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Abstract: The aim of this study was to estimate genetic parameters of somatic cell score (SCS) and fat
plus protein yield (FPY) using repeatability (RM) and random regression (RRM) models in Florida
goats. The data consisted of 340,654 test-day controls of the first three lactations, and the pedigree
contained 36,144 animals. Covariance components were estimated with a bivariate RM and RRM
using the REML approach. Both models included as fixed effects the combination of herd and control
date, litter size, kidding number and lactation length, and as random effects, the additive genetic
and permanent environmental effects. A variation in the shape of the genetic parameters along the
lactation curve was observed for both traits, and h2 oscillated between 0.272 and 0.279 for SCS and
0.099 and 0.138 for FPY. The genetic correlation between SCS and FPY was negative and medium
(−0.304 to −0.477), indicating that a low-SCS EBV is associated with a genetic predisposition to high
FPY production. Our results showed that given the magnitude of h2 for SCS and its rg with FPY,
the SCS could be used as a selection criterion to increase resistance to mastitis, thus obtaining an
improved dairy and cheese aptitude in this breed.
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1. Introduction

According to Miller and Lu [1], the goat dairy industry is increasing its activity
worldwide. This trend is due not only to the nutritional value of goat milk [2] but also to
the additional attributes of its consumption behavior and habits, which give this species an
essential role in maintaining the environment of the region where it is farmed by decreasing
the risk of soil deterioration, reducing the possibility of fires and keeping many marginal
areas of Europe productive [3]. On the other hand, increases of over 7% in the demand for
goat milk for the cosmetics industry are predicted up to 2025 [4], which means that the
prospects for goat farming are secure.

At the European level, Spain is the second largest producer of goat milk [5], with the
Andalusia region being where the largest number of goats are concentrated and where
around 40% of the milk of this species is produced, mostly for the manufacture of different
types of cheese. Among the indigenous goat breeds in this country, the Florida breed is the
one with the greatest productive potential, and it has been subjected to an improvement
program for over 20 years, with highly satisfactory results [6]. A recent publication indicates
that cumulative milk production in the period up to 240 days of lactation in the Florida
breed has increased at a rate of 1.7% per year. However, this may, as a collateral effect,
have increased potential infection problems, which is reflected in aspects such as somatic
cell count (SCC), due to the constant interaction between the udder and the milking
equipment [7]. Although a certain level of SCC may be tolerated as an indicator of resistance
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to infection, immunity and health, it may also represent risks to product quality and could
result in economic losses.

High SCC or total bacterial count (TBC) represents a significant problem in the dairy
industry, leading to important economic losses, not to mention the hygienic and legal
consequences or the major impact it has on food safety and public health [8]. One of the
factors leading to an increase in these parameters in milk is subclinical mastitis (SCM).

Bulk milk bacterial cells can enter from the environment during milking or from
bacterial growth because of insufficient cleaning and sanitation of the system, but in some
cases, they can also enter from the goat’s mammary gland. Therefore, the TBC of bulk
milk can sometimes be used to monitor the level of mastitis on a farm [9]. Indeed, the
identification of risk factors for high SCC is of great importance in regions where SCC
regulations are already applied in the goat industry, as well as in regions undergoing
changes towards the implementation of programs and regulations for goat milk quality.
However, there is limited information currently available about the on-farm risk factors
associated with SCC levels in goat bulk milk [10,11].

The Florida is a native Spanish breed of dairy goat distributed mostly in the center
and south of Spain, raised under a wide variety of systems of production, ranging from
semi-extensive to semi-intensive systems [12]. The main selection criterion in the breeding
program of this breed is the fat plus protein yield per lactation [13].

In this breed, Jiménez-Granado et al. [7] showed how the levels of this parameter have
increased alarmingly over the last decade, which is consistent with the levels of mastitis
perceived by the farmer. It is therefore considered necessary to establish a plan to control
and prevent mastitis, which combines sanitary and management measures with the search
for greater resistance to this disease. Since the year 2004, the collection of records on SCC
in goat milk has become mandatory throughout the EU. So, with the availability of this
information and the well-known relationship between mastitis and SCC, the genetic study
of this variable has become possible, with the aim of improving resistance to mastitis. In
fact, there is already evidence of positive results of a breeding program to decrease the level
of SCC [14,15], with low genetic relationships with milk production and its components. In
order to determine the optimal strategy that takes into account not only somatic cell levels
but also their interrelationships with the other selection criteria, it is essential to estimate
the genetic relationship between this parameter and the main selection criteria in the breed.

Accordingly, the aim of this study was to estimate genetic parameters of somatic
cell score (SCS) and fat plus protein yield across lactations and kidding number, using
repeatability and random regression models.

2. Materials and Methods
2.1. Phenotypic Data and Pedigree

For this study, a total of 1,031,143 test-day (TD) records collected between 2005 and
2019 were accessed from the National Association of Florida Goat Breeders (ACRIFLOR).
These TD records belonged to 90 herds and included a total of 58,606 females, bred on farms
in the regions of Andalusia and Extremadura, which share similar climatic conditions, with
an average temperature of 16.38 ◦C (between 14 ◦C and 24 ◦C) and an average relative
humidity of 65.7% (between 37% and 78%; see supplementary materials Map S1). All
the data were subjected to a data-editing process, and all lactations longer than 305 days,
parity numbers greater than 6 and records with somatic cell count (SCC) outside the usual
range (<40 × 103 to >10,000 × 103) were excluded. In the end, we used for the variance
component analysis a total of 340,654 TDs recorded in the first 43 weeks of lactation of
the first three kiddings from January 2006 to November 2019, from 27,479 daughters of
941 sires and 16,243 dams, of which 8788 were in the data vector. The pedigree contained
all the known ancestors of the phenotyped animals, with a total of 36,144 animals. The
variables analyzed were SCC transformed into SCS = log2 (SCC) + 3 [16] and the total daily
amount of fat plus protein (FPY) expressed in grams.
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2.2. Statistical Analysis

The traits studied were recorded over a fixed time scale (over the first three lactations),
so their statistical processing was applied in stages. First, SCS and FPY were analyzed using
a linear fixed effects model in order to obtain initial information on the causes of variation
and also to be able to represent the forms of responses of both dependent variables at each
kidding along the lactation trajectory. In this analysis, we considered the fixed effects of a
combination of herd and control date (HCDi 8618 levels), litter size (LSj 4 levels), kidding
number (NPk 3 classes) and lactation length expressed in weeks (DIMwl 43 weeks).

In the initial analysis, the (co)variance components were studied using bivariate
models, according to a repeatability model (RM), which assumed no variation across
lactation, and each dependent variable was expressed as an average for each kidding,
as follows: [

y1
y2

]
=

[
X1 0
0 X2

][
b1
b2

]
+

[
Z1 0
0 Z2

][
µ1
µ2

]
+

[
W1
W2

][
p1
p2

]
+

[
e1
e2

]
where y1 and y2 represent the phenotypic values for SCS and FPY, respectively. The
elements bi represent the same fixed effects mentioned previously; µi are the vectors for
the additive genetic random effect and pi is the permanent environmental random effect
due to repetitions of the same observations in the animal. The matrices Xi, Zi and Wi are
incidence matrices connecting the fixed and random effects to the vector of dependent
variables. Finally, ei represents the random vector of the error.

Subsequently, a second analysis was performed with a random regression model
(RRM) analyzing the variables SCS and FPY recorded in each TD throughout lactation
(DIMwI). The representation of this model was similar to the RM, but in the RRM, the
elements of a Legendre polynomial of order r were included as covariates. (Φr) of order
r, as a fixed covariate in Xi and a random covariate in Zi, was included to estimate the
evolution of the (co)variance components between both dependent variables along the
lactation trajectory expressed as DIMwi.

Both models were run for each of the first three lactations and the total number of lac-
tations, using the statistical program Asreml 3 [17]. The expected (co)variance components
for the RM were:

E



µ1
µ2
p1
p2
e1
e2

 = 0, var



µ1
µ2
p1
p2
e1
e2

 =



Aσ2
µ1

Aσµ21

0
0
0
0

Aσµ12

Aσ2
µ2

0
0
0
0

0
0

IWσ2
p1

0
0
0

0
0

0
IWσ2

p2
0
0

0
0

0
0

Inσ
2
e1

0

0
0

0
0
0

Inσ
2
e2


where the elements σ2

µ1
; σ2

pi and σ2
ei stand for the genetic, permanent environment and

residual variances for lscc (X1 ) and fpy (X2), respectively, σµ12 is their covariance, IW and
ln are identity matrices and A is the denominator of the kinship relationship. The genetic
heritability parameters (h2

xi) and the genetic correlations between both dependent variables
(rg12) were estimated according to classical formulas [18].

Unlike the RM, in RRM, the genetic (co)variance components for both dependent
variables were not considered to be the same for each point on the lactation scale, which
means that there will be parameters of h2

xi; rg12 and EGVi for each ith point of DIMwi.
Traits which are expressed longitudinally require an additional procedure presented by
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Jamrozik and Schaeffer [19], although basically the structure of expected (co)variances and
estimates was similar:

E



α1
α2
p1
p2
e1
e2

 = 0, var



α1
α2
p1
p2
e1
e2

 =



A ⊗ Cα1

A ⊗ Cα21

0
0
0
0

A ⊗ Cα12

A ⊗ Cα2

0
0
0
0

0
0

IWσ2
pα1

0
0
0

0
0
0

IWσ2
pα2

0
0

0
0
0
0

Inσ
2
eα1

0

0
0
0
0
0

Inσ
2
eα2


In this representation, I only changes the point expression of µi by αi, which is a

linear function for SCS and FPY throughout the lactation expressed in terms of a Legendre
polynomial (Φ d). The term ⊗ is a symbol of the Kronecker operator and Cα is a matrix
containing the eigen elements of the polynomial used, while the rest of the terms are the
same as previously presented. The matrix Cα t has a complex structure consisting of four

square submatrices Cα =

[
cα1 cα12
cα21 cα2

]
, with, on the diagonal (cα1 and cα2), the genetic

(co)variance components for each trait, with the elements corresponding to a polynomial of
order r = 2, which best fits the data, and, outside the diagonal (cα12 = cα21), the covariances
between all the terms of each variable. The structure of each of these submatrices was:

Cαi = Φd

 σ2
iα σisα σiqα

σsiα σ2
sα σsqα

σqiα σssα σ2
qα

Φ′
d

in which σ2
iα; σ2

sα and σ2
qα are the variances of the intercept, slope and quadratic term,

respectively, while σisα; σiqα and σsqα are the corresponding covariances of the elements
of the Legendre polynomial Φd. This longitudinal procedure is more complex but offers
multiple advantages, as shown below.

With the results of Cαi and the coefficients of Φd, the heritability values (h2
αi
) and the

genetic correlations (rgα
), both within and between both dependent variables at each point

of the dimw scale including Φd, were calculated as follows:

For h2
αi

=
Φdi Cαi Φ′

di
Φdi Cαi Φ′

di + σ2
pαi

+ σ2
eαi

, the same formula was used for i = SCS and FPY.

The intrapartum genetic correlations used for each variable throughout lactation were:

rgα
=

Φdi Cαi Φ′
dj√

Φdi Cαi Φ′
di ∗ Φdi Cαi Φ′

dj

while the intrakidding genetic correlations for each pair of variables throughout lacta-
tion were:

rgα12
=

Φdi Cα12 Φ′
dj√

Φdi Cα1 Φ′
di ∗ Φdi Cα2 Φ′

dj

Finally, the expected genetic values for SCS and FPY (EGVXi) were estimated by direct
solution in the RM, while RRM at each of the three births and the total at any point along
the DIMw trajectory were estimated by:

EGVXi =
2

∑
r=0

Φdiα
′
i

where αi is the solution of the RRM corresponding to animal i and consists of the corre-
sponding elements of the Legendre polynomial (Φ) of order 2, in this case a quadratic
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equation. By manipulating the terms of Φ, the EGV for cumulative production up to any
point in the lactation can be estimated. The procedure was similar for both variables.

3. Results
3.1. Phenotypic Parameters

Table 1 gives an overview of the database used. As can be seen, we followed the
performance of 27,749 does, with an average number of 12 TD and 2.06 lactations per
animal. These were daughters of 16,243 goats and 941 sires.

Table 1. Descriptive statistics of the data analyzed (standard deviation in parenthesis) in the Florida
goat breed.

Kidding Number

First Second Third Total

Number of test-day records 145,816 118,039 76,799 340,654
Number of animals 25,430 19,268 12,599 27,749
Number of sires 939 900 807 941
Number of dams 15,215 12,150 8406 16,243
Average SCS (×103) 11.86 (1.65) 12.36 (1.61) 12.72 (1.54) 12.22 (1.65)
Average daily FPY (grams) 168.1 (64.1) 211.0 (79.1) 219.9 (83.2) 194.6 (77.6)

SCS: somatic cell score; FPY: fat plus protein yield.

The results of the preliminary fixed effects model determined that all effects included
in the model using both dependent variables were highly significant. Figure 1 shows the
main phenotypic trends for FPY and SCS throughout lactation length and kidding number.
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Figure 1. Least-squares means of somatic cell score (SCS) and fat plus protein yield (FPY) across
lactation length (in weeks) and number of kiddings in the Florida breed.

For both variables, there was a clear tendency to increase their level as the number
of lactations increased, although this was more marked between the first and the other
lactations for FPY. If the different lactations are compared, similar behavior can be observed
in the three lactations for the SCC, so that as the lactation progresses, the SCC increases.
The number of somatic cells increased rapidly until week 15, with a few weeks of delay
compared to the productive peak of FPY. After that, it continued to grow more slowly until
reaching the maximum peak at the end of lactation at almost week 40 (approx. 10 months in
lactation). In the case of FPY, there was an inverse, similar trend in all three lactations, but
with a clearly lower magnitude in the case of the first lactation. This difference was probably
due to the fact that the first kidding usually takes place when physical development is not
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yet complete (the animal has not yet reached adult size), so that during the first lactation,
many nutrients still have to be used for the animal’s growth as well as for milk production.

3.2. Genetic Parameters
3.2.1. Repeatability Model

The estimated results obtained according to this model are presented in Table 2. The
variation between lactations of the variance components can be observed, for the first three
lactations analyzed, both for the SCS trait and the FPY. Thus, heritability ranged between
0.272 and 0.279 for the SCS trait and between 0.099 and 0.138 for FPY.

Table 2. Estimation of genetic parameter components for somatic cell score (SCS) and total daily fat
plus protein yield (FPY) in the Florida goat breed using a bivariate repeatability model.

Lactation Number

First Second Third Total

SCS FPY SCS FPY SCS FPY SCS FPY

Genetic variance 0.283 452.9 0.291 539.0 0.273 522.4 0.264 497.8
Phenotypic
variance 1.024 3275 1.066 4850 0.979 5287.5 1.051 4379.0

Heritability 0.276 ± 0.02 0.138 ± 0.01 0.272 ± 0.02 0.111 ± 0.01 0.279 ± 0.02 0.099 ± 0.01 0.246 ± 0.01 0.105 ± 0.01
Genetic correlation −0.304 ± 0.03 −0.308 ± 0.04 −0.477 ± 0.06 −0.371 ± 0.04
Repeatibility 0.486 ± 0.001 0.202 ± 0.01

Table 3 presents the genetic correlations between the EGVs for each kidding for
each variable and between both variables within each lactation. When using the RM,
the correlations between the EGVs for each variable in the three lactations showed a
positive pattern of relationships within each variable. The EGVXi of each variable in the
three kiddings also showed a pattern of positive relationships within the variable but of
moderate magnitude, while there was a slight antagonism between SCS and FPY (ranging
from −0.307 for the first kidding to −0.592 for the third one).

Table 3. Correlations between the expected genetic values estimated according to the repeatability
model in the Florida goat breed: above the diagonal, correlations between kiddings for SCS; below the
diagonal, correlations between kiddings for FPY and on the diagonal, correlations for each kidding
between SCS and FPY.

First Second Third

First −0.307 0.552 0.418
Second 0.366 −0.423 0.609
Third 0.197 0.358 −0.592

This correlation showed that animals with a higher predisposition to present mastitis
(higher genetic values for SCS) have a lower potential for milk production (FPY, in our
case). It therefore follows that genetic selection for higher resistance to mastitis should
result in a better response for milk production.

3.2.2. Random Regression Model

The evolution of the (co)variance components, heritabilities and within-trait genetic
correlations of both variables along the DIMwi scale and each kidding is represented in
Figure 2. Genetic variances and h2 estimates showed similar shapes, with a decreasing
trend as DIMw increases and a slight increase in the middle of lactation. In the same way,
the within-trait genetic correlations across the DIMwi scale and number of kiddings were
different from unity.
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The genetic correlations between FPY and SCS throughout the lactation and in the
three different parities are presented in Figure 3. Their estimated values were negative in
all cases and oscillated between −0.53; −0.17, −0.44; −0.24 and −0.40; −0.27, for the first,
second and third kidding, respectively. These results indicate that an expected low genetic
somatic cell count is associated with a high genetic production potential. The correlations
were higher in the first phase, when the animal initiates milk production, as well as in the
final phase, when after a lactation, the udder epithelium has suffered the stress of milk
production for a whole lactation. In the middle of lactation another peak occurs, coinciding
with the productive stress after the lactation peak (although it is less evident in the case of
the first lactation).

The results shown in Figure 2 indicate that the variables studied should not be con-
sidered as expressing the same traits throughout the lactation: in other words, there is
genetic variation in the type of response. To illustrate this variation, it was considered that,
in practical terms, the objective can be interpreted as higher cumulative FPY volume at
240 days of lactation and lower average SCS. To obtain these values, the corresponding
EGVs were estimated following the suggestion by Jamrozik and Schaeffer [19], whose
general formulation is presented above in the Materials and Methods section. Using this
method, the best 500 animals were selected and the results are presented in Figure 4.

It should be noted that, among the best selected animals, there were contrasting forms
of response in both variables, with animals that can be described as robust maintaining the
same level of EGVs throughout the lactation, while others, which can be described as plastic,
showing a tendency to decrease or increase in the same trajectory. This illustrates one of
the key advantages of using RRM, in that it allows us to identify the animals that present
special attributes in their response pattern throughout lactation. Our work demonstrates
that there is genetic variation in the shape of the lactation curve for the traits studied, so that
the results of the RM may be biased by assuming the opposite. The correlations between
the EGVs estimated by both models corroborate this view, as can be seen in Figure 5.
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Figure 5. Correlations between the estimated genetic values (EGVs) of somatic cell score (SCS) and
fat plus protein yield (FPY) estimated by the repeatability and random regression models throughout
lactation for each kidding in the Florida breed.

For SCS, there was a slight increase until the 10th week of lactation for each of the
kiddings, followed by a decreasing response until the 34th week of lactation. This correla-
tion of less than 0.8 in all cases implies that selection for increased resistance to mastitis
(lower somatic cell count) has a different direct response (much lower in the case of the RM)
depending on the assessment method used (RM or RRM), especially in the early stages of
lactation. In the same way, the indirect correlated response for resistance to mastitis, if the
selection criterion is FPY, will be lower when using RM than when using RRM, since the
genetic correlations between both traits is always lower in RM (Tables 2 and 3).

For FPY, the pattern was similar, but with correlations below 0.53 (Figure 5), so that
selection for milk production appears to also have an indirect response for resistance to
mastitis, although in this case of a lesser magnitude than in the reverse selection. Also, in
this case, the indirect response is higher when selecting RRM.

4. Discussion

The issue of udder health, and particularly subclinical and clinical mastitis and its
simplest and most economical indicator, somatic cell count (SCC), has prompted numer-
ous studies to incorporate these indicators into selection programs. The positive results
published in Holstein cattle in the USA and Canada [20], with reductions ranging from
around 10% to 40% in SCC levels, have provided very encouraging support for work in
small ruminants. Results in dairy goats (Scholtens et al. [15] in New Zealand breeds; Arnal
et al. [21] in French Alpine goats) and dairy sheep (Serrano et al. [22] in the Manchega
breed; Riggio et al. [23]; Tolone et al. [24] in the Valle del Belice breed) also point in the same
direction. The usefulness of recording and analyzing SCC has the major advantage that it
is a very simple character which can be incorporated in bulk into the periodic dairy control
systems in these species. However, the level of SCC might not distinguish the threshold
from which infection could be identified, so, there has been a certain degree of controversy
about the periodicity in which SCC should be evaluated: following the average lactation,
when using the well-known RM model or on each test-day (TD), when RRM is used. A
detailed study published by Windig et al. [25] comparing both models has suggested that
more benefits could be obtained with the use of TD.

It can be seen how the values of h2 lie within the published range of the literature
available for goat species, with estimates of h2 for SCS of between 0.18 and 0.32 (Rupp
et al. [26] and Arnal et al. [27] in Alpine and Saanen breeds; Scholtens et al. [15] in New
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Zealand breeds). It should be noted, however, that previous references were not homoge-
neous with regard to how to quantify the level of SCC, and a wide range of models were
also used.

Estimates of h2 for total fat plus protein production have shown ranges of h2 between
0.04 and 0.40, as published by numerous authors, in goat species (Rupp et al. [26] in Alpine
and Saanen breeds; García-Peniche et al. [28] and Castañeda-Bustos et al. [29] in US breeds;
Scholtens et al 2019 [15] in New Zealand breeds; Arnal et al 2019 [27] in Alpine and Saanen
breeds). The results of this study for both variables were within the lower levels of the
above references, while the same trends can be seen in the wide variability of genetic origin
that could be exploited in a selection program and the negative but weak relationships
between SCS and milk components. However, this negative correlation does not coincide
with the farmer’s viewpoint, at least on those farms with higher production levels, which
could lead us to think that production levels in this breed are not yet high enough for the
production stress suffered by the animals to compromise their immune response capacity
(i.e., cause a lower resistance to udder infection). However, Figure 1 shows that the inverse
relationship between the two variables at the phenotypic level follows the same tendency
as at the genetic level. An increase in the number of somatic cells might be related to natural
desquamation by simple repletion of the udder in highly productive animals, without there
being a defensive inflammatory reaction caused by bacterial growth and without being
related to a higher propensity of genetic origin.

In accordance with Stinchcombe and Kirkpatrick [30], traits which are expressed across
a temporal trajectory (or various environmental levels) are classified as ‘function value
traits’. These traits should be studied using RRM, such as the one employed in this study.
In line with the findings of Zumbach et al. [31], Apodaca-Sarabia et al. [32] and Arnal
et al. [21], our study concurs that a Legendre polynomial of order 2 provides the best fit to
data on goat milk production under diverse conditions.

The few references available on SCS present values of h2 from 0.12 to 0.25 [32], while
Arnal et al. [21] found an h2 of between 0.10 and 0.155; both studies showed slight increases
in the middle of lactation. Applying the same statistical model, Arnal et al. [21] presented
values of h2 from 0.14 to 0.23 for total fat and protein production in the three kiddings of
Alpine goats in France, with both variables showing higher values of h2 in the middle of
lactation. Similar trends were indicated by Zumbach et al. [31], but with higher levels of h2,
from 0.28 to 0.47, while Oliveira et al. [33] showed results of h2 from 0.40 to 0.50 for fat and
protein percentages, respectively, recorded along the lactation scale.

Regarding the genetic correlations (rg) between different points in the lactation, the
trends for each variable were very similar for each kidding, with a decreasing response with
distance between lactation stages. This same response was presented by Zumbach et al. [31]
(rg ≈ 0.48 to 0.80 for total protein and rg ≈ 0.37 to 0.73 for total fat) in different goat breeds
in Germany; Arnal et al. [21], with (rg ≈ 0.50 to 0.85) for fat and total protein in Alpine
goats from France, while Oliveira et al. [33] presented the same pattern (rg ≈ 0.50) for
percentages of fat and protein in Saanen and Alpine goats from Brazil. The problem is even
more complex if we consider the rg between SCS and FPY, which were median but negative
throughout lactation. References of this type are scarce, however: Rupp et al. [26] presented
values of rg ≈ −0.13 to − 0.20, which are very close to those in Figure 2, following the same
trend as in dairy sheep [23]. In general, the relationships between milk components in goat
species tend to be negative, according to several references presented in tables in the article
by Scholtens et al. [15].

In general, references to rg between milk production traits and SCS are scarce and
have only been reported for fat yield and protein yield separately, using a repeatability
model. Rupp et al. [26] observed negative rg between SCS and FY and PY (−0.13 and −0.04,
respectively) in the French Saanen breed. Conversely, other studies have reported positive
correlations between these traits, varying between 0.06 and 0.23 (Rupp et al. [26] in Alpine
goats; Valencia-Posadas et al. [34] in Nigerian Dwarf goats).
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5. Conclusions

The statistical studies carried out in this work indicate that a low genetic somatic cell
count is associated with a high genetic production potential. This correlation is greater
when the animals begin milk production and in the final phase of lactation, when the
udder epithelium has suffered the stress of milk production during an entire lactation. This
correlation shows that animals with a greater predisposition towards presenting mastitis
(higher EBV for SCS) have a lower potential for milk production (FPY, in our case). Genetic
selection for low EBV for SCS therefore not only determines a greater resistance to mastitis
but also leads to a better response for milk production.
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www.mdpi.com/article/10.3390/dairy5010001/s1, Map S1: Geographic distribution of Florida farms.

Author Contributions: Conceptualization, A.M., M.S.R. and A.M.B.; methodology, C.Z., A.M. and
A.M.B.; software, C.Z. and A.M.B.; validation, R.J.-G., C.Z. and A.M.B.; formal analysis, C.Z. and
A.M.B.; investigation, R.J.-G., C.Z. and A.M.B.; resources, R.J.-G. and A.M.B.; data curation, R.J.-G.
and C.Z.; writing—original draft preparation, A.M.B.; writing—review and editing, R.J.-G., A.M.,
M.S.R., C.Z. and A.M.B.; visualization, R.J.-G. and C.Z.; supervision, A.M. and A.M.B.; project
administration, M.S.R. and A.M.; funding acquisition, M.S.R. and A.M. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was funded by the PAIDI Research Groups AGR-195 (Animal Science) and
AGR-158 (Breed Improvement and Molecular Genetics) of the University of Córdoba, to which the
authors belong.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available on request
from the corresponding author with the permission of the ACRIFLOR (National Association of
Florida Goat Breeders).

Acknowledgments: We would like to thank the technical team of ACRIFLOR (National Association
of Florida Goat Breeders) for providing the data used in this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Miller, B.A.; Lu, C.D. Current status of global dairy goat production: An overview. Asian-Australas. J. Anim. Sci. 2019, 32, 1219.

[CrossRef] [PubMed]
2. Stergiadis, S.; Nørskov, N.P.; Purup, S.; Givens, I.; Lee, M.R. Comparative nutrient profiling of retail goat and cow milk. Nutrients

2019, 11, 2282. [CrossRef] [PubMed]
3. Morales, F.D.A.R.; Genís, J.M.C.; Guerrero, Y.M. Current status, challenges and the way forward for dairy goat production in

Europe. Asian-Australas. J. Anim. Sci. 2019, 32, 1256. [CrossRef] [PubMed]
4. Linker, R. The Goat Milk Cosmetics Market is Expected to Grow at a CAGR of over 7% during the Period 2019–2025. 2020.

Available online: https://www.reportlinker.com/p05932562/Goat-Milk-Cosmetics-Market-Global-Outlook-and-Forecast.html?
utm_source=GNW (accessed on 1 October 2023).

5. Guerrero, A.; Abecia, J.A.; Sañudo, C. The Goat Sector in Spain: Situation, Local Breeds, and Production Systems. In Goats
(Capra)-From Ancient to Modern; IntechOpen: London, UK, 2019.

6. Muñoz-Mejías, M.; Menéndez-Buxadera, A.; Sánchez-Rodríguez, M.; Serradilla, J. Genetic progress attained in the selection
program of Florida breed of goats in Spain. Option Méditerranéennes Ser. A 2013, 108, 134–139.

7. Jimenez-Granado, R.; Molina, A.; Ziadi, C.; Sanchez, M.; Muñoz-Mejías, E.; Demyda-Peyrás, S.; Menendez-Buxadera, A. Genetic
Parameters of Somatic Cell Score in Florida Goats Using Single and Multiple Traits Models. Animals 2022, 12, 1009. [CrossRef]

8. Matuozzo, M.; Spagnuolo, M.S.; Hussein, H.A.; Gomaa, A.; Scaloni, A.; D’Ambrosio, C. Novel biomarkers of mastitis in goat milk
revealed by MALDI-TOF-MS-based peptide profiling. Biology 2020, 9, 193. [CrossRef]

9. Gómez-Gascón, L.; Galán-Relaño, A.; Cardoso-Toset, F.; Barrero-Domínguez, B.; Astorga, R.; Luque, I.; Tarradas, C.; Gómez-
Laguna, J. Lactate dehydrogenase: Detecting high bacterial and somatic cells counts in goats from whole milk samples. Small
Rumin. Res. 2022, 208, 106632. [CrossRef]

10. Granado, R.J.; Rodríguez, M.S.; Arce, C.; Estévez, V.R. Factors affecting somatic cell count in dairy goats: A review. Span. J. Agric.
Res. 2014, 12, 133–150. [CrossRef]

https://www.mdpi.com/article/10.3390/dairy5010001/s1
https://www.mdpi.com/article/10.3390/dairy5010001/s1
https://doi.org/10.5713/ajas.19.0253
https://www.ncbi.nlm.nih.gov/pubmed/31357263
https://doi.org/10.3390/nu11102282
https://www.ncbi.nlm.nih.gov/pubmed/31554167
https://doi.org/10.5713/ajas.19.0327
https://www.ncbi.nlm.nih.gov/pubmed/31357266
https://www.reportlinker.com/p05932562/Goat-Milk-Cosmetics-Market-Global-Outlook-and-Forecast.html?utm_source=GNW
https://www.reportlinker.com/p05932562/Goat-Milk-Cosmetics-Market-Global-Outlook-and-Forecast.html?utm_source=GNW
https://doi.org/10.3390/ani12081009
https://doi.org/10.3390/biology9080193
https://doi.org/10.1016/j.smallrumres.2022.106632
https://doi.org/10.5424/sjar/2014121-3803


Dairy 2024, 5 12

11. Koop, G.; Nielen, M.; Van Werven, T. Bulk milk somatic cell counts are related to bulk milk total bacterial counts and several
herd-level risk factors in dairy goats. J. Dairy Sci. 2009, 92, 4355–4364. [CrossRef]

12. Molina, A.; Muñoz, E.; Díaz, C.; Menéndez-Buxadera, A.; Ramón, M.; Sánchez, M.; Carabaño, M.J.; Serradilla, J.M. Goat genomic
selection: Impact of the integration of genomic information in the genetic evaluations of the Spanish Florida goats. Small Rumin.
Res. 2018, 163, 72–75. [CrossRef]

13. ARCA. Sistema Nacional De Información De Razas. Raza Caprina Florida, Ministerio De Agricultura, Alimentación Y Medio
Ambiente. Gobierno De España. (mapa.gob.es). 2022. Available online: https://resolucionaprobacionflorida05_05_20_tcm30-53
7798.pdf (accessed on 31 July 2023).

14. Bagnicka, E.; Lukaszewicz, M.; Ådnøy, T. Genetic parameters of somatic cell score and lactose content in goat s milk. J. Anim.
Feed. Sci. 2016, 25, 210–215. [CrossRef]

15. Scholtens, M.; Lopez-Villalobos, N.; Garrick, D.; Blair, H.; Lehnert, K.; Snell, R. Estimates of genetic parameters for lactation
curves for milk, fat, protein and somatic cell score in New Zealand dairy goats. N. Z. J. Anim. Sci. Prod. 2019, 79, 177–182.

16. Wiggans, G.; Shook, G. A lactation measure of somatic cell count. J. Dairy Sci. 1987, 70, 2666–2672. [CrossRef] [PubMed]
17. Gilmour, A.R.; Gogel, B.; Cullis, B.; Thompson, R.; Butler, D. ASReml User Guide (Release 3.0). 2009; VSN International Ltd.: Hemel

Hempstead, UK, 2015.
18. Falconer, D.S. Introduction to Quantitative Genetics; Longman Group Limited: London, UK, 1982.
19. Jamrozik, J.; Schaeffer, L.R. Estimates of Genetic Parameters for a Test Day Model with Random Regressions for Yield Traits of

First Lactation Holsteins. J. Dairy Sci. 1997, 80, 762–770. [CrossRef] [PubMed]
20. Weigel, K.A.; Shook, G.E. Genetic selection for mastitis resistance. Vet. Clin. Food Anim. Pract. 2018, 34, 457–472. [CrossRef]

[PubMed]
21. Arnal, M.; Larroque, H.; Leclerc, H.; Ducrocq, V.; Robert-Granié, C. Estimation of genetic parameters for dairy traits and somatic

cell score in the first 3 parities using a random regression test-day model in French Alpine goats. J. Dairy Sci. 2020, 103, 4517–4531.
[CrossRef] [PubMed]

22. Serrano, M.; Pérez-Guzmán, M.; Montoro, V.; Jurado, J. Genetic analysis of somatic cell count and milk traits in Manchega ewes:
Mean lactation and test-day approaches. Livest. Prod. Sci. 2003, 84, 1–10. [CrossRef]

23. Riggio, V.; Finocchiaro, R.; Van Kaam, J.; Portolano, B.; Bovenhuis, H. Genetic parameters for milk somatic cell score and
relationships with production traits in primiparous dairy sheep. J. Dairy Sci. 2007, 90, 1998–2003. [CrossRef]

24. Tolone, M.; Larrondo, C.; Yáñez, J.M.; Newman, S.; Sardina, M.T.; Portolano, B. Assessment of genetic variation for pathogen-
specific mastitis resistance in Valle del Belice dairy sheep. BMC Vet. Res. 2016, 12, 158. [CrossRef]

25. Windig, J.; Ouweltjes, W.; Ten Napel, J.; De Jong, G.; Veerkamp, R.; De Haas, Y. Combining somatic cell count traits for optimal
selection against mastitis. J. Dairy Sci. 2010, 93, 1690–1701. [CrossRef]

26. Rupp, R.; Clément, V.; Piacere, A.; Robert-Granié, C.; Manfredi, E. Genetic parameters for milk somatic cell score and relationship
with production and udder type traits in dairy Alpine and Saanen primiparous goats. J. Dairy Sci. 2011, 94, 3629–3634. [CrossRef]
[PubMed]

27. Arnal, M.; Larroque, H.; Leclerc, H.; Ducrocq, V.; Robert-Granié, C. Genetic parameters for first lactation dairy traits in the Alpine
and Saanen goat breeds using a random regression test-day model. Genet. Sel. Evol. 2019, 51, 43. [CrossRef] [PubMed]

28. García-Peniche, T.; Montaldo, H.H.; Valencia-Posadas, M.; Wiggans, G.; Hubbard, S.; Torres-Vázquez, J.; Shepard, L. Breed
differences over time and heritability estimates for production and reproduction traits of dairy goats in the United States. J. Dairy
Sci. 2012, 95, 2707–2717. [CrossRef] [PubMed]

29. Castañeda-Bustos, V.J.; Montaldo, H.H.; Torres-Hernández, G.; Pérez-Elizalde, S.; Valencia-Posadas, M.; Hernández-Mendo, O.;
Shepard, L. Estimation of genetic parameters for productive life, reproduction, and milk-production traits in US dairy goats. J.
Dairy Sci. 2014, 97, 2462–2473. [CrossRef]

30. Stinchcombe, J.R.; Kirkpatrick, M. Genetics and evolution of function-valued traits: Understanding environmentally responsive
phenotypes. Trends Ecol. Evol. 2012, 27, 637–647. [CrossRef]

31. Zumbach, B.; Peters, K.; Emmerling, R.; Sölkner, J. Development of a test day model for milk sheep and goats under unfavourable
structural conditions in Germany. In Proceedings of the Annual Meeting of EAAP, Bled, Slovenia, 5–9 September 2004; p. S4.

32. Apodaca-Sarabia, C.; Lopez-Villalobos, N.; Blair, H.; Prosser, G. Genetic parameters for somatic cell score in dairy goats estimated
by random regression. In Proceedings of the New Zealand Society of Animal Production, Canterbury, New Zealand, 24–26 June
2009; pp. 206–209.

33. Oliveira, H.; Silva, F.; Siqueira, O.; Souza, N.; Junqueira, V.; Resende, M.; Borquis, R.; Rodrigues, M. Combining different functions
to describe milk, fat, and protein yield in goats using Bayesian multiple-trait random regression models. J. Anim. Sci. 2016, 94,
1865–1874. [CrossRef]

34. Valencia-Posadas, M.; Lechuga-Arana, A.A.; Ávila-Ramos, F.; Shepard, L.; Montaldo, H.H. Genetic parameters for somatic cell
score, milk yield and type traits in Nigerian Dwarf goats. Anim. Biosci. 2022, 35, 377–384. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3168/jds.2009-2106
https://doi.org/10.1016/j.smallrumres.2017.12.010
https://resolucionaprobacionflorida05_05_20_tcm30-537798.pdf
https://resolucionaprobacionflorida05_05_20_tcm30-537798.pdf
https://doi.org/10.22358/jafs/65552/2016
https://doi.org/10.3168/jds.S0022-0302(87)80337-5
https://www.ncbi.nlm.nih.gov/pubmed/3448115
https://doi.org/10.3168/jds.S0022-0302(97)75996-4
https://www.ncbi.nlm.nih.gov/pubmed/9149971
https://doi.org/10.1016/j.cvfa.2018.07.001
https://www.ncbi.nlm.nih.gov/pubmed/30316503
https://doi.org/10.3168/jds.2019-17465
https://www.ncbi.nlm.nih.gov/pubmed/32171509
https://doi.org/10.1016/S0301-6226(03)00073-3
https://doi.org/10.3168/jds.2006-309
https://doi.org/10.1186/s12917-016-0781-x
https://doi.org/10.3168/jds.2009-2052
https://doi.org/10.3168/jds.2010-3694
https://www.ncbi.nlm.nih.gov/pubmed/21700052
https://doi.org/10.1186/s12711-019-0485-3
https://www.ncbi.nlm.nih.gov/pubmed/31409294
https://doi.org/10.3168/jds.2011-4714
https://www.ncbi.nlm.nih.gov/pubmed/22541500
https://doi.org/10.3168/jds.2013-7503
https://doi.org/10.1016/j.tree.2012.07.002
https://doi.org/10.2527/jas.2015-0150
https://doi.org/10.5713/ab.21.0143

	Introduction 
	Materials and Methods 
	Phenotypic Data and Pedigree 
	Statistical Analysis 

	Results 
	Phenotypic Parameters 
	Genetic Parameters 
	Repeatability Model 
	Random Regression Model 


	Discussion 
	Conclusions 
	References

