Proteomic profile and protease activity in the skin mucus of greater amberjack (*Seriola dumerili*) infected with the ectoparasite *Neobenedenia girellae* — an immunological approach

Álvaro Fernandez-Montero, Silvia Torrecillas, Daniel Montero, Felix Acosta, María-José Prieto-Álamo, Nieves Abril, Juan Jurado

PII: S1050-4648(21)00001-2

DOI: https://doi.org/10.1016/j.fsi.2021.01.001

Reference: YFSIM 7400

- To appear in: Fish and Shellfish Immunology
- Received Date: 7 August 2020
- Revised Date: 5 December 2020

Accepted Date: 4 January 2021

Please cite this article as: Fernandez-Montero Á, Torrecillas S, Montero D, Acosta F, Prieto-Álamo M-J, Abril N, Jurado J, Proteomic profile and protease activity in the skin mucus of greater amberjack (*Seriola dumerili*) infected with the ectoparasite *Neobenedenia girellae* — an immunological approach, *Fish and Shellfish Immunology*, https://doi.org/10.1016/j.fsi.2021.01.001.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Elsevier Ltd. All rights reserved.

CRediT authorship contribution statement

Á. Fernandez-Montero: Investigation, Formal analysis, Resources, Writing – Original Draft, Review & Editing. S. Torrecillas: Resources, Writing – Review & Editing D.
Montero: Conceptualization, Writing – Review & Editing, Project administration, Funding acquisition. F. Acosta: Resources, Writing – Review & Editing. M-J Prieto-Álamo: Conceptualization, Investigation, Formal analysis, Writing – Review & Editing. N. Abril: Conceptualization, Writing – Review & Editing J Jurado: Conceptualization, Investigation, Poriginal Draft, Review & Editing, Visualization, Investigation, Formal analysis, Writing – Original Draft, Review & Editing, Visualization, Supervision, Project administration, Funding acquisition.

1	Proteomic profile and protease activity in the skin mucus of
2	greater amberjack (Seriola dumerili) infected with the
3	ectoparasite <i>Neobenedenia girellae</i> — an immunological
4	approach
5	
6	
7	Álvaro Fernandez-Montero ^a , Silvia Torrecillas ^a , Daniel Montero ^a , Felix Acosta ^a , María-
8	José Prieto-Álamo ^b , Nieves Abril ^b , Juan Jurado ^{b,} *.
9	
10	
11	
12	^a Grupo de Investigación en Acuicultura (GIA), Instituto Universitario Ecoaqua, Universidad de
13	Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214, Telde, Las Palmas, Islas Canarias, España.
14	
15	^b Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional
16	Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa,
17	E-14071 Córdoba, España.
18	
19	
20	
21	*Corresponding author: Tel.: +34 957 218139; fax: +34 957 218856. E-mail address:
22	jjurado@uco.es (J. Jurado).
23	
24	

- 25 Keywords: skin mucus; greater amberjack (Seriola dumerili); proteome; Neobenedenia
- 26 *girellae*; protease; microbiota.
- 27

28 Highlights

- The skin mucus proteome of *Seriola dumerili* was analyzed for the first time.
- The effect of *Neobenedenia girellae* on the proteome, proteases, and the microbiota was
 assessed.
- Ribosomal proteins were overrepresented in the skin mucus of parasitized fish.
- 2-DE proteomics reveals that specifically keratins were cleaved in parasitized fish.
- The mucus of infected fish showed high metal-dependent protease and serine protease
 activities.
- 36

38 Abstract

39 Skin mucus is considered the first barrier against diseases in fish. The skin mucus 40 protein profile of the greater amberjack (Seriola dumerili) and its changes due to 41 experimental infection with *Neobenedenia girellae* were studied by combining 2-DE-42 MS/MS and gel-free LC-MS/MS proteomic approaches. The 2-DE results led to the 43 identification of 69 and 55 proteins in noninfected and infected fish, respectively, and 44 revealed that keratins were specifically cleaved in parasitized fish. Therefore, the skin 45 mucus of the infected fish showed a higher protease activity due to, at least in part, an 46 increase of metal-dependent protease and serine-type protease activities. 47 Additionally, through a gel-free LC-MS/MS analysis, 1377 and 1251 different proteins 48 were identified in the skin mucus of healthy and parasitized fish, respectively. The 49 functional analysis of these proteins demonstrated a statistical overrepresentation of 50 ribosomal proteins (a well-known source of antimicrobial peptides) in N. girellae-51 infected fish. In contrast, the components of membranes and protein transport GO 52 categories were underrepresented after infection. Immune system process-related 53 proteins constituted 2.5% of the total skin mucosal proteins. Among these skin 54 mucosal proteins, 14 and 15 proteins exclusive to non-parasitized and parasitized fish 55 were found, respectively, including specific serine-type proteases and 56 metalloproteases in the parasitized fish. Moreover, the finding of tryptic peptides 57 exclusive to some bacterial genera, obtained by gel-free LC-MS/MS, allowed us to 58 construct a preliminary map of the microbiota living in the mucus of S. dumerili, with 59 Pseudomonas and Paracoccus the most represented genera in both noninfected and 60 infected fish.

- 61
- 62

63 1. Introduction

64 The mucus of different vertebrates has been studied from diverse points of view to 65 determine its function, composition, and variations. However, because of its 66 environment, mucosal surfaces play relevant roles in fish as the first barrier against a 67 wide variety of chemical, physical, and biological stressors [1, 2]. Fish mucus is 68 produced by goblet cells, which are scattered throughout mucosal tissue with 69 epithelial cells [3, 4]. Although most fish mucus studies have been focused on the gut 70 [5], knowledge of skin mucus is increasing because of its biomechanical and 71 immunological properties [6, 7].

72 Skin mucus is composed mainly of water (95%) and mucins, which constitute a family 73 of high-molecular-weight glycosylated proteins. Mucins are structural proteins, which 74 play key roles in mucus viscosity, providing the surface of the fish body with 75 rheological, viscoelastic, and adhesive characteristics that can be modified with the 76 types and quantity of mucin glycosylation [8, 9]. Keratins are also important structural 77 proteins in fish skin mucus, although in a different way than in other vertebrates, since 78 in aquatic species, the absence of a specialized matrix and corneous cell envelope 79 proteins prevent the cornification necessary for creating a barrier against loss of water 80 in amniotes, and therefore, fish require fewer specialized epidermal keratins with a 81 specific mechanical role than are required by terrestrial vertebrates [10]. Similar to 82 other mucosal tissues, the microbiota of the skin mucus constitutes a key component 83 of the host mucosal barrier defenses and can influence the functionality of the host 84 mucosa. Nevertheless, information about skin mucus microbiota interactions with 85 hosts in aquaculture is still limited (reviewed in [11]. To date, most of the studies 86 addressing fish skin mucus proteins have been focused on their role in the innate 87 immune response [4, 12], with biostatic or biocidal enzymes, such as lysozyme, 88 phosphatases, proteases, cathepsins, and esterases, being the most-studied mucus 89 components [12, 13]. Fish skin mucus proteases are secreted in response to bacterial 90 and, especially, ectoparasite infections [14, 15]. Similarly, parasites produce proteases 91 for the attachment necessary for feeding or disrupting the immune system of the host 92 [14]. Interactions between parasite proteases and hosts have been specially studied in 93 salmonids infected with sea lice (Lepeophtheirus salmonis) [15]. Moreover, some

94 studies have been conducted on other isopod [16] and monogenean ectoparasites, 95 such as *Gyrodactylus sp*. [17]. 96 Currently, monogenean infections are considered important bottlenecks in farming 97 some interesting aquaculture species such as Seriola spp. Indeed, the prevalence of 98 this infection in sea farms can reach 70% of the cultured population [18]. 99 *Neobenedenia girellae* is a monogenean ectoparasite with a wide host range 100 distributed in warm waters worldwide, with greater amberjack especially susceptible 101 to this infection when reared in sea cages [19]. High parasite loads in greater 102 amberjack induce fasting, stress-related changes in color appearance, erratic 103 swimming, and a scratching tank fixtures, which results in the development of ulcers 104 and subsequent opportunistic bacterial infections [20]. Some studies about the 105 mechanical damage of N. girellae to greater amberjack skin [21] and how this infection 106 affects the mucus glycoproteins and serine proteases profile [22, 23] are available. 107 However, as far as we know, this is the first work addressing the study of the 108 proteome, the protease characterization, and the microbiota of skin mucus of greater 109 amberjack juveniles before and after an experimental N. girellae infection.

110

111 **2. Material and methods**

112 2.1. Experimental fish and skin mucus collection

113 Sixteen greater amberjack juveniles (150 ± 11.4 g body weight) reared in facilities at 114 the University of Las Palmas de Gran Canaria were placed in four 500-L cylindroconical 115 tanks. The fish were fed with a commercial diet (Europe 22%, Skretting, Stavanger, 116 Norway) to apparent satiety 3 times a day. Skin mucus was obtained as described 117 elsewhere [24]. Briefly, after 7 days of acclimation, the fish were anesthetized with 118 clove oil (5mL/L; Guinama S.L; Spain, Ref. Mg83168), and the skin mucus was obtained 119 by carefully scrapping the left dorsolateral side of the fish with sterile microscopy 120 slides, introduced into sterile 2ml Eppendorf tubes and frozen in liquid nitrogen. The 121 infection of greater amberjack with Neobenedenia girellae was carried out as 122 previously described [24]. An experimental tank with greater amberjack previously 123 infected with *N. girellae* was used for collecting parasite eggs in a 5 mm mesh in a 24 124 hour period. These eggs were introduced into a tank with uninfected greater

amberjack juveniles. After 15 days, all the fish were parasitized at the same level and 125 126 used to enable a cohabitation challenge. For this purpose, two infected fish marked 127 with a visible implanted elastomer (VIE) [25] were included in each tank. After 30 days 128 of cohabitation, all fish were infected at a high level (between 32 and 65 adult 129 parasites per fish). The fish were sampled (4 fish per tank) to obtain parasitized greater 130 amberjack skin mucus as described above while avoiding collecting adult parasites. 131 Then, the samples were centrifuged before being processed to exclude possible 132 oncomiracidia and other insoluble material. All mucus samples were immediately 133 frozen by immersion in liquid nitrogen and stored at -80°C. 134 To ensure the maintenance of animal welfare standards, anesthesia (clove oil, 5ml/L)

135 was used in all sampling procedures. All animal experiments described in this

136 manuscript fully complied with the recommendations in the Guide for Care and Use of

137 Laboratory Animals of the European Union Council (2010/63/EU).

138

2.2. Sample preparation for proteomic analyses

140 Mucus samples were solubilized in an equal volume of buffer (8 M urea, 2% CHAPS, 60 141 mM DTT, and 1% protease inhibitor mixture) and centrifuged at 15000 g for 15 min at 142 4°C. The resultant supernatant was used for determining the mucus proteome and the 143 precipitate for the microbiota analysis. The protein concentration in the supernatant 144 was determined using a Bradford assay [26], and bovine serum albumin was used as 145 the standard. The mean and the standard deviation of the protein concentration 146 measured was 14.8 ± 5.8 mg/ml for healthy fish, and 18.8 ± 4.8 mg/ml for infected fish. 147 The precipitate was resuspended in 200 µl of buffer (50 mM Tris-HCl pH 7.6, 60 mM 148 DTT, and 2% SDS) and treated on ice with three 30 s ultrasonic pulses (90 W) separated 149 by 30 s intervals. After centrifugation (15000 g, 15 min, 4°C) the protein concentration 150 was determined as described above. 151 For all proteomic procedures, samples from nonparasitized (NP) and parasitized (P) 152 fish were pooled into two respective groups (NP1, NP2, P1, and P2) using an equal

amount of protein per fish. To reduce the conductivity and levels of interfering

- 154 substances, the samples were processed with the 2-D Clean-Up Kit (GE Healthcare).
- 155 After cleaning, the proteins were resuspended in 6 M urea and 200 mM ammonium

156 bicarbonate for use in gel-free LC-MS/MS or in rehydration buffer (8 M urea, 2%

157 CHAPS, 12 μ l/ml DeStreak reagent, 2% ampholyte solution pH 4-7, and 1% protease

- 158 inhibitor mixture) for the 2-DE experiments.
- 159

160 **2.3. Two-dimensional gel electrophoresis and MS analysis**

161 Skin mucus proteins suspended in the rehydration buffer (340 µl) were first separated 162 by isoelectric point in 18 cm, pH 4-7 IPG strips, and then by SDS-PAGE. The gels were 163 stained with SYPRO Ruby dye for scanning with a Molecular Imager FX (Bio-Rad). 164 Analytical and preparative gels were prepared using 200 μ g and 400 μ g of proteins, 165 respectively. The most abundant spots in the preparative 2-DE gels were excised using 166 an Investigator ProPic station (Genomic Solutions). To confirm that the desired protein 167 spots were accurately obtained, the gel was rescanned after excision. The selected 168 spots were destained and digested with trypsin using an Investigator Progest (Genomic 169 Solutions). The peptide mixture was purified with a C18 microcolumn (ZipTip, 170 Millipore) and spotted with matrix solution (3 mg/ml α -cyano-4-hydroxycinnamic acid 171 in 70% acetonitrile and 0.1% trifluoroacetic acid) onto an Opti-TOF 96-well MALDI 172 plate and analyzed using a 4800 Plus MALDI-TOF/TOF Analyzer (AB Sciex). Spectra 173 were obtained using the reflector positive acquisition mode in the mass range of 800 174 to 4000 Da, with a precision ± 20 ppm, and 20kV of acceleration voltage. The eight 175 strongest precursors from the MS scan were isolated and fragmented by the collision-176 induced dissociation system. Protein identification was performed by combining MS 177 and MS/MS spectra and comparing the data with those in the public NCBInr database, 178 subset Actinopterygii (taxid:7898), using MASCOT v2.0 (MatrixScience) integrated into 179 GPS Explorer software (AB Sciex) and the following parameters: parent ion mass 180 tolerance at 100 ppm, MS/MS mass tolerance of 0.2 Da, carbamidomethylation of 181 cysteine selected as a fixed modification, and methionine oxidation as variable 182 modification. The probability score (95% confidence level) was calculated by the 183 software and used as a criterion for protein identification. Mass spectrometry 184 procedures were performed at the Proteomics Unit, SCAI (Central Facilities for 185 Research Support), University of Córdoba (Spain).

187 2.4. Gel-free LC-MS/MS analysis

188 The samples were cleaned, reduced, alkylated, and digested with trypsin using 189 standard protocols. All analyses were performed at the Proteomic Unit, SCAI, 190 University of Córdoba using a Dionex Ultimate 3000 nano UHPLC system (Thermo 191 Fisher Scientific) connected to an Orbitrap Fusion mass spectrometer (Thermo Fisher 192 Scientific) equipped with a nanoelectrospray ionization interface. The peptide mix was 193 previously concentrated and cleaned up on a 300 μ m x 5 mm Acclaim Pepmap 194 precolumn (Thermo Scientific) with 2% acetonitrile and 0.05% trifluoroacetic acid for 5 195 min at 5 μ /min. The trapping column was switched to be on-line with the separation 196 column, and the gradient was started at 40 °C, using mobile phase buffer A (0.1% 197 formic acid) and mobile phase B (80% acetonitrile, 0.1% formic acid). Peptides were 198 separated at 300 nL/min according to the following elution conditions: 4–45% buffer B 199 for 60 min; 45–90% buffer B for 3 min followed by 8 min washing with 90% solution B, 200 and re-equilibration for 15 min with 4% solution B. The mass spectrometer was 201 operated in the positive mode. Survey scans of the peptide precursors from 400 to 1500 m/z were performed at 120K resolution (at 200 m/z) with a 5×10^5 ion count 202 203 target. For tandem MS, precursor ions were first isolated in the quadrupole at 1.6 Da, 204 and then CID-fragmented in the ion trap with 35% normalized collision energy. 205 Monoisotopic precursor selection was turned on. The parameters for the ion trap were an automatic gain control of 2×10^3 , and a maximum injection time of 300 ms. Only 206 207 precursors with charge state 2–5 were sampled for a second in-tandem mass analysis. 208 The dynamic exclusion time was set to 15 s with a 10-ppm tolerance around the 209 selected precursor and its isotopes to avoid redundant fragmentation. For protein 210 identification, mass spectrometry raw data were processed using Proteome Discoverer 211 v2.1.0.81 (Thermo Fisher Scientific). MS2 spectra were searched with the SEQUEST HT 212 engine against the UniprotKB database restricted to Seriola dumerili (taxid: 41447) for 213 the study of the mucus proteome or restricted to bacteria (taxid:2) in the microbiota 214 analysis. Theoretical peptides were generated from tryptic digestion with up to two 215 missed cleavages. Methionine oxidation was set as variable modification and 216 carbamidomethylation of cysteines as a fixed modification. A value of 10 ppm was set 217 for the mass tolerance of precursor ions, and 0.1 Da tolerance was set for the product

- ions. The identification of a peptide was accepted when it exceeded the filter
 parameter Xcorr score versus charge state with SequestNode probability score
 (+1 = 1.5, +2 = 2.0, +3 = 2.25, +4 = 2.5). Peptide spectral matches (PSM) were validated
 using a percolator based on the *q*-values obtained with a 1% false discovery rate (FDR).
- 222

223 **2.5. Protease activity analyses**

224 Protease activity was quantified using the azocasein hydrolysis assay according to the 225 method of Ross et al. [15]. Skin mucus samples were diluted 1:1 with 100 mM 226 ammonium bicarbonate buffer, pH 7.8, containing 0.7% azocasein and incubated for 227 19 h at 30°C. To stop the reaction, trichloroacetic acid (TCA) was added to a final 228 concentration of 4.6 %. The reaction tubes were centrifuged (10 min, 10.000 g) and 229 100 μ l of the supernatants were poured onto a 96-well plate containing 100 μ l of 0.5 230 M NaOH per well. The absorbance was read at 450 nm. All determinations were 231 carried out, at least, in triplicate. For the positive and negative controls, skin mucus 232 was replaced by trypsin (5 mg/ml, Sigma) and 100 mM ammonium bicarbonate, 233 respectively. Protease activity in each sample was expressed as the percentage of 234 activity relative to the trypsin positive control (100%). For protease characterization, 235 azocasein hydrolysis assays were conducted using protease inhibitors: 10 mM EDTA, 1 236 mM PMSF, 10 μ M E-64, or 1 μ M pepstatin A. Ethanol and DMSO were used for the 237 solubilization of PMSF and pepstatin A, respectively. The concentration of these 238 solvents in the working reaction was 85.6 mM for ethanol and 1.4 mM for DMSO. 239 Controls containing these concentrations of solvent were included.

240

241 **2.6. Statistical analyses**

242 Gene ontology categories were compared with Fisher exact test (two-tailed

243 comparison) in combination with FDR (false discovery rate) correction for multiple

testing by using *Blast2GO* software (v5.2.5) [27]. The non-parasitized set of sequences

was used as the reference set and the parasitized set was used as the test set. The

246 cutoff threshold for statistical significance was established at FDR<0.05.

247 Statistical analyses of protease activity followed the methods outlined by Sokal and

248 Rolf [28]. The means and standard deviations (SD) were calculated, and t-Student tests

were conducted. Differences were considered significant when *P* <0.05. Data were
analyzed with SPSS software (SPSS for Windows 10).

251

252 3. Results and discussion

253 The fish skin mucus is a physical and biochemical barrier crucial in the innate immune 254 system. In this defensive barrier, proteins play key roles, and therefore, the 255 identification of these proteins constitutes a first step in the design of preventive 256 therapeutic strategies used to prevent infections that currently hinder and limit the 257 development of intensive aquaculture. To our knowledge, this is the first work focused 258 on obtaining a comprehensive view of the proteome of S. dumerili in skin mucus. In 259 addition, we have investigated the effect caused by the experimental infection with 260 the ectoparasite Neobenedenia girellae, which threatens the development of the 261 aquaculture of this fish in farms. 262 In this study, the proteome of the greater amberjack was mapped using two different 263 proteomic methodologies that previously have been shown to be complementary:

264 conventional 2-DE and a gel-free LC-MS/MS approaches [29].

265

3.1. Two-dimensional gel electrophoresis reveals specific cleavage of keratins in parasitized fish

268 A 2-DE study was performed to compare the proteomic profiles of skin mucus of 269 parasitized and nonparasitized fish qualitatively and quantitatively. We ran three gels 270 per pool of NP and P samples (a total of 12 gels). The 12 gel images obtained are 271 shown in Supplementary File 1. The dramatic differences found between the gels from 272 NP and P samples made a quantitative analysis of spot intensity differences impossible 273 mainly because of the difficulty in matching the spots among the 12 gels. Therefore, 274 the most abundant spots were selected and identified using LC-MS/MS and database 275 retrieval. A total of 69 and 55 spots were identified in the NP and P gels, respectively. A 276 representative gel for each experimental condition, including the position of the 277 identified spots, the symbol of the protein, and a reference number, is shown in Figure 278 1. Tables 1 and 2 list the proteins identified in the gels from the NP and P conditions, 279 respectively, and several parameters related to protein identification. In these tables,

the proteins are manually classified into three groups according to their main function:structural, stress response, and metabolism proteins.

The most relevant observation in the gels from the NP group was the four trains of 282 283 acidic proteins, with p/ ranges from 4.6 to 5.6 and MWs between 40 and 60 kDa, 284 corresponding to different species of keratins. These groups of proteins, which 285 quantitatively account for more than 40% of the total fluorescence signal of the NP 286 sample, were not present in the P group. In contrast, in the gels with proteins from the 287 parasitized fish, numerous spots with lower MW (20-30 kDa) were identified as 288 keratins. Proteolytic fragmentation of keratins explains the arrangement of these 289 proteins in the P group. This phenomenon was not described in any previous studies of 290 infected mucosal [30, 31] or experimentally wounded skin [32], even in studies in 291 which the 2-DE technique was used. The keratin fragmentation can be explained not 292 only as a host response to infection due to the role in immunity attributed to keratin 293 fragments [33] but also as the protease activity of this parasite, which feeds on the 294 mucus and skin of the fish.

295 Given their abundance in the NP samples, keratins seem to constitute a major 296 component of the skin mucus of healthy greater amberjack. These proteins have 297 previously been identified in mucus samples of different fish species (reviewed in [13]), 298 but such an abundance has not previously been reported. The structural role of 299 keratins is well known, but a protective function of this protein has also been 300 described. Thus, pore-forming activity against bacteria of a glycosylated protein, 301 similar to type II cytokeratin, has been described in rainbow trout (Oncorhynchus 302 mykiss) skin mucus [33]. Moreover, an increment of epidermal keratin after sea lice 303 infection in Atlantic salmon (Salmo salar) skin mucus has been associated not only with 304 cellular damage and tissue regeneration but also with a specific response against this 305 pathogen [30]. Additionally, in mammals, cytokeratin has been described as producing 306 antimicrobial peptides (AMPs) after proteolysis by extracellular proteases [34, 35]. 307 Therefore, the fragmentation of keratins found in the parasitized greater amberjack 308 may be a response of the host to prevent bacterial infections. Fragmentation of the 309 keratins does not correspond to a general degradation of proteins in the P samples but 310 to a specific fragmentation of this type of protein. Evidence of this specificity is found 311 with other proteins such as Trfe, Enoa, Capg, Hsc70 or Grp78, which appear in gels

- from both experimental conditions at the same coordinates and, apparently, in a
 similar amount. Other structural proteins common to both the NP and P experimental
 groups were also found in the present study: beta-actin (Actb), capping protein (Capg),
 destrin (Dstn), and cofilin-2 (Cfl2).
 As we discussed previously, keratins are a major component of the skin mucus
 proteome in *S. dumerili* but in other species, different structural proteins, such as βactin, hold this top position in Atlantic salmon [30]. Because of their high degree of
 cross-linking and posttranslational modifications, mucins must be analyzed through
- 320 specific methods [36, 37], and consequently, reports of the mucin content are absent
- in most of the proteomic studies.
- 322 Stress response proteins were also found in gels, a total of 18 spots in the healthy fish
- 323 skin mucus compared with 13 spots found in the parasitized fish (Tables 1 and 2).
- 324 Several spots of heat shock and warm temperature acclimation proteins were
- 325 identified under both experimental conditions while others, related to oxidative stress,
- such as glutathione S-transferases (Gsto2 and Gste) and peroxiredoxin 1 (Prdx1), were
- found only in NP samples, and protein disulfide-isomerase (Pdi), was identified only inthe gels of the P samples.
- Intermediate enzymes of glycolysis, nucleotide, and amino acid metabolism were
 found in parasitized and nonparasitized fish skin mucus with the 2-DE technique
 (Tables 1 and 2).
- 332

312

313

314

315

316

317

318

319

333 3.2. Gel-free LC-MS/MS shows an overrepresentation of ribosomal proteins in 334 infected fish

335 The same samples used for the 2-DE approach were used for gel-free LC-MS/MS 336 proteomic analysis. Both pools of mucus samples from each experimental condition 337 (NP1, NP2, P1, and P2) were run in triplicate. Only proteins identified in at least two 338 out of the three replicates were considered for further analysis. A total of 1377 unique 339 proteins were identified in the NP group, and 1251 were identified in the P samples, 340 1017 of these unique proteins were found in both groups. The selected proteins and 341 the details of protein identification are listed in Supplementary File 2. To obtain a 342 global functional view of the proteome, Gene Ontology (GO) annotations were

343 obtained from UniProt database and the analysis was performed using Blast2GO 344 (v5.2.5) [27]. The full set of functional annotations is presented in Supplementary File 345 The quantitative comparison of the main biological processes (those having at least 346 0.5% of the total number of protein sequences) did not show apparent differences 347 between the NP and the P groups (Figure 2, A), including immune system process 348 proteins, which represent approximately 2.5% of the sequences in both NP and P 349 experimental groups. Similarly, the comparison of the 25 major GO names of biological 350 processes, molecular functions, and cellular component categories at level 3 did not 351 show marked differences between the two groups of the samples studied (Figure 3). 352 Nevertheless, significant differences were observed when a statistical assessment of 353 GO term enrichment was performed using *Blast2GO* (including all levels of GO terms) 354 by a Fisher exact test in combination with a false discovery rate (FDR) correction [27]. 355 The test displayed significant differences (FDR<0.05) between the NP and P groups in 356 six GO terms (Figure 4). The biological process of translation (GO:0006412), the 357 molecular function of structural constituent of ribosome (GO:0003735), and the 358 cellular component of ribosome (GO:0005840) were overrepresented in the skin 359 mucus of the parasitized fish. In contrast, the biological process of protein transport 360 (GO:0015031), and the cellular component GO terms of bounding membrane of 361 organelle (GO:0098588) and integral component of membrane (GO:0016021) were 362 underrepresented in the P samples.

363 Overrepresentation in the parasitized fish of translation, structural constituents of 364 ribosome, and ribosome GO terms reflects a significant increase in ribosomal proteins 365 (RPs) in the P group. Nevertheless, despite the abundance of RPs in the mucus samples 366 (Figure 3), RPs were not identified by the 2-DE approach (Tables 1 and 2). We have 367 previously observed the same outcome when studying the proteome of the skin mucus 368 of gilthead seabream [29]. Numerous studies have reported RPs in skin mucus samples 369 of Atlantic salmon, Atlantic cod, gilthead seabream, and European sea bass (reviewed 370 in [13]) but most of these proteins were found using gel-free approaches. This issue 371 arises because RPs have extreme pl values. In fact, only five out of the 109 ribosomal 372 proteins from S. dumerili annotated in the Uniprot database (including mitochondrial 373 ribosomal proteins) have a theoretical pl included in the working pH range of the gels 374 used.

375 In addition to the key role in translation, secondary immune functions have been 376 attributed to RPs or fragments thereof, which can act as AMPs in fish skin mucus [13, 377 38, 39]. The high number of RPs in parasitized fish skin mucus (Supplementary File 4) 378 may be due to the cell damage caused by the parasite, and once in the mucus, their 379 secondary function as AMP may facilitate the onset of the innate immune response. 380 In addition to ribosomal proteins, many other typical intracellular proteins appear in 381 the skin mucus. In fact, according to the functional analysis (Figure 3), only a small 382 percentage, less than 4%, of the identified proteins correspond to extracellular 383 proteins (extracellular region, extracellular space, and extracellular matrix GO terms in 384 the cellular component category at level 3). Several routes to deliver extracellular 385 material, including the classical secretory/exocytic pathway and so-called 386 "unconventional" secretion, which includes direct transport of molecules across the 387 membrane by transporters or channels and secreted microvesicles, have been 388 described [40]. Nevertheless, other origins for mucus proteins may be the contents of 389 dead cells in the epidermal surface as Brinchmann suggested in [13]. This suggestion 390 may explain the major presence of typical membrane and intracellular proteins in the 391 skin mucus of fish. Proteomic approaches, particularly gel-free methodologies, have 392 greatly increased the number of proteins identified in fish skin mucus. Although many 393 of these proteins have been attributed to an immunological purpose, either due to the 394 recognized role of the mucus in the defense of fish or inferred by the role of these 395 proteins in other investigated systems, the functions of most proteins in the skin 396 mucus of fish remain unknown. Clarifying the role of this huge number of proteins in 397 the mucus is an important research challenge.

398

399 **3.2.1. A global view of immune system GO terms**

A specific analysis of greater amberjack skin mucus proteins classified under the
immune system process GO term (GO:0002376) revealed 13 out of the 22 immune
system process GO terms at level 3. Nevertheless, three of these terms, immune
system development, immune response, and regulation of the immune system
processes were the most abundant, and together, they constitute more than 50% of all
the immune proteins (Figure 2, B). Other terms, including positive regulation of the

т.ч

406 immune system process, immune effector process, activation of the immune response, 407 and myeloid cell homeostasis had a medium representation, between 7 and 10%. Although some apparent variations can be observed between nonparasitized and 408 409 parasitized fish, the statistical analysis did not reveal any difference in the GO terms 410 distribution between healthy and infected fish. Nevertheless, this GO analysis revealed 411 the presence of 75 and 74 proteins related to the immune system process in the NP 412 and P groups, respectively, (Table 3). Among these proteins, we identified some of the 413 hallmarks of the mucosal immune response [12, 13] including complement-related 414 proteins, immunoglobulins, the numerous ribosomal proteins discussed above, and 415 several proteins related to the proteolytic activity such as proteasome subunits, 416 aminopeptidase, metallopeptidase, and serine peptidase inhibitors. Approximately 417 80% of these proteins (60 proteins) were found under both experimental conditions, 418 but 15 proteins were found only in the NP samples, including the inflammasome 419 complex related proteins (A0A3B4VAY3, A0A3B4UXT2, and A0A3B4URJ5), MHC 420 complex interacting protein (A0A3B4TZF2) cytokine (A0A3B4V008), retroviral 421 restriction factor (A0A3B4UZ11) and an interferon-induced protein (A0A3B4T6N4). In 422 contrast, 14 were identified only in samples from parasitized fish, such as some 423 complement components (A0A3B4TA33, A0A3B4VEZ1, and A0A3B4VIA0), 424 immunoglobulins (A0A3B4TL02 and A0A3B4UH18), peptidase-related proteins 425 (A0A3B4U7K2 and A0A3B4TAH0), actin (A0A3B4UV44) and tropomyosins 426 (A0A3B4U618 and A0A3B4U5X8), among others. The complement system is known for 427 playing a key role against ectoparasite infections in fish skin [41, 42]. Immunoglobulins 428 have also been related to skin mucus response against ectoparasites, specially IgT [43]. 429 In contrast, some authors have pointed out that resistance to N. girellae infection is a 430 process primarily involving the innate immune system not the antibody-mediated 431 response; however, recent studies show the importance of this Ig for the protection of 432 Seriola spp. against Neobenedenia sp.[24, 44]. Nevertheless, the nonsignificant 433 differences in the immune-related proteins between parasitized and nonparasitized 434 skin mucus samples may be related to the low immune responsiveness of the greater 435 amberjack against N. girellae, and more research must be conducted for elucidating its 436 immune response against this ectoparasite.

LЭ

438 **3.2.2. Full set of protease activity-related proteins**

439 Proteases are among the main humoral parameters of the immune system and by 2-440 DE analysis, we observed specific proteolytic activity in samples from parasitized fish. 441 Some protease-related proteins were discovered in our previous analysis of the 442 functional annotations in the immune system process, but other proteins were not 443 elucidated. A precise search for protease-related proteins in the gel-free LC-MS/MS 444 data was performed. Specifically, a search was conducted for the GO terms in the 445 AmiGO2 database using "protease" as a filter. The 95 GO terms retrieved by this 446 search were used to extract the protease-activity-related-proteins from the full gel-447 free LC-MS/MS dataset (Supplementary File 3). The proteins obtained are listed in 448 Table 4. A total of 118 and 121 protease-activity related proteins were found in the NP 449 and P samples, respectively. These proteins include several proteasome subunits, 450 ubiquitin carboxy-terminal hydrolases, cathepsins, calpains, caspases, 451 metallopeptidases, carboxypeptidases, aminopeptidases, and endopeptidases. 452 Protease inhibitors were also detected in the skin mucus. Most of these proteins 453 (approximately 70%) are found in the two experimental conditions studied, 20 454 proteins appear only in the samples of mucus from healthy animals including a variety 455 of peptidase such as cysteine-type endopeptidases (A0A3B4TG30, A0A3B4UKC4, and 456 A0A3B4V8Q2), aspartic-type endopeptidases (A0A3B4VFE7and A0A3B4V2Q5), serine-457 type endopeptidases (A0A3B4V640, A0A3B4UQ15, and A0A3B4TG57), threonine-type 458 endopeptidase (A0A3B4VLM4), and metalloendopeptidase (A0A3B4V3V7), but also 459 protease inhibitors (A0A3B4UIT0, A0A3B4ULR2, A0A3B4T5Z8, A0A3B4T2V3, and 460 A0A3B4UTG8). In contrast, 23 proteins were found exclusively in samples from the 461 Neobenedenia-parasitized fish. Among these proteins, a greater presence of serine-462 type proteases (A0A3B4TCH1, A0A3B4THA8, A0A3B4TKS5, A0A3B4UNL2, 463 A0A3B4VDW8, A0A3B4VJ61, A0A3B4T3P6, and A0A3B4TQX4) and 464 metalloendopeptidases (A0A3B4V967, A0A3B4U7K2, and A0A3B4VBW1) were notable 465 stands out. A greater number of proteasome subunits (threonine-type 466 endopeptidases) unique to the P samples were also found.

467

468 **3.3. Protease activity in the skin mucus samples**

469 Proteases in fish skin mucus are implicated in the resistance to infection because they 470 directly cleave proteins of pathogens or modify properties of the mucus to prevent 471 parasite attachment and facilitate its removal. The results obtained by the 2-DE 472 experiments showed that skin mucus proteins of infected fish, particularly keratins, are 473 affected by protease activity. Therefore, several protease-related proteins were 474 identified by gel-free LC-MS/MS in the skin mucus of greater amberjack (Table 4), and 475 some of these proteases appeared only in the P samples. Following these results, the 476 protease activity in the skin mucus samples of the nonparasitized and parasitized fish 477 was assessed by azocasein assay. The results are shown in Figure 5 and indicate that 478 the protease activity was more than 2-fold higher in the P samples than in the healthy 479 fish samples (P < 0.001). The addition of EDTA, an inhibitor of metal-dependent 480 proteases (metalloproteases and proteases stabilized by calcium) to the protease 481 assay triggered a decrease in the protease activity of approximately 60% in the 482 parasitized samples, while this activity decreased by only approximately 30% in the 483 nonparasitized samples. Similar results were obtained when PMSF, a serine-type 484 protease inhibitor, was added to the azocasein assay. Neither E-64, a cysteine protease 485 inhibitor, nor pepstatin A, an inhibitor of aspartyl peptidases, had any effect on the 486 protease activity in the mucus sampled from the nonparasitized or parasitized fish. 487 These results agree with those of Firth *et al*. [14] that did not find these types of 488 proteases in the mucus of Atlantic salmon sampled from noninfected fish or fish 489 infected with the salmon louse. These data suggest that metal-dependent proteases 490 (metalloproteases and calcium-stabilized proteases) and serine proteases are 491 responsible, at least in part, for the enhanced protease activity in parasitized fish. It 492 should be noticed that PMSF also inhibits some cysteine proteases but the 493 contribution of cysteine proteases to the total protease activity detected may be 494 discarded by the absence of effect of E-64, an irreversible and highly selective cysteine 495 protease inhibitor. These results agree with those showing the prevalence of serine-496 type proteases and metalloproteases in the P samples, as discussed above. 497 Parasites have previously been described as producing serine proteases for the 498 attaching onto, feeding from, and disrupting the immune response of the host [14]. 499 Nevertheless, proteases produced by the host are also known to modify structural 500 proteins, *i.e.*, mucins, in skin mucus to change mucus consistency or viscosity to

т

501 facilitate the removal of pathogens [45]. In addition, host serine protease production is 502 related mainly to a defensive process as part of the innate immunity against pathogens 503 [46]. [46]. Serine proteases are also related to the enhancement and activation of 504 innate immune components common in fish skin mucus and that we have found in the 505 skin mucus of greater amberjack (Table 3), such as complement, immunoglobulins, and 506 AMP [47, 48]. Moreover, serine proteases also activate metalloproteases [49]. In 507 mammals, the role of metalloproteases in the wound-healing process for re-508 epithelialization and leukocyte infiltrations is well known [50]. This activation can 509 explain the high level of metalloprotease activity in infected fish, considering the 510 wounds on the skin due to both the feeding behavior of the parasite and the 511 scratching of the parasitized fish on tank fixtures. On the other hand, the higher 512 metalloprotease activity observed in greater amberjack parasitized with N.girellae is in 513 accordance with the feeding behavior of these ectoparasites and the attachment 514 damage produced in the epidermis of infected fish [21]. Knowing the source of the 515 highest protease activity observed in the mucus from the skin of infected fish requires 516 further investigation.

517

518 3.4. A proteomic approach to the microbiota composition of greater amberjack skin 519 mucus

The bacterial community living in the skin mucus of fish can extend to 10^4 bacteria/cm² 520 521 [51]. Intestinal microbiota, which is the more abundant community, has been more 522 widely studied in teleosts and has been related to processes that promote host health, 523 including the improvement of nutrient metabolism and the stimulation of the immune 524 response [52]. In the same way, a correct balance between commensal and 525 opportunistic bacteria in the skin mucus is thought to play a key role to preserve fish 526 health and justifies the study of the microbiota of the skin mucus of the greater 527 amberjack. 528 During sample preparation for the proteomic analysis reported here, skin mucus was 529 diluted in solubilization buffer and centrifuged to precipitate any insoluble material

- 530 that might interfere with proteomic protocols. Treatment for protein solubilization is
- not harsh enough to induce the lysis of bacteria, so bacterial populations living in skin

го

532 mucus can be recovered from the precipitate. The precipitate was processed by 533 combining SDS and ultrasonic treatments as indicated in section 2.2, to break the 534 bacterial wall and recover the proteins, which were analyzed by gel-free LC-MS/MS 535 against the bacteria database. A total of 78 and 119 bacterial proteins were 536 unambiguously identified from the NP and P samples, respectively. A selection of 537 peptides used to identify these proteins was individually employed to perform a BLAST 538 search against the full database, without any organism restriction. Peptides shared by 539 bacteria and other taxa were discarded. One hundred and eight peptides displayed 540 complete matches exclusively with bacterial sequences (Supplementary File 5). Some 541 of these peptides matched no more than one genus of bacteria, namely, 542 Pseudomonas, Paracoccus, Acinetobacter, Serratia, Clostridium, Bartonella, 543 Escherichia, Streptomyces, and Thermotoga, indicating that species of the identified 544 genera are living in greater amberjack skin mucus (Figure 6). According to the 545 frequency of occurrence, the most abundant genus was *Pseudomonas*, since 12 and 14 546 peptides in the NP and P samples matched no other genus, respectively, followed by 547 the genus Paracoccus, with 5 and 7 peptides in the NP and P samples. No remarkable 548 differences were observed in the bacterial genera distribution between the parasitized 549 and nonparasitized fish. Two previous studies have been focused on the gut 550 microbiota of yellowtail amberjack (*S. lalandi*) [53, 54]. One study investigated 551 differences in the microbiota between two growth stages, and the other study was 552 interested in differences between wild and aquaculture specimens. Both studies 553 showed that *Pseudomonas* was a significant genus being the most abundant in the gut 554 of the juveniles weighing 50 g [53], and wild yellowtail amberjacks [54] but the genus 555 Paracoccus was not found in these investigations. To our knowledge, this is the first 556 approach to the microbiota of the skin mucus of S. dumerili but a more precise 557 quantitation of the differences between the parasitized and nonparasitized samples 558 needs further investigations.

559

560 4. Conclusions

Ectoparasite infections are one of the most important challenges for aquaculture
sustainability, and particularly for the culture of the greater amberjack. Unfortunately,
information about skin structure, skin-associated lymphoid tissue (SALT), and proteins

1.5

564 associated with the skin mucus of S. dumerili are still scarce. In this study, the skin 565 mucus proteome of the greater amberjack was characterized for the first time. Our 566 study shows that ribosomal proteins were overrepresented in infected fish while 567 proteins related to membranes and transport were underrepresented in infected 568 animals. In addition, a variety of immune system process proteins were present in the 569 mucus. Despite this fact, the infection generally progresses unstoppable, highlighting 570 the need for functional diets to stimulate the immune system of the greater 571 amberjack. Nevertheless, the most remarkable difference between parasitized and 572 nonparasitized fish was the specific cleavage of keratins in the mucus of the infected 573 fish, as revealed by the 2-DE approach, implying the presence of a specific set of 574 proteases in the mucus of parasitized fish. The higher protease activity in the mucus of 575 parasitized fish was due, at least in part, to metal-dependent proteases 576 (metalloproteases and proteases stabilized by calcium) and serine-type proteases, but 577 not to cysteine proteases or aspartyl proteases, as confirmed by enzymatic assays in 578 the presence of protease inhibitors. Thus, a set of serine proteases and 579 metalloproteases was found only in the parasitized samples. The differences observed 580 may be the result of a response from the host to the infection or a strategy of the 581 ectoparasite to feed or to evade the host immune system. The characterization of this 582 specific protease activity should be investigated to better understand parasitism by N. 583 girellae as the results may provide a potential target for the development of specific 584 new drugs to treat or prevent infection. Moreover, proteomic data have provided 585 information to design a preliminary map of microbial communities associated with skin 586 mucus of the greater amberjack. However, no differences were observed in genera 587 distribution when healthy and parasitized fish were compared. This study is the first 588 proteomic approach to define the microbiota of greater amberjack skin mucus and 589 shows new insights for understanding the relationship between parasite and host. 590

591 Acknowledgements

592 This work has been cofinanced by the "Agencia Canaria de investigación, Innovación y
593 Sociedad de la Información de la Consejería de Economía, Industria, Comercio y

- 594 Conocimiento" and the European Social Funding, "Programa Operativo Integrado de
- 595 Canarias 2014- 2020", as funding for the Ph.D. grant of AFM. This project also received
- 596 funding from the European Union Seventh Framework Programme for research,
- 597 technological development and demonstration (KBBE-2013- 07 single stage, GA
- 598 603121, DIVERSIFY). We thank the Spanish Ministry of Economy, Industry and
- 599 Competitiveness for the complementary funding for ST though the "Subprograma Juan
- 600 de la Cierva-Incorporación (IJCI-2015-25748), and the Universidad de Córdoba (XXIII PP
- 601 Mod. 4.1. and Convenio UCO-ULPGC ref 12016156).
- 602

603 References

604 [1] A. Sepahi, I. Salinas, The evolution of nasal immune systems in vertebrates, 605 Molecular Immunology 69 (2016) 131-138. 606 [2] A.E. Ellis, Immunity to bacteria in fish, Fish Shellfish Immun 9(4) (1999) 291-308. 607 [3] A.D. Pickering, The distribution of mucous cells in the epidermis of the brown trout 608 Salmo trutta (L.) and the char Salvelinus alpinus (L.), Journal of Fish Biology 6(2) 609 (1974) 111-118. 610 [4] I. Salinas, The Mucosal Immune System of Teleost Fish, Biology 4(3) (2015) 525-39. 611 [5] I. Salinas, D. Parra, Fish mucosal immunity: intestine, in: B.H.P. Beck, E. (Ed.), 612 Mucosal health in aquaculture, Academic Press, San Diego, CA, 2015, pp. 136-170. 613 [6] D.S. Fudge, S. Schorno, S. Ferraro, Physiology, biomechanics, and biomimetics of 614 hagfish slime, Annu Rev Biochem 84 (2015) 947-67. 615 [7] Z. Xu, D. Parra, D. Gomez, I. Salinas, Y.A. Zhang, L.V. Jorgensen, R.D. Heinecke, K. 616 Buchmann, S. LaPatra, J.O. Sunyer, Teleost skin, an ancient mucosal surface that 617 elicits gut-like immune responses, P Natl Acad Sci USA 110(32) (2013) 13097-13102. 618 [8] E.A. Koch, R.H. Spitzer, R.B. Pithawalla, S.W. Downing, Keratin-like components of 619 gland thread cells modulate the properties of mucus from hagfish (Eptatretus stouti), Cell Tissue Res 264(1) (1991) 79-86. 620 621 [9] S.D. Roberts, M.D. Powell, The viscosity and glycoprotein biochemistry of salmonid 622 mucus varies with species, salinity and the presence of amoebic gill disease, J Comp 623 Physiol B 175(1) (2005) 1-11. 624 [10] L. Alibardi, Immunocytochemical localization of keratins, associated proteins and 625 uptake of histidine in the epidermis of fish and amphibians, Acta Histochem 104(3) 626 (2002) 297-310. [11] D.L. Merrifield, A. Rodiles, The fish microbiome and its interactions with mucosal 627 628 tissues, in: B.H. Beck, E. Peatman (Eds.), Mucosal Health in Aquaculture, Academic 629 Press, San Diego, 2015, pp. 273-295. 630 [12] M.A. Esteban, R. Cerezuela, Fish mucosal immunity: skin, in: B.H.P. Beck, E. (Ed.), 631 Mucosal health in aquaculture, Academic Press, San Diego, CA, 2015, pp. 67-94. 632 [13] M.F. Brinchmann, Immune relevant molecules identified in the skin mucus of fish 633 using -omics technologies, Molecular bioSystems 12(7) (2016) 2056-63. 634 [14] K.J. Firth, S.C. Johnson, N.W. Ross, Characterization of proteases in the skin mucus 635 of Atlantic salmon (Salmo salar) infected with the salmon louse (Lepeophtheirus 636 salmonis) and in whole-body louse homogenate, J Parasitol 86(6) (2000) 1199-205. 637 [15] N.W. Ross, K.J. Firth, A.P. Wang, J.F. Burka, S.C. Johnson, Changes in hydrolytic 638 enzyme activities of naive Atlantic salmon Salmo salar skin mucus due to infection 639 with the salmon louse Lepeophtheirus salmonis and cortisol implantation, Diseases 640 of Aquatic Organisms 41(1) (2000) 43-51. 641 [16] B.M. Manship, A.J. Walker, L.A. Jones, A.J. Davies, Characterisation of cysteine 642 proteinase activities in the digestive tract of juvenile Paragnathia formica isopods, 643 ectoparasites of estuarine fish, Mar Biol 153(3) (2008) 473-482. 644 [17] S.R. Jones, The occurrence and mechanisms of innate immunity against parasites 645 in fish, Dev Comp Immunol 25(8-9) (2001) 841-52. 646 [18] K. Ogawa, M.G. Bondad-Reantaso, M. Fukudome, H. Wakabayashi, Neobenedenia 647 girellae (Hargis, 1955) Yamaguti, 1963 (Monogenea: Capsalidae) from cultured 648 marine fishes of Japan, J Parasitol 81(2) (1995) 223-7.

649 [19] Y. Ohno, F. Kawano, N. Hirazawa, Susceptibility by amberjack (Seriola dumerili), 650 yellowtail (S-quinqueradiata) and Japanese flounder (Paralichthys olivaceus) to 651 Neobenedenia girellae (Monogenea) infection and their acquired protection, 652 Aquaculture 274(1) (2008) 30-35. 653 [20] T.S. Leong, A. Colorni, Infection diseases of warm water fish in marine and 654 brackish waters., in: P.T.K. Woo, D.W. Bruno, L.H.S. Lim (Eds.), Diseases and 655 Disorders of Finfish in Cage Culture, CABI publishing, London, 2002 pp. 193–230. 656 [21] N. Hirazawa, R. Ishizuka, H. Hagiwara, The effects of Neobenedenia girellae 657 (Monogenea) infection on host amberjack Seriola dumerili (Carangidae): 658 Hematological and histopathological analyses, Aquaculture 461 (2016) 32-39. 659 [22] N. Hirazawa, N. Umeda, A. Hatanaka, A. Kuroda, Characterization of serine 660 proteases in the monogenean Neobenedenia girellae, Aquaculture 255(1) (2006) 661 188-195. 662 [23] H. Ohashi, N. Umeda, N. Hirazawa, Y. Ozaki, C. Miura, T. Miura, Purification and 663 identification of a glycoprotein that induces the attachment of oncomiracidia of 664 Neobenedenia girellae (Monogenea, Capsalidae), Int J Parasitol 37(13) (2007) 1483-665 1490. 666 [24] A. Fernandez-Montero, S. Torrecillas, M. Izquierdo, M.J. Caballero, D.J. Milne, C.J. 667 Secombes, J. Sweetman, P. Da Silva, F. Acosta, D. Montero, Increased parasite 668 resistance of greater amberjack (Seriola dumerili Risso 1810) juveniles fed a cMOS 669 supplemented diet is associated with upregulation of a discrete set of immune 670 genes in mucosal tissues, Fish Shellfish Immunol 86 (2019) 35-45. 671 [25] N. Astorga, J.M. Afonso, M.J. Zamorano, D. Montero, V. Oliva, H. Fernández, M.S. 672 Izquierdo, Evaluation of visible implant elastomer tags for tagging juvenile gilthead 673 seabream (Sparus auratus L.); effects on growth, mortality, handling time and tag 674 loss, Aquaculture Research 36(8) (2005) 733-738. 675 [26] M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal Biochem 72 676 677 (1976) 248-54. 678 [27] A. Conesa, S. Gotz, J.M. Garcia-Gomez, J. Terol, M. Talon, M. Robles, Blast2GO: a 679 universal tool for annotation, visualization and analysis in functional genomics 680 research, Bioinformatics (Oxford, England) 21(18) (2005) 3674-6. 681 [28] R.R.a.R. Sokal, F.J. (1995)Biometry: The Principles and Practice of Statistics in 682 Biological Research, Biometry: The Principles and Practice of Statistics in 683 Biological Research, 3rd. Ed ed., Freeman, New York., 1995. 684 [29] J. Jurado, C.A. Fuentes-Almagro, F.A. Guardiola, A. Cuesta, M.A. Esteban, M.J. 685 Prieto-Alamo, Proteomic profile of the skin mucus of farmed gilthead seabream 686 (Sparus aurata), J Proteomics 120 (2015) 21-34. 687 [30] R.H. Easy, N.W. Ross, Changes in Atlantic salmon (Salmo salar) epidermal mucus 688 protein composition profiles following infection with sea lice (Lepeophtheirus 689 salmonis), Comp Biochem Physiol Part D Genomics Proteomics 4(3) (2009) 159-67. 690 [31] B. Rajan, J. Lokesh, V. Kiron, M.F. Brinchmann, Differentially expressed proteins in 691 the skin mucus of Atlantic cod (Gadus morhua) upon natural infection with Vibrio 692 anguillarum, BMC veterinary research 9 (2013) 103. 693 [32] H. Cordero, M.F. Brinchmann, A. Cuesta, M.A. Esteban, Chronic wounds alter the 694 proteome profile in skin mucus of farmed gilthead seabream, BMC Genomics 18(1) 695 (2017) 939.

696 [33] V. Molle, S. Campagna, Y. Bessin, N. Ebran, N. Saint, G. Molle, First evidence of the 697 pore-forming properties of a keratin from skin mucus of rainbow trout 698 (Oncorhynchus mykiss, formerly Salmo gairdneri), Biochem J 411(1) (2008) 33-40. 699 [34] W. Qi, W. Boyao, Defense mechanisms of urinary bladder: studies on antimicrobial 700 polypeptides from bladder mucosa, Chinese medical sciences journal = Chung-kuo i 701 hsueh k'o hsueh tsa chih 14(1) (1999) 17-22. 702 [35] C. Tam, J.J. Mun, D.J. Evans, S.M.J. Fleiszig, Cytokeratins mediate epithelial innate 703 defense through their antimicrobial properties, Journal of Clinical Investigation 704 122(10) (2012) 3665-3677. 705 [36] S.M. Issa, B.L. Schulz, N.H. Packer, N.G. Karlsson, Analysis of mucosal mucins 706 separated by SDS-urea agarose polyacrylamide composite gel electrophoresis, 707 Electrophoresis 32(24) (2011) 3554-63. 708 [37] C. Jin, J.T. Padra, K. Sundell, H. Sundh, N.G. Karlsson, S.K. Linden, Atlantic Salmon 709 Carries a Range of Novel O-Glycan Structures Differentially Localized on Skin and 710 Intestinal Mucins, Journal of proteome research 14(8) (2015) 3239-51. 711 [38] J.M. Fernandes, V.J. Smith, A novel antimicrobial function for a ribosomal peptide 712 from rainbow trout skin, Biochem Biophys Res Commun 296(1) (2002) 167-71. 713 [39] G. Bergsson, B. Agerberth, H. Jornvall, G.H. Gudmundsson, Isolation and 714 identification of antimicrobial components from the epidermal mucus of Atlantic 715 cod (Gadus morhua), The FEBS journal 272(19) (2005) 4960-9. 716 [40] C.E. Chua, Y.S. Lim, M.G. Lee, B.L. Tang, Non-classical membrane trafficking 717 processes galore, Journal of cellular physiology 227(12) (2012) 3722-30. 718 [41] K. Buchmann, Binding and lethal effect of complement from Oncorhynchus mykiss 719 on Gyrodactylus derjavini (Platyhelminthes: Monogenea), Dis Aquat Organ 32(3) 720 (1998) 195-200. 721 [42] K. Buchmann, Immune mechanisms in fish skin against monogeneans--a model, 722 Folia parasitologica 46(1) (1999) 1-9. 723 [43] Y.A. Zhang, I. Salinas, J. Li, D. Parra, S. Bjork, Z. Xu, S.E. LaPatra, J. Bartholomew, 724 J.O. Sunyer, IgT, a primitive immunoglobulin class specialized in mucosal immunity, 725 Nature immunology 11(9) (2010) 827-35. 726 [44] M. Reyes-Becerril, E. Alamillo, A. Trasvina, I. Hirono, H. Kondo, W. Jirapongpairoj, 727 F. Ascencio-Valle, C. Angulo, In vivo and in vitro studies using larval and adult 728 antigens from Neobenedenia melleni on immune response in yellowtail (Seriola 729 lalandi), J Fish Dis 40(11) (2017) 1497-1509. 730 [45] F. Aranishi, N. Mano, M. Nakane, H. Hirose, Epidermal response of the Japanese 731 eel to environmental stress, Fish Physiology and Biochemistry 19(3) (1998) 197-203. 732 [46] K. Hjelmeland, M. Christie, J. Raa, Skin mucus protease from rainbow trout, Salmo 733 gairdneri Richardson, and its biological significance, Journal of Fish Biology 23(1) 734 (1983) 13-22. 735 [47] J.H. Cho, I.Y. Park, H.S. Kim, W.T. Lee, M.S. Kim, S.C. Kim, Cathepsin D produces 736 antimicrobial peptide parasin I from histone H2A in the skin mucosa of fish, FASEB J 737 16(3) (2002) 429-31. 738 [48] J.H. Cho, I.Y. Park, M.S. Kim, S.C. Kim, Matrix metalloproteinase 2 is involved in the 739 regulation of the antimicrobial peptide parasin I production in catfish skin mucosa, 740 FEBS letters 531(3) (2002) 459-63. 741 [49] V. Knauper, S. Kramer, H. Reinke, H. Tschesche, Characterization and activation of 742 procollagenase from human polymorphonuclear leucocytes. N-terminal sequence

- 743 determination of the proenzyme and various proteolytically activated forms,
- European journal of biochemistry 189(2) (1990) 295-300.
- [50] M.P. Caley, V.L. Martins, E.A. O'Toole, Metalloproteinases and Wound Healing,
 Advances in wound care 4(4) (2015) 225-234.
- 747 [51] B. Austin, The bacterial microflora of fish, revised, TheScientificWorldJournal 6748 (2006) 931-45.
- 749 [52] G.D. Gomez, J.L. Balcazar, A review on the interactions between gut microbiota
 750 and innate immunity of fish, FEMS immunology and medical microbiology 52(2)
 751 (2008) 145-54.
- 752 [53] E. Aguilera, G. Yany, J. Romero, Cultivable intestinal microbiota of yellowtail
- juveniles (Seriola lalandi) in an aquaculture system, Lat Am J Aquat Res, scielocl,2013, pp. 395-403.
- [54] C. Ramirez, J. Romero, The Microbiome of Seriola lalandi of Wild and Aquaculture
 Origin Reveals Differences in Composition and Potential Function, Front Microbiol 8
 (2017) 1844.
- 758
- 759

760 Figure captions

761

Figure 1. Representative 2-DE gel images of skin mucus proteins from the nonparasitized (NP) and parasitized (P) greater amberjack (*Seriola dumerili*).

764 Identified proteins are indicated by their UniProt entry names and reference spot

number. The spots identified as keratins are labeled in white.

766 767

768 Figure 2. Functional classification of the proteins identified by gel-free LC-MS/MS 769 according to biological process and immune system process categories. Mucus 770 proteins of the nonparasitized (NP) and parasitized (P) fish are classified according to 771 biological process category of the Gene Ontology system (GO) at level 2 (panel A) and 772 immune system process at level 3 (panel B). The classification was performed using 773 Blast2GO software [27]. For a better comparison of the NP and P groups, the 774 percentage of sequences in each GO term is represented on the Y-axis. In panel A only 775 GO categories having more than 1% of the sequences were individually assessed. 776

777

Figure 3. Functional classification of the proteins identified from greater amberjack (Seriola dumerili) skin mucus. Mucus proteins of the nonparasitized (NP) and parasitized (P) fish are classified according to cellular component, molecular function, or biological process categories at level 3 of the Gene Ontology (GO) system using *Blast2GO* software [27]. For the comparison of the NP and P groups, the percentage of sequences in each GO term is represented on the Y-axis. Only the 25 most abundant GO categories were considered individually.

786

787 Figure 4. GO terms showing significant enrichment in the parasitized (P) fish

788 compared with those in the nonparasitized (NP) greater amberjack (Seriola dumerili).

All levels of GO terms in biological process, molecular function and cellular component

categories were compared using a two-tailed Fisher exact test (FDR < 0.05) with *Blast2GO* software [27].

792

793

794 Figure 5. Protease activity of skin mucus of the nonparasitized (NP) and parasitized 795 (P) greater amberjack (Seriola dumerili). The data are presented as means ± SD of 796 protease activity expressed as the percentage of positive control (trypsin 5mg/ml) 797 from at least three determinations for each group. Comparisons were made by the 798 Students's t-test. Statistical significance: (a) *P* < 0.001, non-parasitized vs parasitized in 799 the absence of inhibitors; (b) P < 0.05, without inhibitors vs with inhibitors in the 800 nonparasitized group; (c) P < 0.001, without inhibitors vs with inhibitors in the 801 parasitized group. Solvents did not affect the protease activity in the nonparasitized or 802 parasitized mucus samples. 803 804 Figure 6. Clade organization of the bacterial genera identified using gel-free LC-805 MS/MS in the skin mucus of non-parasitized (NP) and parasitized (P) greater 806 amberjack (Seriola dumerili). Genus names are highlighted in bold when at least one

807 peptide matched this genus uniquely. The total number of these peptides is indicated

808 for NP and P samples.

Table 1 - Proteins identified by 2-DE and combined PMF + MS/MS in the skin mucus of healthy S. dumerili.

Linite in Friedman Automatical System 202 and committee in the Sam matcas of Automatical System 202 and committee in the Sam matcas										Mass	
SN ^(a)	Protein ^(b)	Organism ^(b)	ID ^(b)	Symbol ^(c)	Score ^(d)	Expect ^(e)	$\mathbf{P}\mathbf{M}^{(\mathbf{f})}$	PF ^(f)	% ^(f)	(kDa)	p <i>I</i>
	Structural proteins										
127	Beta-actin	Oncorhynchus mykiss	Q9I8X4	Actb	575	3.2E-52	19	6	49	42.0	5.4
128	Beta-actin	Lepisosteus oculatus	w 5мв87	Actb	728	1.6E-67	19	8	44	42.2	5.3
131	Capping protein (actin filament), gelsolin-like b	Oreochromis niloticus	I3KRY6	Capg	136	2.6E-08	9	3	18	38.9	5.4
132	Capping protein (actin filament), gelsolin-like b	Oreochromis niloticus	I3KRY6	Capg	188	1.6E-13	9	4	19	38.9	5.4
302	destrin	Seriola dumerili	UPI000BBEF16B	Dstn	68	4.20E-01	13		41	22.7	6.0
169	cofilin-2-like	Seriola lalandi dorsalis	A0A3B4WDY5	Cfl2	125	7.4E-07	22		57	22.7	6.0
150	Tropomyosin alpha-4 chain	Larimichthys crocea	A0A0F8D2I6	Tpm4	101	8.1E-05	10	2	28	28.8	4.7
154	tropomyosin alpha-4 chain-like isoform X4	Oryzias melastigma	A0A3B3C047	Tpm4	79	1.20E-02	7		32	28.2	4.8
155	rho-related GTP-binding protein RhoF-like	Stegastes partitus	A0A3B5A5L2	Rhof	76	2.80E-02	7		27	24.4	6.5
170	coiled-coil domain-containing protein 71 (Fragment)	Xiphophorus maculatus	UPI000293C9A0	Ccdc71	43.5	2.00E-05					
110b	Keratin 4	Astyanax mexicanus	W5K1N1	Krt4	206	2.6E-15	11	2	27	54.1	5.6
112	Keratin 4	Astyanax mexicanus	W5K1N1	Krt4	407	2.0E-35	16	4	29	54.1	5.6
113	Keratin 4	Astyanax mexicanus	W5K1N1	Krt4	452	6.5E-40	17	4	31	54.1	5.6
114	Keratin 4	Astyanax mexicanus	W5K1N1	Krt4	490	1.0E-43	16	4	30	54.1	5.6
115	Keratin 4	Astyanax mexicanus	W5K1N1	Krt4	477	2.0E-42	15	4	29	54.1	5.6
116	Keratin 4	Astyanax mexicanus	W5K1N1	Krt4	372	6.5E-32	20	3	34	54.1	5.6
117	Keratin 4	Astyanax mexicanus	W5K1N1	Krt4	355	3.2E-30	19	3	29	54.1	5.6
130	Keratin 4	Astyanax mexicanus	W5K1N1	Krt4	396	2.6E-34	13	4	27	54.1	5.6
135	Keratin 4	Astyanax mexicanus	W5K1N1	Krt4	442	6.5E-39	22	3	35	54.1	5.6
136	Keratin 4	Astyanax mexicanus	W5K1N1	Krt4	468	1.6E-41	15	4	30	54.1	5.6
138	Keratin 4	Astyanax mexicanus	W5K1N1	Krt4	499	1.3E-44	17	4	29	54.1	5.6
156	Keratin 8	Takifugu rubripes	H2UIV7	K2c8	86	2.7E-03	9	1	26	50.2	5.4
137	Keratin 17	Astyanax mexicanus	W5K0S9	K1c17	206	2.6E-15	13	4	27	49.1	5.6
122	keratin, type I cytoskeletal 13-like	Seriola dumerili	A0A3B4UWE7	K1c13	176	5.90E-12	24		52	49.1	4.9
123	Type I cytokeratin, enveloping layer	Xiphophorus maculatus	M4AX75	Cyt1	79	1.2E-02	4	2	10	43.2	5.0
124	keratin, type I cytoskeletal 13-like	Seriola dumerili	A0A3B4UTI0	K1c13	101	1.90E-04	22		31	47.7	5.6
125	Type I cytokeratin, enveloping layer	Xiphophorus maculatus	M4AX75	Cyt1	88	4.1E-03	6	2	12	43.2	5.0
120	Keratin, type II cytoskeletal 8	Ictalurus punctatus	W5ULL9	Krt8	169	1.3E-11	9	2	21	57.0	5.5
129	Type II keratin E3	Oncorhynchus mykiss	Q8JFG4	Krte3	284	4.1E-23	12	3	22	55.2	5.3
134	Keratin, type II cytoskeletal 73	Fundulus heteroclitus	A0A146R0L3	K2c73	83	5.5E-03	5	2	10	53.2	5.2
140	Keratin, type II cytoskeletal 8	Fundulus heteroclitus	A0A146VV26	K2c8	79	1.2E-02	7	2	15	57.7	4.6
160	Keratin type II (Fragment)	Epinephelus coioides	F6KMG4	Krt	76	2.3E-02	5	2	18	26.6	7.8
	Stress response										
101	Glucose-regulated protein	Larimichthys crocea	A0A0F8AHC2	Grp78	431	8.1E-38	24	8	31	82.5	5.4
103	Heat shock cognate 71 kDa protein	Oryzias latipes	Q9W6Y1	Hsc70	240	1.0E-18	15	5	22	76.6	5.8
104	heat shock cognate 70 kDa protein	Xiphophorus maculatus	M3ZHB7	Hsc70	124	9.3E-07	21		31	71.0	5.2
106	Stress protein HSC70-2	Seriola quinqueradiata	B6F134	Hsc70	321	8.1E-27	18	7	30	71.4	5.3
107	warm temperature acclimation protein (hemopexin)	Dicentrarchus labrax	D5A7I0	Wap65	253	5.1E-20	9	4	21	49.7	5.4
108	Warm temperature acclimation protein (hemopexin)	Seriola dumerili	A0A3B4U472	Wap65	141	1.9E-08	21	1	40	49.3	5.7
109	warm temperature acclimation protein (hemopexin)	Dicentrarchus labrax	A1YTM9	Wap65	224	4.1E-17	10	3	20	49.7	5.4
110a	Warm temperature acclimation protein (hemopexin)	Seriola dumerili	A0A3B4U472	Wap65	141	1.9E-08	21	1	40	49.3	5.7
111	Warm temperature acclimation protein (hemopexin)	Seriola dumerili	A0A3B4U472	Wap65	155	7.4E-10	26		40	49.3	5.7
153	Glutathione S-transferase omega 2	Xiphophorus maculatus	H3D718	Gsto-2	118	1.6E-06	10	2	30	27.9	7.6

159	Glutathione S-transferase epsilon	Tetraodon nigroviridis	Q4RZP8	Gste	78	1.7E-02	6	1	22	23.2	4.9
161	Lactoylglutathione lyase	Oreochromis niloticus	I3KR87	Lgul	77	4.0E-02	5	1	22	21.0	5.2
162	Lactoylglutathione lyase	Oreochromis niloticus	I3J4P3	Lgul	119	1.30E-06	9	2	44	20.4	5.1
163	Peroxiredoxin 1	Trachinotus ovatus	A0A0H3W6U1	Prdx1	326	2.60E-27	6	6	29	22.2	5.9
157	Rho GDP dissociation inhibitor (GDI) alpha	Tetraodon nigroviridis	Q4S9L2	Arhgdia	89	1.2E-03	8	3	24	23.5	5.2
165	DELTA-stichotoxin-Hcr4a-like	Seriola dumerili	A0A3B4TN03	Shtx	93	1.1E-03	17		44	21.0	5.8
166	DELTA-stichotoxin-Hcr4a-like	Seriola dumerili	A0A3B4TN03	Shtx	98	3.6E-04	13		50	21.0	5.8
168	Glia maturation factor, beta	Oreochromis niloticus	I3KU52	Gmfb	76	2.40E-02	4	2	13	21.5	5.9
	Metabolism										
	Iron metabolism										
102	Serotransferrin	Epinephelus coioides	G9I0G6	Trfe	240	1.0E-18	10	3	12	75.9	5.7
105	Serotransferrin	Poeciliopsis prolifica	A0A0S7LCB5	Trfe	170	1.0E-11	9	1	16	71.6	6.4
301	Serotransferrin-like	Seriola dumerili	UPI000BBE0EAD	O Trfe	333	1.20E-27	40	4	41	76.7	6.0
	Glycolysis and central metabolism										
118	Alpha-enolase	Larimichthys crocea	A0A0F8CJR2	Enoa	247	2.0E-19	11	5	24	47.3	6.2
119	Alpha-enolase	Larimichthys crocea	A0A0F8CJR2	Enoa	260	1.0E-20	14	5	31	47.3	6.2
121	alpha-enolase isoform X1	Seriola dumerili	A0A3B4TYP6	Enoa	162	1.50E-10	22		48	47.3	3.1
133	Fructose-bisphosphate aldolase C	Fundulus heteroclitus	A0A147AR05	Aldoc	123	5.1E-07	9	2	17	39.7	7.1
139	Glyceraldehyde-3-phosphate dehydrogenase, testis-	Fundulus heteroclitus	A0A146MHA0	Gapdh	162	6.5E-11	7	4	19	36.3	6.4
	specific										
141	Glyceraldehyde-3-phosphate dehydrogenase, testis-	Fundulus heteroclitus	A0A146MMD9	Gapdh	200	1.0E-14	8	4	23	36.2	6.6
143	Pyruvate dehydrogenase (linoamide) beta	Oreochromis niloticus	131V89	ndhb	102	6 5E-05	7	2	24	39.9	59
145	Nucleotide metabolism	oredenronnis mioricus	131107	puno	102	0.51 05	,	2	24	57.7	5.7
142	Cytosolic 5'-nucleotidase 1A-like isoform X6	Seriola dumerili	UPI000BBF09A1	Nt5c3a	114	9.30E-06	23		45	33.3	6.1
144	Cytosolic 5'-nucleotidase 1A-like isoform X6	Seriola dumerili	UPI000BBF09A1	Nt5c3a	111	1.9E-05	20		45	33.3	6.1
145	Cytosolic 5'-nucleotidase 1A-like isoform X6	Seriola dumerili	UPI000BBF09A1	Nt5c3a	135	7.4E-08	21		52	33.3	6.1
147	Cytosolic 5'-nucleotidase 1A-like isoform X6	Seriola dumerili	UPI000BBEA090	Nt5c3a	135	7.4E-08	22		49	33.4	6.1
148	Cytosolic 5'-nucleotidase 1A-like isoform X6	Seriola dumerili	UPI000BBF09A1	Nt5c3a	120	2.30E-06	19		45	33.3	6.1
149	Cytosolic 5'-nucleotidase 1A-like isoform X6	Seriola dumerili	UPI000BBF09A1	Nt5c3a	113	1.20E-05	20		45	33.3	6.1
	Amino acid and protein metabolism										
	2-oxoisovalerate dehydrogenase subunit alpha,	Larimichthys crocea	A0A0F8CCJ1	Bckdha	309	1.3E-25	17	5	17	42.0	6.8
126	mitochondrial										
151	Eukaryotic translation elongation factor 1 beta 2	Xiphophorus maculatus	M3ZV25	Ef1b2	74	4.2E-02	3	2	13	24.9	4.6
152	Proteasome subunit alpha type	Oreochromis mossambicus	Q3ZLC8	Psa	76	2.9E-02	6	2	25	22.8	9.1
164	DDB1- and CUL4-associated factor 11 isoform X1	Xiphophorus maculatus	UPI000C6EA71E	Dcaf11	35.8	7.00E-03					
	(fragment)										

(a) Spot number in reference 2-DE gel (Figure 3)
(b) Protein name, organism and UniProt/UniParc ID of the first hit returned by Mascot search. Spots 164 and 170 gave scores under threshold but fragmented peptides derived from them were used to a BLAST against non-redundant protein sequences database (nr) of *Actinopterygii*. The first hits reported were included.
(c) Protein symbol according to ZFIN Zebrafish Nomenclature Conventions.
(d) MOWSE score based on MS data. Protein scores greater than 76 are significant (p<0.05).
(e) The number of times we would expect to obtain an equal or higher score by chance.
(f) PM: Number of non-redundant matching peptides. PF: Number of fragmented peptides matching the protein. SC: % of sequence coverage.

1 able 2 - Proteins identified by 2-DE and combined PMF + MS/MS in the skin mucus of 5. <i>aumerili</i> parasitized by N. give	of S. dumerili parasitized by N. girellae
--	---

SN ^(a) 1	Protein ^(b)	Organism ^(b)	UniProt/UniParc ID ^(b)	Symbol ^(c)	Score ^(d)	Expect ^(e)	PM ^(f)	PF ^(f)	SC % ^(f)	Mass (kDa)	p <i>I</i>
	Structural proteins			•/		•					•
216	Beta-actin	Tetraodon nigroviridis	Q4SMI4	Actb	334	4.10E-28	18	5	43	42.9	5.6
217	Beta-actin	Monopterus albus	Q7SZL6	Actb	586	2.6E-53	22	8	58	42.1	5.3
219	Capping protein (actin filament), gelsolin-like b	Xiphophorus maculatus	M4AMP9	Capg	149	1.3E-09	10	3	20	38.5	5.2
220	Capping protein (actin filament), gelsolin-like b	Oreochromis niloticus	I3KRY6	Capg	137	2.0E-08	12	3	27	38.9	5.4
250	Destrin	Seriola dumerili	A0A3B4T7V6	Dstn	78	3.5E-02	13		41	22.6	6.0
307	Cofilin-2-like	Seriola lalandi dorsalis	A0A3B4WDY5	Cfl2	126	5.9E-07	18		57	22.7	6.
221	Keratin 4	Astyanax mexicanus	W5K1N1	Krt4	403	5.1E-35	22	4	35	54.1	5.
23	Keratin 4	Astyanax mexicanus	W5K1N1	Krt4	402	6.50E-35	21	4	33	54.1	5.
32	Keratin 4	Astyanax mexicanus	W5K1N1	Krt4	324	4.1E-27	13	4	20	54.1	5.
39	Keratin 4	Oncorhynchus mykiss	A0A060XRR9	Krt4	301	8.1E-25	14	4	19	55.3	5.
41	Keratin 4	Oncorhynchus mykiss	A0A060XRR9	Krt4	372	6.5E-32	14	5	17	55.3	5.
49	Keratin 4	Oncorhynchus mykiss	A0A060XRR9	Krt4	418	1.6E-36	15	6	20	55.3	5.
42	Keratin 5	Astyanax mexicanus	W5LD34	Krt5	224	4.1E-17	16	3	29	53.4	4.
37	Keratin 5	Astyanax mexicanus	W5LD34	Krt5	143	5.1E-09	13	2	27	53.4	4.
30	Keratin 91	Astyanax mexicanus	W5K0S9	Krt91	230	1.0E-17	15	3	21	49.1	5.
31	Keratin 91	Astyanax mexicanus	W5K0S9	Krt91	275	3.2E-22	16	3	28	49.1	5.
33	Keratin 91	Astyanax mexicanus	W5K0S9	Krt91	264	4.1E-21	14	3	21	49.1	5.
34	Keratin 91	Astyanax mexicanus	W5K0S9	Krt91	256	2.6E-20	14	3	21	49.1	5.
35	Keratin 91	Astyanax mexicanus	W5K0S9	Krt91	164	4.1E-11	15	3	25	49.1	5.
36	Keratin 91	Astyanax mexicanus	W5K0S9	Krt91	254	4.1E-20	13	3	17	49.1	5.
40	Keratin 91	Astyanax mexicanus	W5K0S9	Krt91	265	4.1E-21	14	3	18	49.1	5.
47	Keratin 91	Danio rerio	Q6DHB6	Krt91	207	2.0E-15	10	3	18	50.0	5.
52	Keratin 91	Danio rerio	Q6DHB6	Krt91	106	2.6E-05	9	3	18	50.0	5.
43	Keratin 97	Oreochromis niloticus	I3JR11	Krt97	90	1.0E-03	10	2	18	48.2	5.
38	keratin, type I cytoskeletal 13-like	Oreochromis niloticus	I3JS45	Krt	107	2.0E-05	8	2	16	52.6	5.
44	keratin, type I cytoskeletal 13-like	Oreochromis niloticus	I3JS45	Krt	91	7.4E-04	8	3	12	52.6	5.
27	Keratin type II (Fragment)	Epinephelus coioides	F6KMG4	Krt	189	1.3E-13	10	3	34	26.6	7.
28	Keratin type II (Fragment)	Epinephelus coioides	F6KMG4	Krt	335	3.2E-28	11	3	39	26.6	7.
48	Keratin type II (Fragment)	Épinephelus coioides	F6KMG4	Krt	340	1.0E-28	14	4	44	26.6	7.
	Stress response										
.01	Heat shock pHeat shock cognate 70 kDa	Xiphophorus maculatus	M3ZHB7	Hsp7c	325	3.2E-27	20	6	31	71.2	5.
13	Protein disulfide-isomerase	Dicentrarchus labrax	U3LRB6	Pdi	201	8.1E-15	9	5	14	56.3	5.
03	Glucose-regulated protein 78kDa	Seriola lalandi dorsalis	A0A3B4X3W4	Grp78	233	1.2E-17	30	5	42	72.4	5.
05	Warm temperature acclimation protein (hemopexin)	Dicentrarchus labrax	D5A7I0	Wap65	121	8.1E-07	7	3	16	49.7	5.
06	Warm temperature acclimation protein (hemopexin)	Seriola dumerili	A0A3B4U472	Wap65	91	1.8E-03	15		35	49.3	5.
07	Warm temperature acclimation protein (hemopexin)	Dicentrarchus labrax	A1YTM9	Wap65	213	5.1E-16	10	4	17	49.7	5.
08	Warm temperature acclimation protein (hemopexin)	Seriola dumerili	A0A3B4U472	Wap65	154	9.3E-10	23		44	49.3	5.
09	Warm temperature acclimation protein (hemopexin)	Seriola dumerili	A0A3B4U472	Wap65	156	5.9E-10	24		46	49.3	5.
.10	Warm temperature acclimation protein (hemopexin)	Seriola dumerili	A0A3B4U472	Wap65	179	3.0E-12	26		51	49.3	5.
211	Warm temperature acclimation protein (hemopexin)	Seriola dumerili	A0A3B4U472	Wap65	153	1.2E-09	24		45	49.3	5.
222	Cathepsin D	Oplegnathus fasciatus	F8WPA8	Catd	113	1.0E-05	4	3	13	43.3	5.
245	DELTA-stichotoxin-Hcr4a-like	Seriola dumerili	A0A3B4TN03	Shtx	81	1.8E-02	12		55	20.8	5.5

			arre proor								
246	DELTA-stichotoxin-Hcr4a-like	Seriola dumerili	A0A3B4TN03	Shtx	91	1.9E-03	14		64	20.8	5.8
	Metabolism										
	Iron metabolism										
202	Serotransferrin	Epinephelus coioides	G9I0G6	Trfe	312	6.5E-26	11	3	12	75.9	5.7
203	Serotransferrin	Epinephelus coioides	G9I0G6	Trfe	236	2.6E-18	11	4	12	75.9	5.7
204	Serotransferrin	Epinephelus coioides	G9I0G6	Trfe	259	1.3E-20	11	3	12	75.9	5.7
212	Serotransferrin	Epinephelus coioides	G9I0G6	Trfe	200	1.0E-14	10	3	10	75.9	5.7
218	Transferrin (Fragment)	Epinephelus coioides	B9V308	Trfe	180	1.0E-12	7	3	18	33.9	5.9
	Glycolysis and central metabolism										
214	Enolase 1a, (alpha)	Xiphophorus maculatus	M3ZNX0	Enoa	237	2.0E-18	10	5	25	47.3	6.4
215	Alpha-enolase	Larimichthys crocea	A0A0F8CJR2	Enoa	358	1.6E-30	18	5	38	47.3	6.2
304	Alpha-enolase isoform X1	Seriola dumerili	A0A3B4TYP6	Enoa	77	4.7E-02	14	3	29	47.3	6.1
224	Pyruvate dehydrogenase (lipoamide) beta	Oreochromis niloticus	I3IV89	Pdhb	76	2.9E-02	6	2	20	39.9	5.9
	Nucleotide metabolism										
225	Cytosolic 5'-nucleotidase 1A-like isoform X6	Seriola dumerili	UPI000BBF09A1	Nt5c3a	78	3.6E-02	11		40	33.3	6.1
226	Cytosolic 5'-nucleotidase 1A-like isoform X6	Seriola dumerili	UPI000BBF09A1	Nt5c3a	112	1.5E-05	19		45	33.3	6.1
306	Cytosolic 5'-nucleotidase 1A-like isoform X6	Seriola dumerili	UPI000BBF09A1	Nt5c3a	115	7.6E-06	20		45	33.3	6.1
	Amino acid metabolism										
305	2-oxoisovalerate dehydrogenase subunit alpha,	Seriola dumerili	A0A3B4WQF4	Bckdha	157	4.70E-10	23	5	39	51.1	6.9
	mitochondrial										

^(a) Spot number in reference 2-DE gel (Figure 3).
^(b) Protein name, organism and UniProt/UniParc ID of the first hit returned by Mascot search.
^(c) Protein symbol according to ZFIN Zebrafish Nomenclature Conventions.
^(d) MOWSE score based on MS data. Protein scores greater than 76 are significant (p<0.05).
^(e) The number of times we would expect to obtain an equal or higher score by chance.
^(f) PM: Number of non-redundant matching peptides. PF: Number of fragmented peptides matching the protein. SC: % of sequence coverage.

Sequence	,	(1)
ID ^(a)	Protein name ^{la})	Sample ^(b)
A0A3B4VG93	cell wall integrity and stress response component 4-like	NP
A0A3B4TCY4	Homer scaffold protein 2	NP
A0A3B4T6N4	interferon-induced protein with tetratricopeptide repeats 1-like	NP
A0A3B4V5N9	Myotrophin	NP
A0A3B4VAY3	NACHT, LRR and PYD domains-containing protein 12-like	NP
A0A3B4UXT2	NACHT, LRR and PYD domains-containing protein 12-like isoform	NP
	X1	
A0A3B4URJ5	NLRC4_HD2 domain-containing protein	NP
A0A3B4T4C1	Platelet-activating factor acetylhydrolase, isoform Ib, gamma	NP
	subunit	
A0A3B4UZ11	SAM domain and HD domain 1	NP
A0A3B4T7B0	SBDS ribosome maturation factor	NP
A0A3B4V008	SCY domain-containing protein	NP
A0A3B4U8Y6	Signal transducer and activator of transcription	NP
A0A3B4UTG8	Synuclein alpha	NP
A0A3B4TZF2	TAP binding protein (tapasin), tandem duplicate 2	NP
A0A3B4TWD5	Transporter 1, ATP-binding cassette, sub-family B (MDR/TAP)	NP
A0A3B4UAR5	40S ribosomal protein S24	NP <i>,</i> P
A0A3B4V3M0	40S ribosomal protein S27	NP <i>,</i> P
A0A3B4TY16	40S ribosomal protein S7	NP <i>,</i> P
A0A3B4VGQ5	60S ribosomal protein L27	NP <i>,</i> P
A0A3B4TWX6	actin-related protein 2-like	NP <i>,</i> P
A0A3B4U0P6	Adenylate kinase 2, mitochondrial (AK 2) (EC 2.7.4.3)	NP <i>,</i> P
A0A3B4T8N7	Aminopeptidase (EC 3.4.11)	NP <i>,</i> P
A0A3B4V3H8	AP-2 complex subunit alpha	NP <i>,</i> P
A0A3B4V303	Apolipoprotein H	NP <i>,</i> P
A0A3B4VIL6	apoptosis-associated speck-like protein containing a CARD	NP <i>,</i> P
	isoform X3	
A0A3B4V2V2	Beta-2-microglobulin	NP <i>,</i> P
A0A3B4THR8	complement C3-like	NP <i>,</i> P
A0A3B4TZX0	complement C3-like	NP <i>,</i> P
A0A3B4T9V8	Complement component 6	NP <i>,</i> P
A0A3B4TAI6	Complement component 9	NP <i>,</i> P
A0A3B4TJ19	complement factor B-like	NP <i>,</i> P
A0A3B4VF14	complement factor H	NP <i>,</i> P
A0A3B4VQW2	complement factor H-related protein 1-like, partial	NP <i>,</i> P
A0A3B4VFP0	Copine I	NP <i>,</i> P
A0A3B4TKU2	Copine III	NP <i>,</i> P
A0A3B4TGN3	Dihydrolipoamide S-succinyltransferase	NP <i>,</i> P
A0A3B4U544	Dyskeratosis congenita 1, dyskerin	NP <i>,</i> P
A0A3B4V789	Epoxide hydrolase 2, cytoplasmic	NP <i>,</i> P
A0A3B4T535	fucolectin-4	NP <i>,</i> P
A0A3B4VEV3	Guanine nucleotide binding protein (G protein), beta polypeptide 1b	NP <i>,</i> P

Table 3. Immune system process-related proteins (GO:0002376) found in the skin mucus samples of *S. dumerili* by gel-free LC-MS/MS

Journal Pre-proof	

A0A3B4VFD6	Heat shock protein 9	NP, P
A0A3B4TGS0	Heat shock protein 90, alpha (cytosolic), class B member 1	NP, P
A0A3B4T8T8	Ig-like domain-containing protein	NP, P
A0A3B4U2L6	Ig-like domain-containing protein	NP, P
A0A3B4VP40	immunoglobulin light chain precursor	NP, P
A0A3B4U4P8	Interleukin enhancer binding factor 2	NP. P
A0A3B4V2E6	Isocitrate dehvdrogenase [NADP] (EC 1.1.1.42)	NP. P
A0A3B4UUE3	Methionine aminopeptidase 2 (MAP 2) (MetAP 2) (EC 3.4.11.18)	NP. P
A0A3B4T3W5	N-mvc-interactor-like	NP. P
A0A3B4VB63	Nucleosome assembly protein 1-like 4a	NP. P
A0A3B4T6N7	Osteoclast stimulating factor 1	NP. P
A0A3B4U0N0	Peroxiredoxin 1	NP. P
A0A3B4T203	Potassium inwardly-rectifying channel, subfamily J. member 11.	NP. P
1010211200	like	,.
A0A3B4VA55	Proteasome 26S subunit, non-ATPase 13	NP, P
A0A3B4VH49	Proteasome subunit beta (EC 3.4.25.1)	NP, P
A0A3B4VQC6	Proteasome subunit beta (EC 3.4.25.1)	NP, P
A0A3B4TPB4	Pyrin domain-containing protein	NP, P
A0A3B4TZ30	Ribosomal protein L11	NP, P
A0A3B4ULM2	Ribosomal protein L35	NP, P
A0A3B4TP28	Ribosomal protein L35a	NP, P
A0A3B4VPG5	Ribosomal protein S14	NP, P
A0A3B4VEJ4	Ribosomal protein S15a	NP, P
A0A3B4U2T8	Ribosomal protein S19	NP, P
A0A3B4TIT1	Ribosomal protein S3	NP, P
A0A3B4UFG7	Ribosomal protein, large, P1	NP, P
A0A3B4U4F9	S_100 domain-containing protein	NP, P
A0A3B4U6S9	Serine peptidase inhibitor, Kunitz type 1 a	NP, P
A0A3B4T2U3	Serpin peptidase inhibitor, clade G (C1 inhibitor), member 1	NP, P
A0A3B4T847	Sorting nexin	NP, P
A0A3B4UC06	Splicing factor 3a, subunit 3	NP, P
A0A3B4TBI0	SUMO1 activating enzyme subunit 1	NP, P
A0A3B4TMU9	tolloid-like protein 1	NP, P
A0A3B4U5L7	Tropomyosin 4a	NP, P
A0A3B4UL57	tropomyosin alpha-3 chain-like isoform X2	NP, P
A0A3B4V127	V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog	NP, P
A0A3B4UV44	Actin-related protein 2/3 complex subunit	Р
A0A3B4UCJ3	bactericidal permeability-increasing protein-like	Р
A0A3B4TA33	Complement component 7b	Р
A0A3B4VEZ1	complement factor H	Р
A0A3B4VIA0	complement factor H	Р
A0A3B4U2G6	Family with sequence similarity 49 member Bb	Р
A0A3B4TL02	Ig-like domain-containing protein	Р
A0A3B4UH18	immunoglobulin light chain	Р
A0A3B4U7K2	Matrix metallopeptidase 9	Р
A0A3B4US08	Nucleophosmin 1a	Р
A0A3B4TAH0	Proteasome 26S subunit, non-ATPase 4b	Р
A0A3B4TE66	Ribosomal protein L22-like 1	Р

Journal Pre-proot					
A0A3B4U618	Tropomyosin 4	Р			
A0A3B4U5X8	tropomyosin alpha-1 chain isoform X1	Р			
^(a) Protein ID and p	^(a) Protein ID and protein name in <i>UniProt</i> database.				
^(b) Detection in non-parasitized (NP) and/or parasitized (P) experimental condition.					

Sequence	_	
ID ^(a)	Protein name ^{(a})	Sample ^(b)
A0A3B4UIT0	alpha-2-macroglobulin-like isoform X1	NP
A0A3B4UZ31	CAAX prenyl protease (EC 3.4.24.84)	NP
A0A3B4TG30	Calpain 5a	NP
A0A3B4UKC4	calpain-1 catalytic subunit-like	NP
A0A3B4V640	Carboxypeptidase (EC 3.4.16)	NP
A0A3B4V8Q2	Caspase 3, apoptosis-related cysteine peptidase a	NP
A0A3B4VFE7	DNA-damage inducible protein 2	NP
A0A3B4ULR2	inter-alpha-trypsin inhibitor heavy chain H3-like isoform X3	NP
A0A3B4V3V7	Metalloendopeptidase (EC 3.4.24)	NP
A0A3B4T5Z8	Papilin a, proteoglycan-like sulfated glycoprotein	NP
A0A3B4T2V3	Papilin b, proteoglycan-like sulfated glycoprotein	NP
A0A3B4V2Q5	Peptidase A1 domain-containing protein	NP
A0A3B4UQ15	Peptidase S1 domain-containing protein	NP
A0A3B4T4C1	Platelet-activating factor acetylhydrolase, isoform Ib, gamma	NP
	subunit	
A0A3B4VLM4	Proteasome subunit beta (EC 3.4.25.1)	NP
A0A3B4TG57	Signal peptidase complex catalytic subunit SEC11 (EC 3.4.21.89)	NP
A0A3B4TT41	Signal peptidase complex subunit 3 (EC 3.4)	NP
A0A3B4UTG8	Synuclein alpha	NP
A0A3B4UQR7	Ubiquitin specific peptidase 7 (herpes virus-associated)	NP
A0A3B4V2N1	Ubiquitin thioesterase (EC 3.4.19.12)	NP
A0A3B4TLB9	26S proteasome non-ATPase regulatory subunit 1	NP <i>,</i> P
A0A3B4U3P2	26S proteasome non-ATPase regulatory subunit 2	NP <i>,</i> P
A0A3B4USR2	Acylaminoacyl-peptide hydrolase	NP <i>,</i> P
A0A3B4T226	Alpha-1-microglobulin/bikunin precursor	NP <i>,</i> P
A0A3B4U4M0	Alpha-2-HS-glycoprotein 2	NP <i>,</i> P
A0A3B4VID4	alpha-2-macroglobulin-like	NP <i>,</i> P
A0A3B4VID7	alpha-2-macroglobulin-like isoform X2	NP <i>,</i> P
A0A3B4T7Y7	Aminopeptidase (EC 3.4.11)	NP <i>,</i> P
A0A3B4T8N7	Aminopeptidase (EC 3.4.11)	NP <i>,</i> P
A0A3B4TG61	Aminopeptidase like 1	NP <i>,</i> P
A0A3B4TWK0	Aspartyl aminopeptidase	NP <i>,</i> P
A0A3B4VNC0	ATP-dependent Clp protease proteolytic subunit (EC 3.4.21.92)	NP <i>,</i> P
A0A3B4UFH9	Bleomycin hydrolase (EC 3.4.22.40)	NP <i>,</i> P
A0A3B4V4C6	Calpain 12	NP <i>,</i> P
A0A3B4VGM9	Calpain 2, (m/II) large subunit b	NP <i>,</i> P
A0A3B4T7P8	Calpain 2, (m/II) large subunit, like	NP <i>,</i> P
A0A3B4VGI5	Calpain 2, (m/II) large subunit, like	NP <i>,</i> P
A0A3B4U4V2	Calpain 6	NP <i>,</i> P
A0A3B4T6A0	Calpain 9	NP <i>,</i> P
A0A3B4U1F6	Calpain-1	NP <i>,</i> P
A0A3B4UJA4	Calpain-1 catalytic subunit	NP <i>,</i> P
A0A3B4T7B5	calpain-2 catalytic subunit-like	NP <i>,</i> P
A0A3B4TD23	Calpain-9-like	NP <i>,</i> P
A0A3B4VKU9	calpastatin isoform X16	NP <i>,</i> P

Table 4. Protease activity-related proteins found in the skin mucus samples of *S. dumerili* by gel-free LC-MS/MS

A0A3B4UJ69	Carnosine dipeptidase 2	ΝΡ <i>,</i> Ρ
A0A3B4UPB8	Caspase 3	ΝΡ <i>,</i> Ρ
A0A3B4T8J4	Caspase 6, apoptosis-related cysteine peptidase a	ΝΡ <i>,</i> Ρ
A0A3B4V6B3	Caspase a	ΝΡ <i>,</i> Ρ
A0A3B4T680	Cathepsin Ba	ΝΡ <i>,</i> Ρ
A0A3B4T5H6	Cathepsin C	ΝΡ <i>,</i> Ρ
A0A3B4V9M3	Cathepsin D	ΝΡ <i>,</i> Ρ
A0A3B4U9I5	Cathepsin H	ΝΡ <i>,</i> Ρ
A0A3B4T9F3	Cathepsin S, ortholog2, tandem duplicate 1	ΝΡ <i>,</i> Ρ
A0A3B4TFM1	Cathepsin Z	ΝΡ <i>,</i> Ρ
A0A3B4TB78	Coagulation factor II (thrombin)	NP, P
A0A3B4THR8	complement C3-like	NP, P
A0A3B4TZX0	complement C3-like	NP, P
A0A3B4V6S2	complement C5	ΝΡ <i>,</i> Ρ
A0A3B4TJ19	complement factor B-like	ΝΡ <i>,</i> Ρ
A0A3B4VDW1	complement factor I-like	ΝΡ <i>,</i> Ρ
A0A3B4USI9	Cystatin 14a, tandem duplicate 1	ΝΡ <i>,</i> Ρ
A0A3B4URQ5	Cystatin domain-containing protein	ΝΡ <i>,</i> Ρ
A0A3B4VDQ2	Dipeptidyl peptidase 3 (EC 3.4.14.4) (Dipeptidyl aminopeptidase	ΝΡ <i>,</i> Ρ
	III) (Dipeptidyl peptidase III)	
A0A3B4U157	dipeptidyl peptidase 9-like	NP, P
A0A3B4VH63	Fetuin B	NP, P
A0A3B4VJC1	Fetuin B	NP, P
A0A3B4VI55	Hyaluronan binding protein 2	NP, P
A0A3B4TIJ4	hyaluronan-binding protein 2-like	NP, P
A0A3B4USE1	Inter-alpha-trypsin inhibitor heavy chain 2	NP, P
A0A3B4VHV2	inter-alpha-trypsin inhibitor heavy chain H3-like	NP, P
A0A3B4UVK5	kininogen-1-like	NP, P
A0A3B4V6R5	Latexin	NP, P
A0A3B4UG29	Metalloendopeptidase (EC 3.4.24)	NP, P
A0A3B4UUE3	Methionine aminopeptidase 2 (MAP 2) (MetAP 2) (EC 3.4.11.18)	NP, P
	(Initiation factor 2-associated 67 kDa glycoprotein) (Peptidase M)	
	(p67) (p67eIF2)	
A0A3B4TUR3	Microseminoprotein, beta-like	NP <i>,</i> P
A0A3B4T767	Peptidase S1 domain-containing protein	NP <i>,</i> P
A0A3B4VNC7	Peptidase S1 domain-containing protein	NP <i>,</i> P
A0A3B4THQ6	Plasminogen	NP <i>,</i> P
A0A3B4VFI1	prolyl endopeptidase-like	NP <i>,</i> P
A0A3B4T516	Proteasome 26S subunit, ATPase 6	NP <i>,</i> P
A0A3B4VF73	Proteasome 26S subunit, non-ATPase 14	NP <i>,</i> P
A0A3B4UT73	Proteasome 26S subunit, non-ATPase 3	NP <i>,</i> P
A0A3B4USC0	Proteasome 26S subunit, non-ATPase 7	NP <i>,</i> P
A0A3B4VF98	Proteasome 26S subunit, non-ATPase 8	NP <i>,</i> P
A0A3B4VCN7	Proteasome activator subunit 1	NP <i>,</i> P
A0A3B4UAA1	Proteasome activator subunit 2	NP <i>,</i> P
A0A3B4T2Z5	Proteasome subunit alpha type (EC 3.4.25.1)	NP <i>,</i> P
A0A3B4T4S6	Proteasome subunit alpha type (EC 3.4.25.1)	NP <i>,</i> P
A0A3B4T6U4	Proteasome subunit alpha type (EC 3.4.25.1)	NP <i>,</i> P
A0A3B4T8E3	Proteasome subunit alpha type (EC 3.4.25.1)	NP, P

A0A3B4TSQ2	Proteasome subunit alpha type (EC 3.4.25.1)	NP, P	
A0A3B4U7H2	Proteasome subunit alpha type (EC 3.4.25.1)	NP, P	
A0A3B4UCU8	Proteasome subunit alpha type (EC 3.4.25.1)		
A0A3B4VDF2	Proteasome subunit alpha type (EC 3.4.25.1)	NP, P	
A0A3B4T404	Proteasome subunit beta (EC 3.4.25.1)	NP, P	
A0A3B4T8E5	Proteasome subunit beta (EC 3.4.25.1)	NP, P	
A0A3B4TIT3	Proteasome subunit beta (EC 3.4.25.1)		
A0A3B4VGJ0	Proteasome subunit beta (EC 3.4.25.1)		
A0A3B4VH49	Proteasome subunit beta (EC 3.4.25.1)		
A0A3B4VQC6	Proteasome subunit beta (EC 3.4.25.1)		
A0A3B4TDQ1	Putative aminopeptidase W07G4.4		
A0A3B4TPB4	Pyrin domain-containing protein	NP, P	
A0A3B4U6S9	Serine peptidase inhibitor, Kunitz type 1 a	NP, P	
A0A3B4UV59	Serine peptidase inhibitor, Kunitz type 1 b	NP, P	
A0A3B4TLT8	SERPIN domain-containing protein	NP, P	
A0A3B4VGP7	Serpin family B member 1	NP, P	
A0A3B4T2U3	Serpin peptidase inhibitor, clade G (C1 inhibitor), member 1	NP, P	
A0A3B4UJ25	Suppressor of tumorigenicity 14 protein homolog	NP, P	
A0A3B4VEX2	Thimet oligopeptidase 1	NP, P	
A0A3B4TMU9	tolloid-like protein 1	NP, P	
A0A3B4TXL6	Ubiquitin carboxyl-terminal hydrolase (EC 3.4.19.12)	NP, P	
A0A3B4U0N5	Ubiquitin carboxyl-terminal hydrolase (EC 3.4.19.12)	NP, P	
A0A3B4UKX2	Ubiquitin carboxyl-terminal hydrolase (EC 3.4.19.12)	NP, P	
A0A3B4UWX5	Ubiquitin carboxyl-terminal hydrolase (EC 3.4.19.12)	NP, P	
A0A3B4V076	Ubiquitin carboxyl-terminal hydrolase (EC 3.4.19.12)	NP, P	
A0A3B4V8C5	Ubiquitin carboxyl-terminal hydrolase (EC 3.4.19.12)	NP, P	
A0A3B4VAW7	Ubiquitin carboxyl-terminal hydrolase (EC 3.4.19.12)	NP, P	
A0A3B4U5T6	X-prolyl aminopeptidase (aminopeptidase P) 1, soluble	NP, P	
A0A3B4TQ46	ADAM metallopeptidase domain 28	Р	
A0A3B4T9E1	Cathepsin K	Р	
A0A3B4VAZ1	cathepsin L1	Р	
A0A3B4TCH1	Coagulation factor VIIi	Р	
A0A3B4UWA1	Cystatin domain-containing protein	Р	
A0A3B4V967	Insulin-degrading enzyme	Р	
A0A3B4U717	Legumain	Р	
A0A3B4U7K2	Matrix metallopeptidase 9	Р	
A0A3B4THA8	Peptidase S1 domain-containing protein	Р	
A0A3B4TKS5	Peptidase S1 domain-containing protein	Р	
A0A3B4UNL2	Peptidase S1 domain-containing protein	Р	
A0A3B4VDW8	Peptidase S1 domain-containing protein	Р	
A0A3B4VJ61	Peptidase S1 domain-containing protein	Р	
A0A3B4T3P6	Prolyl endopeptidase	Р	
A0A3B4U778	Proteasome 26S subunit, non-ATPase 11b	Р	
A0A3B4TAH0	Proteasome 26S subunit, non-ATPase 4b	Р	
A0A3B4UBH6	Proteasome subunit beta (EC 3.4.25.1)	Р	
A0A3B4UKV3	Proteasome subunit beta (EC 3.4.25.1)	Р	
A0A3B4V8I4	Proteasome subunit beta (EC 3.4.25.1)	Р	
A0A3B4UV22	Serpin peptidase inhibitor, clade C (antithrombin), member 1	Р	
A0A3B4UCS5	TIMP metallopeptidase inhibitor 2b	Р	

Journal Pre-proof			
A0A3B4TQX4	Tripeptidyl peptidase 2	Р	
A0A3B4VBW1	ZnMc domain-containing protein	Р	
^(a) Protein ID and protein name in <i>UniProt</i> database.			
^(b) Detection in non-parasitized (NP) and/or parasitized (P) experimental condition.			

Enriched bar chart. Fisher's exact test (FDR<0.05)

% of sequences in GO term

Highlights

- The skin mucus proteome of *Seriola dumerili* was analyzed for the first time.
- The effect of Neobenedenia girellae on the proteome, proteases, and the microbiota was • assessed.
- Ribosomal proteins were overrepresented in the skin mucus of parasitized fish. ٠
- 2-DE proteomics reveals that specifically keratins were cleaved in parasitized fish. •
- The mucus of infected fish showed high metal-dependent protease and serine protease • activities.

har