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Abstract

Large time series are difficult to be mined and preprocessed, hence reducing their number of points with minimum information loss
is an active field of study. This paper proposes new methods based on time series segmentation, including the adaptation of the
particle swarm optimisation algorithm (PSO) to this problem, and more advanced PSO versions, such as barebones PSO (BBPSO)
and its exploitation version (BBePSO). Moreover, a novel algorithm is derived, referred to as dynamic exploitation barebones PSO
(DBBePSO), which updates the importance of the social and cognitive components throughout the generations. All these algorithms
are further improved by considering a final local search step based on the combination of two well-known standard segmentation
algorithms (Bottom-Up and Top-Down). The performance of the different methods is evaluated using 15 time series from various
application fields, and the results show that the novel algorithm (DBBePSO) and its hybrid version (HDBBePSO) outperform the
rest of segmentation techniques.
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1. Introduction

Recently, time series data mining (TSDM) has become an
important field of research in science and engineering [1, 2].
Time series can be obtained from different areas, such as cli-
mate [3], hydrology [4], finances [5], satellite images [6], etc.
They are used for different tasks depending on the objective
of the researchers and the application areas, e.g. classifica-
tion [7, 8], forecasting [9, 10], tipping point detection [11],
clustering [12], similarity assessment [13, 14] or segmentation
[15]. Specifically, time series segmentation is an important task,
which consists of cutting the time series in some specific points
trying to achieve different objectives, which are generally re-
lated to two points of view.

Firstly, time series segmentation can be used to discover
useful patterns or segments in time series. Chung et al. [16]
proposed a genetic algorithm for this purpose, using the sim-
ilarities between the segments for optimising the cut points.
Tseng et al. [17] combined a genetic algorithm with a clustering
procedure and considered the discrete wavelet transformation
(DWT) for the representation of the segments. The genetic al-
gorithm proposed in [11] is aimed to characterise tipping points
(TPs) and analyse the common patterns which occur before
them, in order to create early warning signals in paleoclimate
time series. Furthermore, a full analysis of different metrics
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for clustering evaluation and a first approximation to forecast
TPs using the patterns previously identified were made in [3].
Fuzzy segmentation of multivariate time series was approached
by a modified Gath-Geva clustering algorithm in [18], and an
online recursive fuzzy clustering for indirect sequence cluster-
ing was proposed in [19]. Anomaly detection has been widely
analysed for signal processing with the aim of locating abrupt
changes along the time series [20]. There are many more ap-
plications of this kind of time series segmentation, such as the
detection of important events in stock price time series [9, 21]
or the detection and prediction of wave height extreme events
combining a genetic algorithm with artificial neural networks
[22].

On the other hand, the second group of time series segmen-
tation algorithms tries to tackle the difficulty of processing and
mining large time series. Their large amount of data (i.e. their
high dimensionality) makes them very difficult to analyse. Be-
cause of this reason, and considering the fact that data mining
is constrained by three types of limited resources (time, mem-
ory and sample size), different algorithms have been proposed
with the aim of reducing the dimensionality or the number of
points of time series. In the literature, time series segmentation
techniques are also called time series representation procedures.
These methods reduce the dimension of a given time-series by
transforming it into a new representation space [23]. In gen-
eral, TSDM tasks can be classified as first-hand processing (i.e.
dimensionality reduction) or second-hand processing (further
analysis of time series). Time series representation methods are
first-hand processing algorithms, being useful for reducing the
number of points of the time series while keeping their fun-
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damental characteristics [24]. In this context, the authors in
[25, 26] proposed a method based on dividing the time series
using previously identified change points and represented the
segments with suitable approximations. Piecewise linear ap-
proximation (PLA) is a global term referring to all the algo-
rithms which reduce the number of points in the time series with
a minimum information loss, based on linear interpolations or
regressions [27]. Top-Down and Bottom-Up approaches pro-
posed by Keogh et al. [27] are two simple PLA algorithms,
based on iteratively reducing the approximation error. There
are some other representations algorithms, such as adaptative
piecewise constant approximation (APCA) [28] or symbolic ag-
gregate approximation (SAX) [29].

The work presented in this paper is focused on the second
group, specifically on PLA representation methods, whose ob-
jective is to reduce the number of elements in time series with
minimum information loss. For this purpose, we use a modi-
fication of a particle swarm optimisation algorithm (PSO) [30]
for segmenting time series, considering also two different re-
lated versions, barebones PSO (BBPSO) and exploiting bare-
bones PSO (BBePSO). PSO is an evolutionary algorithm which
simulates the social and cognitive behaviour of a set of parti-
cles, such as birds of fish when looking for food. In this way,
PSO optimises problems considering a set of candidate solu-
tions, denoted as particles (in our case, segmented time series),
which move along the search space. In PSO, the social compo-
nent refers to the best global position found by the algorithm,
while the cognitive one is the best solution found by the indi-
vidual particle. In general, PSO can be more easily adapted to
the specific problem being tackled, as fewer parameters have to
be configured when compared to other metaheuristics, such as
genetic algorithms or ant colony systems. On the other hand,
BBPSO avoids the use of velocities and, instead, considers a
normal distribution to decide whether the update should take
the best global position into account or the best local one [31].
Finally, BBePSO adds an exploting component to BBPSO, im-
proving convergence [31]. PSO has been applied in many real
problems, including hydrology prediction [32], video tracking
[33], power system state estimation [34], etc.

In standard PSO, and also in BBPSO, and BBePSO, the im-
portances of the social component (exploration) and the cogni-
tive component (exploitation) are not updated during the gener-
ations. In this paper, we propose a new formulation, where the
social component is more important at the beginning of the evo-
lution, while the cognitive component is more important at the
end, resulting in that we call dynamic BBePSO (DBBePSO).

On the other hand, evolutionary algorithms (EAs) are able
to perform a global multi-point search, converging to high qual-
ity areas. In this sense, they are considered robust heuristics that
can be applied in different problems. The main problem with
EAs is that they are not good at finding the precise optimum
in these high-quality areas [35]. To solve this issue, several
authors combine EAs with a local search (LS) procedure to im-
prove the best solutions. The idea is to combine the advantages
of the EA (global explorer) and the advantages of the LS (local
exploiter), resulting in hybrid algorithms. The hybridisation can
be made in different ways, which are very important in terms of

accuracy and computational cost. Some of the strategies pre-
viously used include the multi-start approach, the Lamarckian
learning, the Baldwinian learning, the partial Lamarckianism
and the process of random linkage [36, 37, 38]. In this way,
we combine the previously presented algorithms with a LS pro-
cedure, consisting in removing a number of cut points with a
Bottom-Up methodology and, then, adding the same number
of cut points using the Top-Down procedure [27]. All the al-
gorithms are applied to the segmentation of several time series
in the experimental section of the paper, and hybrid DBBePSO
obtains very good results which outperform the state of the art
algorithms considered.

The rest of the paper is organised as follows: Section 2
briefly presents the main parts of the PSO, BBPSO, and BBePSO
algorithms. Section 3 describes the new PSO proposal, while
Section 4 includes the different considerations needed for adapt-
ing all the algorithms for time series segmentation. Section 5
shows the considered time series, which are extracted from real-
world applications and different public repositories, the experi-
mental setting and the statistical analysis of the results obtained.
Finally, the paper is concluded in Section 6.

2. Particle Swarm Optimisation algorithm and its advanced
versions

The particle swarm optimisation (PSO) [30] is an evolutio-
nary-type algorithm for search and optimisation, based on the
simulation of a swarm of particles, i.e., birds or fish, looking
for food. In PSO, a swarm is formed by a set of P particles
in a D-dimensional space, being D the length of the particles.
Each particle i is a candidate solution of the studied problem,
and it is represented by the following characteristics at iteration
t: the current position of the particle xt

i, the current velocity of
the particle vt

i and the best position found by the particle pt
i.

The fitness function evaluates the quality of a particle xi and is
presented by f (xi). The velocity of the particle represents the
direction and the rate of change in the movement of the particle
at iteration t, while the best position pt

i is the value of the xi

visited by the particle resulting in the best fitness. Moreover,
an array with the best global solution (pt

g) is also stored, which
is defined as pt

g = arg maxp
{
f (pt−1

g ), f (pt
1), f (pt

2), . . . , f (pt
P)

}
(considering a maximisation problem). Thus, the evolution is
possible due to the cooperation of the particles, considering the
local best position pi (cognitive component) and the global best
position pg (social component).

For each iteration of a PSO algorithm, the velocity vi is up-
dated in the following way:

vt
i = w · vt−1

i +ρt
1 ·C1 ·

(
pt−1

i − xt−1
i

)
+ ρt

2 ·C2 ·
(
pt−1

g − xt−1
i

)
,

(1)

where w is the inertia weight, ρt
1, ρt

2 are uniform random values
obtained at iteration t, ρ1, ρ2 ∼ U(0, 1), and C1, C2 are the ac-
celeration constants. The w parameter controls the impact of the
memory with respect previous velocities. The cognitive com-
ponent (pi − xi) represents the experience of the particle with
respect to its best-found solution, while the social component
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(pg − xi), represents the experience with respect to the global
best solution. The position of the particles is then updated us-
ing the expression:

xt
i = xt−1

i + vt
i. (2)

Finally, the individual best position pi and the global best
position pg are also updated in each iteration. pi is updated as:

pt
i =

pt−1
i if f (xt

i) ≤ f (pt−1
i ),

xt
i if f (xt

i) > f (pt−1
i ),

(3)

while, for the global best position, we have:

pt
g = arg max

p

{
f (pt−1

g ), f (pt
1), f (pt

2), . . . , f (pt
P)

}
. (4)

The PSO algorithm is repeated during a predefined number
of iterations or until velocity updates are near zero. The quality
of the solutions (particles) is measured by a fitness function (in
this section we have considered maximisation problems). Algo-
rithm 1 illustrates the flowchart diagram of the PSO algorithm,
which summarises the previously defined steps.

Algorithm 1 Pseudo-code for the PSO algorithm
Input: Valid values for the parameters controlling the PSO al-

gorithm
Output: A solution with the best fitness value found by the

algorithm
1: Initialise the swarm randomly
2: Evaluate the initial swarm
3: while not stop condition do
4: Update velocities (Eq. 1)
5: Update positions (Eq. 2)
6: Evaluate the new swarm
7: Update personal best positions (Eq. 3)
8: Update global best positions (Eq. 4)
9: end while

10: Return the best individual (final solution) from the swarm

2.1. Barebones PSO
One of the improved versions of PSO is the barebones PSO

(BBPSO) [31]. This algorithm does not take into account the
velocities to update the current position of the particles in the
swarm. Instead, BBPSO replaces Equations 1 and 2 with the
following expression for the j-th dimension:

xt
i, j = N

 pt−1
i, j + pt−1

g, j

2
, |pt−1

i, j − pt−1
g, j |

 , (5)

where N(µ, σ) is a normal random distribution with µ mean and
σ standard deviation, and i = 1, . . . , P, j = 1, . . . ,D. This
equation is based on theoretical studies confirming that parti-
cles converge to a weighted average of the global and personal
best positions [39]. In this way, each dimension of each par-
ticle is selected from a Gaussian distribution where the mean
is the average value of the global and local best positions, and
the difference between them is used as the standard deviation.
This procedure allows taking large steps when the personal best
positions are far away from the global best positions.

2.2. Exploiting barebones PSO
In [31], Kennedy also proposed an alternative version of the

BBPSO, called exploiting barebones PSO (BBePSO), where
the velocity and position updates are replaced with:

xt
i, j =

N
(

pt−1
i, j +pt−1

g, j

2 , |pt−1
i, j − pt−1

g, j |

)
if U(0, 1) < 0.5,

pt−1
i, j otherwise.

(6)

This equation establishes a 0.5 probability that the j-th di-
mension of the particle i changes to the corresponding personal
best position. In this way, the BBePSO searches with a higher
degree of exploitation than BBPSO. In general, this exploiting
version outperforms other variants of PSO [40]. Unlike stan-
dard PSO, the barebones variants (BBPSO and BBePSO) do not
need a value for the weight and the acceleration coefficients, so
they are more suitable for those application problems where the
value of the these parameters is difficult to be estimated.

3. Dynamic exploiting barebones PSO

In this work, a dynamic BBePSO (DBBePSO) algorithm is
proposed, where the importance of the social and the cognitive
components are updated along the generations.

As we mentioned before, DBBePSO updates the current po-
sitions of each particle (xi) in a similar way that BBePSO. How-
ever, in our proposal, the importance of the exploration and the
exploitation are dynamically updated over the generations using
a modified Gaussian distribution:

xt
i, j =

N
(

pt−1
i, j +pt−1

g, j

2 , λ|pt−1
i, j − pt−1

g, j |

)
if U(0, 1) < 0.5,

pt−1
i, j otherwise.

(7)

The novelty is the multiplicative parameter λ in the standard
deviation of the distribution. It is known that evolutionary algo-
rithms work better when the exploration is higher at the begin-
ning but lower at the end [41]. To do so, λ is updated dynam-
ically over the generations from an initial value of 1 to a final
value of 0.1:

λ =
0.9(L − l)

L
+ 0.1, (8)

where L is the maximum number of evaluations allowed to the
algorithm (stop criterion), and l is the current number of evalu-
ations. As can be observed, when the number of evaluations is
0, then λ is 1.0; and it decreases to 0.1 when l is close to L. It is
important to mention that the λ update is done at the beginning
of each iteration t of the algorithm.

4. Adapting the algorithms for time series segmentation

4.1. Problem definition
Given a time series Y = {yn}

N
n=1, the main goal is to split the

time series by dividing the values into m consecutive segments,
taking into account that the error approximation of these seg-
ments needs to be as lower as possible. In other words, from all
the time indexes (n = 1, . . . ,N), a set of m − 1 cut points are
selected, being presented in ascending order (t1 < t2 < · · · <
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tm−1). In this way, the set of the resulting segments is composed
by s1 = {y1, . . . , yt1 }, s2 = {yt1 , . . . , yt2 }, . . . , sm = {ytm−1 , . . . , yN},
and the algorithm has to determine the values of the m − 1 cut
points. Note that the cut points are part of two segments, the
precedent segment and the posterior one, while the rest of points
belong to a single segment. In order to reduce the amount of in-
formation, each segment is approximated using linear interpo-
lation between the initial and the final points (i.e. the cut points
delimiting the segment).

It is important to mention that the search space is very large.
Consequently, the use of evolutionary algorithms is proposed in
this paper.

4.2. Particle representation
The position of a particle is represented by an array (chro-

mosome) of real values (xi), where the length of the chromo-
some is the same that the number of segments minus one (m−1),
i.e. the number of cut points. Each chromosome element xi, j

stores a real value, which is rounded to the closest integer in
order to obtain the value of the j-th cut point (ti, j). For example,
the chromosome of length 5, xi = {1.68, 5.76, 12.12, 15.30, 20.10}
corresponds to the following cut points, ti = {2, 6, 12, 15, 20}.
An example of a particle for this problem is shown in Figure 1.
It is important to note that the values of the chromosome need
to be presented in ascending order (see section 4.5).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1.68 5.76 12.12 15.30 20.10

1 2

2 3 4 5 6

6 7 8 9 10 11 12

12 13 14 15

15 16 17 18 19 20

20 21 22

Chromosome representation

Corresponding cut points

Resulting segments

2 6 12 15 20

Figure 1: Chromosome representation: xi = {1.68, 5.76, 12.12, 15.30, 20.10}.

4.3. Initialisation of the swarm
The population of the swarm is a set of P arrays of real

values with a length of m − 1. In the initial population, the cut
points are randomly selected taking into account that they must
be subscripted in ascending order, and each cut point has to be
unique (it is not possible to have two cut points with the same
value). Note that the initial population is formed by integer
values, but, during the generations, these positions are updated
with real values.

4.4. Fitness evaluation
As we stated before, the main goal of this type of time series

segmentation is to reduce the number of points without losing
important information. For that, we optimise the error produced
by the approximation with respect to the original time series
values. Thus, the fitness function is defined as minimising the
difference between each real value of the time series and its
corresponding approximation. The approximation error of the
n-th point of the time series in the swarm is defined as:

en(xi) = (yn − ŷn(xi)), (9)

where yn is the real value of the n-th point in the time series,
and ŷn(xi) is the PLA approximation value obtained by a linear
interpolation in the chromosome xi. The fitness function con-
sidered for the complete chromosome is the root mean square
of the en(xi) (RMSE), which is formally defined as:

RMS E(xi) =

√√√
1
N

N∑
n=1

e2
n(xi). (10)

Due to the fact that this metric needs to be minimised, the fi-
nal fitness function is f = 1

1+RMS E(xi)
, which is bounded in the

interval [0, 1]. Figure 2 shows the evaluation process of the
chromosome used in Figure 1.

RMSE = 7.1818 
e

1 
e

2 
e

3 
e

4 
. . . e

N-1
e

N

8 9 1 9 6 3 2 5 9 9 1 9 9 3 2 8 4 9 7 9 6 0 y

={1.68, 5.76, 12.12, 15.30, 20.10}

ŷ 8 9 8 7 5 3 3 4 5 7 8 9 6 4 2 4 5 7 8 9 5 0 

t
1

t
2

t
3

t
4

t
5

Real Approximation

Figure 2: Example of evaluation.

4.5. Repair solutions
In time series segmentation, there are certain constraints

that have to be satisfied to ensure proper solutions:

1. The first one is that the time index n must be presented
in ascending order, and therefore the values of the chro-
mosome (xi,1 < xi,2 < · · · < xi,m−1). After applying
the position updates, it can be possible that a too large
step is taken for one of the dimensions, making the value
of the cut point to be higher than the next in the chro-
mosome (xi,k > xi,k+1) or lower than the previous one
(xi,k < xi,k−1). In order to avoid this problem, after updat-
ing the positions, the algorithm sorts the cut points of the
chromosomes (particles) in ascending order.
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2. The second constraint is related to the values of the first
and the last genes of the chromosome. The value of the
first gene should not be smaller than 1.5 (xi,1 ≥ 1.5), and
the value of the last one should not be higher than N−0.5
(xi,m−1 < N − 0.5). This is because the first and the last
point of the time series can not be cut points, and the
nearest integers of a value lower than 1.5 or a value higher
than N − 0.5 are 1 and N, respectively. If this constraint
is not satisfied, the chromosome is rescaled:

xt′
i =

xt
i −min{xt

i}

max{xt
i} −min{xt

i}
(max{xt−1

i } −min{xt−1
i }) + min{xt−1

i },

(11)

where the min(x) and max(x) represent the minimum and
the maximum value of the array x, respectively.

4.6. Hybridisation procedure

A local search strategy is used to further improve the qual-
ity of the solutions, based on the combination of Bottom-Up
and Top-Down algorithms [27]. Bottom-Up considers each el-
ement of the time series as a possible cut point, and, during
the iterations, the two adjacent segments incurring in a lowest
cost are merged, that is, those adjacent segments whose merg-
ing results in the minimum increase of error. Top-Down is the
complementary algorithm, which works with the opposite phi-
losophy. At the beginning, the complete time series is consid-
ered as a segment, and Top-Down recursively splits the segment
considering the point resulting in the maximum error decrease.
Both algorithms are run until some stopping criteria are met (re-
lated with the approximation error). Our proposed local search
methods consists in removing a percentage of the cut points of
the best solution using the Bottom-Up strategy and then adding
the same number of cut points using the Top-Down algorithm.

To use these algorithms, we have modified the implementa-
tions proposed in [27] in such a way that, for both, the stopping
criteria is the number of segments to merge or cut, respectively.
Note that the implementation of Top-Down presented in [27] is
recursive, so we have transformed it into an iterative method.

We have considered the following strategy for combining
this local search with the metaheuristics (GA, PSO and the dif-
ferent PSO variants): at the beginning of the evolution, a 50% of
the population is randomly selected, and these individuals are
improved by the local search. After that, the metaheuristic is
applied to the complete population, including standard random
individuals and the ones improved by the local search method.
Finally, the best solution obtained by the metaheuristic is also
applied a local search.

4.7. DBBePSO algorithm for time series segmentation

This section summarises the work-flow of the DBBePSO
presented in Section 3 for time series segmentation, including
all the considerations previously exposed. The main steps of the
algorithm are summarised in Algorithm 2. Very similar pseu-
docodes are used for adapting the rest of PSO variants.

Algorithm 2 Dynamic BBePSO for time series segmentation
Input: Time series.
Output: Segmented time series.

1: Initialise a random initial particle swarm (population).
2: Evaluate the initial population.
3: while not stop condition do
4: Update the importance of the social and cognitive com-

ponents.
5: Update the positions of the particles.
6: Repair solutions.
7: Evaluate the new population (particle swarm).
8: Update the best global and the best local positions.
9: end while

10: Apply the local search to the best solution obtained by the
DBBePSO.

11: return Best solution after the local search.

5. Experimental results and discussion

This section analyses the time series considered for vali-
dating the different methods, the experimental setting and the
results obtained.

5.1. Datasets used in our experiments

In this work, we evaluate the performance of the DBBePSO
algorithm in several synthetic and real-world time series col-
lected from public repositories, to test its robustness in different
scopes of application. The time series used are the following:

• Synthetic time series

– UCR time series: four datasets from the UCR Time
Series Classification Archive [42] has been selected.
Originally, these time series are divided into train-
ing and test, because it is a time series classification
repository. As we are facing time series segmenta-
tion, we have joined some of the training patterns in
order to have larger length time series. The time se-
ries selected are Hand Outlines, with a total of 8127
points, and Mallat, Phoneme and StarLightCurves,
all of them with 8192 observations.

– Donoho-Johnstone time series: this series is extracted
from a benchmark repository [43, 44, 45], which is
widely used in the neural net and machine learning
community. The Donoho-Johnstone benchmarks are
formed by four functions to which random noise
can be added to produce an infinite number of datasets.
In this work, we have considered the function Blocks
with medium noise, producing a total of 2048 ob-
servations1.

• Real-world application time series

1All these time series can be downloaded from https://sites.google.

com/site/icdmmdl/
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– Stock prices time series from financial applications:
five different indexes has been selected. The first
one is IBEX35 time series (called IBEX since this
moment for simplicity). It is one of the Spanish of-
ficial indexes of the Madrid stock market. The time
series consists of a total of 5730 observations con-
sidering daily values from 14 January 1992 to 26
September 2014. The rest of time series includes
market rates collected from four banks (BBVA, Deuts-
che Bank, Intesa San Paolo, and Société Genéralé).
These four series have a length of 4174 points, con-
sidering daily values from 1 January 1999 to 9 Febru-
ary 2015.

– Wave height time series (Hs): four time series of
significant wave height collected from buoys of the
National Data Buoy Center of the USA [46] have
been used. Two buoys are collecting data in the
Gulf of Alaska (with registration number 46001 and
46075), and the rest are from Puerto Rico (41043
and 41044). One value every six hours from 1st Jan-
uary 2008 to 31st December 2013 is considered for
buoy 46001 (8767 observations), while data from
1st January 2011 to 31st December 2015 are con-
sidered for the rest of buoys (7303 observations for
each one).

– Arrhythmia dataset contains cardiology data which
belongs to the PhysioBank ATM of the MIT BIH
Arrhythmia dataset [47, 48]. We used the MLII sig-
nal of the record 108 (9000 observations) to test the
algorithm in this dataset.

All time series considered are shown in Figures 3 and 4.

5.2. Experimental design

The experimental design for the time series under study is
presented in this subsection. We compare the following algo-
rithms:

• An optimal algorithm which is able to obtain the min-
imum error segmentation for a given time series. We
consider the algorithm proposed by Salotti [49], which
is based on finding the shortest path in a graph, whose
complexity is close to O(N2). We consider the improved
version proposed in [50], where the computational time is
reduced about a 16%. This algorithm was originally pro-
posed for obtaining optimal polygonal approximations in
closed curves, which is exactly the same problem than
time series segmentation, with two main differences: the
first and the last points are fixed, and the error is calcu-
lated in the vertical line, instead of in a line perpendicular
to the approximation. Both adaptations can be easily in-
cluded to perform optimal time series segmentation.

• Two iterative versions of the Bottom-Up and Top-Down
algorithms explained in Section 4.6 have been run, with
the aim of obtaining an approximation of the time series
with a predefined number of points or segments.

• A genetic algorithm (GA) has been run with crossover
and mutation probabilities set to pc = 0.8 and pm = 0.2,
respectively.

• A basic particle swarm optimisation algorithm (PSO) is
run with the following specific parameters: initial veloc-
ities of the particles are set to values close to zero [51],
the inertia coefficient (w) is set to 0.72, and the constant
parameters (C1 and C2) are fixed to 1.49, as previously
proposed in [39].

• The exploiter version of the barebones PSO (BBePSO)
proposed by [31] has also been tested. Note that this ver-
sion is better than BBPSO (see [31]), so we have not con-
sidered this last algorithm in our experiments.

• Finally, the DBBePSO proposed in this paper is also run,
and, as mentioned before, the λ parameter is set to 1 at
the beginning, and it linearly decreases to 0.1. No other
parameters have to be set.

According to [52], a 40% of the in the GA, BBePSO, and DBBePSO
are fine-tuned according to the method presented in Section 4.6
resulting in the HGA, HBBePSO, and HDBBePSO methods,
respectively. For all algorithms, the population size is 100.
The number of segments is set to a 2.5% of the total number
of points of the time series. The stop criterion of all the al-
gorithms is a maximum number of fitness evaluations, which
is established based on the length of each time series, N, by
considering the equation 3.5N. Given the stochastic nature of
the evolutionary algorithms, they have been run 30 times with
different seeds. The error approximation results, measured in
RMSE, and the computational time in seconds are analysed.
Finally, some statistical tests are performed to determine the
existence of significant differences in the results, which will be
later detailed.

5.3. Discussion

RMSE results are shown in Table 1. For the deterministic
algorithms (Salotti, Bottom-Up and Top-Down), there is a sin-
gle result for each dataset-algorithm pair. In the case of the evo-
lutionary algorithms (GA, PSO, BBePSO, DBBePSO and their
hybrid versions), the table summarises the mean and the stan-
dard deviation of the 30 runs using different seeds. The mean
ranking of each algorithm is also included, considering a 1 for
the best method for each dataset and an 11 for the worst one.
Firstly, we can observe that the proposed local search method
improves the solutions of the evolutionary algorithms to a large
extent. That is, hybrid algorithms reduce the approximation
error of their corresponding standard evolutionary ones. In this
way, the mean ranking of the GA is improved from 9.03 to 4.03,
the ranking of PSO increases from 10.93 to 4.57, BBePSO im-
proves from 9.17 to 3.83, and the DBBePSO ranking is 7.53,
this ranking being 2.43 in the corresponding hybrid version
(HDBBePSO). Obviously, the best method in error terms for
all databases is the optimal algorithm of Salotti. In general, if
we do not consider the optimal algorithm, the best results are
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Figure 3: Time series considered for the experiments (1/2).

obtained with the HDBBePSO algorithm, with the lowest er-
ror for 10 out of 15 time series, and the second-best RMSE in
the rest of series. HGA, HPSO and HBBePSO results seem to
be very similar in performance with a mean rank of 4.03, 4.57,
and 3.83, respectively. Furthermore, the standard deviations of
HDBBePSO are the lowest ones, showing the robustness of the
proposed method (the performance does not depend so much
on the initialisation).

If we only observe standard evolutionary algorithms with-
out considering hybrid versions, we can also conclude that the
novel DBBePSO outperforms the rest of methods. Bottom-
Up appear to be better finding low approximation error solu-

tions when compared with all evolutionary algorithms except
DBBePSO (again without considering hybrid versions). This
is due to the bad performance of evolutionary methods in find-
ing the precise optimum in high-quality areas, this reason mo-
tivating the use of hybrid algorithms. However, as can be seen,
the dynamic adaptation of the exploration and exploitation of
DBBePSO reduces this problem, obtaining the same error ap-
proximation that Top-Down and a slightly worse error, but com-
parable, with respect to Bottom-Up. Moreover, this problem is
completely solved with the hybridisation proposed in this paper,
which results, in the experiments, in the lowest error approxi-
mations, improving Top-Down and Bottom-Up methods to a
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Figure 4: Time series considered for the experiments (2/2).

great extent.
It is known that an important inconvenient of evolutionary

algorithms (based on populations of solutions) is their higher
computational cost when compared to algorithms based on a
single solution which are not optimal. Table 2 summarises run-
time for the deterministic algorithms and the mean and the stan-
dard deviation values of 30 run times for the evolutionary, ones
measured in seconds (all the experiments were run using an In-
tel(R) Xeon(R) CPU E5-2620 v3 at 2.40 GHz with 32 GB of
RAM). As can be seen, the worst computational times are ob-
tained by the Salotti’s method showing the necessity of using
non optimal algorithms in order to derive good solutions in ac-

ceptable computational time. Specifically, when compared to
HDBBePSO, the computational cost of Salotti’s method is ap-
proximately nine times higher in the worst case and twice in
the best one. The rest of the results confirm that the fastest al-
gorithms are Bottom-Up and Top-Down. However, we should
take into account that the approximation error obtained by these
methods is clearly worse than that obtained by hybrid method-
ologies (specially, by HDBBePSO, see Table 1). Obviously,
the hybrid versions of the algorithms are slightly costlier than
their pure evolutionary alternatives. PSO is faster than the rest
of the evolutionary methods but the second fastest method is
DBBePSO, while being much better obtaining lower RMSE.
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In order to analyse the results from the point of view of sta-
tistical hypothesis contrasts, a set of statistical tests have been
used. Given that Salotti’s algorithm is the optimal method, it
does not make sense to include it the statistical test (it will be
always the best performing method, at the cost of much higher
computational resources). Also, the hybrid methods are always
better and slightly costlier than the pure evolutionary ones. For
these reasons, for the statistical tests, we only consider the de-
terministic methods and the hybrid versions of the algorithms,
i.e. Top-Down, Bottom-Up, HGA, HPSO, HBBePSO and HDBBePSO.
Firstly, we analyse the RMSE results. To do so, a Friedman test
[53] has been considered using the different RMSE rankings,
which shows that, for a level of significance α = 5%, the confi-
dence interval is C0 = (0, F0.05 = 2.35), and the F-distribution
statistical value is F∗ = 22.19. Consequently, the test rejects
the null-hypothesis, which states that all algorithms perform
equally in mean ranking of RMSE, that is, the algorithm ef-
fect is statistically significant. Due to this rejection, we con-
sider the best performing method in RMSE as control method
for a post-hoc test [54], comparing this algorithm with the rest
of methods. It has been noted that comparing all algorithms to
a given one (control method) is more sensitive than comparing
all algorithms to each other.
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Algorithm Salotti Bottom-Up Top-Down GA HGA PSO HPSO BBePSO HBBePSO DBBePSO HDBBePSO
Hand Outlines 0.004 0.005 0.006 0.023 ± 0.003 0.005 ± 0.000 0.036 ± 0.014 0.005 ± 0.000 0.010 ± 0.001 0.005 ± 0.000 0.007 ± 0.000 0.004 ± 0.000

Mallat 0.072 0.097 0.502 0.305 ± 0.016 0.111 ± 0.004 0.345 ± 0.056 0.110 ± 0.004 0.246 ± 0.016 0.106 ± 0.003 0.203 ± 0.010 0.104 ± 0.003
Phoneme 0.746 1.057 0.940 0.957 ± 0.011 0.857 ± 0.005 1.132 ± 0.024 0.859 ± 0.005 1.042 ± 0.027 0.859 ± 0.005 1.019 ± 0.025 0.858 ± 0.005

StarLightCurves 0.011 0.016 0.026 0.054 ± 0.004 0.017 ± 0.000 0.081 ± 0.029 0.017 ± 0.000 0.037 ± 0.002 0.017 ± 0.000 0.030 ± 0.002 0.017 ± 0.000
Donoho-Johnstone 2.218 2.639 3.466 2.961 ± 0.070 2.414 ± 0.033 3.545 ± 0.236 2.431 ± 0.035 3.030 ± 0.078 2.431 ± 0.035 2.896 ± 0.081 2.425 ± 0.035

IBEX 149.962 210.321 269.801 261.067 ± 8.732 180.941 ± 1.836 321.976 ± 29.118 181.408 ± 1.772 264.590 ± 11.581 180.431 ± 1.645 229.682 ± 9.437 179.365 ± 1.928
BBVA 0.236 0.320 0.405 0.431 ± 0.009 0.286 ± 0.003 0.464 ± 0.039 0.286 ± 0.003 0.404 ± 0.012 0.285 ± 0.003 0.356 ± 0.010 0.282 ± 0.003

DEUTSCHE 1.421 2.032 2.318 2.428 ± 0.093 1.673 ± 0.019 2.899 ± 0.227 1.677 ± 0.021 2.428 ± 0.112 1.675 ± 0.020 2.105 ± 0.087 1.658 ± 0.018
SAN PAOLO 0.080 0.112 0.136 0.154 ± 0.003 0.097 ± 0.001 0.163 ± 0.018 0.097 ± 0.001 0.138 ± 0.005 0.097 ± 0.001 0.120 ± 0.005 0.096 ± 0.001
SO Genéralé 1.598 2.292 2.472 2.663 ± 0.085 1.902 ± 0.020 3.168 ± 0.296 1.905 ± 0.021 2.708 ± 0.087 1.898 ± 0.022 2.378 ± 0.087 1.882 ± 0.023

B46001 0.799 1.088 1.011 1.137 ± 0.010 0.931 ± 0.005 1.261 ± 0.019 0.931 ± 0.005 1.166 ± 0.012 0.931 ± 0.005 1.117 ± 0.026 0.927 ± 0.005
B46075 0.822 1.145 1.056 1.182 ± 0.011 0.978 ± 0.007 1.334 ± 0.019 0.978 ± 0.007 1.224 ± 0.023 0.978 ± 0.007 1.191 ± 0.025 0.975 ± 0.007
B41043 0.295 0.426 0.449 0.478 ± 0.006 0.360 ± 0.004 0.528 ± 0.009 0.360 ± 0.004 0.483 ± 0.010 0.359 ± 0.004 0.451 ± 0.013 0.356 ± 0.004
B41044 0.292 0.419 0.425 0.476 ± 0.008 0.351 ± 0.003 0.531 ± 0.011 0.351 ± 0.003 0.485 ± 0.009 0.351 ± 0.003 0.453 ± 0.014 0.348 ± 0.003

Arrhytmia 0.022 0.032 0.091 0.100 ± 0.004 0.038 ± 0.001 0.114 ± 0.008 0.038 ± 0.001 0.078 ± 0.004 0.037 ± 0.001 0.064 ± 0.003 0.037 ± 0.001
Mean rankings (r̄) 1.03 5.50 7.93 9.03 4.03 10.93 4.57 9.17 3.83 7.53 2.43

Table 1: RMSE values obtained by all the algorithms in each time series. Salotti, Top-Down, and Bottom-Up are deterministic and they are run once, while
GA, HGA, PSO, HPSO, BBePSO, HBBePSO, DBBePSO, and HDBBePSO are run 30 times with different seeds due to their stochastic nature (Mean ± Standard
deviation). The mean rankings of all algorithms are also included.
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Algorithm Salotti Bottom-Up Top-Down GA HGA PSO HPSO BBePSO HBBePSO DBBePSO HDBBePSO
Hand Outlines 594.84 9.97 9.61 41.94 ± 2.25 58.06 ± 1.73 13.64 ± 0.78 24.26 ± 0.94 39.33 ± 3.89 51.32 ± 2.35 41.41 ± 1.347 52.39 ± 3.94

Mallat 556.55 22.40 22.01 55.53 ± 0.57 71.03 ± 0.94 25.26 ± 1.26 36.53 ± 1.29 53.77 ± 5.62 63.96 ± 2.80 56.01 ± 3.950 63.83 ± 0.45
Phoneme 720.58 21.48 21.14 56.97 ± 0.70 70.96 ± 0.90 25.16 ± 0.76 35.65 ± 0.67 55.61 ± 3.18 63.65 ± 3.02 55.20 ± 0.630 62.95 ± 0.60

StarLightCurves 680.64 20.77 21.86 55.76 ± 1.45 69.85 ± 2.25 26.65 ± 1.17 35.42 ± 0.81 56.20 ± 7.66 62.87 ± 0.62 54.35 ± 2.175 65.02 ± 3.16
Donoho-Johnstone 9.71 1.08 1.16 4.13 ± 0.21 6.22 ± 0.18 1.47 ± 0.16 3.45 ± 0.14 2.87 ± 0.10 4.96 ± 0.37 3.051 ± 0.271 4.95 ± 0.15

IBEX 205.40 4.37 4.55 22.17 ± 0.39 30.64 ± 0.90 6.87 ± 0.17 13.60 ± 0.50 19.02 ± 0.08 27.35 ± 2.29 20.88 ± 1.427 27.80 ± 2.41
BBVA 75.24 2.32 2.44 12.21 ± 0.21 17.94 ± 0.73 3.55 ± 0.04 8.18 ± 0.12 11.14 ± 1.42 15.52 ± 1.20 10.68 ± 0.295 15.32 ± 0.84

DEUTSCHE 72.39 2.31 2.77 12.11 ± 0.24 17.19 ± 0.19 3.59 ± 0.08 8.11 ± 0.08 11.06 ± 1.39 15.21 ± 1.28 10.91 ± 0.802 14.78 ± 0.28
SAN PAOLO 69.69 2.31 2.59 12.18 ± 0.30 17.10 ± 0.10 3.61 ± 0.11 8.19 ± 0.08 10.16 ± 0.74 14.44 ± 0.09 11.05 ± 0.785 14.63 ± 0.09
SO Genéralé 73.62 2.31 2.65 12.12 ± 0.20 17.12 ± 0.10 3.60 ± 0.09 8.14 ± 0.09 9.93 ± 0.64 14.43 ± 0.07 11.01 ± 0.781 14.63 ± 0.11

B46001 807.24 10.64 12.01 48.99 ± 1.10 63.07 ± 0.80 16.95 ± 0.49 27.66 ± 0.53 51.52 ± 4.50 55.88 ± 0.64 48.59 ± 2.472 57.65 ± 3.22
B46075 520.19 7.18 7.78 33.75 ± 0.25 45.05 ± 0.38 11.37 ± 0.34 19.52 ± 0.44 30.70 ± 3.00 40.66 ± 2.05 33.76 ± 2.959 40.17 ± 0.21
B41043 423.73 7.19 8.11 33.88 ± 0.19 44.96 ± 0.36 11.28 ± 0.30 19.32 ± 0.37 37.12 ± 0.07 41.48 ± 3.66 33.48 ± 2.663 39.96 ± 0.20
B41044 478.03 7.40 8.58 33.86 ± 0.60 42.15 ± 1.52 11.22 ± 0.18 19.43 ± 0.68 33.77 ± 3.96 43.31 ± 4.60 36.21 ± 4.428 40.75 ± 2.56

Arrhytmia 714.73 11.32 11.98 51.41 ± 1.03 60.38 ± 0.48 18.19 ± 0.47 28.76 ± 1.27 53.29 ± 5.29 61.69 ± 8.03 49.98 ± 3.301 59.70 ± 4.93
Mean rankings (r̄) 11.00 1.20 1.80 6.53 9.87 3.00 4.13 5.67 8.73 5.67 8.40

Table 2: Computational time in seconds obtained by all the algorithms in each time series. Salotti, Top-Down, and Bottom-Up are deterministic and they are run
once, while GA, HGA, PSO, HPSO, BBePSO, HBBePSO, DBBePSO, and HDBBePSO are run 30 times with different seeds due to their stochastic nature (Mean
± Standard deviation). The mean rankings of all algorithms are also included.
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CA:HDBBePSO RMSE
i α∗0.05 Algorithm pi

1 0.010 Top-Down 0.000 (*)
2 0.013 Bottom-Up 0.000 (*)
3 0.017 HPSO 0.002 (*)
4 0.025 HGA 0.021 (*)
5 0.050 HBBePSO 0.045 (*)

Table 3: Results of the Holm test using HDBBePSO as control algorithm (CA)
when comparing its average RMSE to those of Top-Down, Bottom-Up, HGA,
HPSO, and HBBePSO: corrected α values, compared methods and p-values,
all of them ordered by the number of comparison (i). CA results statistically
better than the compared algorithm are marked with (*).

CA:HDBBePSO Run time (s)
i α∗0.05 Algorithm pi

1 0.010 Bottom-Up 0.000 (-)
2 0.013 Top-Down 0.000 (-)
3 0.017 HGA 0.032
4 0.025 HPSO 0.040
5 0.050 HBBePSO 0.626

Table 4: Results of the Holm test using HDBBePSO as control algorithm (CA)
when comparing its average runtime to those of Top-Down, Bottom-Up, HGA,
HPSO, and HBBePSO: corrected α values, compared methods and p-values, all
of them ordered by the number of comparison (i). CA results statistically worse
than the compared algorithm are marked with (−).

The Holm’s test compares the i-th and j-th algorithms with
the following statistic:

z =
r̄i − r̄ j√

k(k+1)
6N

,

where r̄i is the mean ranking of the i-algorithm, k is the number
of algorithms, and N is the number of datasets. With the value
of z, we find the probability of a normal distribution and com-
pared it with a level of significance α. Holm’s test adjusts the
value for α to compensate multiple comparisons, using a proce-
dure that sequentially tests the hypotheses ordered by their sig-
nificance. The ordered p-values are denoted by p1, p2, . . . , pk,
so that p1 < p2 < ... < pk. The test compares each pi with
α∗i = α/(k − i), starting with the most significant p-value. If
p1 is lower than α/(k − 1), the corresponding hypothesis is re-
jected, and then we compare p2 with α/(k−2), and so on. When
a certain null hypothesis is accepted the remaining ones are also
accepted.

The results of the Holm’s test are shown in Table 3. When
using HDBBePSO as control algorithm (CA), Holm’s test shows
that pi < α

∗
i in all cases, for α = 0.05, confirming that there are

statistically significant differences favouring HDBBePSO.
In the same way, to determine the existence of statistical

significance of the rank differences in runtime (seconds) for the
six algorithms and all databases, we perform another Friedman
test with their mean runtime rankings. We observe that, for a
level of significance of 5%, the F-distribution statistical value

is F∗ = 201.33 with a confidence interval of C0 = (0, F0.05 =

2.35), rejecting the null-hypothesis and concluding that the dif-
ferences are statistically significant. Then, we apply the Holm’s
test, considering HDBBePSO, again, as the control algorithm.
The results are shown in Table 4. Using HDBBePSO as CA,
Bottom-Up and Top-Down are significantly better in mean run
time than the proposed algorithm (marked with “(-)” in Table
4). This is because the optimisation of Bottom-Up and Top-
Down is based on a single solution and the methods are not
optimal, while the evolutionary approaches are based on pop-
ulations. Finally, with respect the remaining methods (HGA,
HPSO, and HBBePSO), there are no statistically significant dif-
ferences in runtime, but HDBBePSO outperforms them in qual-
ity of solutions.

6. Conclusions

This paper proposes a novel algorithm for time series seg-
mentation based on reducing the number of points of the time
series by minimising the approximation error of the linear inter-
polation of each segment. The contributions include the adapta-
tion of the particle swarm optimisation algorithm (PSO) and its
exploiter barebones variant (BBePSO) for time series segmen-
tation, along with the improvement of them using a dynamic
adaptation of the exploration and exploitation importances (dy-
namic BBePSO, DBBePSO). All algorithms are hybridised with
a local search which combines the Bottom-Up and Top-Down
strategies. The proposed method is then compared with other
state-of-the-art algorithms: a genetic algorithm (GA), a stan-
dard particle swarm optimisation (PSO), the exploiting bare-
bones PSO (BBePSO), all their hybrid versions, the traditional
Top-Down and Bottom-Up procedures, and Salotti’s optimal al-
gorithm.

The results conclude that the hybrid versions (HGA, HPSO,
HBBePSO, HDBBePSO) improve the solutions obtained by their
standard versions (GA, PSO, BBePSO, DBBePSO), showing
that the hybridisation proposed is suitable for this type of prob-
lems. Salotti’s algorithm is the best method in terms of RMSE,
but the computational cost is much higher than that of the rest of
algorithm. Furthermore, without considering Salotti’s method,
HDBBePSO results in the best results, obtaining the lowest ap-
proximation error, where the differences are found to be sta-
tistically significant. These results conclude that the dynamic
adaptation of the BBePSO allows the algorithm to escape the
initial local optima and converge to optimal solutions at the end
of the evolution. The algorithm proposed is statistically lower
than traditional approaches (Top-Down and Bottom-UP), but
their solutions are much worse.

For a future line of work, other distributions instead the
Gaussian distribution could be taken into account, e.g. the Weibull
distribution. We also plan to extend this work using the origi-
nal and the approximated time series in posterior tasks, such
as clustering or classification, observing if the method reduces
the noise of the time series. Moreover, linear regression could
be also considered instead of linear interpolation, or even using
polynomials with degree greater than one.
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