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a b s t r a c t 

Two proposals related to the evaluation of polygonal approximations are presented in this document. 

First, a new measurement, called normalized compression ratio and adjustment error ( NCA ), to provide 

a fair evaluation of the performance of the polygonal approximations of 2D closed curves is proposed. 

Second, a new methodology for evaluation of measurements for assessing polygonal approximations is 

also proposed. This methodology is based on the optimal quality curve concept, which can characterize the 

performance of the measurements. A simple visual analysis of the optimal quality curve allows possible 

drawbacks or weaknesses of the measurement to be detected. The new evaluation methodology is used 

to compare the performance of the proposed NCA and the most popular measurements, such as Rosin’s 

Merit, FOM or versions of FOM . Experiments show that NCA obtains the best results and, therefore, may 

be used to fairly evaluate the performance of polygonal approximations. 

© 2023 The Author(s). Published by Elsevier Ltd. 
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. Introduction 

The characterization of the image processing algorithms is es- 

ential to analyze new techniques and to improve the performance 

f real-world applications of computer vision research [1] . Digital 

mage processing consists of some fundamental steps: image ac- 

uisition, preprocessing, segmentation, representation and descrip- 

ion, and recognition and interpretation [2] . The present work fo- 

uses solely on the evaluation of a specific type of image repre- 

entation: polygonal approximation of 2D closed curves or con- 

ours , which is a very important topic of shape representation [3] . 

hape representation based on polygonal approximation is exten- 

ively used for constructing a characteristic description of a con- 

our in the form of a series of straight lines or piece-wise linear 

pproximation. This representation is very popular due to its sim- 

licity, locality, generality and compactness [4] , and it has been 

sed in many applications, such as compression [5] , digital cartog- 

aphy [6] , shape classification [7] or remote sensing [8] . 

Given a contour C = { (x i , y i ) | i ∈ { 1 , . . . , N}} , a polygonal approx-

mation algorithm looks for a subset of points P = { (x ′ , y ′ ) | i ∈

i i 
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 1 , . . . , N p }} , where P ⊆ C and N p ≤ N, so that P represents the en-

ire contour C properly. The points of the polygonal approximation 

re usually called dominant points ( DP ). The problem of the gener- 

tion of polygonal approximations of a contour can be approached 

n two different ways [9] : (1) minimum-distortion problem or (2) 

inimum-rate problem . The algorithms based on the minimum- 

istortion problem or Min − ε problem consider a predefined num- 

er d of dominant points and try to generate the optimal polygonal 

pproximation with the minimum error from the contour among 

ll the approximations with d dominant points [10] . Instead, the 

lgorithms focused on the minimum-rate problem or Min − # prob- 

em try to generate the optimal polygonal approximation with the 

inimum number of dominant points, so that its adjustment error 

rom the contour is less than a predefined error ε [11] . The polyg- 

nal approximations algorithms can be classified as (1) optimal or 

on-optimal and (2) supervised or unsupervised algorithms [12] . 

he optimal algorithms are based on an optimization criterion but 

ave two main drawbacks [13] : the optimum depends on the ap- 

lied criterion and requires a very high time complexity. On the 

ther hand, the non-optimal algorithms are not designed to guar- 

ntee any kind of optimum, but can find reasonable polygonal ap- 

roximations for real-time applications. For both optimal and non- 

ptimal approaches, the supervised algorithms take into account 
under the CC BY-NC-ND license 
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ne or more parameters to generate the polygonal approximations 

nd, therefore, this is their main drawback, because these param- 

ters must be tuned [14] . On the contrary, the unsupervised algo- 

ithms generate the polygonal approximations without using any 

ind of parameters [12] . 

Many measurements were proposed to evaluate the quality of 

he polygonal approximations, but all of these measurements suf- 

er from very serious deficiencies or weaknesses ( Section 2 ). Ow- 

ng to this reason, a new evaluation measurement, called nor- 

alized compression ratio and adjustment error ( NCA ), to provide 

 fair evaluation of the performance of the polygonal approxi- 

ation algorithms is proposed ( Section 3 ). In order to evaluate 

he performance of the measurements for polygonal approxima- 

ions, including the new proposal NCA , a new evaluation method- 

logy, based on the optimal quality curve concept, is also proposed 

 Section 4 ) and used in the experiments ( Section 5 ). The present

aper is arranged as follows. Section 2 describes the related work. 

ection 3 explains the new measurement NCA for assessing polyg- 

nal approximations. Section 4 describes the new methodology, 

ased on the optimal quality curve concept, to evaluate the quality 

f polygonal approximations. The experiments and results are de- 

ailed in Section 5 . Finally, the main conclusions and future work 

re summarized in Section 6 . 

. Related work 

Two approaches are used to evaluate the quality of a polyg- 

nal approximation: subjective and objective [15] . The subjective 

pproach is a qualitative evaluation in which several human ob- 

ervers visually compare the original contour with the polygonal 

pproximation [16] . This approach is easy to apply, but cannot be 

utomated and depends on the particular criteria of the observers. 

n the other hand, the objective approach is a quantitative eval- 

ation in which two criteria must be taken into account [15] : (1) 

he number of points of the polygonal approximation and (2) its 

djustment error to the contour. The objective approach can be au- 

omated but has a main drawback: the two criteria on which it 

s based are opposed to each other. Table 1 classifies the mea- 

urements for quantitative evaluation into categories according to 

he number of points of the polygonal approximation and the ad- 

ustment errors of distance, area or length. Two main categories 

re considered: (1) uncombined measurements and (2) combined 

easurements. The uncombined measurements are based solely 

n the number of points or on a single type of error, while the 

ombined measurements use two or more of them. 

The most common measurement to evaluate the number of 

oints of the polygonal approximation is compression ratio : CR = 

N 
N p 

, where N is the number of contour points and N p is the number 

f points of the polygonal approximation or dominant points ( DP ). 

f DP decreases then CR increases, and vice versa. Similar measure- 

ents to CR are: (1) the percentage of data reduction [17] or (2) the 

ompression percentage [18] . 

Different measurements were proposed to evaluate the adjust- 

ent error, such as ( Table 1 ): (1) the integral square error : ISE =
 2 = 

∑ N 
i =1 e 

2 
i 
, where e i is the distance of the contour point P i from

he polygonal approximation; or (2) the maximum deviation error : 

 ∞ 

= max i ∈{ 1 , ... ,N} { e i } . Similar measurements to E ∞ 

were the par- 

llel strip and the minimum width [19] . Other approaches consid- 

red the area deviation error [20] , but these measurements cannot 

ruly judge the quality of approximation as the error area outside 

he curve is balanced by an inside error area [21] . The length was

lso used to define new measurements [22] . Some measurements 

ombined the adjustment errors and the length [23] . 

In general, if the number of points is reduced, then the error 

ncreases; otherwise, if the number of points is increased, then the 

rror decreases. Because of this, the aim of the objective evalu- 
2 
tion must be to achieve the best trade-off between the number 

f points and the adjustment error of the polygonal approximation 

15] . The Figure of Merit FOM = 

CR 
ISE was proposed [24] to make 

he trade-off between the compression ratio and the total distor- 

ion caused [25] . However, the terms CR and ISE used by FOM 

re not balanced, causing the measure to be biased towards ap- 

roximations with lower ISE and many dominant points. Hence, 

OM is not the best measure for comparing contours with different 

umbers of dominant points [15] . Three versions of FOM were: (1) 

eighted sum of squared error : W E 2 = 

ISE 
CR [26] , defined as the in-

erse of F OM, (2) weighted maximum error : WEmax or W E ∞ 

= 

E ∞ 

CR 

26] and (3) modified figure of merit [27] or MFOM − 3 = ISE E ∞ 

N p ) 3 [28] . Other versions of FOM were also proposed [29] . Tech- 

ically, all these measurements are similar to FOM and, therefore, 

uffer similar problems [21] . The parametric version FOM n = 

CR n 

ISE , 

here n ∈ { 1 , 2 , 3 } , was introduced to control the contribution of

he compression ratio to the overall result to reduce the imbalance 

etween the two terms and was motivated by the observation that 

SE changes more rapidly than CR for almost all test shapes [30] . 

he inverse of FOM n , defined as W E n 
2 

= 

ISE 
CR n 

, where n ∈ { 1 , 2 , 3 } ,
as also used [31] . W E 2 2 makes a better trade-off between com- 

ression ratio and error, because W E 1 2 and W E 3 
2 

favor polygonal ap- 

roximations with many or few dominant points, respectively [32] . 

Other measurements were proposed by Rosin [15] or Carmona 

32] to take into account the comparisons with optimal polygonal 

pproximations, but this is their main difficulty, because obtaining 

ptimal solutions is computationally very expensive [33] . 

Rosin’s Merit [15] was defined as : Merit = 

 

Fidelity × Efficiency , where Fidelity = 

E opt 

E appr 
× 100 and Effi- 

iency = 

N opt 

N appr 
× 100 where E appr and N appr are the error and 

he number of dominant points of the sub-optimal polygonal 

pproximation, E opt is the error produced by the optimal algorithm 

ith the same number of dominant points and N opt represents 

he number of dominant points that would require an optimal 

lgorithm to produce the same error. Rosin’s Merit can compare 

olygonal approximations with different number of dominant 

oints. Nevertheless, this measurement also suffers a few weak- 

esses: the polygon that consists of just break points (points where 

he boundary takes a turn) will produce Fidelity = 100, Efficiency = 

00 and Merit = 100. It means that the set of break points taken 

s dominant points will produce a perfect approximation, but this 

ype of approximation is of no practical use since its compression 

atio is very low [25] and most of break points do not provide 

elevant information. On the other hand, the optimal polygonal 

pproximation with only three dominant points would also have 

he best value of Rosin’s Merit , but would hardly resemble the 

ontour [32] , unless it was triangular in shape. 

Carmona’s Merit [32] is another measurement for optimal polyg- 

nal evaluation. If C is the original contour and P is the polygonal 

pproximation to be evaluated, then the following steps must be 

arried out: (1) the optimal polygonal approximation for i points, 

here i ∈ { 3 , . . . , n b } and n b is the number of break points of C,

ust be obtained using an optimal algorithm [34] ; (2) the value of 

 2 = 

ISE 
CR 2 

must be computed for every optimal polygonal approxi- 

ation; (3) an unimodal thresholding algorithm [35] is applied to 

he values of F 2 to select a reference optimal polygonal approxima- 

ion; and, finally (4) this reference is used to evaluate the polygo- 

al approximation P using the values of the fidelity and efficiency. 

his measurement has several and important drawbacks: (1) it has 

ery high computational complexity, because many optimal polyg- 

nal approximations must be computed; (2) the reference optimal 

olygonal approximation is based on the values of F 2 , but this mea- 

urement, which is called W E 2 
2 

in this document, does not always 

llow a quality reference polygonal approximation to be obtained. 

ee the experiments in Section 5 for details. 
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Table 1 

Measurements for Quantitative evaluation: classification of measurements into categories according to the number of polygonal points and dis- 

tance, area or length errors. 

Distance error 

Measurement [refs] Number of points Sum Maximum Area error Length error 

Uncombined measurements 

Compression percentage: τ% = 100 × N p 
N 

[18] X 

Compression ratio: CR = 

N 
N p 

X 

Percentage of data reduction: 100 × N−N p 
N 

[17] X 

E 1 = 

∑ N 
i =1 e i [36] X 

Integral square error: ISE = E 2 = 

∑ N 
i =1 e 

2 
i 

X 

Maximum deviation error: E ∞ = Emax = max i ∈{ 1 , ... ,N} { e i } X 

Minimum width [19] X 

Parallel strip or infinite beam [19] X 

Area between approximation polygon and curve E 1 = | A − A p | [37] X 

Average (normalized) area deviation: Sum 
N 

= 

1 
N 

∑ N 
i =1 A i [38] X 

Mean area error: MAE = 

1 
N p 

∑ N p 
i =1 

A i [38] X 

Normalized mean area error: NMAE = 

MAE 
T 2 

d 

[38] X 

Relative area deviation: E A = 100 × | A −A p | 
A 

[20] X 

Approximate error [39] : ε = 

L −L p 
L 

X 

Difference between the lengths: | L − L p | [40] X 

Efficiency of approximation: 100 × L p 
L optimal 

[22] X 

Length ratio: R = 

L 
L p 

[41] X 

Length ratio: LR = 

L p 
L 

[42] X 

Combined measurements 

Additive cost function C = ISE + λ × N p , [43] X X 

Average (normalized) integral square error: 
E intsq 

N 
= 

ISE 
N 

[44] X X 

Compression-pertinence ratio 1 C Pr1 = 100 × Pr A 

CR 
[36] X X 

Compression-pertinence ratio 2: C Pr2 = 100 × Pr B 

CR 
[36] X X 

Compromise ratio: 100 × ISE 
CR 

[45] X X 

Figure of Merit: FOM = 

CR 
ISE 

[24] X X 

Inverse of Parametric Figure of Merit: W E n 2 = 

ISE 
CR n 

, n ∈ { 1 , 2 , 3 } [31] X X 

Merit = 

√ 

Fidelity × Efficiency [15] X X 

NCA = 

1 
2 

× ( 1 
CR 

+ 

2 

1+ e −
√ 

ISE 
D 

− 1) ( proposal ) X X 

New parametric figure of merit: FOM − a = ISE (N p ) a [43] X X 

Optimization error: E 0 = 

ISE×N p 
N 2 

= 

ISE 
CR ×N 

[18] X X 

Parametric Figure of Merit: FOM n = 

CR n 

ISE 
, n ∈ { 1 , 2 , 3 } [30] X X 

Percentage relative difference: PRD = 

E approx −E opt 

E opt 
× 100 [46] X X 

Reference polygonal approximation [32] X X 

Relative error E r = 

√ 
ISE 

CR 
[47] X X 

Root mean square error: RMS = 

√ 
ISE 
N 

[48] X X 

Root mean square error: RMSE = 

√ 

ISE 
N 

[49] X X 

Weighted sum of squared error: W E 2 = 

ISE 
CR 

[26] X X 

Modified figure of merit: modifiedFOM = 

CR 2 

ISE 
× CR 

E ∞ 
= 

CR 3 

ISE×E ∞ 
[27] X X X 

Modified figure of merit: MFOM − 3 = ISE E ∞ (N p ) 
3 [28] X X X 

Average max error: 1 
N p 

∑ N p 
i =1 

MaxErr i [29] X X 

Merit ∞ = 

√ 

Fidelity ∞ × Efficiency ∞ [50] (based on E ∞ ) X X 

New parametric figure of merit: FOM − a = E ∞ (N p ) a [28] X X 

Weighted maximum error: WEmax or W E ∞ = 

E ∞ 
CR 

[51] X X 

Deviation ratio: r = 

ISE 
L 

[23] X X 

Ratio of the length and maximum error: 
L p 
E ∞ 

[6] X X 

Relative error [46] or normalized maximum error [3] : E ∞ 
L 

X X 

Sum of normalized maximum deviations: 
∑ N p 

k =1 

max k<i<k 1 e i 
L 

[52] X X 

Normalized area deviation: E 1 
L 

[37] X X 

Standard area deviation: 
| A −A p | 

L 
[37] X X 

p

i

a

t

m

c

t

c

3

c

a

c

p

p

o

a

e  

e

e

i

N

p

r

t

In summary, many measurements were proposed to evaluate 

olygonal approximations, but none of them is considered unan- 

mously the best one. Furthermore, it is unknown that a compar- 

tive study of measurements for assessing polygonal approxima- 

ions has been carried out. Due to these reasons, a new assessment 

easurement ( NCA ) is proposed ( Section 3 ) and its performance is 

ompared with the most popular measurements ( Section 5 ) using 

he new evaluation methodology based on the optimal quality curve 

oncept ( Section 4 ). 

. New assessment measurement 

A new objective assessment measurement, called normalized 

ompression ratio and adjustment error ( NCA ), is proposed to evalu- 
3 
te the quality of the polygonal approximations. Four criteria were 

onsidered to design NCA : (1) both the number of points of the 

olygonal approximation and the adjustment error , which are op- 

osed to each other, must be taken into account; (2) the values 

f the measurement must be normalized between 0 (best value) 

nd 1 (worst value); (3) its computational complexity must be lin- 

ar ( O(n ) ), where n is the number of contour points; and (4) for

ach contour, only one polygonal approximation should be consid- 

red the best. NCA is defined as 1 
2 ×

(
1 

CR + NISE 
)

where 1 
CR is the 

nverse of compression ratio and is computed as 1 
CR = 

N p 
N , where 

and N p are the contour points and the dominant points of the 

olygonal approximation, respectively. The inverse of compression 

atio measures the number of points of the polygonal approxima- 

ion and is normalized in the interval [0,1]. If the polygonal ap- 
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Fig. 1. Contour bat-1 (N = 1960). Maximum distance from the contour points to the 

centroid: D 1 = 355 . 347 . Maximum distance from the contour points to the mini- 

mum inertia axis: D 2 = 233 . 091 . D 3 = 

D 1 + D 2 
2 

= 294 . 219 . 
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Fig. 2. Plot of the modeling of NCA curve: f (n ) = 

1 
2 

× ( n 
100 

+ 

2 

1+ e −
√ 

1 
n 

− 1) . 

Fig. 3. Plot of an ideal optimal quality curve : f (n ) = 

| n −b| 
N 

, where b = 10 and N = 

100 . 

a

c

r

t

s

I

m

o

O

p

f

p  

m

f

l

d

g

n

t

w

d

w

M

a

t

n

t

w

1 If a measurement M uses the increasing way then the “greatest” and the “max- 

imum” must be considered. 
roximation consists of all the contour points, then the inverse 

f compression ratio takes the worst value: 1.0. NISE is the nor- 

alized integral square error and is defined as 2 

1+ e −
√ 

ISE 
D 

− 1 . NISE 

easures the adjustment error of the polygonal approximation to 

he contour. A sigmoid function is used to normalize the values 

f NISE in the interval [0.0,1.0). The square root and the division 

y the constant D are used to reduce the magnitude of ISE . D is

 user-defined constant greater than 0.0. In the experiments, the 

alue of D was defined as: D = 

D 1 + D 2 
2 , where D 1 was the maxi-

um distance from the contour points to the centroid, and D 2 was 

he maximum distance from the contour points to the minimum 

nertia axis ( Figure 1 ). 

The definition of NCA satisfies the first three criteria listed 

bove: (1) both the number of points and the adjustment error 

re used; (2) the values of the measurement are normalized be- 

ween 0 and 1; and (3) its computational complexity is linear. The 

ourth criterion, related to the best polygonal approximation for 

ach contour, is also satisfied, because NCA always allows to ob- 

ain the global optimum minimum value. A modeling process is 

one to verify this fact, in which NCA can be modeled using the 

umber of the points of the polygonal approximation. Without loss 

f generality, a contour with N = 100 points and a polygonal ap- 

roximation with n dominant points are considered. In this case, 
1 

CR = 

n 
100 . The value of NISE is computed using ISE , which decreases 

hen the value of n increases and vice versa. Owing to this, ISE

an be roughly modeled by the inverse of the number of domi- 

ant points n : ISE ≈ 1 
n . Taking into account these two expressions, 

he value of NCA can be roughly modeled by the function: f (n ) = 

1 
2 × ( n 

100 + 

2 

1+ e −
√ 

1 
n 

− 1) This function is continuous and allows to 

btain the global optimum minimum value, which corresponds to 

he best polygonal approximation ( Fig. 2 ). The experiments also 

onfirm that NCA fulfills this fourth criterion ( Section 5 ). 

. Optimal quality curve 

A new evaluation methodology, based on the optimal qual- 

ty curve concept, is proposed to characterize the performance of 

he assessment measurements of the polygonal approximations. 

his methodology is inspired by the characterization of empiri- 

al discrepancy evaluation measures [53] . An optimal quality curve 

QC(M , C ) can be generated for every combination of a mea- 

urement ( M) and a contour ( C ): OQC (M, C ) = { (i, M(OPA (i ))) | i ∈
 3 , . . . , N}} , where OPA(i) is the global optimal polygonal approx- 

mation of the contour C with i dominant points, and M(OPA (i )) 

s the error of OPA(i) computed by the measurement M ( Figs. 4 
4 
nd 7 ). The global optimal polygonal approximation OPA(i) is cal- 

ulated using an optimal algorithm so that the integral square er- 

or ( ISE ) is the global minimum, regardless of the initial point of 

he contour C [33] . 

A simple visual analysis of the optimal quality curve allows pos- 

ible drawbacks or weaknesses of the measurement to be detected. 

f a measurement M assess the quality of the polygonal approxi- 

ations in a decreasing 1 way, so that the best value is the lowest 

ne, then the absolute minimum value of the optimal quality curve 

QC(M , C) corresponds to the best global optimal polygonal ap- 

roximation OPA(best) , which gets the lowest value M(OPA(best)) 

or the measurement M among all global optimal polygonal ap- 

roximations OPA(i) to the contour C for i ∈ { 3 , . . . , N} . The opti-

al quality curve should allow the best value M(OPA(best)) to be 

ound easily. Besides, the optimal quality curve should not have 

ocal minimum values corresponding to very different number of 

ominant points. In short, the optimal quality curve should have a 

lobal minimum value and its first derivative must go from very 

egative values to very positive values. The desirable or ideal op- 

imal quality curve would correspond to the function f (x ) = 

| x −b| 
N , 

here N is the number of contour points and b is the number of 

ominant points of the best polygonal approximation OPA(best) , 

hich obtains the absolute minimum value for the measurement 

( Fig. 3 ). These properties must be true for every measurement 

nd contour. On the other hand, if a measurement does not show 

hese properties for a given contour then this measurement should 

ot be used to evaluate the quality of the polygonal approxima- 

ions of that contour because the measurement would be unfair 

ith them. 
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Fig. 4. Optimal quality curves generated by some measurements for contour bat-1 ( N = 1960 ; number of break points = 1449). 
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Table 2 

Comparison of optimal polygonal approximations generated by NCA and W E 2 2 

for contours bat-1 ( N = 1960 ), carriage-01 ( N = 729 ), cellular_phone-1 ( N = 

1102 ) and truck-01 in Fig. 5 . 

Contours (points) NCA NCA WE 2 2 WE 2 2 

value DP value DP 

bat-1 ( N = 1960 ) 0.0428 80 1.1582 78 

carriage-01 ( N = 729 ) 0.0685 63 0.3513 93 

cellular_phone-1 ( N = 1102 ) 0.0295 32 0.0813 32 

truck-01 ( N = 270 ) 0.0948 26 0.7582 4 

Average 0.0589 50.2500 0.5873 517,500 

Weighted Average 0.0473 60.3327 0.6945 632,901 
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. Experiments 

In order to evaluate the performance of the most popular mea- 

urements for assessing polygonal approximations and the new 

roposal NCA ( Section 3 ), the new experimental methodology 

 Section 4 ), was used in two experiments: (1) the first experi- 

ent showed how the optimal quality curve concept was applied to 

haracterize the behaviour of the measurements when they were 

sed to evaluate the quality of optimal polygonal approximations 

 Section 5.1 ); and (2) the second experiment compared the per- 

ormance of NCA , W E 2 2 , Rosin’s Merit [15] and Carmona’s Merit 

32] using the well-known contour semicircles [54] ( Section 5.2 ). 

.1. First experiment 

The optimal quality curve concept ( Section 4 ) was used to char- 

cterize the performance of the new proposal NCA ( Section 3 ) 

nd those of eight polygonal approximations measurements: FOM , 

Emax , MFOM − 3 , W E 1 
2 

, W E 2 
2 

, W E 3 
2 

, Rosin’s Merit [55] and Car-

ona’s Merit [32] ( Section 2 ), which were chosen owing to two 

easons: (1) they combined the number of points and the error of 

he polygonal approximations; and (2) they were used frequently 

o compare polygonal approximations [12] . These measurements 

ere used to evaluate the quality of the optimal polygonal approx- 

mations (regardless the initial point) of 70 shapes of “MPEG-7”

atabase [56] . This database was used previously [12] , is publicly 

vailable in [57] and contains 1400 images, classified into 70 cat- 

gories, and each category includes 20 samples, with different ro- 

ation, size and position, and even image resolution [58] . Only the 

rst shape contour of every category was used in the experiments. 

he optimal quality curve OQC(M , C) was generated for every com- 

ination of measurement M and contour C, that is to say, 9 M ×
0 C = 630 OQC(M , C) were generated. Due to lack of space, only 

ome optimal quality curves are plotted in Figs. 4, 7, 9 , and 10 . The

ull set of optimal quality curves is available in [59] . The best polyg-

nal approximation proposed by some measurements for various 

ontours are also shown in Figs. 6 , 8 , 9 , and 10 . 

The analysis of the optimal quality curves of the measurements 

llows to highlight the following results. NCA generated optimal 

uality curves , where the best value (the minimum) can be found 

asily ( Figs. 4 (a), 7 (a), 9 (d), and 10 (e)). Besides, the proposed opti-

al polygonal approximations have a reasonable number of domi- 

ant points ( Figs. 6 (d), 8 (e), 9 (f), and 10 (f)). 

FOM generated optimal quality curves in an increasing way, so 

hat the best value (the maximum) is ∞ , which was obtained 

or all optimal polygonal approximations with a number of points 

qual to or greater than the number of the break points of the con- 

our ( Figs. 4 (b) and 7 (b)). The optimal polygonal approximations 

roposed by FOM are shown in Figs. 6 (e) and 8 (f). As Rosin al-

eady pointed out [15] , FOM is biased to favor polygonal approxi- 

ations with a large number of points. MFOM − 3 , WEmax , W E 1 
2 

, 

 E 2 2 and W E 3 
2 

generated optimal quality curves in an decreasing 

ay, so that the best value (the minimum) is 0.0, which was also 

btained for all optimal polygonal approximations with a num- 

er of points equal to or greater than the number of the break 

oints of the contour ( Figs. 4 and 7 ). Obviously, a polygonal ap-

roximation with such a number of points cannot be considered 

he best ( Figs. 6 (g) and 8 (f)), and, therefore, these measurements 

re not suitable for a fair polygonal approximation evaluation. A 

ore detailed analysis shows that MFOM − 3 generated a very dif- 

erent optimal quality curves : a clear local minimum can be found 

or contour bat-1 ( Figs. 4 (c) and 6 (c)), but the local minimum for

he contour cellular_phone-1 is very close to the number of break 

oints ( Figs. 7 (c) and 8 (f)). WEmax generated a very irregular op- 

imal quality curves with several local minimums ( Figs. 4 (d) and 

 (d)), which corresponded to different polygonal approximations of 
6 
he same contour ( Fig. 6 (c), (f) for bat-1 , and Fig. 8 (b) and (d) for

ellular-phone-1 ). W E 2 
2 

generated optimal quality curves very differ- 

nt from each other. For instance, a local minimum can be found 

asily for contour bat-1 ( Figs. 4 (f) and 6 (c)), but this does not hap-

ened for other contours, like cellular_phone-1 ( Figs. 7 (f) and 8 (e)) 

r truck-01 ( Fig. 9 (a), (b) and (e)). In some cases, W E 2 2 found a local

inimum for an optimal polygonal approximation with few dom- 

nant points ( Fig. 9 (a) and (e) for contour truck-01 ) or with many

oints ( Fig. 10 (c) and (d) for contour carriage-01 ). 

The Fig. 5 shows a more complex example which has multiple 

bjects but disconnected: the optimal polygonal approximations 

OPA) generated by NCA and W E 2 
2 

for four contours are shown. 

he Table 2 shows the values provided by NCA and W E 2 2 and the 

umber of the dominant points (DP) of these optimal polygonal 

pproximations. The values of Average = 

∑ k 
i =1 

M(i ) 
k 

and Weighted 

verage = 

∑ k 
i =1 M(i ) ×n i ∑ k 

i =1 n i 
are also computed, where M(i ) is the value 

f measurement M ( NCA or W E 2 
2 

) for contour i ; n i is the number

f points of contour i , and k is the number of contours. As stated

bove, W E 2 2 provides optimal polygonal approximations with many 

ominant points (contour carriage-01 ) or with few points (contour 

ruck-01 ) in comparison with the new proposal NCA . 

In short, this first experiment showed that the new proposal 

CA provides better polygonal approximations than the other mea- 

urements evaluated in this comparative study based on the anal- 

sis of the optimal quality curves . 

Carmona’s Merit [32] generated optimal quality curves in an in- 

reasing way form (0% - 100%) with uni-modal shape ( Figs. 4 (e), 

 (e), 9 (a) and 10 (a)), but this measurement favors polygonal ap- 

roximations with very few points that do not resemble the orig- 

nal contours ( Fig. 9 (c) and (e) for contour truck-01 ). The optimal 

uality curves generated by Rosin’s Merit showed that this measure- 

ent cannot be used to evaluate the quality of the optimal polyg- 

nal approximations, because always assign the best value (100%), 

egardless of the number of dominant points ( Fig. 11 (a)). It should 

e remembered that Carmona’s Merit and Rosin’s Merit have a very 

igh computational complexity. 

.2. Second experiment 

The second experiment compared the performances of NCA , 

 E 2 2 , Rosin’s Merit [55] , and Carmona’s Merit [32] using the well-

nown contour semicircles [54] ( Fig. 12 ) and 36 polygonal approx- 

mation algorithms. At first, three notes should be highlighted: (1) 

his experiment was not intended to evaluate the quality of the 

lgorithms, but the performance of the quality measurements; (2) 

he contour semicircles was chosen because it was used for the last 

ecades to study the performance of many polygonal approxima- 

ion algorithms; and (3) W E 2 
2 

, Rosin’s Merit and Carmona’s Merit 

ere chosen because, despite its drawbacks ( Sections 2 and 5.1 ), 

hey are still used to evaluate the quality of the polygonal approx- 

mations [12] . 
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Fig. 5. Optimal polygonal approximations (OPA) for contours bat-1 ( N = 1960 ), carriage-01 ( N = 729 ), cellular_phone-1 ( N = 1102 ) and truck-01 ( N = 270 ) generated by (a) 

NCA and (b) W E 2 2 . 

Table 3 

Second experiment . Comparison of polygonal approximation algorithms using the contour semicircles and Rosin’s Merit , (b) W E 2 2 and (c) NCA . 

Authors (year): method [refs] DP CR ISE 

NCA 

value 

NCA 

rank 

WE 2 2 

value 

WE 2 2 

rank 

Merit 

value 

Merit 

rank 

Horng and Li (2002) [13] 15 6.8000 14.3994 0.1269 1 0.3114 2 100.0000 1 

Zhou & Lu (2010) [63] 14 7.2857 17.3855 0.1273 2 0.3276 3 100.0000 1 

Lowe (1987) [15] 13 7.8462 21.6600 0.1291 3 0.3518 5 97.1305 6 

Wang et al. (2014) [62] 12 8.5000 26.0045 0.1304 4 0.3599 6 100.0000 1 

Yin (2004) : HDPSO2 [61] 10 10.2000 38.9200 0.1363 5 0.3741 7 100.0000 1 

Sarkar (1993): 2-points-method [15] 20 5.1000 13.6500 0.1500 6 0.5248 10 72.1445 9 

Banerjee et al. (1996) [15] 13 7.8462 39.3600 0.1514 7 0.6394 13 63.5739 13 

Sarkar (1993): 1-points-method [15] 19 5.3684 17.3770 0.1518 8 0.6030 12 65.2429 11 

Chung et al. (1994) [15] 22 4.6364 12.3600 0.1573 9 0.5750 11 65.9778 10 

Held et al. (1994) [15] 17 6.0000 28.5000 0.1582 10 0.7917 17 54.0854 16 

Ramer (1972) [15] 26 3.9231 5.2700 0.1598 11 0.3424 4 84.3933 8 

Freeman & Davis (1997) [15] 19 5.3684 23.3100 0.1609 12 0.8088 19 53.2439 17 

Chung et al (1994) [15] 14 7.2857 45.6000 0.1629 13 0.8591 20 51.4494 18 

Douglas & Peuker (1973) [15] 16 6.3750 37.1200 0.1637 14 0.9134 21 48.1895 20 

Arcelli & Ramella (1993) [15] 10 10.2000 75.1000 0.1691 15 0.7218 14 64.5096 12 

Teh & Chin (1989) [15] 22 4.6364 20.6100 0.1716 16 0.9588 23 44.8868 22 

Anderson & Bezdek (1984) [15] 18 5.6667 36.1400 0.1724 17 1.1255 26 42.3372 25 

Rosenfeld & Wezka (1975) [15] 14 7.2857 59.1200 0.1756 18 1.1138 25 43.8402 24 

Anderson & Bezdek (1984) [15] 29 3.5172 6.4300 0.1779 19 0.5198 8 60.3693 14 

Ray & Ray (1992) [15] : (2) 27 3.7778 11.5000 0.1801 20 0.8058 18 45.9324 21 

Chung et al. (1994) [15] 28 3.6429 9.6900 0.1811 21 0.7302 15 48.8511 19 

Rosenfeld & Johnston (1973) [15] 30 3.4000 8.8500 0.1890 22 0.7656 16 44.7832 23 

Ray & Ray (1992) [15] : (1) 29 3.5172 11.8180 0.1906 23 0.9553 22 38.9853 28 

Rosenfeld & Johnston (1973) [15] 12 8.5000 92.3700 0.1914 24 1.2785 27 40.6401 27 

Banerjee et al. (1996) [15] 27 3.7778 19.4000 0.1943 25 1.3593 29 30.7716 30 

Banerjee et al. (1996) [15] ) 6 17.0000 150.5300 0.1961 26 0.5209 9 95.9549 7 

Ansari & Huang (1991) [15] 28 3.6429 17.8300 0.1966 27 1.3436 28 30.4967 31 

Rattarnangsi & Chin (1992) [15] 9 11.3333 130.1300 0.1999 28 1.0131 24 57.6519 15 

Deguchi (1990) [15] 13 7.8462 99.0400 0.2007 29 1.6088 30 33.2517 29 

Freeman & Davis (1997) [15] 17 6.0000 79.5300 0.2067 30 2.2092 33 26.4984 33 

Melen & Ozanian (1993) [15] 13 7.8462 122.4400 0.2151 31 1.9889 32 28.8197 32 

Rosenfeld & Wezka (1975) [15] 34 3.0000 15.4000 0.2219 32 1.7111 31 23.2544 34 

Prasad (2013) [64] : PRO 0.2 44 2.3182 0.615385 0.2268 33 0.1145 1 100.0000 1 

Phillips & Ronsenfeld (1987) [15] 14 7.2857 184.0900 0.2514 34 3.4681 35 19.5399 35 

Sankar & Sharma (1978) [15] 10 10.2000 769.5300 0.3765 35 7.3965 36 14.4876 36 

Williams (1978) [15] 5 20.4000 1191.6800 0.4000 36 2.8635 34 41.4353 36 

Features of semicircles. N = 102 . Number of break points (BP) = 52. Length = 117.74. Maximum distance to centroid = 17.9227. Maximum distance to the axis of minimum 

inertia = 17.4706. 
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The following methodology was developed: (1) the optimal 

uality curves for the contour semicircles with NCA , W E 2 
2 

, Rosin’s 

erit , and Carmona’s Merit were generated ( Fig. 11 ); (2) the best

olygonal approximations proposed by NCA , W E 2 
2 

, Rosin’s Merit , 

nd Carmona’s Merit were compared each other ( Fig. 12 ); and, fi- 

ally, (3) the quality of the polygonal approximations of the con- 

our semicircles generated by 43 algorithms was evaluated using 

CA , W E 2 
2 

and Rosin’s Merit ( Table 3 ); 
7 
The analysis of the optimal quality curves of the contour semi- 

ircles generated by these measurements allows the following re- 

ults to be drawn: (1) as indicated in the first experiment, the op- 

imal quality curve generated by the Rosin’s Merit always assigns 

he best value (the maximum = 100%) to all optimal polygonal ap- 

roximations; therefore, this measurement cannot allow to select 

he best polygonal approximation among all ( Figs. 11 (a) and 12 ); 

2) the optimal quality curve generated by Carmona’s Merit assigns 
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Fig. 6. Optimal polygonal approximations (OPA) for contour bat-1 ( N = 1960 ; number of break points = 1449) proposed by some measurements and their number of 

dominant points. 

8 
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Fig. 7. Optimal quality curves generated by some measurements for contour cellular_phone-1 ( N = 1102 ). Note: in the X axis, only are plotted the values from 3 to 166 

(number of break points). 

9 
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Fig. 8. Optimal polygonal approximations (OPA) for contour cellular_phone-1 ( N = 1102 ) proposed by some measurements and their number of dominant points (DP). 
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he best value to the optimal polygonal approximation with only 

 dominant points ( Figs. 11 (c) and 12 (a)); (3) the optimal quality

urve of W E 2 
2 

proposed several local minimums, but reached the 

lobal minimum (value = 0.0) when the optimal polygonal approx- 

mation was composed of the all 52 break points of the contour 

emicircles ( Fig. 11 (b)), but this type of approximation is of no 

ractical use, as it was stated previously [25] ; and (4) the optimal 

uality curve of NCA allows to identify the best value (the mini- 

um) with the optimal polygonal approximation composed of 15 

ominant points ( Figs. 11 (c) and 12 (e)). Therefore, only NCA allows 

o identify clearly the best polygonal approximation of the contour 

emicircles . 

In addition, Rosin’s Merit , W E 2 
2 

and NCA were used to evaluate 

he polygonal approximations of 36 polygonal approximation algo- 

ithms that were applied to the contour semicircles . Table 3 ) shows 

he results: DP , CR , NCA ’s values, NCA ’s rank, W E 2 
2 

’s values, W E 2 
2 

’s

ank, Merit ’s values, Merit ’s rank, and Rosin’s rank [15] . The rank-
10 
ngs of NCA , W E 2 2 and Merit indicate the global position of each al- 

orithm among all 36 algorithms. The algorithms were ranked ac- 

ording to the NCA ’s values in Table 3 . The best values were high-

ighted in bold . 

The analysis of the results makes it possible to highlight the 

ollowing facts. The Rosin’s Merit proposed several polygonal ap- 

roximations as the best but with different number of dominant 

oints ( DP ): with 10 DP : Yin (2013): HDPSO1 [60,61] ; with 12 DP :

ang et al. (2014) [62] ; with 14 DP : Zhou & Lu (2010) [63] ; with

5 DP : Horng & Li (2002) [13] ; or with 44 DP : Prasad (2013): PRO

.2 [64] . Fig. 11 (a) shows how all these polygonal approximations 

chieved the best value in the optimal quality curve . These polyg- 

nal approximations are shown in Fig. 12 . W E 2 
2 

proposed a polyg- 

nal approximation with 44 DP , generated by Prasad (2013): PRO 

.2 [64] , as the best. Obviously, this polygonal approximation has 

oo many and redundant dominant points to be considered as the 

est ( Figs. 11 (b) and 12 (f)). NCA proposed the polygonal approxi- 



N.L. Fernández-García, L.D.-M. Martínez, Á. Carmona-Poyato et al. Pattern Recognition 138 (2023) 109396 

Fig. 9. Optimal quality curves for contour truck-01 ( N = 270 ) generated by (a) W E 2 2 ; (b) zoom of region [3 , 30] in (a), which contains 7 local minimum points for W E 2 2 ; (c) 

Carmona and (d) NCA . Optimal polygonal approximations (OPA) for contour truck-01 ( N = 270 ) proposed by (e) Carmona and W E 2 2 , and (f) NCA and their number of dominant 

points. 
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ation generated by Horng & Li (2002) [13] as the best, with 15 

P ( Table 3 and Figs. 11 (d) and 12 (e)). Furthermore, this polygonal

pproximation is symmetric like contour semicircles . This experi- 

ent clearly showed that the new proposal NCA can fairly assess 

he quality of polygonal approximations algorithms. 

. Conclusions and future work 

Two proposals were presented in this work: (1) a new assess- 

ent measurement, called normalized compression ratio and adjust- 

ent error ( NCA ), for a fair evaluation of polygonal approxima- 

ion algorithms ( Section 3 ), and (2) a new methodology for eval- 

ation of measurements for assessing polygonal approximations 

 Section 4 ). The new assessment measurement NCA has four very 

mportant properties: (1) it takes into account both the number 

f points and the error of the polygonal approximation; (2) it is 
11 
ormalized from 0 (best value) to 1 (worst value); (3) its com- 

utational complexity is linear ( O(n ) ), where n is the number of 

ontour points; and (4) for each contour, only a single polygo- 

al approximation is considered the best. On the other hand, the 

ew evaluation methodology is based on the optimal quality curve 

oncept, which can characterize the performance of the assess- 

ent measurements for polygonal approximations. A simple visual 

nalysis of the optimal quality curve allows possible drawbacks or 

eaknesses of the evaluation measurement to be detected. 

Two experiments were developed in a comparative study to 

valuate the quality of the most popular measurements and the 

ew proposal NCA . In the first experiment ( Section 5.1 ), the anal- 

sis of the optimal quality curves of eight well-known measure- 

ents ( FOM , WEmax , MFOM − 3 , W E 1 
2 

, W E 2 
2 

, W E 3 
2 

, Rosin’s Merit ,

nd Carmona’s Merit ) showed that all of them have very impor- 

ant weaknesses, whereas the optimal quality curves of NCA showed 
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Fig. 10. Optimal quality curves for contour carriage-01 ( N = 729 ) generated by (a) Carmona, (c) W E 2 2 and (e) NCA . Note: in the X axis, only are plotted the values from 3 to 

261 (number of break points). Optimal polygonal approximations (OPA) for contour carriage-01 ( N = 729 ) proposed by (b) Carmona; (d) W E 2 2 , and (f) NCA and their number 

of dominant points. 
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hat a better optimal polygonal approximation could be found 

asily. 

In the second experiment ( Section 5.2 , the new proposal NCA 

nd W E 2 
2 

, Rosin’s Merit and Carmona’s Merit were used to evalu- 

te the quality of the polygonal approximations of the well-known 

ontour semicircles generated by 36 algorithms. This experiment 

howed that NCA clearly outperformed to W E 2 
2 

, Rosin’s Merit and 

amona’s Merit , because it was able to find the best polygonal ap- 

roximation among all possible ones. 

In summary, (1) the proposed measurement NCA can be used to 

airly evaluate and compare polygonal approximation algorithms of 

D closed curves or contours ; (2) NCA takes into account both the 

umber of points of the polygonal approximation and the adjustment 

rror ; (3) NCA is normalized between 0 (best value) and 1 (worst 

alue); (4) its computational complexity is linear ( O(n ) ), where n 

s the number of contour points. Furthermore, the new evaluation 

ethodology, based on the optimal quality curve concept, can be 
12 
sed to characterize the performance of the measurements for as- 

essing polygonal approximations. 

Finally, future work should be aimed at five different ways: (1) 

tudy of the influence of the parameter D on the performance 

f NCA : in the experiments, the values of the maximum distance 

rom the contour points to the centroid ( D 1 ), and the maximum 

istance from the contour points to the minimum inertia axis ( D 2 ) 

ere also used, but, in some cases, D 1 proposed polygonal approx- 

mations with few points, whereas D 2 proposed polygonal approx- 

mations with many points, whereas D = 

D 1 + D 2 
2 obtained better re- 

ults; (2) fair comparison of different polygonal approximation al- 

orithms using NCA and a large database of contours to choose 

he best one; (3) design a new polygonal approximation algorithm 

sing NCA as an objective function; (4), adaption of NCA to evalu- 

te polygonal approximation of 2D open curves, such as time series 

65] ; and (5) study the combination of these algorithms with Ma- 

hine Learning approaches to improve their performances. 
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Fig. 11. Optimal quality curves for contour semicircles ( N = 105 ) generated by (a) Rosin’s Merit , (b) W E 2 2 and (c) NCA . Note: in the X axis, only are plotted the values from 3 

to 52 (number of break points). 

Fig. 12. Some optimal polygonal approximations ( OPA n ) for contour semicircles ( N = 105 ; number of break points = 52) proposed by Carmona’s Merit, Rosin’s Merit , W E 2 2 and 

NCA . 

13 
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