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Abstract: Monitoring snowmelt dynamics in mountains is crucial to understand water releases
downstream. Sentinel-1 (S-1) synthetic-aperture radar (SAR) has become one of the most widely used
techniques to achieve this aim due to its high frequency of acquisitions and all-weather capability.
This work aims to understand the possibilities of S-1 SAR imagery to capture snowmelt dynamics
and related changes in streamflow response in semi-arid mountains. The results proved that S-1
SAR imagery was able not only to capture the final spring melting but also all melting cycles that
commonly appear throughout the year in these types of environments. The general change detection
approach to identify wet snow was adapted for these regions using as reference the average S-1 SAR
image from the previous summer, and a threshold of −3.00 dB, which has been assessed using Landsat
images as reference dataset obtaining a general accuracy of 0.79. In addition, four different types
of melting-runoff onsets depending on physical snow condition were identified. When translating
that at the catchment scale, distributed melting-runoff onset maps were defined to better understand
the spatiotemporal evolution of melting dynamics. Finally, a linear connection between melting
dynamics and streamflow was found for long-lasting melting cycles, with a determination coefficient
(R2) ranging from 0.62 to 0.83 and an average delay between the melting onset and streamflow peak
of about 21 days.

Keywords: wet snow; Sentinel-1; C-band; synthetic-aperture radar (SAR); Mediterranean mountains;
semi-arid regions; streamflow dynamics

1. Introduction

Mountains are considered “water towers” since they provide water for both ecosys-
tems and anthropogenic demands in downstream areas [1–3]. In Mediterranean mountains,
this role becomes more important since melting water from the snowpack can constitute the
main water resource for human consumption, agriculture, and hydroelectric production [1].
The variability of the Mediterranean climate enhances the complexity of snow dynamics
over these mountain regions [2]. The mild winter temperatures in combination with the
long, dry sunny period result in the following outcomes: (i) a highly variable snowpack,
in both time and space, with the presence of several accumulation and melting cycles during
the snow season [3]; (ii) shallow snowpacks with a characteristically patchy distribution [4];
(iii) a high snowpack density [5]; and (iv) a non-negligible evaposublimation flux from the
snowpack to the atmosphere [6]. These peculiar snow dynamics conditions the seasonality
of the streamflow response in the headwater catchments [2,5]. Therefore, it is key for a
deep understanding of accumulation and melting dynamics of snowpack which allows
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changes in downstream streamflow to be foreseen, and consequently, changes in the water
resources availability [7,8].

The physics of snow dynamics have been widely studied [9–11]. In snowpack, during
the accumulation phase, snow water equivalent (SWE) increases, net energy inputs keep
mainly negative, and the average snowpack temperature decreases [12,13]. When these
energy inputs become positive, due to external forcing, for instance radiation, the snow
turns into wet snow and the melting phase begins [14,15]. This melting period can be
generally separated in three phases [11]: (i) moistening, (ii) ripening, and (iii) melting
runoff. Traditionally, in situ monitoring has been the principal tool used for observing
and, therefore, understanding snow dynamics [16]. However, the intrinsic limitations
of accessibility, measurement representativeness, and area coverage have made remote
sensing one of the techniques extensively used for snow monitoring [10,11,17–20]. Optical
sensors have been widely exploited to derive snow cover maps [8,13,18,20–23], as well as
to compute snow albedo [24–26] and grain size [27]. The revisiting time of some days in
the case of high resolution imagery, and the presence of clouds are the main limitation for
these sensors in the case of snow monitoring [28,29]. Terrestrial photography, which also
works in the optical range of the electromagnetic spectrum, has been widely used to solve
some of these issues, for instance, for retrieving snow cover fraction [30,31], snow depth [3],
and snow roughness [32,33]. Active microwave sensors, which due to the fact that longer
wavelengths are able to penetrate the cloud cover, have been exploited to gain information
on the snowpack status, for example, wet/dry conditions [34,35], snow depth [36], and
SWE [37]. In these cases, some drawbacks remain related to the limited interaction of the
SAR signal with snowpack, especially in dry conditions [34]. Other authors have also
studied snow variables such as snow cover fraction [38], SWE [39], or albedo [40] by using
microwave passive sensors instead of active ones. The coarse spatial resolution is the main
drawback of these sensors when analyzing snow properties in mountain areas [41].

More specifically, microwave sensors are able to detect the presence of liquid water in
the snow cover. This existence of liquid water generates high dielectric losses that provoke
a significant reduction in radar backscatter [42]. Recent studies have shown that these
losses are more significant and detectable in cross-polarized VH [43,44]. Moreover, in [43],
it is concluded that minimum SAR backscattering is reached at the end of the ripening
phase, or in other words, at the beginning of the melting-runoff phase. At that moment,
all liquid water content is held in the snowpack and starts to be released. From this onset,
a monotonic increase in the backscattering is found until the snowpack is melted [45].
Active sensors are commonly used in local scale application. In particular, the new Sentinel-
1 (S-1) SAR constellation, which has a dual polarization capability, very short revisit times,
high spatial resolution, rapid product delivery, has open access for all imagery [46], and
has become the most common source used in different applications that exploit wet snow
information [19,47–49].

From a water resources perspective, finding a relationship between this onset and the
streamflow response can help forecast streamflow behavior due to runoff melting [50,51].
In fact, the actual warming situation is altering this timing and increasing the need of a
correct representation of this onset [52,53]. However, the paths followed by runoff melting
water for reaching the stream are multiple and difficult to differentiate [54]. In general,
runoff melting water after leaving the snowpack arrives at the upper part of the soil [55].
From there, meltwater infiltrates the soil and/or accumulates to form a saturated zone at
the base of the snowpack, moving toward a surface-water body following different paths
that are conditioned by soil characteristics [56]. If soil is unsaturated and the water table is
low, the water Infiltrates and moves stream ward as a subsurface flow. On the contrary, if
the soil is close to the saturation state, meltwater accumulates to form a basal-saturated
zone that develops within the snowpack through which water flows toward the stream [11].
One can therefore conclude that melting dynamics are directly linked to the baseflow
response of the catchment [57].



Remote Sens. 2023, 15, 5365 3 of 32

Few studies have connected the dynamics of wet snow and its impact on water
availability [58]. In addition, most of them were carried out in environments where
the snowpack normally is well consolidated during the winter. That is, the snowpack
has thick depths and generally a unique snowmelt cycle during the springtime. On the
contrary, Mediterranean mountains, located in semi-arid regions, are unlikely to have
just one accumulation–melting cycle and suffer such slow transitions [2,4,5,59]. Indeed,
in these areas, the main characteristics are generally quicker snowpack changes, several
melting cycles throughout the year, and perhaps the loss of some of the three theoretical
melting phases due to this quick response [3,60]. This higher Mediterranean frequency
of accumulation–melting events will have a different characterization compared to those
previously analyzed in other temperate regions, such as the Alps [35,43,61]. Therefore,
there is still a gap when analyzing wet-snow dynamics in semi-arid regions. There is
the need for a deeper understanding of wet-snow dynamics that assesses if the outcomes
found in other regions for the spring melting are reproducible in the rest of the melting
cycles which occur throughout the snow season. Therefore, the main objective of this study
is twofold: first to explore the capability of C-band S-1 SAR imagery to capture multi-
seasonal wet-snow dynamics over Mediterranean mountain areas and second, to apply a
hydrological approach to assess the connection between these wet-snow dynamics and
streamflow response. In this work, the main innovative parts are (i) the use of terrestrial
photography in combination with multitemporal S-1 SAR imagery to understand SAR
backscattering at the plot scale; (ii) the use of S1-SAR imagery to monitor the full snow
season, thus highlighting different melting cycles; (iii) the use of S1-SAR imagery to foresee
changes in streamflow dynamics at catchment scale. The Sierra Nevada mountain range
(southern Spain) is selected as a pilot Mediterranean mountain area to carry out this study.

The paper is structured into five remaining sections. Section 2 presents the test sites
at a local and catchment scale. It also includes the meteorological data available as well
as the remote sensing information used. In Section 3, we present the different steps of the
proposed approach to detect Wet-snow conditions and the definition of melting cycles.
The results are rendered in Section 4, focusing on local and catchment scales. In Section 5,
we discuss the main results. Finally, Section 6 draws the conclusions of this work by
providing information on how the proposed methodology can be extended to other semi-
arid mountains.

2. Study Site and Available Data
2.1. The Sierra Nevada Mountain Range

The Sierra Nevada mountain range (southern Spain, Figure 1a) is the southernmost
mountain range in Europe, with elevations that reach 3479 m a.s.l. and this is only overcome
by the European Alps. It covers approximately 80 km long in the East–West direction and
27 km wide in the North–South direction (Figure 1b). Alpine and Mediterranean climates
coexist in the range. The alpine climate of high altitudes is modified by the proximity to
the seacoast together with an abrupt topography, high radiation rates, and low relative
humidity. The precipitation regime is highly variable, with annual precipitation values
that can vary from dry years, with 200 mm of total precipitation, to wet years, with almost
1000 mm [2]. Regarding temperature, the annual mean daily temperature in the area
is about 12.6 ◦C, with minimum daily temperatures staying above freezing from April
to November [62]. Snow in the range frequently appears above 2000 m a.s.l. between
October and May. Mediterranean boundary conditions deeply affect snow characteristics,
remarkably so in the southern face of the range. Among these characteristics, the shallow
and high-density snowpacks [63], the high evaposublimation rates [6], and the appearance
of more than one accumulation–melting cycle during the snow season [3] are the ones
that stand out the most. Streamflow in the downstream catchments is highly conditioned
by these snow dynamics. Streamflow usually has several peaks linked to each one of the
accumulation–melting cycles.
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Figure 1. (a) Location of the Sierra Nevada within Spain; (b) relief of the Sierra Nevada mountain
range with the location of the two study sites: Refugio Poqueira (yellow cross) and Poqueira Alto
Catchment (blue polygon); (c) zoom of the target areas.

Low, creeping vegetation and shrubs are the main vegetation in the area, particularly at
upper altitudes. The Hormathophylla spinosa, the Genista versicolor, and the Festuca clementei
are the most common shrub types in the mountain range. Forestry high vegetation such as
pine trees is not very common and can be found only in some reforested isolated pieces
of land. All these physical and specific characteristics make the Sierra Nevada one of the
most important centers of biodiversity in the Mediterranean regions. Thus, this region was
declared UNESCO Biosphere Reserve in 1986, Natural Park in 1989, and National Park
in 1999.

Within the Sierra Nevada mountain range, this study was carried out with two differ-
ent scales by using two study sites:

− Plot scale—The Refugio Poqueira experimental site (Figure 1c, yellow cross). This
area was selected to understand the connection between backscatter signals and snow
dynamics. It is located at 2500 m a.s.l. and has been highly monitored since 2004,
focusing on the microscale effects of snow ablation in Mediterranean mountains. The
experimental site is equipped with a complete weather station (Table 1);

− Catchment scale—The Poqueira Alto catchment (Figure 1c). This catchment was
selected as a study site to connect wet-snow dynamics with streamflow response. It is
a small catchment (54.91 km2) corresponding to the headwaters of the Poqueira River.
With a mean elevation of 2513 m a.s.l., its hydrological response is totally driven by
snow dynamics (Table 1).

Table 1. Summary of the selected characteristics of each region (see Figure 1) in the study area (SN),
together with climate variables during the reference period 2016–2019.

Variable Refugio Poqueira (A1) Poqueira Alto (A2)

Area 30 × 30 (m2) 54.9 (km2)
Average altitude (m a.s.l.) 2500 2513

T mean (◦C)
(max/mean/min) 21.8/6.95/−9.55 12.89/7.018/0.91

Tdaily max (◦C)
(max/mean/min) 24.522/9.375/−6.36 17.61/10.54/3.86

Tdaily min (◦C)
(max/mean/min) 19.287/4.34/−11.46 8.697/4.03/0.00

Precipitation (mm)
2016–2017: 704
2017–2018: 745
2018–2019: 587

2016–2017: 785
2017–2018: 937
2018–2019: 690

Snowfall (mm)
2016–2017: 394
2017–2018: 384
2018–2019: 244

2016–2017: 438
2017–2018: 544
2018–2019: 358
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2.2. Available Data

This study was carried out for 4 hydrological years, from 2016–2017 to 2019–2020.
The 3 first years were used to understand wet-snow dynamics and their connection to
streamflow. The last year was used as an evaluation year to test our findings. Three data
sources have been used in this study: meteorological information, remote sensing imagery,
and streamflow simulations.

2.2.1. Meteorological Information

Records from the Refugio Poqueria weather station (PG2, [64]) were used in the study
at the plot scale. This weather station is equipped with different sensors that generate 5 min
data records pertaining to precipitation, solar radiation, long-wave radiation, wind velocity,
temperature, air humidity, and atmospheric pressure. Data aggregated on a daily scale
were used in this study.

At the catchment scale, meteorological daily information from the three nearest
weather stations (Figure 1, small blue dots) has been interpolated by spatial algorithms that
consider topographic effects and aggregated at the catchment scale. Specific spatial interpo-
lation algorithms for each of the available variables were used [65]. Precipitation-elevation
linear gradients have been locally defined for each variable (i.e., precipitation, temperature,
and radiation) by using historical datasets and a least square error method. Thereafter, the
residuals were calculated by using linear gradients. The square inverse distance weighting
(IDW2) was used for interpolation by using the three closest stations and added to the
theoretical value calculated using the linear gradient [65–67]. This data has been used for
computing average meteorological information at the catchment scale.

2.2.2. Proximal and Remote Sensing Observations

• Terrestrial photography

Terrestrial photography from a camera, a CC640 Campbell Scientific, installed at the
Refugio Poqueira weather station, was used in this study at the plot scale to improve the
understanding of wet-snow dynamics. The images acquired by the camera cover an area
of about 30 m × 30 m (equivalent to the spatial resolution of the Landsat TM sensors).
The camera takes 5 pictures a day, every 2 h from 8:00 AM to 16:00 PM, with a resolution
of 640 × 504 pixels. Following the methodology proposed by [3], snow cover area (SCA)
time series were derived and used in this study. Automatic inspection was carried out to
remove those images of bad quality due, for instance, to cloud cover, fog, or rain.

• Sentinel-1 SAR imagery

The S-1 two-satellite constellation was used in this study. It can collect C-band SAR
imagery with different polarizations and pixel resolutions with a revisit time of 6 days.
In our analysis, the interferometric wide swath mode was used with a 3.5 m × 22 m
resolution. The Sierra Nevada mountains are covered by two specific satellite orbits: orbit 1
in the afternoon and orbit 81 in the morning. These orbits result in a local incidence angle
range of approximately 35◦ (in the afternoon) and 36◦ (in the morning). This range is crucial
because it falls within the threshold where backscatter signals, specifically the co-polarized
and cross-polarized backscatter (VV and VH), exhibiting optimum results according to
both backscatter data and theoretical considerations [68,69]. This study has focused on the
afternoon images as they offer a clearer identification of the snowmelt phases while the
morning acquisitions can be affected by a melt-freeze component. The local acquisition
time is approximately 18:10 GMT+1. In total, 30 scenes in the 2016–2017 period, 51 scenes
in the 2017–2018, 42 scenes in the 2018–2019 period, and 49 scenes for the last year were
processed and analyzed.

• Optical MODIS data: MOD10A2 Snow product

The MOD10A2 version 006 product was used to assess snow dynamics at the catch-
ment scale. This product has an 8-day composite and 500 m × 500 m spatial resolution.
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This MODIS product was selected because it offers the possibility of a long and consistent
time series. Despite the spatial resolution being coarser than other optical sensors, for
instance Sentinel 2 or Landsat, using the MOD10A2 guarantees the availability snow cover
information every 8 days. This temporal resolution is close to the 6 days revisiting time
of S1-SAR. A total of 156 scenes were employed in the study period from 2016 to 2020.
Furthermore, the MODIS snow products have undergone comprehensive global validation,
achieving an overall accuracy of 94.2% when MODIS daily snow products were compared
to ground data [70,71]. Studies conducted in mountainous regions, such as those by [72,73],
suggest that the accuracy levels are not influenced by land cover or topography. Instead,
the errors tend to be higher in winter compared to spring and summer periods.

2.2.3. Streamflow Data

Simulated streamflow data from WiMMed (Watershed Integrated Model for Mediter-
ranean Environments) were used [67]. WiMMed distributed a physically-based model that
is composed of several modules. Among them, the snow module (SnowMed) uses a punc-
tual mass and energy balance extended to a distributed scale using depletion curves [3].
Actual evapotranspiration is calculated using Penman–Monteith PE formulation [74,75],
whereas infiltration is estimated using the Green and Ampt [76] approach in a two-layer
soil discretization. Groundwater modeling is based on a two-stage linear model, one
being the slow aquifer response and the other the fast aquifer response which will have
a faster impact on flow [77]. The model was designed and developed especially for arid
Mediterranean environments. Specifically, it was calibrated and validated in Sierra Nevada.
The statistical results obtained after comparison of the model and the measured flow values
were a Pearson correlation coefficient of 0.84, a Kling Gupta Efficiency (KGE) of 0.59 for
the daily flow values, and an average absolute bias in the daily discharge of the river of
1.9 m3/s [78]. WiMMed simulates the different streamflow components. In this study, we
used baseflow due to its connection to melting dynamics. In addition, snow simulations
were used to characterize SWE values over certain targeted periods.

3. Methodology

The methodology used is composed of two main parts: (i) definition of snowpack
wet-snow dynamics and (ii) assessment of hydrological implication of wet-snow dynamics.
The identification of melting cycles was used as a first step to determine the periods of
time when snow can significantly impact streamflow. The overall flow of the procedure is
illustrated in Figure 2.
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3.1. Definition of Snowpack Wet-Snow Dynamics

A preprocessing of SAR and optical imagery was carried out to define wet snow
(Section 3.1.1) and snow cover (Section 3.1.2) dynamics, respectively. Both inputs were
combined to identify snow melting cycles (Section 3.1.3). Once melting cycles were defined,
runoff melting onset definition was performed (Section 3.1.4). The snowpack runoff melting
onset was calculated at two scales: (i) plot scale, for runoff melting onset understanding
and (ii) catchment scale, for runoff melting onset maps definition (Figure 2).

3.1.1. SAR Processing

In this study, we followed the change detection approach by Nagler and Rott [34,79,80]
to differentiate wet snow phases within the snowpack. The SAR intensity signal depends
on the following parameters: (i) the sensor characteristics; (ii) the snowpack properties;
and (iii) the ground properties. The interaction of the SAR signal with the snowpack is
determined by the presence of water particles in the snowpack. As moisture increases,
the SAR backscattering reduces in intensity since part of it is absorbed by the water
particles [43,80,81]. The followed approach foresees the use of two images (i) a reference
image acquired during snow-free or dry conditions [19,34,47,80,82]; and (ii) an image of
the period of interest, such as the melting season. The difference of the two images allows
the detection of main changes such as those related to wet snow presence and reduces the
influence of other factors such as the topography. In this direction, the two images need
to be acquired with the same geometry [83]. The methodology can be described in three
main steps: (i) SAR image preprocessing; (ii) reference image selection; and (iii) wet-snow
threshold definition.

• SAR image preprocessing

The time serial S-1 SAR images were processed to obtain the operable ortho-corrected
product with a pixel size about 10 m × 10 m [84]. We use the Google Earth Engine platform,
which included the S-1 Toolbox to preprocess the “COPERNICUS/S1 GRD” collection.
In particular, the interferometric wide swath (IW) with polarization VH was chosen. The
cross-polarization VH was selected because it is highly sensitivity to changes in water
content and therefore sensitive to wet snow within in the snowpack [43,44,85]. The pre-
processing applied in GEE consists of (i) GRD border noise removal, (ii) thermal noise
removal, (iii) radiometric calibration, and (iv) terrain correction. Moreover, a threshold
filter of −25 dB was applied to consider the noise floor of the sensors [86,87]. Additionally,
areas in layover and shadow considering the local incidence angle (LIA) for each pixel
were masked [88]. SAR images were resampled to 30 m × 30 m using areal interpolation.
This resolution was considered optimal for snow studies over this area [3]. In addition, this
spatial resolution contributes to reducing the speckle noise in S-1 SAR imagery.

• Reference image selection

The derivation of wet snow pixels in a certain area was based on a change detection
approach by comparing the image under analysis with a reference image [79,80], which was
acquired with the same geometry on a date where the areas were supposed to be covered
by dry snow or non-snow. This approach has the advantage of removing common features
of the images such as topography that can influence the backscatter signal. Therefore,
the first step was the definition of this reference image. For this reference image, two
approaches have been used, either using images where it is certain that the snow is dry,
for example in the month of January, or images where there is no snow such as July or
August [34,79,80,89,90]. This is due to the fact that the backscattering in both cases is similar
as dry snow is transparent for a C-band signal [48,91,92]. Therefore, it was important to
objectively define our period of reference. A sensitivity analysis was carried out to identify
the best period for the reference images [93]. Indeed, the characteristics of the snow in this
Mediterranean area, with several accumulation–ablation cycles throughout the year and
in general quick melting processes, makes it difficult to select a dry-snow winter image.
Therefore, we selected several summer images in four combinations: (1) the average value
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of all the summer months of the subsequent year; (2) the average value of only the images
that have 15 previous days without rain of all the summer months of the subsequent year;
(3) the average value of all the summer months of the previous year; and (4) the average
value of only the images that have 15 previous days without rain of all the summer months
of the previous year.

The results of the sensitivity analysis indicated that no big differences were found be-
tween the four options tested when selecting reference imagery (Figure A1, see Appendix A).
When analyzing them in pairs, the average difference was 0.34 dB, ranging from 0.33 to
0.36 dB. Finally, we decided to select the average value of the previous summer as reference
dataset. There were two reasons: its calculation simplicity and the fact that this constitutes
antecedent information to the analyzed snow season and therefore can be used in near
real-time applications.

• Wet-snow threshold definition

Once the difference image (∆σ) is derived, the threshold to identify Wet-snow condi-
tions needs to be fixed. Thresholds in the range from −2 to −3 dB have been previously
applied [34,94]. However, the particularities of Mediterranean mountain landscapes and
seasonal behavior require a re-testing of the threshold in order to analyze dry and wet snow
in these areas and to compare the results with other study areas. make this threshold diffi-
cult to verify. This wet-snow threshold was obtained by evaluating the two distributions of
wet snow and dry/non-snow pixel values and identifying where they overlapped [80,90,95].
This overlapping defines the minimum threshold value to identify whether a pixel is dry
or wet.

In our case, more than 2500 pixels of the area of the Sierra Nevada were chosen as
regions of interest and their statistics were calculated to finally obtain this threshold value.
Different dates were chosen from several years. This allowed us to consider more than one
type of snow conditions and more than one season, making the results more robust. The
selected scenes correspond to the following dates: (i) 5 December 2016 (ii) 5 March 2017,
(iii) 16 February 2018, (iv) 28 February 2018, (v) 12 April 2019, and (vi) 24 April 2019. Thresh-
old values varied from −2.20 dB to −3.88 dB for the different selected images, as can be
seen in Figure A2 (see Appendix A). Average values indicate a threshold value of −2.83 dB.
Based on this result and for reasons of simplicity, we have used a −3.00 dB threshold.

• Cross-Evaluation

To evaluate the accuracy of the retrieved wet snow maps, we followed the methodol-
ogy proposed by [34]. This approach uses snow cover maps derived from Landsat, which
have been commonly employed as benchmarks for assessing snow maps across different
sensors [96]. The method assumes that on dates in which all snow is wet, both maps should
coincide. To assure this hypothesis, we have chosen for the comparison late dates during
the long-lasting spring melting cycle. In this way, a uniform warming of the snowpack
without it undergoing cooling processes in the higher layers is guaranteed. Seven dates
were chosen according to the coincidence within a 2-day time window, ensuring the avail-
ability of both datasets: (i) 5 March 2017, (ii) 17 March 2017, (iii) 10 April 2017, (iv) 17 April
2018, (v) 11 May 2018, (vi) 6 May 2019, and (vii) 18 June 2019.

In this comparison, an elevation threshold was applied to wet snow maps to remove
single outlier pixels at low elevation. This threshold corresponded to the snow line, which
was defined for each wet snow map as the elevation when a significant change was observed
in the normalized elevation histogram of the image. Binary Landsat snow cover maps were
generated using the methodology proposed in [4] for the study area and assuming that
a pixel was covered by snow if the percentage was greater than 0.75 [34]. A distributed
analysis was carried out obtaining a general accuracy of 0.79 (Table A1, see Appendix A).

• Optical snow cover extension discrimination

The MOD10A2 version 006 product is used to discriminate snow cover extension. This
product provides information on the snow cover extent based on the NDSI (Normalized
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Difference Snow Index) value with a 500 m × 500 m ground resolution. A pixel is considered
a snow pixel if its NDSI value is above zero [22,97,98]. Snow cover extension maps were also
resampled at 30 m × 30 m using, in this case, a nearest neighbor interpolation algorithm.

3.1.2. Snow Cover Dynamics Definition

Accumulation and melting phases of snow cycles throughout the study period were
defined at the two different study scales. At a local scale, terrestrial photography was used
to characterize these cycles. In addition to the fractional snow cover (FSC), these images
were used to evaluate whether it was snowing, melting, or if no-changes occurred in the
snowpack. Increasing and decreasing stages defined accumulation and melting phases,
respectively. MOD10A2 version 006 products were used to characterize snow dynamics at
the catchment scale.

3.1.3. Melting Cycles Definition

A snow-melting cycle generally has three phases: (i) moistening, (ii) ripening, and
(iii) melting runoff [11]. First, in the moistening phase, in which average snowpack tem-
perature increases until the snowpack is isothermal, the snowpack is accumulating energy
in the form of latent heat in order to be able to start melting. Second, in the ripening
phase, the actual melting begins but the meltwater is retained in the snowpack. That is, the
liquid water content of the snowpack increases, but water does not go out of the snowpack.
Third, in the melting-runoff phase, further energy inputs produce a water output from the
snowpack. From that time onwards, water follows its path until reaching the streamflow.

Wet-snow conditions can be detected by using SAR imagery and therefore relate these
states with melting phases in the snowpack. For that, over the ∆σ signal, we defined a pixel
as a wet snow pixel if it has a value lower than −3.00 dB (see Section 3.1.1). In each melting
cycle, we defined the Local Minima (LMs) of the ∆σ time series as possible melting-runoff
onsets [43]. More than one LMs can be identified in the same melting cycle depending on
the aging process of the snowpack (i.e., snowpack refreezing, rain on snow events).

At a catchment scale, individual pixels’ LMs were aggregated. That is, for each date,
the total number of pixels with LMs in the catchment was calculated (ΣLM). The time
series of this ΣLM defines the potential area of the catchment contributing to the melting
runoff in each date. A larger number of ΣLM implies larger snow contributing areas to the
melting runoff. The melting cycles were defined combining the ΣLM time series with the
FSC time series (see Section 3.1.2). A melting cycle was defined if there was an increase
in the number of pixels with ΣLM and FSC was maintained or decreased (Figure 3). That
is, the existence of large amounts of minima during a date with significant loss of snow
area confirm the possible contributions of water to the system. Then, for each melting cycle
the absolute LM within the melting cycle was identified. This LM will provide the actual
melting runoff onset for each pixel in this cycle, which is the Local Minima onset (LMo).
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3.1.4. Identification of the Relationship between Snowpack Melting and Runoff Onset

• Local Scale Runoff onset interpretation

On a local scale, we identified the onset of melting runoff when LM takes place.
We used this scale to understand the relationship between the backscattering signal, the pres-
ence of wet snow pixels, and the snow dynamics. For that, we used the meteorological
information of the Refugio Poqueira weather station and the terrestrial photography of
the area. In this process, these images were used not only to define snow dynamics, but
also to better understanding snow processes. That is, they helped relating changes in the
snowpack to changes in backscattering signals; for instance, the identification of rapid
snow melting between two consecutive SAR images, the occurrence of rain on snow events,
and the changing in snow surface roughness.

• Snowpack runoff onset maps

At the catchment scale, for each pixel of the catchment and for each one of the identified
cycles, we defined the Lmo. This date will mark the onset of the melting runoff of this
pixel [43]. At the catchment scale, we ended up with a distributed map that provides the
beginning of the melting runoff, Lmo, for each pixel in the whole catchment. To understand
the distribution of those dates over the catchment in each cycle, a combined analysis in
relation to catchment features (e.g., elevation) and variables affecting the beginning of the
melting runoff (e.g., radiation, temperature) was conducted.

3.2. Wet Snow–Streamflow Interaction

We analyzed the relationship between wet snow presence and streamflow dynamics
with the aim of assessing the potential of S-1 SAR imagery to foresee changes in streamflow.
For that, we used the concept of a depletion curve which is highly used in hydrology; for
instance, for studying the evolution of snow cover [3] and its relationship with stream-
flow [99–101] or its relationship with SWE [102]. To build these curves, we used two
variables: (1) the cumulative number of pixels contributing to melting runoff in each cycle
(ΣLMo), which represents wet-snow dynamics; and (2) the cumulative baseflow, which rep-
resents streamflow dynamics. Baseflow is used since it is the component of the streamflow
that is more influenced by the melting dynamics. To make the depletion curve between
cycles comparable, we dimensionless the target variables by their maximum value in each
of the analyzed melting cycles.

4. Results
4.1. Definition of Snowpack Wet-Snow Dynamics
4.1.1. Local Scale: Backscatter Signal Understanding

On a local scale, the connection between the SAR backscattering signal and snow
dynamics was explored during the three hydrological years: 2016–2017, 2017–2018, and
2018–2019. Meteorological information and terrestrial photography at the Refugio Poqueira
weather station were used in this process. Annual snowfall values varied between years,
with 394 mm, 384 mm, and 244 mm, respectively. Temperature patterns also changed during
years, with annual mean daily values of 7.5 ◦C, 6.1 ◦C, and 7.4 ◦C, for each hydrological
year in the study period, respectively (Figure 4a–c, upper panel). This variability implies
that the number of snow cycles also varies in each of the analyzed years. These snow
dynamics were defined by combining terrestrial photography (changes in the snowpack)
and meteorological information (snowmelt events) on a daily scale at the target area
(see Section 3.1.2). Figure 4 shows lines in the top and bottom of each gray rectangle
identifying an accumulation (blue) or melting (red) phase of each of this snow cycle
(Figure 4, gray rectangles).
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Figure 4. Temporal evolution of analyzed variables for three hydrological years: (a) 2016–2017,
(b) 2017–2018, (c) 2018–2019. For each year: (i) the upper panel shows precipitation (blue bars) and
snowfalls (gray bars) evolution; (ii) the intermediate panel represents the temporal evolution of daily
temperatures, maximum (red), mean (orange) and minimum (blue); (iii) the bottom panel shows
the evolution of the difference backscattering between the reference image and the day of interest.
(red line with triangles). The circled numbers in the bottom panel represent each of the local minima
analyzed. The dashed line in the bottom panel marks the wet-snow threshold defined for the study
area. In all panels, the presence of snow in the study area is highlighted by using a gray rectangle;
lines in the top and bottom of this rectangle identify an accumulation (blue) or melting (red) phase.
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In 2016–2017 (Figure 4a), six LMs were identified, four in the first melting cycle, one
in the second cycle, and another one in the third. LM1 (−4.11 dB) was found in the third
week of November corresponding to the beginning of the snow season. At this stage,
the energy exchange between the snowpack and the ground increased the liquid water
content of the snowpack, reaching this local minimum in the ∆σ signal. Water content
highly increased in LM2 (−8.83 dB), 5 December, with the lower ∆σ value of the year. This
LM was preceded by a significant snowfall period, which was followed by a rain-on-snow
event and an increment of the temperature that increased the water content again. The
coolest period occurred after that, which made the snowpack to dry out. A significant
increase in temperatures provoked LM3 (−3.62 dB) in the second week of December. Again,
a cool period stabilized the signal until the combination of precipitation and increasing
temperatures generated LM4 (−6.40 dB), on the 21st of February, which can be defined
as the onset of spring melting runoff. LM5 (−4.11 dB) and LM6 (−5.21 dB) corresponded
to faster melting cycles, whose shallow snowpack provoked a quick melting due to the
energy exchanges between the snowpack and the ground.

For the second analyzed year, 2017–2018 (Figure 4b), four LMs were identified, one
in the first melting cycle, one in the second cycle, and two in the third one. The first local
minimum LM1 (−4.70 dB) was found in mid-December and corresponded to a shallow
snowpack that quickly melted after a light snowfall. For the second melting cycle, liquid
water content increases in LM2 (−4.36 dB) corresponding to an increase of the temperatures.
However, the melting did not continue since the temperature dropped again. The ∆σ signal
was not able to capture the onset of the melting runoff of this cycle since it occurred in
the period between images. For the last cycle of this year, wet snow was present since
the beginning of the cycle due to higher temperatures during this period. Two LMs were
found, while the melting onset started on the 5 April, with LM3 (−11.57 dB), in which
the snowpack was cooled by a snowfall event that made the appearance of another local
minimum LM4 (−9.81 dB) that finally triggered the spring melting.

The third analyzed year, 2018–2019 (Figure 4c), was the driest of the analyzed ones.
Seven short melting cycles were identified. One LM is defined in each of them. All LMs
follow the same dynamics, quick melting after a light snowfall. The first cycle was so
quick that the ∆σ signal was not able to capture the presence of wet snow. That is, LM1
was above the wet-snow threshold of −3.00 dB. The ∆σ signal reached values of −3.63 dB
for LM2 and −7.86 dB for LM3, and the ∆σ rapidly recovered its values by the time
the snow cover disappeared. Then, between late January and February, two LMs were
identified, LM4 (−4.21 dB) and LM5 (−5.81 dB). LM6 (−5.85 dB) can be identified as an
actual spring melting runoff onset since the length of this melting cycle is the longest and
the accumulated snow was the highest of the year. Finally, the last LM occurred during
April LM7 (−5.97 dB) was triggered again by an energy exchange between the snowpack
and the ground, demonstrated by higher temperatures that heated the ground.

• Local Minima Classification

The previous analysis of ∆σ signals evolution on a local scale and the identification
of different LMs allowed for an explanation of their evolution in relation to snowpack
dynamics over these areas. Starting with the hypothesis that a LM triggers the onset of
melting runoff and the four types of melting cycles identified by [3] for the study area, four
types of LMs in the ∆σ signal were identified (Table 2 and Figure 5).

Table 2. Local scale classification of LMs based on the four LM types explained in Figure 5.

Type I Type II Type III Type IV

LM4 2016–2017 LM1, LM2, LM3,
LM5, 2016–2017 LM1 2017–2018 LM6 2016–2017

LM4 2017–2018 LM2, LM3 2017–2018 LM1, LM4 2018–2019 LM7 2018–2019
LM3, LM6 2018–2019 LM2, LM6 2018–2019
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Figure 5. Definition of four types of Local Minima (red dots) identified for a Mediterranean mountain
area. VH represents the theoretical distribution of the ∆ dB of S-1 SAR backscattering of the cross-
polarization VH. FSC represents the temporal distribution of snow cover fraction. Blue dots represent
the maximum snow cover fraction. Periods without snow or with dry snow are also specified on
the upper axis. The x-axis represents the temporal variation over a hydrological year (September–
August) of the different variables, the y-axis represents the corresponding value of the ∆ dB of S-1
SAR backscattering (left y-axis), and snow cover fraction (right y-axis).

− Local Minimum Type I: the LM is found at the end of a well-developed snowpack.
It is representative of long-lasting snow cycles, with a large amount of snow, resulting
from a long accumulation phase, and it is associated with a very compact state of
the snow with a high level of metamorphism. This LM is found in melting cycles
described by depletion curve Type I in [3];

− Local Minimum Type II: the LM is not unique in the snow cycle. It describes a quick
melting period that is stopped by another snowfall or cold period that refreezes snow.
This LM is found in melting cycles described by depletion curve Type II in [3];

− Local Minimum Type III: the LM is unique within the melting cycle, that is, before
and after this LM there is no snow. In addition, it takes place at the beginning of
the snow season, when the energy exchange between the snowpack and the ground
causes liquid water content to increase. This LM is found in melting cycles described
by depletion curve Type III in [3];

− Local Minimum Type IV: as in the previous case, the LM is singular, meaning that
there is no snow before or after this particular LM. However, in this case, the minimum
appears in sporadic snow cycles that occur during late winter or spring, and always
after the main melting cycle. The LM is connected to a melting trigger by an increase
in the temperature and incoming flux of shortwave radiation. This LM is found in
melting cycles described by depletion curve IV in [3].

4.1.2. Catchment Scale: Melting Runoff Onset Maps

The plot scale results were extrapolated at the catchment scale. The individual analysis
carried out for a single pixel was performed in each of the pixels of the selected catchment
for the 3 hydrological years analyzed (Figure 6a,b, Figure 7a,b and Figure 8a,b). First,
melting cycles were identified following the methodology proposed in Section 3.1.3. Three
melting cycles were defined for the first 2 hydrological years, while four melting cycles
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were defined in the third hydrological year analyzed (Table 3). The duration of these
cycles varied within the year (Table 3). While for the years 2016–2017 and 2017–2018, a
long-lasting spring melting cycle was identified (C-3 in each year), and in the case of last
year, 2018–2019, three were the melting cycle with longer duration (C-2, C-3 and C-4). Each
of these cycles was associated with an increasing event of baseflow in the outlet of the
catchment, which was delayed a certain number of days depending on the cycle (Figure 6c,
Figure 7c and Figure 8c). A deeper connection between streamflow and melting cycle is
analyzed in Section 4.2.

For each of these cycles, the Lmo in each pixel was identified as the melting runoff
onset over the catchment to produce individual maps of Lmo distribution (Figures 6–8,
bottom panels).

The first cycle of the year 2016–2017 (Figure 6(c-1)) showed that pixels at a low ele-
vation reached first the Lmo. These Lmos were identified as an LM Type III, that is, they
corresponded to shallow snowpack where melting takes place due to an energy exchange
between the snowpack and the ground. Pixels at high elevation were distributed without a
clear pattern along the other three dates of the cycle. In this case, the melting took place as
a consequence of an increase in temperature and radiation (Figure A5, see Appendix A).
The Lmo map for the second melting cycle of this year (Figure 6(c-2)) took place during the
winter months. Therefore, the colder temperature during this month reduced the number of
wet snow pixels during this cycle (non-white pixels in the Lmo maps). Again, the pixels at
a lower elevation were those which contributed first to the melting runoff. These LMs were
classified also as LM Type III. It is interesting to highlight that some pixels at high elevation
also reached their Lmo at the beginning of the melting cycle. This Lmo was classified as
Type II, that is, the LM is reached just after the snowfall, but the melting process stopped by
a colder temperature that refreezes the liquid water in the snowpack. Finally, the third cycle
(Figure 6(c-3)) showed the expected behavior of a spring melting cycle with a clear increase
in radiation and temperature during the melting cycle (Figure A5, see Appendix A). The
Lmo was delayed with elevation, and the later the Lmo took place the higher its location
was. All Lmos in this cycle corresponded to LM Type I.

The behavior of the melting cycles of the hydrological year 2017–2018 differed from
those described for 2016–2017. In this case, three complete snow cycles took place, that
is, snow completely disappeared after each of them. Snowfall took place at the beginning
of each cycle followed by an increasing pattern in radiation and temperature that favored
the melting (Figure A5, see Appendix A). Just small isolated snow patches remained at
high elevation during C-1 and C-2. The three Lmo maps showed a direct correlation
between Lmo date and elevation. C-1 (Figure 7(c-1)) and C-2 (Figure 7(c-2)) took place at
the beginning of the winter. The relatively small snowfall in these cycles is about 30 mm
(Table 3), and the mild temperatures, from 0 ◦C to 7.5 ◦C, produced shallow snowpacks
that quickly melted. Lmos for pixels at low elevation followed the typology of LM Type III.
On the contrary, Lmos at high elevation were better characterized as LM Type I. The third
cycle (Figure 7(c-3)) clearly followed the common patterns of a spring melting cycle. It is
interesting to highlight that the snow accumulated in this melting cycle occurred in two
separate events. The first took place in the whole catchment while the second was just at
higher elevation. Therefore, Lmos at low elevation corresponded to the snowpack of the
first snowfall event, while Lmos at high elevation corresponded to snowpack accumulated
from both snowfall events. Therefore, we can say that Lmo and low elevation corresponded
to LM Type III and LM at higher elevation to LM Type I. Isolated pixels at higher elevation
show the Lmo corresponding to initial dates and therefore they can be classified as LM
Type II (orange pixels at high elevation).
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Figure 6. Evolution of (a) snow cover area (grey line) and the partitioning of this area between wet
snow (red line) and dry snow (blue line); (b) snow area contributing to melting runoff; (c) other
hydrological variables of interest: precipitation (blue bars), snowfall (gray bars), streamflow (blue
line), and baseflow (gray line) for the hydrological year 2016–2017. Lines at the top and bottom of
every panel identify an accumulation (blue) or melting (red) phase based on the MOD10A2 product.
In all these panels, the different melting cycles are highlighted by using a blue rectangle. (c-1,c-2 and
c-3) Maps of dates when different areas of the catchment are contributing to the melting runoff, for
the three identified melting cycles of this hydrological year: dates with local minimum (colors in
color bar), dates without a local minimum (white), areas with no snow (dark green), areas with S-1
shadowing and layovers (black).
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Figure 7. Evolution of (a) snow cover area (grey line) and the partitioning of this area between wet
snow (red line) and dry snow (blue line); (b) snow area contributing to melting runoff; (c) other
hydrological variables of interest: precipitation (blue bars), snowfall (gray bars), streamflow (blue
line), and baseflow (gray line) for the hydrological year 2017–2018. Lines in the top and bottom of
every panel identify an accumulation (blue) or melting (red) phase based on the MOD10A2 product.
In all these panels, the different melting cycles are highlighted by using a blue rectangle. (c-1,c-2 and
c-3) Maps of dates when different areas of the catchment are contributing to the melting runoff, for
the three identified melting cycles of this hydrological year: dates with local minimum (colors in
color bar), dates without a local minimum (white), areas with no snow (dark green), areas with S-1
shadowing and layovers (black).
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snow (red line) and dry snow (blue line); (b) snow area contributing to melting runoff; (c) other
hydrological variables of interest: precipitation (blue bars), snowfall (gray bars), streamflow (blue
line), and baseflow (gray line) for the hydrological year 2018–2019. Lines in the top and bottom of
every panel identify an accumulation (blue) or melting (red) phase based on the MOD10A2 product.
In all these panels, the different melting cycles are highlighted by using a blue rectangle. (c-1,c-2,c-3
and c-4) Maps of dates when different areas of the catchment are contributing to the melting runoff,
for the three identified melting cycles of this hydrological year: dates with local minimum (colors in
color bar), dates without a local minimum (white), areas with no snow (dark green), areas with S-1
shadowing and layovers (black).
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Four melting cycles were identified in the third analyzed year 2018–2019 (Figure 8).
While the duration of these cycles was generally longer than in 2017–2018, the total snowfall
amount in each of them was much lower. That drove into shallower snowpacks than in
previous years which lasted longer due to their timing, earlier in the year, and at lower
temperatures than in 2017–2018 (Table 3). The correlation between Lmo date and elevation,
as in previous years, was also found. This general pattern was not followed by some
isolated pixels at high elevations. As in previous years, these Lmos appeared just after the
snowfall and were initially melted due to an energy exchange between old and new snow
(LM Type (ii)) that then refroze due to the snowpack cooling down.

Table 3. Summary of the characteristics (beginning date, end date, cumulative precipitation,
and cumulative snowfall) of snowmelt-accumulation events identified in each of the hydrologi-
cal year analyzed.

Melting
Cycle Beginning End Duration

(Days)
Precipitation

(mm)
Snowfall

(mm)

Average Daily
Temperature

(◦C)

Average Minimum
Daily Temperature

(◦C)

Mean
SWE
(mm)

Maximum
SWE
(mm)

2016–2017
C-1 17-11-2016 05-12-2016 18 256 159 0.5 −3.0 85.2 140.2
C-2 11-12-2016 04-01-2017 24 92 67 1.3 −2.0 85.8 125.2
C-3 09-02-2017 04-05-2017 84 233 140 3.5 −0.6 23.9 78.7

2017–2018
C-1 05-01-2018 23-01-2018 18 41 36 0.2 −4.0 14.3 26.4
C-2 29-01-2018 16-02-2018 18 32 31 2.9 −7.2 12.43 25.9
C-3 28-02-2018 09-08-2018 162 585 395 7.3 3.2 43.3 184.5

2018–2019
C-1 26-10-2018 07-11-2018 12 70 47 0.9 −3.5 14.4 34.5
C-2 13-11-2018 12-01-2019 60 139 85 3.7 0.4 13.8 52.3
C-3 30-01-2019 19-03-2019 48 85 72 2.5 −1.4 10.7 61.4
C-4 31-03-2019 23-06-2019 120 171 104 7 2.8 5.5 43.4

4.2. Wet Snow and Streamflow Interaction

To understand better how wet-snow dynamics are connected to baseflow, a depletion
curve was drawn. Only melting cycles with a duration higher than 48 days were chosen for
this analysis, thus supporting the representativeness of the analysis having enough S1-SAR
images per analyzed cycle.

All these curves show a similar shape that can be described like a piecewise function
composed by three parts (Figure 9):

− Part 1 is represented by a linear and an almost horizontal function. Here, there is a
high increase in the number of wet snow pixels with almost no change in baseflow
response. Hence, this part reflects the delay observed between the beginning of the
melting period and the actual response in the river;

− Part 2 can be represented by a power function. In this case, there is an increasing
pattern in both variables, which means that both processes, the melting and the
baseflow response were occurring at the same time;

− Part 3 follows again a linear function, but in this case, with a vertical pattern. Therefore,
the behavior here is the opposite compared to Part 1, that is, we observe an increase in
baseflow with limited contribution of wet snow pixels. Then, this part represents the
time when almost no contribution from wet snow is happening but baseflow is still
contributing to the streamflow.

The black symbols over the curves verified this temporal pattern. For example, in the
blue curve that represents the 2017–2018, each of them marks the 25% (•), 50% (×), and
75% (+) of the total time of each cycle. These black symbols are almost aligned in all curves
and marks approximately for each case the beginning and end of the three parts of the
piecewise function explained above.

Moreover, and despite observing this common shape for all curves, these three defined
parts were smoothed toward a unique linear pattern when we move from right (brown
curve) to left (blue curve) in Figure 9. These differences are connected to the total amount of
snow storage during the accumulation period of each melting cycle. For the same number
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of wet snow pixels, the blue curve generates a considerably higher amount of baseflow
than the brown curve. Since S-1 SAR imagery was able to detect wet snow pixels but not
the total liquid content stored in the snowpack, the observed patterns suggested that SWE
in the blue curve was higher than in the brown one. When analyzing the maximum SWE
achieved in each of the accumulation cycles that preceded each of the observed melting
cycles, this hypothesis was verified. The blue curve had a maximum SWE of 184 mm while
the brown one reached just 43 mm (Table 3). Extending this analysis to the rest of the
cycles, we observed that the pattern is fulfilled, from left to right, for blue (184 mm), green
(78 mm), orange (61 mm), purple (52 mm), and brown (43 mm). That is, the higher the
maximum SWE achieved in the snow cycle, the more linear relationship between wet snow
pixels contributing to the runoff and baseflow is found. This pattern was also verified when
analyzing the time when the peak in baseflow was achieved for each cycle (red triangles
over each curve in Figure 10). A lower number of wet snow pixels generating runoff were
needed to achieve the maximum baseflow peak.
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represent 50% (×) of the total time of each cycle, and black plusses represent 75% (+) of the total time
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Finally, to verify our findings, we analyzed a totally independent melting cycle from a
fourth hydrological year, 2019–2020. This cycle had a duration of 78 days, from 19 March
2020 to 5 June 2020, and a maximum SWE of 50 mm. The shape followed a similar pattern
than previous melting cycles. Moreover, it had similar timing and a maximum SWE and
hence, it was placed close to the purple curve, which reached a maximum SWE of 52 mm.

The linear relationship found for long-lasting melting cycles was explored deeply to
analyze the potential of S-1 SAR imagery to foresee streamflow dynamics. Previous studies
in the area highlighted that despite the absence of aquifers in a strict sense, the highly
fractured nature of the lithology results in a highly permeable surface structure that delays
snowmelt water inflow into the river [103]. To analyze this delay, we used two variables
that can be computed in near real-time: the number of wet snow pixels, which represented
the melting dynamics, and the baseflow at the outlet of the catchment which represented
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the streamflow response. Then, for each melting cycle, we calculated this delay as the
number of days between the date when the number of wet snow pixels was maximum
and the date when maximum baseflow was achieved. A delay of 21, 13, and 30 days for
each of the three cycles was found, respectively. After applying this delay, correlation
between wet snow pixels and baseflow was computed using the determination coefficient
(R2) (Figure 10). R2 ranged between 0.62 and 0.83. Therefore, a linear relationship was
hypothesized between the variables (Figure 10). The slope of the line (baseflow/number
of wet snow pixels) indicates the speed of wet snow pixels transformed into baseflow.
Shorter melting cycles implies a lower slope, that is, a lower speed. This finding is in
line with previous results, where the maximum baseflow peak (red triangles in Figure 9)
was observed earlier in cycles with higher maximum of SWE than in those with a lower
maximum SWE.

Remote Sens. 2023, 15, x FOR PEER REVIEW 22 of 34 
 

 

 
Figure 10. Scatter plot between the number of wet pixels in the catchment (x-axis) and baseflow in 
the outlet after applying the corresponding delay for (a) Cycle C-3 2016–2017, 21 days delay; (b) 
Cycle C-3 2017–2018, 13 days delay; (c) Cycle C-3 2018–2019, 30 days delay. 

5. Discussion 
The capability of S-1 SAR imagery to improve the understanding of wet-snow dy-

namics over Mediterranean mountain areas was tested. We successfully connected melt-
ing dynamics with changes in the backscattering signal by applying the principles stated 
by [43]. On top of that, we applied this approach not only to the final spring melting but 
also along all melting cycles that commonly appear throughout the year in these types of 
environments. Despite the fact that SAR images have been used throughout the whole 
snow season for retrieving SWE [37] and snow depth [36], and for identifying rain on 
snow events [104], few studies are dedicated to relating melting-runoff dynamics to snow-
pack changes derived from the SAR signal during melting cycles [19,35,43,44,85,105]. This 
may be a consequence of the limited availability of SAR images on a regular basis, before 
the launch of S-1, and the fact that having melting cycles throughout the season is a spe-
cific characteristic of snow in semi-arid environments. Therefore, this work can be consid-
ered a pilot application of S-1 SAR images in these types of environments. We advance in 
both the assessment of the applicability of S-1 on a regular basis and the characterization 
of wet-snow dynamics in semi-arid mountain regions, such as the Sierra Nevada. 

The characteristic of snow over these environments implied some technical chal-
lenges when adapting the general methodology to retrieve wet snow from SAR imagery. 
One of these challenges was the selection of a suitable reference image to remove common 
ground features that interfere with wet snow detection. The lack of a long-lasting winter 
accumulation made it difficult to find a full, dry snow image, as are commonly used in 
other studies [19,90]. Therefore, the selection of a dry-summer image was chosen as refer-
ence. Several options were investigated following other authors [28,106]. Among them, 
we observed that the soil dryness during the summer months over our target catchments 
made almost no differences in the use of these different approaches. 

Another issue was the definition of the threshold in the Δσ signal to discriminate wet 
snow. Here, a value of −3.00 dB was chosen based on a wet–dry histogram analysis in the 
target area. This value is lower than the originally stated by [34]. However, it agrees with 
other studies in alpine regions such as Austria or Argentina [80,90]. Another example of 
the use of a similar threshold is found in the Argentinian Andes, a mountain range that 
shares more similarities with Mediterranean conditions than with Alpine snow [95]. These 
findings are also in line with the threshold defined by [107–109], where wet snow was 
successfully analyzed in very different zones such as Finland, Canada, or Pakistan. In any 
case, the definition of the threshold depends on several factors. Among these the land 
cover below the blanket and the snowpack conditions [83] and, therefore, it needs to be 
tailored for each specific application. This tailoring is especially relevant in our study area 
since; for instance, the reference images cannot be selected in winter due to the lack of 

Figure 10. Scatter plot between the number of wet pixels in the catchment (x-axis) and baseflow in
the outlet after applying the corresponding delay for (a) Cycle C-3 2016–2017, 21 days delay; (b) Cycle
C-3 2017–2018, 13 days delay; (c) Cycle C-3 2018–2019, 30 days delay.

5. Discussion

The capability of S-1 SAR imagery to improve the understanding of wet-snow dynam-
ics over Mediterranean mountain areas was tested. We successfully connected melting
dynamics with changes in the backscattering signal by applying the principles stated
by [43]. On top of that, we applied this approach not only to the final spring melting but
also along all melting cycles that commonly appear throughout the year in these types of
environments. Despite the fact that SAR images have been used throughout the whole
snow season for retrieving SWE [37] and snow depth [36], and for identifying rain on snow
events [104], few studies are dedicated to relating melting-runoff dynamics to snowpack
changes derived from the SAR signal during melting cycles [19,35,43,44,85,105]. This may
be a consequence of the limited availability of SAR images on a regular basis, before the
launch of S-1, and the fact that having melting cycles throughout the season is a specific
characteristic of snow in semi-arid environments. Therefore, this work can be considered a
pilot application of S-1 SAR images in these types of environments. We advance in both
the assessment of the applicability of S-1 on a regular basis and the characterization of
wet-snow dynamics in semi-arid mountain regions, such as the Sierra Nevada.

The characteristic of snow over these environments implied some technical challenges
when adapting the general methodology to retrieve wet snow from SAR imagery. One
of these challenges was the selection of a suitable reference image to remove common
ground features that interfere with wet snow detection. The lack of a long-lasting winter
accumulation made it difficult to find a full, dry snow image, as are commonly used
in other studies [19,90]. Therefore, the selection of a dry-summer image was chosen as
reference. Several options were investigated following other authors [28,106]. Among them,
we observed that the soil dryness during the summer months over our target catchments
made almost no differences in the use of these different approaches.
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Another issue was the definition of the threshold in the ∆σ signal to discriminate wet
snow. Here, a value of −3.00 dB was chosen based on a wet–dry histogram analysis in the
target area. This value is lower than the originally stated by [34]. However, it agrees with
other studies in alpine regions such as Austria or Argentina [80,90]. Another example of
the use of a similar threshold is found in the Argentinian Andes, a mountain range that
shares more similarities with Mediterranean conditions than with Alpine snow [95]. These
findings are also in line with the threshold defined by [107–109], where wet snow was
successfully analyzed in very different zones such as Finland, Canada, or Pakistan. In any
case, the definition of the threshold depends on several factors. Among these the land cover
below the blanket and the snowpack conditions [83] and, therefore, it needs to be tailored
for each specific application. This tailoring is especially relevant in our study area since;
for instance, the reference images cannot be selected in winter due to the lack of long and
stable conditions for the dry snowpack. Therefore, the general conditions of the algorithm
changes and the selection of these thresholds need to be validated. In future steps, domain
adaptation techniques could be used to transfer these threshold between scenes acquired
under different conditions, thus supporting the generalization of the approach [110].

One limitation of our methodology is related to the presence of vegetation. The pen-
etration of the C-band SAR signal is limited and can therefore hamper the detection of
wet snow. Previous studies conducted over the European Alps with the presence of dense
vegetation related to forest coverage indicate that these areas need to be masked out in
the processing of the SAR images to detect wet snow [34,43]. In the case study of [28],
a methodology based on machine learning was developed to detect wet snow by including
not only backscattering features but also coherence and polarimetric values. In this case,
the approach was extended to all types of land cover including dense forest. However,
the authors showed that the results improved when dense forest was excluded from the
evaluation, thus indicating that this land cover class represents a strong limitation to SAR
signal [28]. In the case study in the Sierra Nevada, the presence of vegetation is limited to
sparse shrubs that can provide only a negligible effect on the evaluation of the wet snow in
the overall basin.

In addition, other drawbacks could come from conditions such as the angle of in-
cidence or the roughness of the snow; in our case, angles of incidence of 35◦–36◦ are in
close proximity to the 30◦ analyzed by [111], where the presence of snowpacks with high
surface roughness was defined as an optimal range of values for retrieving the presence
of wet snow. Likewise, in our case, the shallow snowpack and the high snow roughness
after some wind episodes visible in the terrestrial imagery support the selection of this
threshold. Regarding the presence of shadow, the use of VH polarization with a moderate
angular dependence can support the detection of wet snow on slopes [34]. Instead, the
use of ascending and descending images needs to be considered carefully as the detection
of wet snow during the descending acquisitions in the early morning. In this area, such
detection can lead to a reduced wet snow presence due to the refreezing process during
the night. However, it could be interesting to evaluate the two available orbits, which take
place during the same day at different times. In future analyses, a combination of ascending
and descending can be addressed to capture differences between morning and evening
snowpack. These daily changes are frequent in a Mediterranean mountain range like the
Sierra Nevada, especially during spring melting [43].

The use of terrestrial photography also helped for a deep interpretation of the ∆σ signal
at a local scale. We were able to identify four types of LMs that triggered snowmelt onset
based on the classification proposed by [3]. These LMs had different values depending on
their timing throughout the year. This confirms the heterogeneity of the area, which can
have different snowfalls events throughout the year, which ends up implying that we do not
always have the minimum ∆σ values in the long-lasting spring melting cycles. In addition,
this terrestrial imagery also constitutes an independent source of information to indirectly
validate the methodology proposed. The use of alternative microwave datasets could also
be evaluated, even though actually there are some limitations. The datasets based on passive
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microwaves such as ESA CCI-SWE are of a coarse resolution (around 10 km) and cannot
represent well the peculiarity of mountain areas. Indeed, these areas are masked in this
type of dataset. Other datasets based on SAR Sentinel-1 are the recent snow depth product
produced by [36]. Even though the approach is quite promising, these data are still under
evaluation and cannot currently represent a robust reference for our case study.

This understanding of wet-snow dynamics helps to comprehend the melting runoff
onset maps at the catchment scale, which constitute a useful tool for water managers
to know the distribution of the melting dynamics. One limitation of these maps is that
they are computed at the end of the snow season. They can be used to understand snow
behavior but not to foresee changes in advance. On the contrary, the relationships found in
Section 4.2 go a step further, as they able to be computed in quasi real-time. On the one hand,
the depletion curves, with a common shape, defined a space where streamflow response
and wet-snow dynamics are linked using the maximum SWE of the analyzing melting
cycle. Hence, through knowing the maximum SWE achieved during the accumulation, a
hypothetical curve can be drawn over this space to anticipate streamflow behavior. On
the other hand, a mean delay of 21 days between the beginning of the melting runoff
and streamflow peak was identified, narrowing down the water manager time to foresee
runoff melting impact on the streamflow. More specifically, the proposed methodology
can be applied to other sub-basins and incorporated in operational hydrological modeling
systems [112–114].

6. Conclusions

The interpretation of SAR backscattering is not always straightforward, especially in
regions where snowpacks are shallow and not permanent throughout the snow season,
like in Mediterranean mountain areas such as the Sierra Nevada. In this work, we ana-
lyzed snow dynamics and their relationship with streamflow response in such semi-arid
mountains using S-1 SAR imagery.

Sentinel-1 SAR imagery proved to be highly effective in capturing not only the final
spring melting, but also all melting cycles throughout the year in such environments. This
study successfully adapted the general change detection approach used in other regions
to identify wet snow in semi-arid mountains by using the previous summer period of
reference and establishing a wet-snow threshold of −3.00 dB. Additionally, on a local
scale, the analysis enabled the identification of four distinct types of melting runoff onsets,
each one associated with specific snowpack characteristics such as depth, duration of the
accumulation phase before melting, and timing within the year.

At the catchment scale, a novel approach was introduced to delineate melting cycles
throughout the year using Sentinel-1 SAR imagery exclusively. This method generated
distributed melting runoff onset maps, thus enhancing our understanding of the spatiotem-
poral evolution of melting dynamics within the region. Furthermore, the study explored
the connection between snowmelt dynamics and streamflow, through a piecewise function
comprising three segments. This function was closely linked to the maximum snow water
equivalent (SWE) achieved during the snow cycle, with a linear relationship for prolonged
melting cycles. Finally, an average delay of approximately 21 days between the melting
onset and the peak streamflow was also found in the selected catchment.

This work constitutes a first approach to better understand S-1 SAR imagery backscat-
tering and assess its capability to foresee changes in streamflow over Mediterranean moun-
tains. As a next step, we intend to improve the interpretation on a local scale by using,
in addition to terrestrial imagery, measured variables such as SWE or temperature at dif-
ferent heights of the snow cover as well as the morning acquisitions of S-1 data. These
potential improvements will help to achieve better interpretations of the snowpack dynam-
ics in this type of environment and therefore improve our predictive capacity of streamflow
in the area.
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Figure A1. Sensitivity analysis of each of the hydrological years. The blue area represents the range of
values for each of the summer images used independently. The red line represents the value obtained
using the mean of the images that meet the criterion of 15 days without previous precipitation during
the summer. The blue line represents the value obtained using the average of all summer images.

• Local Scale: Wet Snow Threshold definition

The selected days have been the following scenes (i) 5 December 2016, (ii) 5 March
2017, (iii) 16 February 2018, (iv) 28 February 2018, (v) 12 April 2019 and (vi) 24 April 2019.
These images have been chosen based on the existence of possible dry, wet snow pixels and
non-snow pixels. All the scenes have been previously filtered using the image of 8 days
MODIS that considers the specific image.
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Figure A2. (A–F) represent the overlapping distribution of wet snow pixels and snowless pixels for
different periods.

• Cross-Evaluation

For compiling the confusion matrix between Landsat and S1 snow classification,
the number of pixels in each category is normalized according to the Landsat based
classification, assigning the value 1 to each class. This normalization allows a direct
comparison between the different dates.

Table A1. Confusion matrix for the classes snow (S) and snow-free (F) in the study area for the
different selected dates, for snow classification based on Landsat (LS) and Sentinel-1 (S1) data. Acc,
accuracy (0.0 ≤ Acc ≤ 1.00).

S1-S S1-F Acc

5 March 2017
LS-S 0.66 0.34
LS-F 0.27 0.73

0.69

17 March 2017
LS-S 0.82 0.18
LS-F 0.47 0.53

0.67

10 April 2017
LS-S 0.28 0.72
LS-F 0.06 0.94

0.84

17 April 2018
LS-S 0.74 0.26
LS-F 0.22 0.78

0.76

11 May 2018
LS-S 0.63 0.37
LS-F 0.09 0.91

0.77

6 May 2019
LS-S 0.31 0.69
LS-F 0.06 0.94

0.84

18 June 2019
LS-S 0.17 0.83
LS-F 0.04 0.96

0.93

Average 0.79
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Figure A3. Local scale images (Refugio Poqueira) coinciding with the Local Minima obtained with
the S-1 SAR image for each of the three years analyzed.
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Figure A4. Temporal evolution of analyzed variables for the hydrological year 20162017; (i) precip-
itation, (ii) snowfall, (iii) temperature, and (iv) radiation. Every graph represents the average value Figure A4. Temporal evolution of analyzed variables for the hydrological year 20162017; (i) precipita-

tion, (ii) snowfall, (iii) temperature, and (iv) radiation. Every graph represents the average value of
the given variable for all the pixels in every LMo. (a) Temporal evolution of LMo pixels for Cycle I,
(b) Temporal evolution of LMo pixels for Cycle II, (c) Temporal evolution of LMo pixels for Cycle III.
Vertical lines indicate the day on which we have S-1 SAR image.
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Figure A5. Temporal evolution of analyzed variables for the hydrological year 2017–2018;
(i) precipitation–Pre (mm), (ii) snowfall, (iii) temperature, and (iv) radiation. Every graph rep-
resents the average value of the given variable for all the pixels in every LMo. (a) Temporal evolution
of LMo pixels for Cycle I, (b) Temporal evolution of LMo pixels for Cycle II, (c) Temporal evolution
of LMo pixels for Cycle III. Vertical lines indicate the day on which we have S-1 SAR image.
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