
Signatures of local adaptation to climate in natural populations of sweet 1 

chestnut (Castanea sativa Mill.) from southern Europe 2 

Key message  3 

Understanding the adaptive mechanisms of forest species is vital to ensure their survival in a climate 4 

change scenario. This study aimed at uncovering the relationship between genetic variability and 5 

environmental variables in natural Castanea sativa populations, unveiling how different climate 6 

scenarios drove local adaption processes using a landscape genomics approach. Our findings provide 7 

useful data for future management of this species. 8 

Abstract 9 

Context: Temperate forest species, such as chestnut (Castanea sativa Mill.), are currently threatened 10 

by increasing temperature together with disruption and reduction of precipitation due to climate change. 11 

In this context, understanding the adaptation processes of species will help to manage and ensure the 12 

conservation of forests. 13 

Aims: We studied the relationship between genetic variability and climate variables in natural 14 

populations of C. sativa using a landscape genomics approach aimed to identify local adaption 15 

processes. 16 

Methods: Using five genomic SSRs and eight functional EST-SSRs markers, 268 individuals 17 

belonging to ten different natural European chestnut populations distributed in contrasting climatic sites 18 

were genotyped. In addition, associations between allelic variation and climatic variables 19 

(environmental association analyses approach) were performed using Samada and LFMM. 20 

Results: Results highlighted a strong inter-relationship between climate variables and evolutionary 21 

processes resulting in adaptive variation. STRUCTURE analysis based on functional markers split the 22 

populations in three separate gene pools (K=3), mostly in agreement with the different climatic 23 

conditions existing in the studied areas. Divergent spatial patterns of genetic variation between rainy 24 

and arid areas were found. We detected a total of 202 associations with climate among 22 different 25 
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alleles, 9% of which related with the outlier locus FIR059, known to be implicated in regulatory 26 

mechanisms during water stress adaptation processes. 27 

Conclusions: Landscape genomics analyses revealed a pattern of adaptive variation, where specific 28 

climatic variables influenced the frequencies distribution and fixation of several alleles, resulting in 29 

local adaptation processes of the populations in the investigated areas. Our findings underline the close 30 

inter-relationship existing between climate and genetic variability, and indicate how this approach could 31 

provide valuable information for the management of forest species in a rapidly changing environment. 32 

Keywords: Landscape genomics, sweet chestnut, environmental association analyses, local adaptation, 33 

EST-SSR, climate change. 34 

1 Introduction 35 

Past and current climate changes have affected the pattern of genetic diversity and genetic structure of 36 

extant tree species. However, there is evidence that the intensity of the current climate change is higher 37 

than the ability of trees to adapt to changing conditions (Davis et al. 2005, Aitken et al. 2008). The 38 

survival of forests is highly dependent on the genetic variation within and among populations (Barrett 39 

and Schluter 2008) and for this reason it is essential to evaluate the genetic variability of trees. Adaptive 40 

genetic variation is defined as the variation found between the genomes of individuals resulting from 41 

natural selection. Local environmental conditions can induce spatially varying selective pressure, which 42 

directly affects adaptive genetic variation by favoring different alleles in different spatial localities 43 

(Hedrick et al. 1976; Schoville et al. 2012; Richardson et al. 2014). In view of current climate change, 44 

the potential ability of trees to adapt to different environmental conditions should also be studied. 45 

The Fst outlier test is a widely-used approach to study local adaptation by detecting loci putatively 46 

under divergent selection. Loci exhibiting a non-neutral pattern of variation, with a higher or lower 47 

genetic differentiation than expected under neutrality, are to be considered under selection (Narum and 48 

Hess 2011). However, the key drawback of this type of approach is the risk of detecting false positives. 49 

In fact, loci with Fst values that deviate significantly from neutrality may be due to locus-specific effects 50 

(i.e. adaptive selection, mutation, assortative mating and recombination), or due to genome-wide effects 51 
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(i.e. genetic drift, bottlenecks and gene flow). To avoid this uncertainty, Fst outlier analysis can be 52 

combined and supported by a landscape genomics approach. Landscape genomics focuses on 53 

understanding the interactions between environmental heterogeneity and adaptive genetic variation in 54 

natural populations. This is possible through environmental association analysis (EAA), which 55 

identifies genetic variants associated with particular environmental factors and has the potential to 56 

uncover adaptive patterns that are not discovered by traditional tests for the detection of outlier loci 57 

based on population genetic differentiation (Eckert et al. 2010a; 2010b; Schoville et al. 2012). In other 58 

words, EAA relates genomic information with environmental variables in order to reveal signatures of 59 

adaptive genetic variation and evolutionary processes (Joost et at. 2007; Coop et al. 2010; Stucki et al. 60 

2017). Several statistical models to perform EAA have been developed, and at least two models should 61 

be combined in order to obtain reliable results (Rellstab et al. 2015). Recent landscape genomics studies 62 

on forest species combined outlier locus detection with environmental association analyses (Bradbury 63 

et al. 2013; Cuervo-Alcaron et al. 2018; Martins et al. 2018). Additional models considering the 64 

interaction between adaptive genetic variation and multiple environmental gradients have also been 65 

developed. One such tool is Gradient Forests (Ellis et al. 2012) which models and maps turnover in 66 

allele frequencies along environmental gradients.  67 

The sweet chestnut is the only species in the genus Castanea in Europe, and is widespread throughout 68 

the Mediterranean basin, ranging from the Black Sea region to the Atlantic coast of the Iberian Peninsula 69 

(Fineschi et al. 2000; Maurer and Fernández-López 2001). Its current distribution is the consequence 70 

of natural colonization together with a long history of human intervention, with the first documented 71 

domestication attempts dating back to the Roman Empire and Ancient Greece (Conedera et al. 2004; 72 

Mattioni et al. 2013). Sweet chestnut has a high economic value, mainly due to the consumption of its 73 

fruits and the production of timber. Because of the existing climatic variability along the distribution of 74 

chestnut in Europe and because the susceptibility of chestnut to climate change events (Camisón et al. 75 

2020), it is an ideal species for studying neutral and adaptive genetic variability. 76 

Microsatellite markers (simple sequence repeat [SSR]) are powerful tools for genetic diversity and 77 

evolutionary process studies in forest species (Tuskan et al. 2004; Yin et al. 2004; Varshney et al. 2005). 78 

A vast number of expressed sequence tags (ESTs) are available for many plant species, some of them 79 



4 

including expressed sequence tag (EST)-SSR markers linked to transcribed regions of the genome, with 80 

known or suggested functions (Scott et al. 2000; Krutovskii and Neale 2001; Kalia et al. 2011). 81 

Although EST-SSR are less polymorphic compared to genomic SSRs, they are more suited to reveal 82 

functional diversity in relation to adaptive variation (Varshney et al. 2005; Yatabe et al. 2007) and are 83 

thus used to understand local adaptation processes. EST-SSRs associated to drought stress have been 84 

reported in Quercus spp. (Sullivan et al. 2013; Lind and Gailing 2013), chestnut (Martín et al 2010; 85 

Alcaide et al. 2019), and walnut (Torokeldiev et al. 2019). To study the adaptive variability and the 86 

processes involved in local adaptation of sweet chestnut, genomic and EST-SSR markers, and natural 87 

populations selected in areas with considerable differences in climatic conditions were used.  88 

The main objectives of this study were to: (1) perform simulations of chestnut distribution in view of 89 

climate change; (2) identifying signatures of adaptive variation of the populations in relation with the 90 

local climatic variables (3) identify markers with signatures of selection performing outlier tests 91 

analysis; (4) associate these markers with climate variables of the population through a landscape 92 

genomics approach. 93 

 94 

2 Materials and methods 95 

2.1 Tree populations  96 

Sweet chestnut has a very fragmented distribution within Europe, ranging from the regions of the 97 

Caucasus to the Atlantic coast of Portugal. In this study, 268 individuals from 10 different natural 98 

populations located in four European countries (Turkey, Greece, Italy and Spain) were analyzed (Table 99 

1; Fig. 1). The chestnut populations were chosen based on their geographic location and considering 100 

the different climatic conditions for each location in terms of rainfall events and temperatures (Fig. S1). 101 

The populations from Northern Italy, Northern Spain and East Turkey (Villar Pellice IT08, Costa 102 

Atlántica SP03, Hopa TR03) are located in humid environments, characterized by heavy rainfall and 103 

low-to-moderate temperatures throughout the year. The southern Italian (Madonie IT01), the Spanish 104 

(Castanyet SP02, Hervás SP06, Sierra Norte SP14), the two Greek (Holomontas GR01; Hortiatis GR02) 105 

and western Turkish (Bursa TR11) populations are characterized by low rainfall and moderate-to-high 106 

temperatures throughout the year. All the populations studied are part of the germplasm collection of 107 
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European chestnut populations conserved at the Institute of Research on Terrestrial Ecosystems; the 108 

samples have been collected in the field during several years and subsequently stored at – 80°C.  109 

 110 

2.2 Climatic scenarios of populations  111 

To compare present and future scenarios of tree populations, in view of climate change, twenty-one 112 

climatic variables for each population were used (Table 2). Data were obtained from WORLDCLIM 113 

‘bioclimatic variables’ digital data set (Fick and Hijmans 2017). For present data version 2.1 has been 114 

used; the future projection data used in this study are CMIP6 downscaled from Global Climate Model 115 

(GCM) BCC-CSM2-MR and Shared Socio-economic Pathways (SSP) 245. The spatial resolutions used 116 

was 2.5 minutes. The use of a large number of environmental factors may increase the number of 117 

statistical tests during association analysis, which needs to be considered in order that autocorrelation 118 

could be reduced. Furthermore, we looked for correlation between variables through Pearson's 119 

correlation coefficient (| r |> 0.8) using the 'ggpubr' package implemented in R (R Development Core 120 

Team 2019). Graphical output was achieved with the package ‘corrplot’ (Fig. S2). Subsequently to 121 

highlight correlations, a Principal Components Analysis (PCA) was performed with the ‘FactoMineR’ 122 

package (Lê et al. 2008). 123 

Using the climatic data in the DIVA-GIS software (Hijmans et al. 2004), it was possible to represent 124 

present and future climatic scenarios for Europe (Fig. S1). Present and future climatic conditions 125 

referred to years 2020 and 2050, respectively. For each of the ten sampling locations, average minimum 126 

monthly temperatures, average maximum monthly temperatures, average minimum annual 127 

temperature, average maximum annual temperature, average monthly rainfall, and average annual 128 

rainfall were collected. Through the ‘Ecocrop’ function implemented in DIVA-GIS, it was possible to 129 

determine the areas in which chestnut performs best in present and future climatic conditions (Fig. 2). 130 

EcoCrop module uses FAO’s EcoCrop database (FAO 2019) of the environmental requirements of a 131 

long list of plant species, including sweet chestnut. 132 

 133 

2.3 DNA isolation, SSR amplification and genotyping 134 
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DNA extraction was performed with the DNAeasy 96 Plant Kit (Qiagen, Valencia, CA, USA), 135 

according to the manufacturer's protocol. The amount and quality of extracted DNA was visualized 136 

through electrophoresis in agarose gel at 1% with 5x TAE as running buffer. All individuals were 137 

genotyped with 13 SSR markers. Five were gSSR markers developed in C. sativa (Table S1) (Marinoni 138 

et al. 2002; Buck et al. 2003) and eight were EST-SSR markers. The EST-SSR markers were developed 139 

from gene expression during tree exposure to water stress in Quercus robur (Durand et al., 2010) and 140 

selected based on information about their polymorphism linkage group and potential transferability to 141 

C. sativa (Alcaide et al., 2019) (Table S2). Three different PCR amplification multiplexes were 142 

assembled based on the size of products, using fluorescent dye-labelled primers (6-FAM, VIC, NED, 143 

PET; Applied Biosystems, Foster City, California, USA). Mixtures were arranged as follows: mix (A) 144 

including CsCAT1, CsCAT3, CsCAT6, (B) CsCAT16, EMCs38 (C) FIR080, GOT004, GOT021, 145 

VIT057, and (D) FIR059, FIR094, GOT045 and VIT033 primers. Amplifications were performed with 146 

the Type-It Microsatellite PCR Kit (Qiagen, Valencia, CA, USA). PCR mix consisted of 4L of 147 

genomic DNA, 6.25L of 2x Type-it Multiplex PCR Master Mix, 1.25L of 10X Primer Mix (2M of 148 

each primer) and 1L of RNase-free water for a total volume of 12.5L. Amplification conditions were 149 

as follows: an initial heat activation step at 95°C for 5 min, followed by 27 cycles consisting of a 150 

denaturation step at 95°C for 30 s, an annealing step at 57° for 1.5 min, and an extension step at 72°C 151 

for 30 s. A final extension step at 60°C for 30 min was executed. PCR fragments have been run on an 152 

ABI PRISM 3130 XL Genetic Analyzer for separation and sizing. GeneScan 250 LIZ was used as an 153 

internal size standard. Genotyping was performed using GeneMapper v4.0 software (Applied 154 

Biosystems, Foster City, US). 155 

 156 

2.4 Genetic diversity and structure of populations, and Fst outlier test  157 

The probability of null alleles (Fnull) for each of the 5 gSSR and 8 EST-SSR  loci analyzed was tested 158 

using the software FreeNA (Chapuis and Estoup  2007). 159 

For each population and separately for neutral markers (gSSR) and EST-SSR, the number of alleles 160 

(Na), observed and expected heterozygosity (Ho, He), fixation index (Fis) and pairwise Fst were 161 

calculated using GeneAlex 6.503 (Peakall and Smouse, 2012). Allelic richness (Ar) was evaluated 162 
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through the use of HP-Rare (Kalinowski 2005). Significance test for the Fis values and the molecular 163 

variance (AMOVA) were calculated with Arlequin 3.1.1 software (Excoffier et al. 2005). Population 164 

structure was inferred using a Bayesian approach as implemented in the STRUCTURE 2.3.4 software 165 

(Pritchard et al. 2004), separately for the genomic gSSR and EST-SSR. Both analyses used the 166 

admixture model with correlated allele frequencies. Parameters were set for a burn-in period of 100,000 167 

and a MCMC (Markov chain Monte Carlo) with 200,000 iterations. The range of K tested was equal to 168 

the number of the populations analyzed plus one, i.e. 11. Potential clusters (K) were tested using 20 169 

iterations. To determine the most likely number of K, the K method by Evanno et al. (2005) was 170 

applied using STRUCTURE HARVESTER (Dent and Von Holdt, 2012) A graphical representation of 171 

the STRUCTURE results was performed using CLUMPAK (Kopelman et al. 2015). 172 

Detection of Fst outliers was performed using Bayescan 2.1 (Foll et al. 2008). The eight EST-SSR and 173 

five gSSR loci were tested for the evidence of the effect of natural selection among all populations. The 174 

underlying geographic genetic structure was assessed during the detection of the Fst outlier; hence, 175 

analyses were ran first based on all populations together, then by comparing eastern vs western 176 

populations and finally by comparing the different genetic pools highlighted by the structure analyses. 177 

The program has been executed with twenty pilot runs with a length of 5,000 and a burn-in length of 178 

50,000. The thinning interval was set to 50. Significant loci with positive alpha values were considered 179 

candidates for diversifying selection, according to Jeffrey’s scale of evidence (Jeffrey 1961). 180 

 181 

2.5 Environmental association analysis of populations 182 

To perform environmental association analysis (EAA), two different models were used: a logistic 183 

regression implemented in the Samada software (Stucki et al. 2017), and a Bayesian mixed 184 

hierarchical model implemented in the software Latent Factor Mixed Model (LFMM) (Frichot and 185 

Francois 2013; 2015). The associations between climate variables and genetic variability were tested 186 

for all gSSR and EST-SSR markers. Both analyses were performed considering the underlying neutral 187 

genetic structure; this step is of fundamental importance; not taking into account the underlying neutral 188 

genetic structure can lead to false positives discoveries. If not corrected for the neutral genetic structure, 189 

the identification of associations could be the result of spatial arrangement and the demographic history 190 
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of the populations, and not a sign of local adaptation; the underlying neutral genetic structure can mimic 191 

patterns expected under non-neutral processes. With the results obtained from STRUCTURE 2.3.4 192 

software for gSSR markers, a multivariate analysis using the coefficients of membership (Q) for each 193 

individual was run, and the G scores to assess significance were calculated. As a second approach, a 194 

latent factor mixed model (LFMM) implemented in the R package LEA was performed. In this model, 195 

neutral population structure is introduced as a ‘latent factor’. The number of detected clusters (K) 196 

calculated by STRUCTURE were applied. Ten LFMM repetitions with 100,000 iterations and 10,000 197 

burn-in were performed for each climate variable. Z-scores of multiple runs were combined using the 198 

median value, and p-values were adjusted for expected FDR at 0.05. 199 

Although Samada and LFMM are able to reveal associations between genetic variation and climate 200 

variables, none of these two approaches quantifies the contribution of each variable in the overall 201 

genetic structure of chestnut populations. Through the use of the 'gradientForest' package (Ellis 202 

et al. 2010) implemented in R, it was possible to quantify the contribution of each climate variable on 203 

the allelic frequency variation in chestnut. GradientForest is capable of partitioning the allele frequency 204 

data at split values along climate gradients, allowing the exploration of nonlinear associations of 205 

climatic and allelic variables. 206 

 207 

3 Results 208 

3.1 Present and future climate conditions 209 

A comparison between present and future climate scenarios within chestnut populations (Fig. S1) 210 

revealed an average increase of mean temperatures of 2.21 °C. Areas with the highest increase in 211 

temperatures were coincident with Bursa (TR11) and Sierra Norte (SP14) populations and showed an 212 

increase of 2.45 °C. All populations except Madonie (IT01), with an increase of 27 mm of rainfall, 213 

showed a decrease in rainfall of 85 mm in average. Costa Atlántica (SP03) showed the highest reduction 214 

of rainfall, i.e. 227 mm. The EcoCrop module showed a considerable reduction of areas with the best 215 

conditions for the development of chestnut in Europe (Fig. 2). Generally, areas with the best conditions 216 

for chestnut development were displaced to higher latitudes and altitudes. 217 

 218 
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3.2 Genetic diversity, population structure and outlier loci 219 

For both gSSR and EST-SSR loci, no high frequency of null alleles was detected; Fst including null 220 

alleles (INA) was 0.1063 and 0.2272 for gSSR and Est-SSR respectively, while the Fst excluding null 221 

alleles (ENA) was 0.1015 and 0.2174 for gSSR and EST-SSR respectively. Overall, neutral markers 222 

(gSSR) showed higher values for the genetic diversity indices per population compared to EST-SSR. 223 

Expected heterozygosity (He) for gSSR ranged from 0.639 (Hortiatis GR02) to 0.824 (Hervás SP06) 224 

with a mean value of 0.764 (Table 3). EST-SSR expected heterozygosity (He) ranged from 0.284 225 

(Holomontas GR01) to 0.501 (Costa Atlántica SP03) with a mean value of 0.389 (Table 4). The fixation 226 

index (Fis) was significantly different from zero (p <0.01, p <0.001) in several populations, both for 227 

gSSR (Bursa TR11, Hopa TR03, Villar Pellice IT08, Holomontas GR01) and EST-SSR (Hervás SP06, 228 

Bursa TR11, Hopa TR03, Villar Pellice IT08). Overall, allelic richness (Ar) showed higher mean values 229 

for neutral markers (Ar = 7.95) compared to functional markers (Ar = 3.01). The highest values of Ar 230 

were observed in the Hopa (TR03) population, for both neutral and functional markers  The results 231 

provided by STRUCTURE, considering both the delta K method by Evanno et al. (2005) and 232 

the 233 

distribution of the posterior log-likelihood (Supp. Mat. S7, S8) based on gSSR, were checked. 234 

Based on the delta K and on the lowest variance of the L(K) distribution, the most likely number 235 

of clusters (K) were K=2 for gSSRs and K=3 for EST-SSRs 236 

Results for the population structure based on the gSSR highlighted two core genetic population groups, 237 

separating east (Greek and Turkish populations) from west populations (Italian and Spanish) (Fig. 3a). 238 

On the other hand, the population genetic structure revealed by the EST-SSR was congruent with the 239 

different climatic conditions of the study areas.  (Fig. 3b, S1). Group I (blue colored in Fig. 3b) 240 

comprised Bursa (TR11), Holomontas (GR01), Hortiatis (GR02), Hervás (SP06) and Sierra Norte 241 

(SP14) populations, located in areas characterized by low precipitation and high temperature throughout 242 

the year (Supp. material Fig. S1). The Madonie (IT01) population fell within group II (purple colored 243 

in Fig. 3b); this population is located at 1.100 m MSL and the site is characterized by a low temperature 244 

and low precipitations and a xerothermic index (Xi) of 110 (Mattioni et al 2008). The Hopa (TR03) 245 

population, located in a highly rainy area, belonged to the group III (orange color). The Castanyet 246 
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(SP02) population, found in an area characterized by low mean annual temperature and low 247 

precipitations, showed some admixture with groups I and II, while Villar Pellice (IT08) and Costa 248 

Atlántica (SP03), located in areas with low mean annual temperature and high precipitations, showed 249 

some admixture with groups II and III. All the less significant structures and the sub- structures are 250 

reported in supplementary materials (Fig. S9).  For all of the approaches tested for the detection of 251 

outlier loci, BayeScan 2.1 analysis highlighted only the locus FIR059 as putatively under positive 252 

selection (Table 5). On the basis of Jeffrey’s scale of evidence, locus FIR059 was identified as a 253 

‘decisive’ outlier candidate for diversifying selection. No sign of selection was highlighted for any of 254 

the other EST-SSR and gSSR markers (Fig. S6). 255 

 256 

3.3 Environmental associations 257 

To reduce the risk of false positive loci discoveries, (i) EAA analyses was performed with two different 258 

models, (ii) associations between genetic variation and climate variables were corrected for neutral 259 

genetic structure, (iii) only associations for the outlier locus FIR059 were considered, and (iv) for 260 

FIR059, only alleles showing signs of associations with a climate variable in both Samβada and LFMM 261 

software applications were considered. The variables highlighted by Pearson’s test as being highly 262 

correlated (i.e. with | r | > 0.8; Fig. S2) were found to be the same as those of the PCA (Fig. S3). Pearson's 263 

analysis revealed  highly correlated climatic variables (| r | > 0.8), and for each set of correlated variables 264 

only one variable was selected. The resulting set of associated climatic variables and the ones selected 265 

for the analysis are shown in the Supplementary materials (Table S3). Variables AnnPrec and 266 

MeanAnnT were removed from subsequent analyses as they were highly correlated with all variables 267 

related to rainfall and temperatures. Samada highlighted 14 alleles out of 54 that were associated with 268 

at least one climate variable, across seven EST-SSR. No associations were found for the GOT004 269 

marker. Most alleles showed an association with more than one climate variable. LFMM analyses 270 

identified 20 out of the 54 alleles associated with at least one climate variable across eight EST-SSR. 271 

Again, no significant associations were found for the GOT004 marker. A total of 98 significant 272 

associations were highlighted by the two models, 27 of which were shared between Samβada and 273 

LFMM (Table S4). Seven associations for three different alleles were observed for FIR059 according 274 
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to Samada (Table 6). For the same locus, LFMM revealed 19 associations across 9 alleles, showing a 275 

higher potential for discovery than Samada (Table 6). 276 

 277 

3.4 Contribution of climate variables in structuring genetic variation 278 

GradientForest revealed climatic variables related to precipitation as key predictors for genetic variation 279 

at the locus FIR059. Of these, precipitation during the wettest quarter (PrecWeQ) was the most relevant 280 

(i.e. highest R2 values), followed by precipitation during the driest quarter (PrecDQ) (Fig. 4). The 281 

variables showing a greater contribution to the variation in allele frequencies, overlapped with those 282 

that showed significant signs of association by Samada and LFMM. Allelic changes along the 283 

environmental gradients showed an important variation along the variable 'PrecWeQ', with a spike in 284 

the variability between 350 and 550 mm of rainfall (Fig. 4b). 285 

 286 

4 Discussion 287 

We evaluated the adaptive genetic variability of sweet chestnut populations and identified genomic 288 

regions that might be involved in local adaptation processes in response to climate conditions. In order 289 

to prevent spurious correlations not directly related to adaptation (Novembre and Di Rienzo 2009), both 290 

gSSR and EST-SSR markers were used to assess neutral and adaptive components of genetic variability. 291 

Previous studies on chestnut have identified outlier loci related to bud burst (Martín et al. 2010), 292 

tolerance to drought (Alcaide et al. 2019), and resistance to Phytophthora cinnamomi (Alcaide et al. 293 

2020).  294 

The growing interest in the impact of climate change on forest ecosystems has produced a vast amount 295 

of documentation over the last twenty years. Forest ecosystems are at great risk, including trees with an 296 

economic value in terms of production, such as the sweet chestnut. The estimated loss of areas with 297 

suitable conditions for the growth of chestnut, due to climate change (Fig. 2b) provides additional 298 

information in forestry and underlines the importance of studying adaptation in tree species. From an 299 

agricultural perspective, many nut trees require a certain amount of winter chill hours for proper fruit 300 

development (Byrne and Bacon 1992). The effect of prolonged water stress, prolonged waterlogging 301 

and chill hour reduction due to climate change on nut trees has already been documented (Luedeling et 302 
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al. 2011; Camisón et al. 2020). Combined with this, a rainfall deficit and extreme summer heat in Europe 303 

can lead to a severe reduction in nut productivity (Ciais et al. 2005). 304 

 305 

4.1 Genetic diversity and population structure of chestnut in Europe 306 

Higher genetic diversity was observed for neutral markers in comparison to adaptive ones. As EST-307 

SSR markers are linked to coding regions, they tend to be more conserved and, consequently, less 308 

polymorphic than neutral markers (Varsheney et al. 2005; Ellis and Burke 2007). Several other studies 309 

assessing the genetic diversity of plants species confirmed the higher polymorphism of genomic 310 

markers in comparison to functional markers (Şelale et al. 2013; Torokeldiev et al. 2019). The genetic 311 

diversity indices indicate slightly higher values for the western populations compared to those of the 312 

east; this result is in contrast to previous studies carried out on vascular plants in Europe which see a 313 

tendential decrease in genetic diversity moving from east to west. (Fady and Conord, 2010; Conord et 314 

al., 2012). Here, the studied chestnut populations are a subsample of others genotyped in a previous 315 

work by Mattioni et al. (2017), in which higher values of He and Ar were observed in the central area 316 

of the species distribution. Hence, higher values of genetic diversity for the western populations can be 317 

a consequence of several colonization routes from different refugees, as observed in other species (Petit 318 

et al., 2003) as well as of human intervention.  319 

The positive values of Fis observed in some populations for both types of molecular markers are 320 

probable due to factors such as the fragmentation and isolation of populations. It is notable that in some 321 

populations, considered as refugia during the last glaciation, the allelic richness and private allelic 322 

richness at neutral loci is high. This result is in agreement with those obtained in a previous paper on 323 

C. sativa, (Mattioni et al., 2017) and Fagus selvatica (Comps et al., 2001) and it supported by the 324 

hypotheses of Widmer and Lexer (2001) on high values of allelic richness on rifugia areas. On the other 325 

hand, the high value of private allelic richness at EST-SSr loci observed especially for Hopa population 326 

could reflect a selection of specific alleles due to adaptation. 327 

STRUCTURE analyses produced different results for neutral and functional markers. When considering 328 

gSSR, STRUCTURE highlighted a congruence between the genetic diversity and geographical location 329 

of the populations: clear separation between eastern and western European populations. This 330 
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demonstrates that the Carpathian and Balkanian mountain chain acted as a barrier, blocking the gene 331 

flow between two macro-regions.  In Mattioni et al. (2017), where a large number of natural sweet 332 

chestnut populations have been genotyped with neutral markers, similar results were reported. Three 333 

different genetic groups were  highlighted by the EST-SSR markers. The resulting structure clustered 334 

together populations collected in areas characterized by similar climatic conditions. Trees from Hopa 335 

(TR03), located in a region with heavy rainfall throughout the year (annual average of 1,227 mm) and 336 

moderate-to-low temperatures, were included in a well-defined genetic cluster (III). Similar climate 337 

conditions, referring to precipitations, can be found in Galicia (SP03) and Piemonte (IT08) regions; this 338 

could explain the membership of several individuals from these populations to the group III.  Moreover, 339 

the two Spanish (SP02, SP03) and the Italian (IT08) populations are located in areas with low mean 340 

annual temperature, as well as the population IT01, that is located at 1100 meters of altitude. We can 341 

suppose that a climatic variable as the low temperature could explain the genetic similarity of some 342 

individuals of these populations. 343 

Results suggest that the selected EST-SSR markers were informative and able to differentiate 344 

populations based on climatic conditions. Indeed, we have to underline that our results have been 345 

achieved with a limited numbers of functional markers; further research, using a more consistent set of 346 

markers ideally found within transcribed regions of the genome are needed to better understand adaptive 347 

processes of chestnuts populations to different environmental conditions. 348 

 349 

4.2 Environmental association analysis of chestnut in Europe 350 

Compared to the Fst outlier tests, EAA analyses are more sensitive to subtle changes in allele 351 

frequencies and generally tend to be more robust (De Mita et al. 2013; Ahrens et al. 2018). Combining 352 

Fst with EAA was the best approach to maximize the probability of finding significant associations and 353 

to minimize the risk of detecting false positives (Rellstab et al. 2015). None of the five neutral markers 354 

showed association with climatic variables. This lack of association reinforces the hypothesis of the 355 

neutrality of the selected markers. As they are linked to non-coding regions of the genome, they do not 356 

show signs of intervention in adaptive processes. However, EAA highlighted 98 significant associations 357 

between EST-SSR markers and climatic variables. LFMM showed a slightly higher potential for 358 
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discovering environmental associations than Samada (59 vs. 39). Among the nine alleles, for which 359 

associations with climate variables were found for the locus FIR059, three of these were shared with 360 

the LFMM and Samada, specifically for alleles 152, 181 and 185. The associations found for allele 361 

152 were mainly related to rainfall. Interestingly, allele 152 showed an almost total exclusivity for 362 

individuals from the Hopa (TR03) population (Fig. S4), which belongs to the area with the highest 363 

precipitation. It could be possible that the fixation of this allele for individuals of the Hopa (TR03) 364 

population was due to the climatic conditions of the region. The associations found for allele 181 were 365 

again related to precipitation. In this case, rain associated events were related to the driest period of the 366 

year (PrecDQ), and the fixation of this allele may respond to environmental scenarios related to warm 367 

and dry areas. In terms of allelic presence (Fig. S4), none of the trees from the Hopa (TR03) region 368 

showed the allele 181, in contrast to Hervás (SP06), Holomontas (GR01) and Madonie (IT01) trees, 369 

located in dry regions, which showed the highest frequencies. The associations found for allele 185 370 

were linked to temperature variables, namely MeanTCQ, TSeas, and ATR. In this case, this allele 371 

showed frequencies distributed among seven different populations, with the highest frequencies in 372 

chestnuts from Castanyet (SP02) and Costa Atlántica (SP03). Galicia and Catalonia regions have a very 373 

mild climate, with average minimum and maximum temperatures of 11.0 vs. 11.7 and 18.2 vs. 18.6 C°, 374 

respectively. The fixation of allele 185 could therefore be linked to this particular temperature range.  375 

 376 

4.3 The relevance of the FIR059 marker 377 

The Fst test used here to identify outliers implemented in BayeScan 2.1 is more conservative than other 378 

methods (Narum and Hess 2011). Out of 13 markers tested for evidence of selection, FIR059 was 379 

detected as an outlier locus with ‘decisive’ signs of selection. The FIR059 marker is putatively linked 380 

to the RH7 gene, belonging to the DEAD-box-RNA helicase family. This family of helicases is involved 381 

in the metabolic processes of RNA, such as transcription, splicing and translation of mRNA, and 382 

degradation of the DNA (Huang et al. 2015; Liu et al. 2016). RNA helicases have been associated with 383 

different functions linked to the correct development of the plant and biotic and abiotic stress responses 384 

(Kim et al. 2008). Specifically, the RH7 helicase plays an important role during the embryonic phase 385 

development of plants and in their tolerance to heat, frost and drought stress (Vashisht and Tuteja 2006; 386 
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Macovei et al. 2012). It is possible that the fixation of the alleles for the locus FIR059 found to be 387 

associated with climatic variables may be the result of selective processes due to the different climatic 388 

conditions in the various regions. 389 

Our results are in agreement with a study by Alcaide et al. (2019) on sweet chestnut, which identified 390 

the locus FIR059 as an outlier locus also putatively under selection. The locus was found to be involved 391 

in the tolerance and the susceptibility of chestnut to drought stress. Specifically, FIR059 showed three 392 

private alleles for drought-susceptible individuals and two private alleles for drought-tolerant 393 

individuals. Of these five alleles, three (152, 160 and 176) were found here to be associated with 394 

climatic variables, of which allele 152 related to precipitation. In the study by Alcaide et al. (2019) 395 

allele 152 was found to be private in drought-tolerant plants, reinforcing the hypothesis of a link 396 

between this allele and the plant's exploitation of water resources. Associations for alleles 160 and 176 397 

were not explored as they were highlighted only by LFMM. Allele 176, highlighted as private in 398 

drought-tolerant chestnuts (Alcaide et al. 2019), showed here an association with the mean temperature 399 

of the wettest quarter. Allele 160, also highlighted as a private allele in drought-susceptible chestnuts 400 

(Alcaide et al. 2019), showed associations with mean annual temperature and annual minimum 401 

temperature, and precipitation seasonality. This provides evidence about the putative involvement of 402 

alleles 152, 160 and 176 in mechanisms responding to abiotic stresses. Results strongly suggest that 403 

FIR059 is a marker of considerable interest for the identification of genotypes adapted to different 404 

climatic conditions.  405 

 406 

5 Conclusions 407 

Climate predictions will induce a change in suitable areas for sweet chestnut distribution. Here we have 408 

reported a restricted case, represented by a limited number of chestnut population, we’ve been able of 409 

highlighting regions of the genome that have been putatively affected by climate pressures. The 410 

identification of alleles related to climatic variables could be relevant for understanding adaptation of 411 

this tree species in the future. It has been proven here that landscape genomics and association analyses 412 

were capable of identifying in chestnut loci involved in mechanisms of tolerance and adaptation to 413 

different environmental challenges. This work aimed to emphasize the close inter-relationship existing 414 



16 

between trees and environment, and how climate variables were able to shape their genetic diversity 415 

and adaptive variation.   416 
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Tables 654 

 655 

Table 1 Location, code, number of individuals (N) and geographical coordinates in decimal degrees of 656 

the ten sweet chestnut populations studied. 657 

Country Region Population Code N Longitude Latitude 

Spain 

Galicia Costa Atlántica SP03 31 43.301 -8.669 

Catalonia Castanyet SP02 29 41.616 2.502 

Andalusia Sierra Norte SP14 30 37.899 -5.635 

Extremadura Hervás SP06 30 40.269 -5.854 

Italy 

Piemonte Villar Pellice IT08 26 7.140 44.800 

Sicily Madonie IT01 20 14.090 37.830 

Greece 

S-E-

Macedonia 
Holomontas GR01 26 23.750 50.530 

C-Macedonia Hortiatis GR02 24 22.380 40.590 

Turkey 

Bursa Bursa TR11 29 29.080 40.120 

Artvin Hopa TR03 23 41.570 41.390 

  658 
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Table 2 Climate variables used in this study. Data were obtained from WORDCLIM 659 

(https://www.worldclim.org) at 2.5 min resolution. 660 

Abbreviation Description 

MeanAnnT Mean annual temperature (C°) 

MeanMTR Mean monthly temperature range (C°) 

Iso Isothermality (MeanMTR/ATR) (*100) 

TSeas Temperature seasonality (standard deviation *100) 

MaxTWM Maximum temperature of warmest month (C°) 

MinTCM Minimum temperature of coldest month (C°) 

ATR Annual temperature range (MaxTWM - MinTCM) 

MeanTWeQ Mean temperature of wettest quarter (C°) 

MeanTDQ Mean temperature of driest quarter (C°) 

MeanTWQ Mean temperature of warmest quarter (C°) 

MeanTCQ Mean temperature of coldest quarter (C°) 

AnnPrec Annual precipitation (mm) 

PrecWeM Precipitation of wettest month (mm) 

PrecDM Precipitation of driest month (mm) 

PrecSeas Precipitation seasonality (coefficient of variation) 

PrecWeQ Precipitation of wettest quarter (mm) 

PrecDQ Precipitation of driest quarter (mm) 

PrecWQ Precipitation of warmest quarter (mm) 

PrecCQ Precipitation coldest quarter (mm) 

AnnMaxT Annual maximum temperature (C°) 

AnnMinT Annual minimum temperature (C°) 

  661 
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Table 3 Genetic diversity of ten sweet chestnut populations based on gSSR loci 662 

Population Code Na Ne I Ho He uHe Fis Ar PAr 

Costa 

Atlàntica 
SP03 9.600 5.790 1.860 0.710 0.802 0.815 0.108** 8.44 0,63 

Castanyet SP02 10.200 5.306 1.926 0.738 0.802 0.817 0.044 8.06 0,10 

Sierra 

Norte 
SP14 9.800 6.032 1.919 0.800 0.808 0.821 0.094* 7.17 0,19 

Hervàs SP06 11.000 6.001 2.010 0.640 0.824 0.838 0.227 7.10 0,38 

Villar 

Pellice 
IT08 12.200 6.364 2.029 0.746 0.809 0.825 0.297** 7.49 1,58 

Madonie IT01 7.600 3.917 1.548 0.600 0.705 0.723 0.042 9.54 0,02 

Holomontas GR01 8.400 4.135 1.581 0.608 0.704 0.718 0.171** 6.87 0,09 

Hortiatis GR02 7.600 3.440 1.420 0.633 0.639 0.653 0.003 6.71 0,25 

Bursa TR11 12.200 5.579 1.908 0.655 0.758 0.772 0.115** 8.44 2,30 

Hopa TR03 9.400 5.151 1.852 0.539 0.792 0.810 0.148** 9.75 1,01 

Mean 
 

9.800 5.171 1.805 0.667 0.764 0.779 0.129 7.95 0,51 

Na = No. of Different Alleles, Ne = No. of Effective Alleles, I = Shannon's Information Index, Ho = Observed Heterozygosity, He = Expected 

Heterozygosity, uHe = Unbiased Expected Heterozygosity, Fis = Fixation Index, Ar = Allelic richness, Par = Private allelic richness 

* P < 0.01  
** P < 0.001 
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Table 4 Genetic diversity of ten sweet chestnut populations based on EST-SSR loci 664 

Population Code Na Ne I Ho He uHe Fis Ar Par 

Costa 

Atlàntica 
SP03 4.000 2.452 0.924 0.476 0.501 0.510 0.067 3.76 0,62 

Castanyet SP02 2.500 2.029 0.712 0.453 0.442 0.449 -0.071 2.38 0,00 

Sierra 

Norte 
SP14 3.000 2.272 0.758 0.379 0.437 0.444 0.148** 2.95 0,00 

Hervàs SP06 2.875 1.967 0.617 0.329 0.333 0.338 0.027 2.89 0,06 

Villar 

Pellice 
IT08 3.000 2.180 0.706 0.327 0.394 0.402 0.189** 2.95 0,02 

Madonie IT01 2.875 1.679 0.535 0.281 0.287 0.294 0.044 2.71 0,07 

Holomontas GR01 2.625 1.661 0.499 0.320 0.284 0.289 -0.104 2.57 0,25 

Hortiatis GR02 3.000 1.969 0.655 0.434 0.375 0.384 -0.125 2.78 0,14 

Bursa TR11 3.250 2.173 0.786 0.379 0.450 0.458 0.174** 3.12 0,10 

Hopa TR03 4.000 2.097 0.748 0.235 0.383 0.391 0.403** 3.99 0,99 

Mean 
 

3.113 2.048 0.694 0.361 0.389 0.396 0.081 3.01 0,28 

Na = No. of Different Alleles, Ne = No. of Effective Alleles, I = Shannon's Information Index, Ho = Observed Heterozygosity, He = Expected 
Heterozygosity, uHe = Unbiased Expected Heterozygosity, Fis = Fixation Index, Ar = Allelic richness, Par = Private allelic richness 

 
* P < 0.01  

** P < 0.001 
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Table 5 Results of BayeScan 2.1 Fst outlier analysis on eight EST-SSR loci from ten sweet chestnut 666 

populations. 667 

Locus P(α≠0) * Log10(PO) qval Alpha Fst 
Evidence of 

selection 

GOT021 0.1192 -0.8685 0.5815 -0.0963 0.2546 
 

VIT057 0.0924 -0.9921 0.6630 -0.0513 0.2616 
 

FIR080 0.0408 -13.712 0.7858 0.0017 0.2688 
 

GOT004 0.1362 -0.8021 0.4319 0.1267 0.2953 
 

VIT033 0.0596 -11.980 0.7185 0.0087 0.2705 
 

GOT045 0.0406 -13.734 0.8075 0.0037 0.2691 
 

FIR059 0.9998 36.988 0.0002 -12.947 0.9965 Decisive** 

FIR094 0.0510 -12.696 0.7569 0.0185 0.2719 
 

*Posterior probability 

** Based on Jeffrey’s scale of evidence (Foll 2008) 
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Table 6 Significant associations between alleles from the FIR059 locus and the climate variables (codes 669 

in Table 2), according to LFMM and Samada software. Climate variables in bold were significant in 670 

both models. 671 

Locus Allele (bp) LFMM Samada 

FIR059 

152 PrecWeQ,  PrecWeQ 

154 PrecSeas - 

160 PrecSeas, MeanTCQ - 

162 MeanTWeQ - 

164 MeanTWeQ - 

167 PrecSeas, MinTCM, ATR - 

176 MeanTWeQ - 

181 PrecDQ, PrecWeQ, MeanTWeQ PrecDQ 

185 
MeanTCQ, PrecSeas, ATR, 

MeanTWeQ 
MeanTCQ, ATR 
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Captions of Figures 673 

Fig.1 Geographical distribution of the 10 Castanea sativa populations studied. 674 

Fig.2 Representation of the areas with best suitability for chestnut development in reference to 2020 675 

and 2050. 676 

Fig. 3 Population genetic structure of ten sweet chestnut populations grouped into clusters I (blue color) 677 

and II (orange) according to gSSRs markers (K=2) (a) and grouped into clusters I (blue), II (purple) and 678 

III (orange) according to EST-SSR markers (K=3) (b). 679 

Fig. 4 (a) Importance in terms of R2 weight of climate variables related to alleles of locus FIR059; (b) 680 

cumulative importance of allelic change for the locus FIR059 along most important environmental 681 

gradients.  682 
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Figures 683 

 684 

 685 

Figure 1  686 
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 688 

Figure 2 689 

(a) 

(b) 
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Figure 3 691 

 692 

Figure 4 693 
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8 Dataset in a repository 695 

The genetic raw data will be deposited in the TreeGenes repository (https://treegenesdb.org) 696 


