again, the identification of rare concentrations of    is improved by this 433 

combination, getting at the same time the information from low and high values 434 

from one single parameter. Here, the sense of “singularity” in the ozone is 435 

referred only to its magnitude, and not to the trend of the previous and posterior 436 

days, as in the betweenness. 437 

Figure 5e) illustrates the closeness centrality results. In previous research, 438 

this quantity was mainly used for theoretical purposes. Nonetheless, it was 439 

demonstrated recently that it could identify singularities as the previous ones, 440 

but with a different criterion (Carmona-Cabezas et al., 2020). The peaks of this 441 

magnitude were related to high concentrations of ozone episodes surrounded 442 

by concave up tendency. This quantity was found to be noisier than 443 

betweenness and degree, and so it is as well here. As in the previous 444 

parameters, now the combined quantity (more specifically the negative part), 445 
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gives additionally information about the points where a minimal rare 446 

concentration value is found, surrounded by a concave down accumulation of 447 

values (the reversed shape with respect to the regular VG). In the context of 448 

photochemical pollution, it would mean that this could be used to identify daily 449 

high concentrations (during the photostationary state) that somehow drop, due 450 

for instance to unexpected atmospheric conditions. 451 

The selected minima correspond to the 6th, 11th, 20th, 23rd and 30th of July, 452 

all of them occurring between 6:00 AM and 7:00 AM (UTC+1) as could be 453 

expected. The photochemical reaction is reverted during the nighttime and most 454 

of the tropospheric ozone (  ) (produced during the previous day) is 455 

recombined with    to yield    in the absence of light. After this time, there is 456 

radiation available and its concentration has an upward trend. In the previous 457 

work, the singular high episodes between 2:00 PM and 6:00 PM (UTC+1), 458 

which corresponds to the opposite case. 459 
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 460 

Figure 5: Ozone concentration time series (a) with the combined betweenness 461 
computed from the UDVG and VG (b). Plots from c) to e) show the complex 462 

network indicators: betweenness, degree and closeness in the selected five 463 

negative peaks. 464 

The next graph (Figure 6) shows the results obtained for the nitrogen dioxide  465 

(   ) concentration time series, which as seen before, has a different minima 466 

and maxima behavior. For this study, the studied month is January as in the 467 

previous work, since in this region that is period of the year when less 468 

photochemical activity takes place. Therefore, reactions with other chemicals 469 

(such as VOCs to yield aldehydes) could play a more important role, leading to 470 

more singular extrema.  471 
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Once again, there is a good fit between the different parameters, although in 472 

this case, the combined degree is noisier and not as clear as before. This might 473 

be caused by the accumulation of low values of nitrogen dioxide (  ) 474 

concentration that make the distribution to be more asymmetric, as discussed 475 

(see Figure 3). The greater number of reactions that involve    might increase 476 

the number of singularities, being the degree noisier as a result. 477 

In this case, the selected concentrations of    are in the 7th, 12th, 18th, 27th 478 

and 31st of January, between 2:00 AM and 5:00 AM (UTC+1). Regarding the 479 

high singularities investigated in the previous work, there was no consistent 480 

time frame where it could be encountered. Also, it is well known that there is a 481 

marked difference between concentrations during weekends and weekdays 482 

(Qin, 2004), which could be another possible cause for this uncertainty. 483 
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484 

Figure 6: Nitrogen dioxide (   )  concentration time series (a) with the 485 

combined betweenness computed from the UDVG and VG (b). Plots from c) to 486 
e) show the complex network indicators: betweenness, degree and closeness in487 

the selected five negative peaks. 488 

Finally, in Figure 7 the temperature time series is studied locally as in the 489 

previous two cases. Now the selected month is October, in order to observe 490 

singular episodes of this quantity. Due to the oceanic influence, the temperature 491 

is stable throughout almost all the year. Nevertheless, it is more unstable in 492 

autumn in this area, as discussed in previous works (Dueñas et al., 2004). 493 

It is clearly seen that for temperature there is also concordance between the 494 

combined betweenness and the rest of combined centrality parameters. Now 495 

the combined degree signal has less noise than in the case of   , except for 496 
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Peak 2. This one is more difficult to identify due to the fact that there are two 497 

betweenness peaks very close to each other (see Figure 7 b). 498 

The temperature singular minima that have been selected, following the 499 

previous criterion, correspond to the 6th, 11th, 15th, 25th and 29th of October, 500 

between 5:00 AM and 8:00 AM (UTC+1). It could be easily expected, since it is 501 

the time when the minimum temperature is reached every day. Even during the 502 

days in which the temperature becomes more unpredictable (around the middle 503 

part of the month), these minima can be observed with a relatively constant 504 

frequency. 505 

506 

507 

Figure 7: Temperature time series (a) with the combined betweenness 508 

computed from the UDVG and VG (b). Plots from c) to e) show the complex 509 
network indicators: betweenness, degree and closeness in the selected five 510 

negative peaks.511 
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4. CONCLUSIONS 512 

An improvement of a singularity detection technique is tested for its 513 

application on photochemical time series in this manuscript. It adds the 514 

possibility of describing singular minima and maximal singular values at the 515 

same time, making it a more complete tool. Authors believe that it may have a 516 

great potential for monitoring and analyzing pollutant and atmospheric time 517 

series in the future. 518 

The degree distributions obtained have been compared, proving that UDVG 519 

inherits the nature of the original    ,    and temperature time series. 520 

Moreover, different theoretical series have been tested, proving the suitability of 521 

both VG and UDVG. It has been found that those distribution are coincident for 522 

tropospheric ozone (  ) and temperature, while they are not for the nitrogen 523 

dioxide (   ). Their disparity has been related to the greater number of 524 

reactions that involve    , such us its interaction with VOCs to yield aldehydes. 525 

This must be investigated more in detail in a future study, applying different 526 

complex networks tools developed to series of    , VOCs and    at the same 527 

time.  528 

Furthermore, the usefulness of UDVG for singular minima detection has 529 

been successfully proven on the    ,    and temperature series.  The 530 

combination of VG and UDVG parameters (degree, betweenness and 531 

closeness) is proposed as a more exhaustive method, compared to only 532 

employing VG. Due to their complementary nature, these combinations store 533 

the original information of the most central nodes, showing all the relevant 534 

information at a glance. To authors’ mind, this can widen the range of the 535 
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research applications of complex networks for photochemical pollution in a 536 

future. 537 

538 
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HIGHLIGHTS 1 

- Detection of singularities using graphs is improved by taking the inverted 2 

series. 3 

- Maxima and minima of pollutant series are identified by VG and UDVG 4 

respectively. 5 

- Asymmetries in the distribution of    might be caused by reaction with VOCs. 6 

-   singularity identification is more difficult due to its more complex 7 

dynamics. 8 

- A more complete analysis tool is obtained by combining both approaches. 9 
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