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Critical Points of the Solutions
to the HR = HL Surface Equation

Alma L. Albujer and Magdalena Caballero

Abstract. Spacelike surfaces with the same mean curvature in R
3 and L

3

are locally described as the graph of the solutions to the HR = HL surface
equation, which is an elliptic partial differential equation except at the
points at which the gradient vanishes, because the equation degenerates.
In this paper we study precisely the critical points of the solutions to
such equation. Specifically, we give a necessary geometrical condition for
a point to be critical, we obtain a new uniqueness result for the Dirichlet
problem related to the HR = HL surface equation and we get a Heinz-type
bound for the inradius of the domain of any solution to such equation,
improving a previous result by the authors. Finally, we also get a bound
for the inradius of the domain of any function of class C2 in terms of the
curvature of its level curves.
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1. Introduction

A surface in the 3-dimensional Lorentz-Minkowski space L3 is said to be space-
like if its induced metric is a Riemannian one. Therefore, a spacelike surface
can be endowed with two different Riemannian metrics, the one induced by L

3

and the metric inherited from the Euclidean space R
3. Consequently, we can

consider two different mean curvature functions on a spacelike surface related
to the previous Riemannian metrics. Let us denote those functions by HL and
HR, respectively.
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A surface in R
3 is said to be minimal if HR vanishes identically. Analo-

gously, a maximal surface is a spacelike surface in L
3 such that HL ≡ 0. This

terminology comes from the fact that those surfaces locally minimize, or max-
imize respectively, area among all nearby surfaces sharing the same boundary,
see [8] and [11].

The study of minimal and maximal surfaces has been a topic of wide
interest during the last decades. In 1983 O. Kobayashi [7] studied, from a local
point of view, surfaces in L

3 which are simultaneously minimal and maximal.
He showed that they are necessarily open pieces of a spacelike plane or of a
helicoid in the region where the helicoid is spacelike.

In 2017, the authors considered in [2] the general situation where a space-
like surface in L

3 verifies HR = HL. Those surfaces are locally the graph over
a domain Ω of the Euclidean plane of the solutions to a certain partial differ-
ential equation called the HR = HL surface equation, which is elliptic except
at the points at which the gradient vanishes. Among other results, given a
solution u to the HR = HL surface equation, the authors obtained a bound for
the inradius of Ω∗, the subset of Ω in which the gradient of u does not vanish,
see [2, Theorem 8]. Let us recall that the inradius of a set in R

2 is defined
as the supremum of the radii of the closed discs contained in it. Also, in [2,
Theorem 9] they proved that if the Dirichlet problem related to the HR = HL

surface equation has a solution without critical points, then the solution is
unique. Notice that in [2] the authors do not use the term inradius, but they
used instead the term width, which they define as the double of the inradius.

Motivated by the previous results, our goal in this manuscript is to study
the critical points of the solutions to the HR = HL surface equation. Specif-
ically, given a solution to the HR = HL surface equation, we will obtain a
necessary condition for a point to be critical, Theorem 1. From which we will
derive a new uniqueness result for the Dirichlet problem associated to the
HR = HL equation, Corollary 2, as well as an improved version of [2, Theo-
rem 8], Theorem 3. Inspired by the proof of [2, Theorem 8], we will finally get
a bound for the inradius of the domain of any function of class C2 in terms of
the curvature of its level curves, provided a topological condition on the set of
critical points of the function is fulfilled, Theorem 5.

It is worth pointing out that, recently, several authors have been inter-
ested in the study of surfaces (or hypersurfaces) with HR = HL = 0 in more
general ambient spacetimes where the problem of considering two different
metrics make sense. Specifically, the case where the ambient space is a prod-
uct has been considered in [1,4,6], and the case where the ambient is the
Heisenberg group has been studied in [12]. The key for the study of simulta-
neously minimal and maximal surfaces in [6,7,12] is to prove that the level
curves of such surfaces are geodesics. However, such reasoning fails at points
with horizontal tangent plane, i.e. at critical points, since level curves can be
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not well defined at those points. Furthermore, in [4] the authors consider dif-
ferent techniques and they explicitly impose the assumption of non-existence
of critical points.

The study of critical points of the solutions to elliptic partial differential
equations, as well as the study of its level sets, is an issue of special relevance.
Both concepts are intimately connected since critical values of u are those at
which the level sets can change its topology. Let us mention, for instance, a
survey by Magnanini [9] (see also references therein), where three different
issues about the critical points of the solutions to the Dirichlet problem re-
lated to certain elliptic and parabolic partial differential equations are studied.
Specifically, the estimation of the local size of the critical set and its location
are studied, as well as the dependence of the number of critical points on the
boundary values and the geometry of the domain.

2. Preliminaries

Let L
3 be the 3-dimensional Lorentz-Minkowski space, that is, R3 endowed

with the metric

〈, 〉L = dx2 + dy2 − dz2,

(x, y, z) being the canonical coordinates in R
3. The Levi-Civita connections of

the Euclidean space R
3 and the Lorentz-Minkowski space L

3 coincide, so we
will just denote them by ∇.

A (connected) surface Σ in L
3 is said to be a spacelike surface if the

metric inherited from L
3 is a Riemannian one, which is also denoted by 〈, 〉L.

Given a spacelike surface Σ, there exists a unique future-directed unit normal
vector field NL on Σ. The mean curvature function of Σ with respect to NL is
defined by

HL = −1
2
(kL

1 + kL
2 ),

where kL
1 and kL

2 stand for the principal curvatures of (Σ, 〈, 〉L).
The same topological surface can also be considered as a surface of the

Euclidean space R
3. In this case, let us denote the induced metric on Σ by

〈, 〉R. It is well-known that Σ admits a unique upwards directed unit normal
vector field, NR. The mean curvature function of Σ with respect to NR is
defined by

HR =
1
2
(kR

1 + kR
2 ),

where kR
1 and kR

2 stand for the principal curvatures of (Σ, 〈, 〉R).
A spacelike surface is locally a graph over a domain of the plane z = 0,

which is usually identified with R
2, see [8, Proposition 12.1.6]. Thus, locally

Σ = Σu, where

Σu = {(x, y, u(x, y)) : (x, y) ∈ Ω},
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for some domain Ω ⊆ R
2 and some smooth function u ∈ C∞(Ω). It is easy

to check that Σu is a spacelike surface if and only if |Du| < 1, where D
and |·| stand for the gradient operator and the norm in the Euclidean plane
R

2, respectively. Moreover, with a straightforward computation we get the
following expressions for the mean curvature functions,

HL =
1
2
div

(
Du√

1 − |Du|2

)
and HR =

1
2
div

(
Du√

1 + |Du|2

)
.

Consequently, any spacelike surface in R
3 satisfying HR = HL is locally the

graph over a certain domain Ω ⊆ R
2 of a solution to the equation

div

((
1√

1 − |Du|2 − 1√
1 + |Du|2

)
Du

)
= 0,

such that |Du| < 1. The previous equation is known as the HR = HL sur-
face equation, which becomes a quasilinear elliptic partial differential equation,
everywhere except at those points at which Du vanishes, see [2].

Given a graph Σu over a domain Ω ⊆ R
2, let Σ∗

u be the graph of u over
the following open set

Ω∗ = {(x, y) ∈ Ω : Du(x, y) �= 0}.

For any point p ∈ Σ∗
u, we can consider its corresponding level curve contained

in R
2. Let k̃(π(p)) denote the curvature of such level curve at the point π(p),

where π denotes the natural projection of Σu onto Ω. Then, in [2, Lemma 7]
it has been proved that given any spacelike graph in L

3 such that HR = HL,
for any p ∈ Σ∗

u it holds

|HL(p)| ≤ 1
2
√

2
|k̃(π(p))|. (1)

3. On the Critical Points of the Solutions to the HR = HL

Surface Equation

Let M be a differential manifold and let u : M −→ R be a function of class Cr

with r ≥ 2. According to its Hessian, the critical points of u can be classified in
two types: non-degenerate critical points, those with non-degenerate Hessian,
and degenerate critical points, those with degenerate Hessian, see [3].

In the particular case in which u is a smooth function defined over a
domain Ω ⊆ R

2, the classification can be stated in terms of the Gaussian
curvature of the graph of u either in R

3 or in L
3: non-degenerate critical

points are those with non-vanishing Gaussian curvature, whereas degenerate
critical points are those with vanishing Gaussian curvature.

There is a widely known lemma by M. Morse, see [3, 4.2.12] and [10,
Lemma 2.2], explaining the local behavior of a function of class Cr with r ≥
3 over a differential manifold around a non-degenerate critical point. As a
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particular case, for smooth functions over a domain Ω ⊆ R
2, this lemma assures

the existence of a chart (U, φ) centered at the critical point (x0, y0) such that

u ◦ φ−1(x, y) = u(x0, y0) ± x2 ± y2. (2)

Our first result reads as follows.

Theorem 1. Let u be a solution to the HR = HL surface equation defined on a
domain Ω ⊆ R

2 and let (x0, y0) be a point in Ω. Then, HR(x0, y0, u(x0, y0)) = 0
for any critical point (x0, y0) of u in Ω.

Proof. If (x0, y0) is a degenerate critical point, then the Gaussian curvature
of Σu at p in R

3 vanishes. In [2, Theorem 4] the authors proved that given a
spacelike surface with HR = HL, if the Gaussian curvature in R

3 vanishes
at a point, then the mean curvature also vanishes at that point. And so,
HR(x0, y0, u(x0, y0)) = 0.

Assume (x0, y0) is a non-degenerate critical point. In [2, Theorem 5] it
is proved that given a compact spacelike surface with (necessarily) non-empty
boundary such that HR = HL, the surface is contained in the convex hull
of its boundary. From this result we deduce that if u admits a closed level
curve, then its interior can not be contained in Ω. Hence, there are only two
possibilities for (2),

u ◦ φ−1(x, y) = u(x0, y0) + x2 − y2 and u ◦ φ−1(x, y) = u(x0, y0) − x2 + y2.

(3)

Let us denote by O the codomain of φ. Its domain, U , minus the level
set through (x0, y0) can be divided into the following four domains

U1 = φ−1
({(x, y) ∈ O : x2 − y2 > 0, x > 0}) ,

U2 = φ−1
({(x, y) ∈ O : x2 − y2 > 0, x < 0}) ,

U3 = φ−1
({(x, y) ∈ O : x2 − y2 < 0, y > 0}) , and

U4 = φ−1
({(x, y) ∈ O : x2 − y2 < 0, y < 0}) .

We orient the level curves of u in U −{(x0, y0)} so that its normal vector
field points to the direction in which u decreases.

We consider an open disc centered at (x0, y0), Dε = D((x0, y0), ε) ⊂ U ,
for some small enough radius ε > 0. Let us demonstrate that there exists a
point in U1 ∩ Dε and another one in U3 ∩ Dε such that the curvature of the
level curves through both points do not have the same sign. Figure 1 will be
useful in the chain of reasonings below. Denote by U1 the closure of U1. We
take a segment contained in U1 ∩ (Dε − {(x0, y0)}) intersecting only once each
of the following level curves:

φ−1 ({(x, y) ∈ O : x = y, x > 0}) and φ−1 ({(x, y) ∈ O : x = −y, x > 0}) .

Those curves, the point (x0, y0), and the segment define a compact set. We
consider the first level curve in U1 that intersects that set and let (x1, y1) be
a point in the intersection. The point (x1, y1) lies on the segment and the
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Figure 1. Construction of (x1, y1) and (x3, y3)

level curve is tangent to it. We repeat the same construction for U3, obtaining
(x3, y3). Taking into account (3) and the way in which we have oriented the
level curves of u in U , we can affirm that at one of these two points the normal
vector to the level curve points to the interior of its corresponding compact set,
while the curve is not locally contained in it. Whereas the normal vector to the
level curve at the remaining point points to the exterior of its corresponding
compact set. Therefore (x1, y1) and (x3, y3) are the desired points.

The curvature of the level curves is a continuous function in Dε−{(x0, y0)}.
As such, there exists a point (x̃, ỹ) in the punctured disc whose level curve has
vanishing curvature at that point. From inequality (1) HL(x̃, ỹ, u(x̃, ỹ)) = 0.
Taking limit when ε approaches zero, we complete the proof. �

We have mentioned in the Introduction that if the Dirichlet problem
related to the HR = HL surface equation has a solution without critical points,
then the solution is unique, see [2, Theorem 9]. Therefore as an immediate
corollary of Theorem 1 we get a new uniqueness result for the Dirichlet problem
associated to the HR = HL surface equation.

Corollary 2. If u is a solution to the Dirichlet problem associated to the HR =
HL surface equation over a domain Ω ⊆ R

2 such that its graph has non-
vanishing mean curvature, then u is the only solution.

In 1955 E. Heinz used the classical divergence theorem to prove that given
a graph in R

3 defined over a disk of radius R in R
2 centered at the origin, if

|HR| ≥ c > 0 for a certain constant c, then R ≤ 1
c
, see [5]. This inequality can

be restated in terms of the inradius as follows, let u be a smooth function over
a domain Ω ⊆ R

2, then

inradius(Ω) ≤ 1
inf|HR| .
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In [2, Theorem 8] the authors got the following bound for the graphs
satisfying HR = HL,

inradius(Ω∗) ≤ 1
2
√

2 inf|HR| ,

where, as we have mentioned before, Ω∗ is the set of points at which Du does
not vanish. Combining this result with Theorem 1 we get.

Theorem 3. Let Σu be a spacelike graph in L
3 over a domain Ω ⊆ R

2 such
that HR = HL. Then

inradius(Ω) ≤ 1
2
√

2 inf|HR| .

The following corollary is an immediate consequence of the previous re-
sult.

Corollary 4. Let Σu be a spacelike graph in L
3 defined over a domain of infinite

inradius such that HR = HL. Then inf|HR| = 0.
Equivalently, there do not exist spacelike graphs over an infinite inradius

domain satisfying HR = HL and |HR| ≥ c for certain positive constant c.

4. A Bound for the Inradius of a Graph Depending on its Level
Curves

Inspired by the proof of [2, Theorem 8], we get our next theorem.

Theorem 5. Let u be a C2 function defined over a domain Ω ⊆ R
2. Let k̃

denote the curvature of its level curves. Denote by A the set of critical points
of u and by A′ its accumulation set. Define A 2) = (A′)′, An) = (An−1))′ for
n > 2. If there exists n such that An) = ∅, then

inradius(Ω) ≤ 1
inf|k̃| .

Proof. Assume inf|k̃| �= 0. We consider all the level curves in Ω, and we ori-
ent them so that the normal vector field points to the direction in which u
decreases.

We begin with the case A′ = ∅.
Let us assume inradius(Ω) > 1/inf|k̃|. Hence, for each c such that

1/inradius(Ω) < c < inf|k̃|, (4)

there exists a closed disc with center at a point q ∈ Ω and radius 1/c,
B̄q(1/c), contained in Ω.

Since A′ = ∅, there are only a finite number of critical points in the
disc. If necessary, we take a bigger c so that there is no critical point on the
boundary of the disc.
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Figure 2. Level curve at the maximum p

For each critical point in Bq(1/c) we take a small enough open disc
centered at it such that their closures do not intersect and are contained in
Bq(1/c). We denote by D the compact set obtained by subtracting those discs
to B̄q(1/c).

Our function u has no critical points in D, therefore it attains its extremal
values on its boundary. Let us assume first that the maximum p is attained
at a point on the boundary of B̄q(1/c). In that case, the level curve through p
lies in Ω \Bq (1/c). And so, it is tangent to the boundary of the disc at p. The
normal vector to the curve at p points to the interior of the disc, while the curve
is not locally contained in it. Consequently, inequality (4) implies that k̃ < −c
at p. Otherwise, the maximum is attained at a point on the boundary of one
of the open discs centered at a critical point. In this case, the normal of the
level curve through that point is directed to the exterior of the disc, whereas
the level curve is contained in its closure. We conclude that, no matter where
the maximum value is attained, the curvature of the level curve at that point
is always negative, see Fig. 2. In an analogous way we prove that given a point
at which u attains a minimum, the curvature of the level curve at that point
is positive. By a continuity argument we conclude that there exists a point in
D at which the curvature of the level curve through the point vanishes, which
is a contradiction.

To complete the proof we only need to prove that if there exists n > 1
such that An) = ∅, we can always choose c and a finite number of open discs
such that their closures do not intersect and are contained in Bq(1/c), and
satisfying that no critical point lies on the set obtained by subtracting those
discs to B̄q(1/c), which will be called D.

If An) = ∅ and An−1) �= ∅, there is only a finite number of points of
An−1) in B̄q(1/c), otherwise they will accumulate. Choose c big enough such
that none of them lie on the boundary of B̄q(1/c). Take an open disc centered at
each of those points such that their closures do not intersect and are contained
in Bq(1/c). We denote by Dn−1 the set obtained by subtracting those discs to
B̄q(1/c). In Dn−1 there is only a finite number of points of An−2), otherwise
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they will accumulate. Take c and the previously chosen open discs big enough
such that neither of the points in An−2) lie on the boundary of Dn−1. Take
an open disc centered at each of those points such that their closures do not
intersect and are contained in the interior of Dn−1. We denote by Dn−2 the
set obtained by subtracting those discs to Dn−1. In a finite number of steps
we construct D = D0. �

Remark 1. In the previous result, we can substitute the set of the critical
points of u for the set of points at which the level set is not locally a curve.
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[8] López, R.: Constant Mean Curvature Surfaces with Boundary. Springer Mono-
graphs in Mathematics, Springer, Heidelberg (2013)

[9] Magnanini, R.: An introduction to the study of critical points of solutions of
elliptic and parabolic equations. Rend. Istit. Mat. Univ. Trieste (2016). https://
doi.org/10.13137/2464-8728/13154

[10] Milnor, J.: Morse Theory. Annals of Mathematics Studies, vol. 51. Princeton
University Press, New Jersey (1973)

[11] Morgan, F.: Geometric Measure Theory. A Begginer’s Guide, Elsevier/Academic
Press, Amsterdam (2016)

[12] Shin, H., Kim, Y.W., Koh, S.-E., Lee, H.Y., Yang, S.-D.: Ruled minimal surfaces
in the three-dimensional Heisenberg group. Pacific J. Math. (2013). https://doi.
org/10.2140/pjm.2013.261.477

Alma L. Albujer and Magdalena Caballero
Department of Mathematics
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Spain
e-mail: alma.albujer@uco.es;

magdalena.caballero@uco.es

Received: July 7, 2022.

Accepted: January 29, 2023.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s10231-021-01085-7
https://doi.org/10.2140/pjm.2009.242.281
https://doi.org/10.13137/2464-8728/13154
https://doi.org/10.13137/2464-8728/13154
https://doi.org/10.2140/pjm.2013.261.477
https://doi.org/10.2140/pjm.2013.261.477

	Critical Points of the Solutions  to the HR=HL Surface Equation
	Abstract
	1. Introduction
	2. Preliminaries
	3. On the Critical Points of the Solutions to the HR=HL Surface Equation
	4. A Bound for the Inradius of a Graph Depending on its Level Curves
	References


