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A B S T R A C T

Multi-label learning is a growing field in machine learning research. Many applications address instances that
simultaneously belong to many categories, which cannot be disregarded if optimal results are desired. Among
the many algorithms developed for multi-label learning, the multi-label 𝑘-nearest neighbor method is among
the most successful. However, in a difficult classification task, such as multi-label learning, a challenge that
arises in the 𝑘-nearest neighbor approach is the assignment of the appropriate value of 𝑘. Although a suitable
value might be obtained using cross-validation, it is unlikely that the same value will be optimal for the whole
space spanned by the training set. It is evident that different regions of the feature space would have different
distributions of instances and labels that would require different values of 𝑘. The very complex boundaries
among the many present labels make the necessity of local 𝑘 values even more important than in the case with
a single-label 𝑘-nearest neighbor. We present a simple yet powerful approach for setting a local value of 𝑘.
We associate a potentially different 𝑘 with every prototype and obtain the best value of that 𝑘 by optimizing
the criterion consisting of the local effect of the different 𝑘 values in the neighborhood of the prototype. The
proposed method has a fast training stage, as it only uses the neighborhood of each training instance to set
the local 𝑘 value. The complexity of the proposed method in terms of the testing time is similar to that of the
standard multi-label 𝑘-nearest neighbor approach. Experiments performed on a set of 20 problems show that
not only does our proposed method significantly outperform the standard multi-label 𝑘-nearest neighbor rule
but also the locally adaptive multi-label k-nearest neighbor method can benefit from a local 𝑘 value.
. Introduction

Many modern applications use increasingly complex categorization
chemes for data classification, where one instance may simultane-
usly belong to several topics. This task is typically termed multi-label
earning (Zhang and Zhou, 2014).

In contrast with single-label classification where one instance is as-
ociated with only one class, multi-label classification is concerned with
earning from instances that can be associated with multiple labels.
ulti-label problems are complex, and therefore, are more difficult to

olve than their single-label counterparts.
We cannot overstate the importance of multi-label learning, which

as been developed and applied in several highly active research areas:
ext categorization (Schapire and Singer, 2000; Chen et al., 2007;
hang et al., 2020a), automatic image annotation (Yu et al., 2013;
hang et al., 2012; Wang and Zhang, 2020; Zhang et al., 2020b),
eb mining (Tang et al., 2009; Read et al., 2012), rule mining (Thab-

ah et al., 2004; Veloso et al., 2007), cheminformatics (Afzal et al.,
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N. García-Pedrajas).

2015; Toledano et al., 2019), data stream (Zheng et al., 2020; Al-
berghini et al., 2022), bioinformatics (Clare and King, 2001; Elisse-
eff and Weston, 2001) or information retrieval (Lai et al., 2016). In
some of these fields of application, such as image classification, Deep
learning (Sumbul and Demir, 0000) has proven its good performance.

Our method is aimed at tabular datasets, where classic methods
such as ML-kNN have proven their good performance in spite of their
simplicity. Tabular datasets as the ones used in this paper are common
in many real-world applications of multi-label learning. For instance,
in Cheminformatics molecular activity is usually predicted using ei-
ther molecular fingerprints or descriptors. Both of them represent that
dataset in a tabular way. These representations have been used for
estimating molecular activities in a multi-label approach (Toledano
et al., 2019). Web page categorization using a Bag-of-Words (BOW) for
representing each document is also a common scenario for multi-label
classification tasks (Ueda and Saito, 2003). This BOW representation
is also a widely used method for describing documents in sentiment
and mood analysis from a multi-label perspective (Liu and Chen, 2015).
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Fig. 1. Hamming Loss metric results for ML-kNN, LAML-kNN, Binary relevance, Classifier chains, Label powerset, RAkEL, Deep learning and our proposal.
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Table 1
Description of the datasets.

Name Instances Features Labels LCard LDens

bibtex 7395 1836 159 2.402 0.015
birds 645 260 19 1.014 0.053
CAL500 502 68 174 26.044 0.150
Corel5k 5000 499 374 3.522 0.009
delicious 16105 500 983 19.020 0.019
emotions 593 72 6 1.868 0.311
enron 1702 1001 53 3.378 0.064
flags 194 19 7 3.392 0.485
genbase 662 1185 27 1.252 0.046
LLOG-F 1460 1004 75 1.180 0.016
medical 978 1449 45 1.245 0.028
Music 592 71 6 1.870 0.312
OHSUMED-F 13929 1002 23 1.663 0.072
REUTERS 6000 500 103 1.462 0.014
scene 2407 294 6 1.074 0.179
SLASHDOT-F 3782 1079 22 1.181 0.054
solar_flare-L3 323 10 3 0.232 0.077
yeast 2417 103 14 4.237 0.303

BOW representation is also utilized by some of the datasets used in this
paper (see Table 1). Datasets in Bioinformatics are usually represented
as protein sequences (such as genbase dataset used in our experiments)
or microarray information (yeast dataset). Both representations form
tabular datasets.

The key challenge of multi-label learning is to take advantage of
the correlations among labels to address the exponential growth of
the label space with the number of distinct labels, 2𝑞 , for q different
labels. Methods that address multi-label datasets without considering
the relationships among labels simply solve a group of independent
binary problems. Learning and using the complex relationships among
the labels is important for the success of any multi-label classification
model.

Two broad categories of methods are employed to solve multi-label
problems (Zhang and Zhou, 2014): problem transformation methods
and algorithm adaptation methods. Problem transformation methods
solve the multi-label learning problem by transforming it into other
established learning scenarios. Algorithm adaptation methods work by
modifying the known learning techniques to directly analyze multi-
label data. The success of any approach depends on taking advantage of
the correlations among labels to develop novel methods. These relation-
ships can be complex and hierarchically structured. The performance
of any method is closely related to its ability to address higher-order
relationships among labels.
 a

2

Among the adapted algorithms for multi-label learning, the multi-
label 𝑘-nearest neighbor (ML-kNN) method (Zhang and Zhou, 2007) is
among the top performing methods. ML-kNN is an adaptation of the
well-known 𝑘-nearest neighbor method for multiclass problems. ML-
kNN consists of storing a set of prototypes that represent the knowledge
of the problem and using those prototypes to predict the a posteriori
probability of each label to belong to the relevant set of labels of a
given query instance.

ML-kNN is a fast method that matches the performance of more
complex methods (Aldrees et al., 2016). Zufferey et al. (2015) car-
ried out a comparison of many different multi-label methods in an
experiment that used clinical data from chronic diseases and dis-
covered that ML-kNN outperformed even ensemble methods such as
AdaBoost.MH (Schapire and Singer, 2000), RAkEL (Tsoumakas et al.,
2011a), HOMER (Tsoumakas et al., 2008) and Classifier chains
(CC) (Read et al., 2011) for several multi-label metrics. In an extensive
comparison, Madjarov et al. (2012) revealed that the performance of
ML-kNN was similar to other more complex methods for most of the
metrics, while being significantly faster.

Thus, ML-kNN, although simple, can usually match and even out-
perform more sophisticated and complex methods in terms of general-
ization error. A disadvantage of this classifier, however, is encountered
in assigning an appropriate value of 𝑘. Although a good value might be
obtained using cross-validation, the same value is unlikely to be optimal
for the whole space spanned by the training set.

In this work, we propose a method that obtains local values from
the training set for the 𝑘 parameter, which will be utilized during the
testing time. Our approach is based on directly learning the local value
of 𝑘 from the training set, evaluating the effect of every 𝑘 value and
choosing the best performing value. The proposed method is fast and
accurate, showing better generalization capabilities than the original
method with the same testing complexity.

The selection of the optimal value for 𝑘 in a certain dataset is always
problematic, as only a finite amount of training data are available. The
standard approach assumes that there exists a unique 𝑘 value that is
ptimal for all the regions of the input space. In practice, the situations
f different prototypes differ. The appropriate values of 𝑘 are very
ifferent for a prototype surrounded by other instances with similar
abels, near the boundaries of the labels or with many noisy instances
n its neighborhood. Thus, the use of different 𝑘 values for the different
rototypes would likely have a positive effect on the classification
ccuracy of the 𝑘-nearest neighbor rule.

We formally define a multi-label problem as follows: Let 𝑇 be

multi-label dataset consisting of 𝑝 multi-label instances 𝐱𝑖 and its



J.A. Romero-del-Castillo, M. Mendoza-Hurtado, D. Ortiz-Boyer et al. Engineering Applications of Artificial Intelligence 116 (2022) 105487

Fig. 2. F1 metric results for ML-kNN, LAML-kNN, Binary relevance, Classifier chains, Label powerset, RAkEL, Deep learning and our proposal.

Fig. 3. Coverage metric results for ML-kNN, LAML-kNN, Binary relevance, Classifier chains, Label powerset, RAkEL, Deep learning and our proposal. Delicious dataset is not shown
for a better presentation.

Fig. 4. Ranking Loss metric results for ML-kNN, LAML-kNN, Binary relevance, Classifier chains, Label powerset, RAkEL, Deep learning and our proposal.
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Fig. 5. Average Precision metric results for ML-kNN, LAML-kNN, Binary relevance, Classifier chains, Label powerset, RAkEL, Deep learning and our proposal.

Fig. 6. Comparison of ML-localkNN vs ML-kNN using Hamming Loss and Ranking Loss metrics.
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Fig. 7. Comparison of ML-localkNN vs ML-kNN using 𝐹1 and Average Precision metrics.
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ssociated labelset 𝑌𝑖, i.e., 𝑇 = {(𝐱𝑖, 𝑌𝑖)}, 1 ≤ 𝑖 ≤ 𝑝, 𝐱𝑖 ∈ 𝑋, 𝑌𝑖 ∈ 𝑌 ,
= R𝑝 and 𝑌 = {0|1}𝑞 is the label space with 𝑞 possible binary labels.

et ℎ be a multi-label classifier and ℎ(𝐱𝑖) ∈ {0|1}𝑞 be the set of labels
redicted by ℎ for the instance 𝐱𝑖. Let 𝑓 (𝐱𝑖, 𝑦), 𝐱𝑖 ∈ 𝑋, 𝑦 ∈ 𝑌𝑖, 𝑌𝑖 ∈ 𝑌 be a
eal-valued function 𝑓 ∶ 𝑋×𝑌 → R. A successful learning system would
end to output larger values of 𝑓 for labels in 𝑌𝑖 than for the labels that
re not in 𝑌𝑖. The real-valued function 𝑓 can be easily transformed into

a ranking function rank𝑓 (𝐱𝑖, 𝑦) to predict the rank of the label 𝑦 for
nstance 𝐱𝑖. The classifier ℎ(𝐱𝑖) can be obtained from 𝑓 (𝐱𝑖, 𝑦) when an
ppropriate threshold is set. Our approach is based on two main ideas.
irst, we assign to each prototype a value of 𝑘 that is used to classify any
uery instance whose nearest neighbor is that prototype. Thus, instead
f the standard set formed by prototypes of the form (𝐱𝑖, 𝑌𝑖), where 𝐱𝑖
s the prototype and 𝑌𝑖 is its set of relevant labels, we use augmented
rototypes of the form (𝐱𝑖, 𝑌𝑖, 𝑘𝑖), where 𝑘𝑖 is the associated 𝑘 value for
rototype 𝐱𝑖. To classify any query instance 𝐱, we obtain its nearest

neighbor 𝐱nearest and then we proceed with standard ML-kNN using
𝑘 = 𝑘nearest. In our training process, we must obtain the optimal value
of 𝑘𝑖 values associated with every prototype 𝐱𝑖. This optimal value is
obtained by evaluating all the possible 𝑘 values in a given interval with
an evaluation function that considers the classification performance of
each value.

The main contribution of this paper is that we present the first
method for developing a 𝑘 nearest neighbor based learning algorithm

or multi-label datasets which learns local 𝑘 values for every prototype. S

5

ur approach has the advantage of allowing the selection this local 𝑘
alue with a very simple and fast procedure. During the training time,
he method is simple and has linear complexity; during the testing time,
he algorithm has the same workload as the standard version of the 𝑘-
earest neighbor rule. Furthermore, the whole process can be run in
arallel, which means that the size of the dataset is not a constraint in
ur approach, as the process of obtaining the optimal 𝑘 value for each
rototype is independent of the remaining prototypes.

The experiments show that our proposal can significantly outper-
orm the standard ML-kNN rule in a set of 20 problems, with different
umbers of labels, features and instances, and it is evaluated using five
ifferent metrics.

To validate the proposed approach, we also compare the results with
nother method that is also an adaptation of ML-kNN but that takes into
ccount the local difference among samples. The locally adaptive multi-
abel k-nearest neighbor (LAML-kNN) method (Wang et al., 2018a)
onsiders local differences in the number of neighbors of each instance
aving each label. The method adapts ML-kNN by calculating different
robabilities to be assigned to each label depending on the region
n which the test instance is located. For this reason, we have also
onsidered it interesting to validate this model against the model that
e propose.

This paper is organized as follows: Section 2 revises the previous
ork on the topic of the paper: Section 3 explains our proposal;

ection 4 describes our experimental setup; Section 5 shows the results
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Fig. 8. Comparison of ML-localkNN vs ML-kNN using Coverage metric.
v

o

of our experiments; and Section 6 states the conclusions of our work
and describes new research lines.

2. Related work

Although local 𝑘 values have been developed for single-label 𝑘-NN
methods (García-Pedrajas et al., 2017), to the best of our knowledge, no
other attempt has been made to develop local 𝑘 values for multi-label
instance-based methods. The method developed for standard single
label is simpler, as the number of neighbors only affects the vicinity
considered in testing time when a query instance is classified. For ML-
kNN the situation is more complex as the number of neighbors affects
the calculation of the prior and posterior probabilities and the final
probabilities of every label in testing time. Furthermore, we must take
into account how the number of local neighbors affect the ability to
predict each label.

There are related attempts to try to improve the number of consid-
ered neighbors but none of them have addressed the problem of a local
value. Wang et al. (2018b) used local information for improving the
standard ML-kNN algorithm but using a unique global 𝑘 for all instances
and labels. Roseberry et al. (2021) developed an adaptive value of 𝑘
or data streams that evolves as new data is obtained. The method
as applied in a subsequent paper for the construction of ensembles of
 𝐱

6

classifiers (Alberghini et al., 2022). In the context of instance selection
for ML-kNN, García-Pedrajas and Cerruela-García (2021) developed a
cooperative coevolutionary algorithm where the final value of 𝑘 was
evolved alongside the selection of instances.

3. Multi-label local 𝒌-nearest neighbors method

The basic idea of the proposed multi-label local 𝑘-nearest neighbors
(ML-localkNN) method is to use a local value of 𝑘 that is adapted to
every region spanned by the training set. To achieve this goal every
prototype 𝐱𝑖 of the training set is assigned a local 𝑘 value 𝑘𝑖. The testing
stage of ML-kNN is modified to use these 𝑘’s. When a new query or
test instance 𝐱𝑡 must be classified, first, the nearest neighbor of 𝐱𝑡 in
the training set 𝐱𝑖 is obtained, and second, the 𝑘 value of 𝐱𝑖 is used to
classify query instance 𝐱𝑡 as shown in the standard ML-kNN algorithm.

Instead of the standard set formed by prototypes of the form (𝐱𝑖, 𝑌𝑖),
where 𝐱𝑖 is the prototype and 𝑌𝑖 is its set of relevant labels, we use
augmented prototypes of the form (𝐱𝑖, 𝑌𝑖, 𝑘𝑖), where 𝑘𝑖 is the associated
𝑘 value for prototype 𝐱𝑖 that will be utilized in its neighborhood as the
alue for the 𝑘-nearest neighbor rule.

Once we have established this new modified version of ML-kNN, the
ptimal local value, 𝑘𝑖, needs to be obtained for every training instance
. As our aim is to improve the classification ability of ML-kNN, we
𝑖
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Fig. 9. Comparing ML-localkNN vs LAML-kNN using Hamming Loss and Ranking Loss metrics.
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ust obtain the set of 𝑘 values, (𝑘1, 𝑘2,… , 𝑘𝑝), that would obtain an
optimal classification performance. In this way, it is an optimization
problem, were we must obtain the value for every 𝑘𝑖 ∈ [𝑘min, 𝑘max]
that obtains the best classification performance.

Although the optimization problem might appear very difficult,
there is a fact that makes it easier. Every local 𝑘𝑖 only affects the
instances whose nearest neighbor is 𝐱𝑖; thus, to obtain the optimal 𝑘𝑖
value, our algorithm only needs to take into account the instances in
the vicinity of 𝐱𝑖. This fact simplifies the problem and accelerates the
algorithm. The second relevant aspect is the evaluation of the set of
possible candidate values of 𝑘 for every training instance. Thus, we can
use the straightforward approach of assigning to 𝐱𝑖 the 𝑘𝑖 value that
optimizes the classification performance of the set of instances, 𝑁(𝐱𝑖),

hich has 𝐱𝑖 as its nearest neighbor. The aforementioned optimization
or calculating 𝑘𝑖 can be performed using any chosen metric or a
ombination of different metrics.

However, for certain 𝐱𝑖, the set 𝑁(𝐱𝑖) might be too small or even
mpty. Thus, instead of using only the nearest neighbor, we can in-
rease the number of instances in 𝑁(𝐱𝑖) using the instances that have 𝐱𝑖
s the second nearest neighbor or the instances that have 𝐱𝑖 as the third
earest neighbor, etc.. Thus, 𝑁(𝐱𝑖) will be composed of the training
nstances 𝐱𝑗 that have 𝐱𝑖 among their 𝑘neighbors nearest neighbors, that
s:
(𝐱𝑖) = {𝑥𝑗 |𝑛𝑒𝑎𝑟𝑒𝑠𝑡(𝐱𝑗 , 𝑘neighbors) = 𝐱𝑖} (1) w

7

The pseudo-code for the ML-localkNN is given in Algorithm 1. In
the training phase, we obtain the set 𝑁(𝐱𝑖) for each training prototype
𝑖. ML-kNN is then independently applied to each 𝑁(𝐱𝑖) using different
alues of 𝑘 between [𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥]. The best value of 𝑘 is selected and
ssigned as the optimal local 𝑘𝑖 for instance 𝐱𝑖. An optimal 𝑘𝑖 can be
hosen by considering either one metric or a combination of the metrics
xplained in Section 4.1.

The test phase is described in Algorithm . A further modification is
ade to ML-localkNN to improve its results. For certain instances due

o the small number of prototypes considered to obtain the local value
f 𝑘, very different values can be obtained for neighboring prototypes.
o obtain a smoother 𝑘 value, we consider a second hyper-parameter,
mean. For a query instance 𝑞, instead of using just the 𝑘𝑡 given by
ts nearest neighbor 𝐱𝑡, we use the average 𝑘 value given by its 𝑛mean

nearest neighbors (𝑛mean ≥ 1). In our experiments, we consider values
𝑛mean ∈ [1, 3].

Our ML-localkNN method is compared with the classic method,
which uses a fixed value for 𝑘 in every dataset. For every query instance
𝑡, the standard ML-kNN uses the maximum a posterior probability
MAP) estimator that identifies the set of neighbors of 𝐱𝑡 in the training
et and computes category vector 𝑦(𝑡) using equation (2). 𝐻 𝑙

1 and 𝐻 𝑙
0

re the events where 𝐱𝑡 is assigned and is not assigned, respectively,
𝑙
ith label 𝑙, and 𝐸𝑐 the event where 𝐱𝑡 has 𝑐 instances (𝑐 previously
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computed) with label 𝑙 assigned among its neighbors.

(𝑡) = arg max
𝑏∈[0,1]

𝑃 (𝐻 𝑙
𝑏|𝐸

𝑙
𝑐 ) (2)

Using the Bayesian rule, we compute 𝑃 (𝐻 𝑙
𝑏|𝐸

𝑙
𝑐 ) in Eq. (2) using

the prior probability and posterior probability 𝑃 (𝐻 𝑙
𝑏) and 𝑃 (𝐸𝑙

𝑐 |𝐻
𝑙
𝑏),

espectively.
One important aspect of our proposal is that during the testing time,

he complexity of ML-localkNN is not increased compared with the
omplexity of ML-kNN; thus, the fast testing time is retained. This is
ne of the most remarkable features of the ML-localkNN.

In our experiments, we show results using the standard ML-kNN
nd locally adaptive ML-kNN (LAML-kNN). LAML-kNN assumes that
he distribution of neighbors of instance 𝑥𝑖 with label 𝑙, 𝐶𝑥(𝑙) among

nearest neighbors is significantly related to the location of instance
𝑖. Thus, the probabilities for assigning a label to the query instance
hanges depending on the cluster to which the query instance belongs.
he method identifies which cluster 𝑖 should be assigned to the query

nstance and then determines 𝑦𝑖 for label 𝑙 following the maximum a
osteriori principle for cluster 𝑖.
Algorithm 1: ML-localkNN training phase

Data: A training set 𝑇 = {(𝐱1, 𝑌1), ..., (𝐱𝑝, 𝑌𝑝)}, 𝐱𝑖 ∈ 𝑋, 𝑌𝑖 ∈ 𝑌 ; a
minimum value of 𝑘, 𝑘𝑚𝑖𝑛; a maximum value of 𝑘, 𝑘𝑚𝑎𝑥; a
maximum value of nearest neighbors 𝑘𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

Result: The vector of local 𝑘𝑖 values, 𝐤
1 for every 𝐱𝑖 ∈ 𝑋 do
2 for every 𝐱𝑗 ∈ 𝑋 do
3 for 𝑘 = 1 to 𝑘 = 𝑘neighbors do
4 if 𝐱𝑗 have 𝐱𝑖 as its 𝑘 nearest neighbor then
5 Add 𝐱𝑗 to 𝑁(𝐱𝑖)

6 ‘ for 𝑘 = 𝑘𝑚𝑖𝑛 to 𝑘 = 𝑘𝑚𝑎𝑥 do
7 Apply ML_kNN(𝑘) to 𝑁(𝐱𝑖)

8 Obtain optimal local value of 𝑘 ∈ [𝑘𝑚𝑖𝑛, 𝑘𝑚𝑎𝑥]
9 Assign optimal value of 𝑘 to 𝑘𝑖 ∈ 𝐤

10 Return 𝐤

Algorithm 2: ML-localkNN testing phase
Data: A testing set 𝑇 = {(𝐱1, 𝑌1), ..., (𝐱𝑝, 𝑌𝑝)}, 𝐱𝑞 ∈ 𝑋, 𝑌𝑞 ∈ 𝑌 ; the

number of nearest neighbor prototypes used to calculate the
average k, 𝑛𝑚𝑒𝑎𝑛.

Result: Evaluation value, 𝑒𝑣𝑎𝑙
1 for every 𝐱𝑞 ∈ 𝑇 do
2 Obtain the average 𝑘 value given by its 𝑛𝑚𝑒𝑎𝑛 nearest neighbor

prototypes
3 Assign average local 𝑘 value to 𝑘𝑞 ∈ 𝐤

4 Apply ML_kNN(𝐤) to 𝑇 using the local 𝑘𝑞 values for each instance 𝑥𝑞
5 Obtain evaluation value, 𝑒𝑣𝑎𝑙
6 Return 𝑒𝑣𝑎𝑙

4. Experimental setup

We compare the proposed method with the standard ML-kNN
method and the locally adaptative LAML-kNN method. In the experi-
ments, a wide interval of 𝑘 was selected, where 𝑘𝑚𝑖𝑛 = 1 and 𝑘𝑚𝑎𝑥 = 100.
or the standard ML-kNN, the value of 𝑘 was chosen by means of a
0-fold cross-validation in the same interval 𝑘 = [1, 100]. We have also
onsidered values for 𝑘neighbors and 𝑛mean in the range [1, 3].

To make a fair comparison among the three methods, we selected a
et of 20 problems from Mulan (Tsoumakas et al., 2011b), Meka (Jesse
ead and Peter Reutemann, 2016) and Cometa (Charte et al., 2018).
hese datasets represent a wide range in the number of instances, from
94 to 16 100; number of features, from 10 to 1 836; and number of
abels, from 3 to 983. The datasets also contain marked differences
n terms of label cardinality and label density. A summary of the
haracteristics of the datasets is shown in Table 1. To estimate the
8

lassifier performance of the three methods, we employed a 10-fold
ross-validation approach.

The source code, written in C and licensed under the GNU Gen-
ral Public License, selected for all methods and the partitions of the
atasets are freely available from the authors upon request.

Regarding the statistical tests, we selected the Wilcoxon
est (Demšar, 2006) as the main statistical test for comparing the pairs
f algorithms. This test was chosen because it assumes limited commen-
urability, is safer than parametric tests, and does not assume a normal
istribution or variance homogeneity. The empirical results (Demšar,
006) indicate that this test is stronger than other tests. We performed
he Wilcoxon test with a significance level of 𝛼 = 0.05.

.1. Evaluation metrics

The evaluation of the multi-label classification methods is relatively
ifficult because the prediction for an instance is a set of labels, and
he result can be fully correct, partially correct (with different levels of
orrectness) or fully incorrect (Boutell et al., 2004; Sorower, 2010).

Nevertheless, the traditional metrics from the multiclass problem
re also interesting, such as the prediction Hamming Loss; thus, we use
wo exampled-based metrics (Tsoumakas and Katakis, 2007) Hamming
oss and 𝐹1 (Tsoumakas et al., 2010).

In addition to these exampled-based metrics, we also use three rank-
ng metrics to evaluate the algorithm’s ranking of the different labels
or each instance (Schapire and Singer, 2000; Madjarov et al., 2012;
soumakas et al., 2010). A description of these evaluation measures is
iven below.

.2. Example-based metrics

1. Hamming Loss (Tsoumakas and Katakis, 2007) evaluates the
number of times that a label that does not belong to an instance
is predicted or that a label that belongs to an instance is not
predicted.

𝐻𝑎𝑚𝑚𝑖𝑛𝑔𝐿𝑜𝑠𝑠(ℎ) = 1
𝑝

𝑝
∑

𝑖=1

1
𝑞
|ℎ(𝐱𝑖)𝛥𝑌𝑖|, (3)

where 𝛥 indicates the symmetric difference between two sets and
corresponds to the XOR operation in Boolean logic. With respect
to this metric, the performance is optimal when its value is zero,
and higher values signify a decrease in performance

2. 𝐹1, which is also known as balanced F-score or
F-measure (Tsoumakas et al., 2010), is calculated taking into
account both Precision and Recall values, which are defined
as the harmonic mean between them, giving more weight to
low Precision or Recall values, i.e., to false positives and false
negatives:

𝐹1(ℎ) =
1
𝑝

𝑝
∑

𝑖=1

2|ℎ(𝐱𝑖)
⋂

𝑍𝑖|

|ℎ(𝐱𝑖)| + |𝑌𝑖|
(4)

With respect to this metric, the performance is optimal when
its value is one, and lower values indicate a decrease in perfor-
mance.

.3. Ranking-based metrics

The most important ranking-based metrics are given below:

1. Coverage (Schapire and Singer, 2000; Madjarov et al., 2012)
evaluates how far, on average, we must descend the ranked list
to cover all the proper labels of an instance:

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑓 ) = 1
𝑝

𝑝
∑

𝑖=1
max
𝑦∈𝑌𝑖

𝑟𝑎𝑛𝑘𝑓 (𝐱𝑖, 𝑦) − 1 (5)

With respect to this metric, higher values indicate a decrease in
performance.
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2. Ranking Loss (Madjarov et al., 2012) denotes the average fraction
of label pairs that are reversely ordered for an instance and
expresses the frequency of irrelevant labels being ranked higher
than relevant labels:
𝑅𝑎𝑛𝑘𝑖𝑛𝑔 𝐿𝑜𝑠𝑠(𝑓 ) =

1
𝑝

𝑝
∑

𝑖=1

1
|𝑌𝑖 ∥ 𝑌𝑖|

|{(𝑦𝑎, 𝑦𝑏) ∶ 𝑓 (𝐱𝑖, 𝑦𝑎) ≤ 𝑓 (𝐱𝑖, 𝑦𝑏),

(𝑦𝑎, 𝑦𝑏) ∈ 𝑌𝑖 × 𝑌𝑖}|,

(6)

where 𝑌𝑖 is the complementary set of 𝑌𝑖. With respect to this
metric, the performance is optimal when the value is zero, and
higher values indicate a decrease in performance.

3. Average Precision (Tsoumakas et al., 2010) evaluates for every
𝑦 ∈ 𝑌𝑖 the average of the ground truth labels ranked above 𝑦:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑓 ) = 1
𝑝

𝑝
∑

𝑖=1

1
|𝑌𝑖|

∑

𝑦∈𝑌𝑖

|𝑦′ ∈ 𝑌𝑖 ∶ 𝑟𝑎𝑛𝑘𝑖(𝑦′) ≤ 𝑟𝑎𝑛𝑘𝑖(𝑦)|
𝑟𝑎𝑛𝑘𝑖(𝑦)

(7)

The performance is optimal when its value is one, and lower
values indicate a decrease in performance.

To obtain results for the standard ML-kNN and for LAML-kNN that
are comparable to the results of our proposed method, the methods
are compared by separately optimizing each metric. For each of the
five described metrics, the optimal value of 𝑘 for methods ML-kNN and
LAML-kNN for each metric is obtained by cross-validation (𝑘 ∈ [1, 100])
and compared with the result of ML-localkNN optimized for the same
metric.

5. Experimental results

In this section, we present and discuss the results obtained by the
standard ML-kNN and LAML-kNN method with 𝑘 obtained by cross-
validation and the results of our proposed method. Tables A.4 and
A.5 of Appendix A show the results for the example based on the
classification metrics Hamming Loss and 𝐹1. In addition to the perfor-
mance metric, the table shows the average value of 𝑘 obtained in each
method. A comparison of the methods by all the metrics discussed
above is shown in Table 2 in terms of the win/draw/loss record and
the Wilcoxon test. The results, together with that of experiments in
Section 5.1, are illustrated in Figs. 1–5.

The first notable result is that the value of the optimum 𝑘 highly
depends on the metric utilized with very different values for each
metric. This result supports the use of values obtained from a search.
The table shows the suitable performance of our method. For Hamming
Loss, the ML-localkNN performed better than ML-kNN for 16 of 18
datasets, with only the yeast problem yielding suboptimal results. For
𝐹1, our proposal has a distinct advantage, with a win/draw/loss records
of 12/0/6. This result means that for example-based metrics, our al-
gorithm performed consistently better than ML-kNN. As ML-localkNN
is based on the search for an optimal local value, its performance in
regard to the example-based metrics shows the success of the local
search to improve the classification performance of ML-kNN. In the case
of LAML-kNN, for Hammnig Loss, the LAML-kNN performed better and
for 𝐹1, our method performed better.

Ranking-based metrics are shown in Tables A.6–A.8 of Appendix A.
Although our proposal showed an overall better performance than ML-
kNN for the Ranking Loss metric and a slightly better performance for
Average Precision. On the other hand, the ML-kNN performed signifi-
cantly better than ML-localkNN for Coverage (refer to Table 2). The
ranking-based measures take into account the whole set of relevant
labels, especially Coverage, which, until they are in the ranking, the
evaluation continues to penalize the labels through the addition of
integers.
9

Table 2
Comparison between ML-kNN, LAML-kNN and our ML-localkNN approach. The table
shows the win/draw/loss record, 𝑝-value and 𝑅+∕𝑅− values of the Wilcoxon test for
each metric: Hamming Loss (HL), 𝐹1, Coverage (Cov), Ranking Loss (RL) and Average
Precision (AP).

LAML-kNN ML-localkNN

w/d/l 𝑝-value R+/R- w/d/l 𝑝-value R+/R-

ML- HL 15/2/1 0.00041 166.5/4.5 16/1/1 0.00030 168.5/2.5
kNN 𝐹1 10/0/8 0.82756 80.5/90.5 12/0/6 0.01556 141.0/30.0

Cov 2/0/16 0.00377 19.0/152.0 4/0/14 0.01387 29.0/142.0
RL 8/0/10 0.87880 82.0/89.0 13/0/5 0.04511 131.5/39.5
AP 10/0/8 0.82732 80.5/90.5 4/11/3 0.68683 94.5/76.5

LAML- HL 3/3/12 0.01854 31.5/139.5
kNN 𝐹1 13/0/5 0.04275 132.0/39.0

Cov 15/0/3 0.07070 127.0/44.0
RL 10/2/6 0.28575 110.0/61.0
AP 8/1/9 0.81063 91.0/80.0

In the particular case of Coverage, which had the worst performance
in our method, for most datasets, the difference between the two com-
pared rankings is less than one position, which implies that the rankings
are very similar. The largest difference between the two rankings is
observed in datasets with more than 100 labels, but even the poorest
result (dataset delicious) decreased the ranking only by 3.6% of
the total 983 labels. Therefore, because only a few nearby instances
are taken into account to obtain the value of 𝑘, these measures may
decrease in the case of numerous labels.

As a summary of the results shown in Table 2, we determine for the
comparison with ML-kNN that our approach improved the results for
4 of the 5 metrics: three metrics were significantly improved and one
metric was non-significantly improved. With respect to LAML-kNN, ML-
localkNN improved the results for 3 of the 5 metrics: two metrics were
significantly improved and one metric was non-significantly improved.
Moreover, although for Hamming Loss and Average Precision our method
obtained a worst performance, the differences among the results were
really small (refer to Table A.4 and Table A.8).

The results obtained from comparing ML-kNN with our method are
illustrated in Figs. 6–8. Fig. 6 shows the two metrics in which the
smallest values indicate the best performance; these metrics include
Hamming Loss and Ranking Loss. Fig. 7 shows the two metrics in which a
higher value indicates the better performance; these metrics include F1
and Average Precision. The Coverage metric is separately shown in Fig. 8
due to its different scale, and, to improve visualization, bibtex, CAL500,
Corel5k and delicious datasets has been discarded because of much
igher values than the rest. The results from comparing LAML-kNN and
ur method are illustrated in Figs. 9–11 in a similar way. For 𝐹1 and
verage Precision, the points above the main diagonal indicate that our
pproach achieved a better performance. The remaining metrics points
elow the main diagonal, 𝑦 = 𝑥, indicate that ML-localkNN achieved a
etter performance.

The Hamming Loss and Ranking Loss, as shown in Fig. 6, demonstrate
he general advantage of ML-localkNN. Most of the points are below
he main diagonal 𝑦 = 𝑥, particularly for the Hamming Loss as it is
orroborated by the Wilcoxon test (refer to Table 2).

The comparison for 𝐹1 and Average Precision, as shown in Fig. 7,
hows a similar pattern of behavior. The advantage in the performance
n terms of 𝐹1 is distinct, whereas the results for Average Precision
re more similar between the two methods. Fig. 8 shows the better
ehavior of the standard ML-kNN for the Coverage metric.

The same plots are shown for LAML-kNN in Figs. 9–11. Fig. 9 shows
he comparison of Hamming and Ranking Loss. For Ranking Loss, there is

a distinct advantage of our approach, as most of the points are located
below the main diagonal. For Hamming Loss, our approach obtained
a worst performance. However, the plot shows that the differences in
both methods were always very small.

Fig. 10 shows the comparison of Average Precision and 𝐹1. For 𝐹1,

the advantage of ML-localkNN is distinct. Most of the points are located
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Fig. 10. Comparison of ML-localkNN vs LAML-kNN using 𝐹1 and Average Precision metrics.
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above the main diagonal, and the differences are large. There was also a
better behavior for Average Precision but with less marked differences.
Fig. 11 shows the comparison in terms of Coverage with results that
corroborate the previous discussion.

Regarding execution time, our method is fast. As previously stated,
to obtain the local 𝑘𝑖 values associated with 𝐱𝑖 only a few instances,
instances that have 𝐱𝑖 among one of its nearest neighbors, are involved.
Furthermore, as the value of 𝑘𝑖 does not affect the local values of
other instances, every value can be concurrently obtained using an easy
parallel implementation. At testing time, once we obtain the optimal
value for 𝑘 for our query instance, our method executes an algorithm
similar to ML-kNN.

Comparing our algorithm against standard ML-kNN and its variants
in terms of runtime is difficult as ML-kNN has no task similar to our step
for obtaining the optimal local 𝑘 values. However, to obtain the per-
formance for ML-kNN and LAML-kNN showed in the previous tables a
10-fold cross-validation process had to be carried out for both standard
methods. That process must be taken into account when considering
runtime as using a fixed 𝑘 value showed poorer performance. Table 3
shows the mean execution time in minutes for ML-localkNN and the
standard methods. All the experiments were run in a AMD EPYC 7402

24-Core processor at 1.5 GHz with 512 MB of memory. The table shows

10
that our proposal runs fast even for the largest datasets and much faster
that ML-kNN.

5.1. Comparison with other multi-label methods

In the previous section we have shown that ML-localkNN is compet-
tive when compared with other versions of ML-kNN methods. How-
ver, it is interesting to know how well does our proposal perform
hen compared with other widely used multi-label methods. For that
urpose, we carried out experiments using other classifiers. We com-
ared six multilabel classification methods: binary relevance (Boutell
t al., 2004) (BR), Classifier chains (Read et al., 2011) (CC), RAn-
om k-labELsets (Tsoumakas et al., 2011a) (RAkEL) with overlap-
ing and non-overlapping labelsets, Label powerset (Tsoumakas et al.,
011a) (LP), MLARAM (Benites and Sapozhnikova, 2015) and Deep
earning (DL) (Maxwell et al., 2017). RAkEL with non-overlapping
abelsets consistently outperformed RAkEL with overlapping labelsets
o the results of the latter are not reported. The methods were imple-
ented using scikit multi-learn (Szymański and Kajdanowicz,

2017). The hyper-parameters were obtained by means of 10-fold cross-
validation. For BR, RAkEL, CC and LP we used decision trees as
multiclass classifiers.
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Table 3
Mean execution time in minutes for ML-kNN, LAML-kNN and ML-localkNN.

Dataset ML-kNN LAML-kNN ML-localkNN

bibtex 12623.50 583.52 59.53
birds 17.97 14.36 0.15
CAL500 13.10 51.42 0.54
Corel5k 1719.88 841.41 16.04
delicious 21268.30 5763.71 178.33
emotions 5.65 11.38 0.04
enron 366.73 50.79 2.21
flags 0.58 2.39 0.00
genbase 68.59 26.39 0.32
LLOG-F 273.77 74.65 1.80
medical 177.38 24.72 0.98
Music 5.39 11.19 0.04
OHSUMED-F 24866.30 422.49 119.70
REUTERS-K500-EX2 2535.36 275.73 12.31
scene 234.68 54.22 1.17
SLASHDOT-F 1830.78 50.21 10.25
solar_flare-L3 0.93 3.83 0.00
yeast 119.45 47.37 0.77

For this comparison, as it involved many different methods, we

irst applied the Iman–Davenport test to ascertain whether there were

11
significant differences between the methods. The Iman–Davenport test
is based on the 𝜒2

𝐹 Friedman test, which compares the average ranks
of 𝑘 algorithms, but the former is more powerful. When the Iman–

avenport test rejects a null hypothesis, we proceed with a post hoc
emenyi test (Nemenyi, 1963), which compares groups of methods.
he performances of two classifiers are considered significantly differ-
nt if the corresponding average ranks differ by at least the following
ritical difference:

𝐷 = 𝑞𝛼

√

𝑘(𝑘 + 1) 6
𝑁

, (8)

where the critical value 𝑞𝛼 is based on the studentized range statistic
ivided by

√

2, 𝑁 is the number of datasets, and 𝑘 is the number
of compared methods. As a graphical representation of the Nemenyi
test, we use the plots described by Demšar (Demšar, 2006). When
comparing the algorithms against one another, we connect each group
of algorithms that are not significantly different with a horizontal line.
We also show the critical difference above the graph. Detailed results
are shown in Tables A.9–A.13 of Appendix A.

Fig. 12 shows the comparison in terms of Nemenyi test for the
five studied metrics. The 𝑝-values of the Iman–Davenport test were
always below the critical level. The plot shows the good performance of
our approach. For three of the metrics, F1, Ranking Loss and Average
Precision, ML-localkNN was the best performing method in terms of
Friedman’s ranks. For the remaining two metrics, Hamming Loss and
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Fig. 12. Nemenyi test for the different classification methods and the five performance metrics.
Coverage, it was the second best method. Thus, as a whole it had the
best overall performance of the 8 methods tested.

6. Conclusions and future research lines

In this paper, we have presented a new method for introducing a
local value of 𝑘 for the ML-kNN classifier in multi-label problems. The
method consists of associating a local value of 𝑘 with every prototype
and using that 𝑘 value for any query instance whose nearest neighbor is
he prototype. Our method performed better than the standard ML-kNN
lgorithm and LAML-kNN, a new version that also takes into account
ocal information.

The method was compared with the standard ML-kNN and LAML-
NN using 10-fold cross-validation. The proposed method demonstrated
n overall better performance for a set of 18 datasets using five dif-
erent performance metrics. We also investigated the average values
or 𝑘 obtained by our approach and compared them by the standard
ross-validation method.

The time needed to obtain the optimal 𝑘 value for each prototype
as shown to be less with the use of our proposed algorithm, and
12
furthermore, the whole process can be run in parallel, which means
that the size of the dataset is not a constraint in our approach.

Many different lines of research can be initiated from this approach.
The most obvious means of improving this work is to couple the
local value of 𝑘 with instance selection (Del Castillo et al., 2021). An
evolutionary algorithm that simultaneously performs both tasks would
be a promising approach. In such an evolutionary method, the value
of 𝑘 for each instance and whether an instance is removed would
be simultaneously considered. There are also several works that have
developed methods for locally improving the distance metrics used for
obtaining the neighbors of an instance (Jiao et al., 2015; Wang et al.,
2020). Many distance metrics are available (Alfeilat et al., 2019) and
most distance metrics can be modified using weight tuning (Kahraman,
2016). Weight-tuning methods and distance metrics have a signifi-
cant impact on the k-nearest neighbor-based classification. A major
challenge is how to explore the optimal weight values of the fea-
tures and how to measure distances between the neighbors. Both task
are closely related. Kahraman (2016) proposed an heuristic weighting
method coupled with a similarity distance metric called fuzzy distance
metric. Kumbure et al. (2020) developed also a variant of the fuzzy
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Table A.4
Hamming Loss metric results for ML-kNN, LAML-kNN and our proposal.

ML-kNN LAML-kNN ML-localkNN

HL ↓ k HL ↓ k HL ↓ k

bibtex 0.023 1 0.013 24.8 0.015 7.0
birds 0.084 1 0.054 21.4 0.057 7.5
CAL500 0.193 1 0.142 20 0.150 8.4
Corel5k 0.016 1 0.009 24 0.011 7.7
delicious 0.027 1 0.018 24.2 0.019 8.0
emotions 0.293 1.7 0.270 11.2 0.267 15.3
enron 0.071 1 0.050 18.3 0.054 8.4
flags 0.337 5.3 0.303 8.3 0.323 16.4
genbase 0.001 1 0.001 1.1 0.001 5.0
LLOG-F 0.026 1 0.015 21.3 0.017 6.9
medical 0.020 1 0.010 16.3 0.015 11.1
Music 0.200 6.4 0.200 10.3 0.196 15.6
OHSUMED-F 0.097 2.9 0.070 24.9 0.081 6.5
REUTERS-K500-EX2 0.015 1 0.011 9.4 0.011 10.9
scene 0.097 3 0.088 11.2 0.087 9.9
SLASHDOT-F 0.072 1 0.053 24.9 0.061 7.3
solar_flare-L3 0.091 2.5 0.081 15.7 0.082 5.7
yeast 0.198 11.4 0.201 14.7 0.201 12.1

Table A.5
𝐹1 metric results for ML-kNN, LAML-kNN and our proposal.

ML-kNN LAML-kNN ML-localkNN

𝐹1 ↑ k 𝐹1 ↑ k 𝐹1 ↑ k

bibtex 0.205 23.6 0.240 1.3 0.241 5.9
birds 0.512 5.3 0.070 1.2 0.503 5.8
CAL500 0.346 25 0.365 2.3 0.371 6.2
Corel5k 0.099 4.7 0.122 1 0.094 5.9
delicious 0.225 25 0.253 2 0.269 6.0
emotions 0.508 9.4 0.477 2.2 0.507 9.4
enron 0.494 12.4 0.466 16 0.509 6.8
flags 0.668 23.9 0.665 9.9 0.691 10.5
genbase 0.968 25 0.988 1 0.987 5.0
LLOG-F 0.210 10.4 0.104 1 0.225 5.9
medical 0.601 21.8 0.637 1.9 0.585 8.9
w Music 0.636 25 0.628 7.3 0.653 9.8
OHSUMED-F 0.183 13.7 0.187 1.8 0.174 5.7
REUTERS-K500-EX2 0.418 13.9 0.459 1.9 0.460 7.3
scene 0.709 24.2 0.713 4.3 0.721 7.7
SLASHDOT-F 0.287 9 0.307 1 0.303 5.4
solar_flare-L3 0.838 25 0.019 3.3 0.839 5.5
yeast 0.649 25 0.608 11.2 0.640 8.6

𝑘-NN rule (Keller et al., 1985) using Bonferroni mean. Although these
methods might be related to ours, they are still to be developed for
multi-label learning. Thus an interesting future research lines is testing
how the combination of both approaches can obtain a better method.
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Table A.6
Coverage metric results for ML-kNN, LAML-kNN and our proposal.

ML-kNN LAML-kNN ML-localkNN

COV ↓ k COV ↓ k COV ↓ k

bibtex 57.217 25 40.155 1.2 64.827 5.4
birds 3.983 1.5 4.651 11.6 4.078 6.5
CAL500 129.612 1 134.801 14.3 131.921 5.1
Corel5k 117.275 22.4 116.974 1 118.092 5.6
delicious 585.312 24.9 603.863 1 621.940 8.1
emotions 2.267 8.1 3.487 1.1 2.255 14.0
enron 13.415 6.2 14.626 18.7 13.354 6.6
flags 3.947 10 4.979 6.6 3.953 11.5
genbase 0.550 1.8 1.567 20 0.535 5.0
LLOG-F 13.637 6.6 14.650 1 13.421 5.7
medical 2.690 1.6 4.030 1 2.711 5.9
Music 1.794 8.8 2.950 1 1.801 13.4
OHSUMED-F 7.309 24.2 8.948 3.5 8.222 5.4
REUTERS-K500-EX2 8.557 23.8 11.891 1 10.745 7.5
scene 0.475 8.7 1.579 1 0.509 9.0
SLASHDOT-F 4.208 19.1 5.272 1.9 4.406 6.7
solar_flare-L3 0.118 2.8 0.319 9.5 0.124 5.3
yeast 6.332 2.9 7.492 1.9 6.440 8.6

Table A.7
Ranking Loss metric results for ML-kNN, LAML-kNN and our proposal.

ML-kNN LAML-kNN ML-localkNN

RL ↓ k RL ↓ k RL ↓ k

bibtex 0.286 1.7 0.168 1.4 0.260 5.6
birds 0.160 1 0.162 11.7 0.162 7.0
CAL500 0.197 10.9 0.214 1.9 0.212 5.3
Corel5k 0.145 1 0.141 7.8 0.146 5.7
delicious 0.159 1 0.137 1 0.142 7.3
emotions 0.295 2.5 0.303 1.1 0.273 15.8
enron 0.098 5.5 0.101 1 0.097 7.0
flags 0.260 1 0.282 1.2 0.251 15.7
genbase 0.007 1 0.006 19.8 0.006 5.0
LLOG-F 0.153 1 0.145 2.2 0.146 5.8
medical 0.039 1 0.050 1 0.036 6.2
Music 0.196 3.1 0.193 1 0.168 15.3
OHSUMED-F 0.258 1 0.268 3.1 0.279 5.5
REUTERS-K500-EX2 0.096 2.1 0.076 1 0.072 8.2
scene 0.096 4.5 0.098 1 0.085 9.3
SLASHDOT-F 0.197 1.2 0.182 1.9 0.187 7.0
solar_flare-L3 0.039 1 0.048 9.6 0.047 5.2
yeast 0.190 1 0.203 1 0.178 9.3
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Appendix. Tables with detailed results

In this appendix tables with detailed results are shown (see Ta-
bles A.4 and A.13).
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Table A.8
Average Precision metric results for ML-kNN, LAML-kNN and our proposal.

ML-kNN LAML-kNN ML-localkNN

Avg.P ↑ k Avg.P ↑ k Avg.P ↑ k

bibtex 0.358 25 0.388 25 0.358 25
birds 0.670 25 0.674 10.3 0.670 23.4
CAL500 0.491 25 0.486 22.1 0.491 25
Corel5k 0.229 25 0.238 25 0.229 25
delicious 0.336 25 0.339 25 0.336 24.7
emotions 0.717 24.7 0.702 8.8 0.719 24.4
enron 0.633 25 0.636 22.5 0.633 25
flags 0.807 23 0.792 19.9 0.814 25
genbase 0.989 25 0.991 1.4 0.991 25
LLOG-F 0.398 24.9 0.400 23.6 0.398 25
medical 0.875 25 0.811 13.8 0.876 24.6
Music 0.801 22.1 0.794 13.9 0.800 24.2
OHSUMED-F 0.455 25 0.469 25 0.455 25
REUTERS-K500-EX2 0.640 25 0.642 16.9 0.638 16.7
scene 0.872 25 0.862 16.3 0.870 18.1
SLASHDOT-F 0.501 25 0.516 24.7 0.501 25
solar_flare-L3 0.966 25 0.964 13.5 0.966 25
yeast 0.767 25 0.758 13.8 0.767 24.9

Table A.9
Hamming Loss metric results for Binary relevance, Classifier chains, Label powerset,
RAkEL and Deep learning methods.

Dataset BR CC LP RAkEL DL

bibtex 0.0169 0.0171 0.0193 0.0155 0.0148
birds 0.1093 0.1053 0.1134 0.1066 0.2861
CAL500 0.2102 0.2073 0.1723 0.1924 0.4120
Corel5k 0.0123 0.0118 0.0155 0.0111 0.0095
delicious 0.0206 0.0238 0.0353 0.0195 0.0194
emotions 0.2361 0.2417 0.2611 0.2361 0.4500
enron 0.0651 0.0719 0.0645 0.0601 0.1255
flags 0.2643 0.2500 0.3143 0.2857 0.5357
genbase 0.0017 0.0017 0.0017 0.0022 0.3201
LLOG-F 0.0282 0.0295 0.0256 0.0248 0.1191
medical 0.0107 0.0111 0.0168 0.0107 0.1218
Music 0.2611 0.2528 0.2500 0.2806 0.3889
OHSUMED-F 0.0611 0.0610 0.0756 0.0594 0.0634
REUTERS-K500-EX2 0.0235 0.0242 0.0236 0.0223 0.0139
scene 0.1404 0.1390 0.1349 0.1369 0.1404
SLASHDOT-F 0.0687 0.0673 0.0823 0.0667 0.0548
solar_flare-L3 0.4000 0.5333 0.2000 0.2000 0.4667
yeast 0.2441 0.2618 0.2597 0.2503 0.2553

Mean 0.1208 0.1284 0.1148 0.1101 0.2110

Table A.10
F1 metric results for Binary relevance, Classifier chains, Label powerset, RAkEL and
Deep learning methods.

Dataset BR CC LP RAkEL DL

bibtex 0.3953 0.3942 0.1509 0.3972 0.0210
birds 0.4565 0.4912 0.3367 0.3619 0.1989
CAL500 0.3367 0.3523 0.3035 0.3358 0.2184
Corel5k 0.0963 0.1042 0.1171 0.0988 0.0000
delicious 0.2371 0.1534 0.1374 0.2348 0.0000
emotions 0.6159 0.5950 0.5532 0.6219 0.4795
enron 0.4972 0.4914 0.4773 0.5572 0.2755
flags 0.7189 0.7237 0.6533 0.6820 0.4478
genbase 0.9900 0.9913 0.9900 0.9875 0.0608
LLOG-F 0.1809 0.1716 0.2212 0.1704 0.0524
medical 0.8080 0.7963 0.6929 0.7985 0.0458
Music 0.5856 0.5780 0.6314 0.5549 0.3446
OHSUMED-F 0.4376 0.4589 0.3740 0.4087 0.2214
REUTERS-K500-EX2 0.0103 0.0132 0.0129 0.0107 0.0000
scene 0.5674 0.6027 0.6244 0.5760 0.3597
SLASHDOT-F 0.1897 0.2100 0.1955 0.1719 0.0000
solar_flare-L3 0.1333 0.2667 0.7467 0.7467 0.5029
yeast 0.5831 0.5512 0.5724 0.5829 0.5552

Mean 0.4355 0.4414 0.4328 0.4610 0.2102
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Table A.11
Coverage metric results for Binary relevance, Classifier chains, Label powerset, RAkEL
and Deep learning methods.

Dataset BR CC LP RAkEL DL

bibtex 58.8311 56.5581 67.8122 55.7527 74.1919
birds 7.4103 7.3846 7.2564 9.3846 11.0769
CAL500 148.2745 150.3333 131.2157 152.7647 165.8235
Corel5k 151.8360 147.5660 115.0340 164.0880 149.3860
delicious 714.3599 771.4966 661.6358 703.5426 684.5214
emotions 2.1500 2.4833 2.6000 2.2000 2.8667
enron 21.9415 23.2456 19.1462 23.2573 30.8889
flags 3.6500 3.4000 3.7000 3.5000 5.4000
genbase 0.2090 0.2090 0.4925 0.2090 15.2388
LLOG-F 29.4344 29.5902 20.1148 32.3689 35.9262
medical 5.8061 5.2449 5.9082 4.6429 27.4898
Music 2.2167 2.4833 2.4333 2.6500 3.0500
OHSUMED-F 6.1149 6.1450 6.9060 5.9440 5.6116
REUTERS-K500-EX2 57.5617 55.5833 57.9400 55.6867 52.8133
scene 1.4481 1.3942 0.9668 1.1328 0.7386
SLASHDOT-F 5.8179 6.0475 6.3668 5.8813 9.1662
solar_flare-L3 0.4000 0.8000 0.4000 0.4000 0.8000
yeast 9.2355 8.6529 6.5496 8.2521 8.2231

Mean 68.1499 71.0343 62.0266 68.4254 71.2896

Table A.12
Ranking Loss metric results for Binary relevance, Classifier chains, Label powerset,
RAkEL and Deep learning methods.

Dataset BR CC LP RAkEL DL

bibtex 0.3332 0.3344 0.2961 0.2674 0.2715
birds 0.3879 0.3802 0.3267 0.3457 0.6683
CAL500 0.6352 0.6404 0.4251 0.5735 0.4110
Corel5k 0.5293 0.5685 0.5632 0.5169 0.5137
delicious 0.1526 0.2703 0.1285 0.1442 0.1111
emotions 0.3139 0.4153 0.3944 0.3722 0.3000
enron 0.2572 0.2880 0.1853 0.2350 0.2360
flags 0.4667 0.4146 0.5958 0.5250 0.5487
genbase 0.0000 0.0000 0.0075 0.0000 0.1928
LLOG-F 0.6168 0.6216 0.3982 0.5377 0.7393
medical 0.1505 0.1760 0.1216 0.1480 0.3444
Music 0.3972 0.3806 0.3968 0.3690 0.3005
OHSUMED-F 0.1814 0.1802 0.2951 0.1750 0.2086
REUTERS-K500-EX2 0.8538 0.8530 0.9044 0.8787 0.8950
scene 0.2863 0.2687 0.1940 0.2448 0.0685
SLASHDOT-F 0.1380 0.1521 0.1490 0.1206 0.0911
solar_flare-L3 0.4000 0.4000 0.4000 0.4000 0.4000
yeast 0.3543 0.3699 0.2800 0.3320 0.3086

Mean 0.3586 0.3730 0.3368 0.3436 0.3672

Table A.13
Average Precision metric results for Binary relevance, Classifier chains, Label powerset,
RAkEL and Deep learning methods.

Dataset BR CC LP RAkEL DL

bibtex 0.4392 0.4372 0.2472 0.4595 0.1987
birds 0.5137 0.5313 0.5328 0.4437 0.2629
CAL500 0.3003 0.3289 0.4853 0.3022 0.1797
Corel5k 0.2096 0.2312 0.2262 0.2235 0.2046
delicious 0.2984 0.2419 0.2400 0.3080 0.2240
emotions 0.7505 0.6943 0.7005 0.7446 0.5956
enron 0.5607 0.5194 0.6128 0.5782 0.3162
flags 0.8085 0.8345 0.7388 0.7815 0.5667
genbase 1.0000 1.0000 0.9932 1.0000 0.0936
LLOG-F 0.2249 0.2321 0.2810 0.2135 0.1017
medical 0.8164 0.8084 0.7445 0.8243 0.0806
Music 0.7175 0.7093 0.7491 0.6847 0.5863
OHSUMED-F 0.6263 0.6247 0.5038 0.6163 0.5923
REUTERS-K500-EX2 0.0576 0.0612 0.0530 0.0601 0.0580
scene 0.6994 0.7186 0.7563 0.7281 0.7855
SLASHDOT-F 0.4172 0.4193 0.3653 0.3972 0.1667
solar_flare-L3 0.8000 0.6000 0.8000 0.8000 0.6667
yeast 0.6134 0.6150 0.7352 0.6493 0.6753

Mean 0.5474 0.5337 0.5425 0.5453 0.3530
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