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Abstract
Shrimp production is an important industry for many countries and shrimp consumption is increasing worldwide. Shrimps 
are a highly nutritional food, but can pose a risk for human health if subject to high levels of environmental contaminants. 
This work studies the presence of As, Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn in shrimps from Ecuador and compares them to 
such contents noted in other shrimp-production areas in the world to evaluate the possible risks associated with these ele-
ments for consumer health, and to relate them to potentially toxic element (PTE) contents in water, sediments and diets, and 
also to animal biometric parameters. The PTE levels (mg  kg−1 DM) obtained are as follows: in the head—As (3.52–6.11), 
Cd (0.02–0.10), Co (0.14–0.49) Cr (0.23–4.89), Cu (99.9––233.0), Ni (0.52–1.86), Pb (0.24–1.09), Zn (51.8–100.5) and Hg 
(μg  kg−1 DM) (10.00–66.81); in the tail—(0.91–3.21), Cd (0.01–0.02), Co (0.01–0.43) Cr (0.01–6.52), Cu (20.0–72.44), Ni 
(0.15–2.03), Pb (0.01–0.69), Zn (31.2–66.1) and Hg (μg  kg−1 DM) (10.00–67.18). The concentration of all the PTEs is gener-
ally lower than the limits set for seafood by European regulations, except for As in the cephalothorax (4.63 mg  kg−1). Differ-
ent behaviours for PTE accumulation in shrimps were found, which preferentially tend to accumulate in the cephalothorax, 
except for Hg (40.13 μg  kg−1 DM), which accumulates in muscle (body) and is associated with contents of proteins, lipids 
and total shrimp weight. Nonetheless, the target hazard quotient (THQ) values for PTEs indicate that the consumption of 
shrimp muscles from Ecuador does not pose a human health risk because the values of these indices are below 1 in all cases.
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Introduction

Shrimps have become one of the most eaten seafood spe-
cies worldwide (Arisekar et al. 2022) and are an excellent 
source of proteins and also have low saturated fat contents, 
which make them a very health food option (Dayal et al. 
2013). Shrimp aquaculture is generally perceived as less 
harmful to the environment than other forms of agriculture, 
urban development and industrialisation (Páez-Osuna 2001). 
Indoor shrimp farming is a rapidly growing industry, but 
has the potential to accumulate potentially toxic elements 
(PTEs) in shrimp tissues, which can pose a human health 
risk. PTEs are chemical elements that can be toxic at low 
concentrations and can accumulate in the food chain. Hg, 
Cd, Pb, As and Cr are some of the commonly studied PTEs 
in shrimp farming. PTE levels in indoor shrimp farming can 
be influenced by several factors, including shrimps’ diet, 
water quality and sediments. Shrimp feed can be a source of 
PTEs, particularly if made with contaminated ingredients. 
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Water quality is also important because PTEs can be present 
in the water source and shrimps can absorb them through 
their gills. Sediment levels can also contribute to PTE accu-
mulation because shrimps can ingest sediment particles that 
contain PTEs (Hidayati et al. 2020).

PTE bioaccumulation in shrimp tissues can vary depend-
ing on the type and level of exposure. PTEs can accumulate 
in both shrimp head and body tissues, and their levels can 
be influenced by shrimps’ biometric parameters, such as size 
and age. Larger shrimps usually tend to have higher PTE 
levels because they have more time to accumulate them. 
However, the relation between biometric parameters and 
PTE accumulation can vary depending on the specific PTEs 
and other environmental factors. It is important to monitor 
PTEs levels in indoor shrimp farming to ensure that they fall 
within the safe limits for human consumption. Regular test-
ing of water, sediment and shrimp tissue samples can help 
to identify potential risks and inform management strategies 
to reduce PTE accumulation. Additionally, selecting high-
quality feed ingredients and maintaining good water quality 
can help to minimise PTE exposure in shrimp farming. Con-
taminants like Hg, Cd, Pb and As can accumulate in vari-
ous shrimp tissues, including the hepatopancreas (digestive 
gland), gills, muscle and the exoskeleton. The accumulation 
pattern of heavy metals in shrimp tissues can vary depending 
on the type of metal, exposure route, and exposure duration 
and intensity. In general, the hepatopancreas tends to accu-
mulate higher heavy metal levels compared to other shrimp 
tissues. This is because the hepatopancreas is the primary 
site of metal detoxification and storage in shrimp. Gills can 
also accumulate high heavy metal levels because they are 
in direct contact with the surrounding water and can absorb 
metals through their surface (Ali and Khan 2019). Shrimp 
muscle tissue is commonly consumed by humans and, thus, 
heavy metal accumulation in this tissue is a particular food 
safety concern. Heavy metals can accumulate in shrimp 
muscle tissue if they are present in the surrounding water 
and/or diet. Therefore, it is important to monitor heavy metal 
levels in both the water and feed used in shrimp farming to 
ensure that their levels fall within the safe limits for human 
consumption. Overall, heavy metal accumulation in shrimp 
tissues can pose a health risk to the humans who consume 
them. Regular monitoring and management of heavy metal 
levels on shrimp farms can help to reduce this risk and to 
ensure the safety of shrimps as a food source.

Shrimp production in Ecuador is an extremely important 
industry for the economy of this country and is located along 
some 2237 km of its coastline, which is proportionally less 
territory than Mexico and Brazil. Ecuador produces more than 
50% of the shrimps farmed in the western hemisphere (Mon-
salve and Quiroga 2022). In 2015, Ecuador’s shrimp produc-
tion exceeded 300,000 tn (Uzcátegui et al. 2016) and it was 

second shrimp-exporting country (Argandona 2016). In 2021, 
Ecuador led the list of the major shrimp-producing countries, 
followed by China, Vietnam, India and Indonesia. In 2021, 
Ecuador’s shrimp sector’s deliveries amounted to $4539 mil-
lion, which was 34% more than in 2020. The main importers 
of shrimps from Ecuador are the USA, China, the European 
Union and Japan (EUMOFA 2018; NationalMarineFish-
eriesService 2017). The main shrimp farming in Ecuador 
takes place along the Guayas Province and the majority of 
its shrimp production derives from semi-extensive shrimp 
farming in large ponds (1–10 ha) that lie on natural substrate 
and in water from rivers, estuaries and coasts. The El Oro 
Province has vast mining resources of is gold deposits (Mes-
tanza-Ramón et al. 2022; Escobar-Segovia et al. 2021) with a 
high percentage of illegal exploitations that generate a volume 
of uncontrolled waste. Such waste affects the water bodies 
and soils in the area (Ramírez and Lacasaña 2001). Mining 
activities can result in the release of PTEs to the environment, 
which can have harmful effects on the ecosystem (Nanos et al. 
2015; Odumo et al. 2018; Zamani-Ahmadmahmoodi et al. 
2020; Mirzaei et al. 2014; Rodríguez Martín et al. 2014). Such 
mining discharges reach surface water bodies and accumulate 
in sediments (Odumo et al. 2014; Zamani-Ahmadmahmoodi 
et al. 2020). In our case, this situation affects water resources 
like River Chaguana, River Puyango, River Siete, River Gala 
and River Chico, and generally the water system in the area 
(Appleton et al. 2001) that, in turn, affects the El Oro Prov-
ince region (Vilela-Pincay et al. 2020). This contamination of 
water resources implies the accumulation of contaminants by 
aquatic organisms directly absorbed from water, and indirectly 
through food chains (Łuczyńska et al. 2018) in relation to 
food (Livingstone 2001). Common mechanisms exist in metal 
toxicity, such as interactions with sulphydryl groups, essential 
metals and oxidative stress (Frías-Espericueta et al. 2022).

In short, PTEs are a concern for shrimp farming because 
they can accumulate in shrimp tissues and can potentially 
pose health risks to the humans who consume them. Heavy 
metals in shrimp farming are frequently related to the water 
and feed content (Arisekar et al. 2022; Batvari et al. 2016; 
Biswas et al. 2021; Dadar et al. 2014). Heavy metals, such 
as Pb, Hg and Cd, can enter water. To minimise the risk of 
heavy metal contamination in shrimp farming, it is important 
to accurately evaluate the risks of these PTEs on shrimp 
farms. The objectives of this work are to (i) evaluate the 
levels of potentially toxic elements (PTEs; As, Cd, Co, 
Cr, Cu, Hg, Ni, Pb, Zn) in Pacific White shrimp (Litope-
naeus vannamei), and in both the tail and head; (ii) assess 
the environment in which they are farmed (water, sediment 
and food); (iii) study if PTE accumulation exists in Pacific 
White shrimp under such conditions; and (iv) evaluate the 
potential risk of these elements in shrimps for the health of 
those who eat them.
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Material and methods

Shrimp‑farming area and pollution sources

The shrimp-farming area is localised in the El Oro prov-
ince of Ecuador (3° 23′ 45″ S; 79° 57′ 21″ W). El Oro 
is a coastal province in Ecuador known for its shrimp-
farming industry. The region has several shrimp farms that 
produce large quantities of shrimps. It faces several chal-
lenges due to pollution from various sources. One of the 
primary sources of pollution to affect the El Oro shrimp 
farming is agricultural runoff. The region is known for 
its intensive agricultural practices, including the use of 
fertilisers and pesticides. These chemicals can leach into 
nearby waterways and eventually make their way to shrimp 
ponds, where they can harm shrimps and reduce produc-
tion. Industrial pollution is another source of pollution 
that affects shrimp farming in El Oro. The province has 
several industries, including mining, which can release 
pollutants to water.

Historically, this province has been an important gold-
mining centre, hence the name “Oro,” meaning “gold” in 
Spanish. The most important gold-mining areas in the El 
Oro Province are in the Nambija and Buenos Aires regions. 
Nambija, located near the city of Zamora, is known for 
its alluvial gold deposits. Buenos Aires, located near the 
city of Machala, has both alluvial and underground gold 
deposits. In the twentieth century, large-scale mining 
operations began to develop in the province, particularly 
in the Zaruma and Portovelo areas. These mines primar-
ily extracted gold and silver, and contributed significantly 
to the local economy. Today, mining in El Oro is mostly 
small-scale and artisanal, with many informal mining 
operations scattered throughout the province (Mestanza-
Ramón et al. 2022). Other minerals that are mined in Oro 
Province include Cu, Au and Pb. In recent years, the Ecua-
dorian government has sought to regulate and formalise 
the mining sector in El Oro. These pollutants can contami-
nate the environment and affect the health of shrimps and 
other aquatic organisms.

Shrimps, sediment and water sampling

Shrimps were randomly distributed and stocked in eight 
1-m3 cages placed inside a 1-ha pond on the “Noblecilla 
Salas” shrimp farm located in Santa Rosa (El Oro Prov-
ince, Ecuador). Shrimps were fed 3 times daily (7% of 
their body weight) at 08:00 h, 12:00 h and 16:00 h. Every 
week, the total weight of shrimps was recorded to adjust 
the daily amount of feed. The water quality parameters 
were measured once a day and kept optimal for white 

shrimps’ growth and survival: average temperature 
(26.6°C), salinity (24.5‰) and pH (7.19). The proximal 
composition in the shrimp diet is shown in Table 1 (mois-
ture, ash, lipid, protein and carbohydrate contents) and 
biometric parameters in Table S1. These food components 
may be of interest in the food industry for product develop-
ment, quality control (QC) or regulatory purposes. Neutral 
detergent fibre (NDF) primarily contains major cell wall 
components, including hemicellulose, cellulose and lignin. 
Nitrogen-free extract (NFE) is designed to provide an esti-
mate of water-soluble polysaccharides (sugars, starch) and 
is calculated by the difference between the original sample 
weight and the sum of the weights of moisture (water), 
ether extract, crude protein, crude fibre and ash. At the 
end of the feeding trial, shrimps were sacrificed, and head 
and abdomen were separated and frozen at −20°C until 
mineral determinations were made.

The water samples were packed in 4-L glass bottles. Two 
composite water samples were taken at the supply point of 
the pond by applying Regulation AM 097A of the Ministry 
of the Environment of Ecuador. Each sample was labelled 
and frozen at −20°C for preservation purposes and the sub-
sequent PTE analysis. Sediment samples were collected 
from the bottom of the shrimp pool using a 2-inch PVC pipe 
at a depth of 20 cm. Samples were taken in a zig-zag pattern 
in an attempt to cover the shrimp-farming pool area. In the 
laboratory, the sediment samples were dried in an oven at 
40°C. Samples were then pulverised through a 90–100-μm 
sieve before sieving.

Analytical methods of potentially toxic elements

The Pacific Whitelegs shrimp (Litopenaeus vannamei) sam-
ples (head and body tissues) were digested by the aqua regia 
technique using microwave acid digestion (ETHOS SEL 
Model Milestone, Monroe, CT, USA). The concentrations of 
PTEs (As, Cd, Co, Cr, Cu, Ni and Pb) in tissue extracts were 
determined by atomic absorption spectrometry (PerkinElmer, 
Shelton, CT, USA 06484-4794) using graphite furnace 
atomic absorption spectrophotometry (GF-AAS) equipment. 

Table 1  Proximate composition

Proximate composition in % on dry matter basis

Mean SD

Proximate composition
 Crude protein 30.1 0.1
 Total lipid 7.2 0.2
 Ash 7.1 0.2
 Nitrogen-free extract (NFE) 39.7 0.5
 Neutral detergent fibre (NDF) 14.8 2.7
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The limits of detection (LoDs) were 0.05 mg  kg−1 for As, 
0.002 mg  kg−1 for Cd, 0.2 mg  kg−1 for Co, 0.2 mg  kg−1 for 
Cr, 0.014 mg  kg−1 for Cu, 0.07mg  kg−1 for Ni, 0.05mg  kg−1 
for Pb and 0.05 mg  kg−1 for Zn. To check the accuracy and 
precision of measurements, PTE analyses were performed 
using two certified reference materials, CRM 463 and ERMI-
CE278, from European Reference Materials. Recoveries for 
shrimp samples were good, and averaged between 95% for 
Cu and 104% for As. The same methodology was followed to 
determine PTEs in the sediment samples BCR-141 R and was 
used as the certified reference material to verify the method’s 
accuracy, which resulted in almost complete PTEs recovery 
(between 94% for Cu and 101% for As). Three replicates 
were analysed per sample and concentrations were indicated 
as mg  kg−1 dry matter (DM).

The total Hg in the sediment, water and shrimp (head and 
body) was measured using a direct Hg analyser (DMA80, 
atomic absorption spectrophotometer, Milestone, Wesleyan 
University, Middletown, CT, USA). To determine the method’s 
precision, three replicates of each sample were considered. 
DMA80 provides two working ranges for Hg detection: 0–40 
and 40–400 ng. The LoD was 0.5. The analytical procedure 
validation of the soil and sediment samples was performed 
with calcareous loam soil (BCR-141 R) and river sediment 
(BCR-320) obtained from the European Commission Commu-
nity Bureau of Reference (ECCBR). The Hg analysis revealed 
a good agreement between the obtained and certified values, 
with an average recovery of 97.25% (2.1% VC). Three repli-
cates were also analysed per sample and concentrations were 
expressed as mg  kg−1 DM.

Bioaccumulation and toxicity indices

Sediment and diet accumulation factors (BSAF and BDAF)

Studying PTEs in the natural environment is important for 
their toxicity, persistence and bioaccumulation there. It is 
known that several authors have employed bioaccumula-
tion indices to estimate the accumulation of contaminants 
in different species of living beings and their tissues, and to 
relate them to their environment and their transfer from the 
abiotic environment, which could lead to their biomagnifica-
tion (Silva et al. 2018; Avigliano et al. 2019; Xu et al. 2019). 
These authors have employed the biota sediment accumula-
tion factor (BSAF) by assuming that the organism and sedi-
ment are in equilibrium (Mackay et al. 2018)

where Ct is the concentration of the considered element 
in the species’ tissue (in our case, shrimp head and body), 
expressed as mg  kg−1wet weight (WW) and Cs is the 

BSAF =
Ct

Cs

concentration of the same element in sediment, expressed 
as its mean value (mg  kg−1DM).

As the studied species has been fed a diet that has been 
characterised, this index was contemplated in relation to 
the supplied diet (BDAF), and was calculated following 
the same criterion as BSAF.

where Ct is the concentration of the considered element in 
shrimp tissue (mg  kg−1 WW) and Ci is the concentration of 
this same element in the supplied diet, expressed as its mean 
value (mg  kg−1DM).

BSAF or BADF values over 1 indicate that the living 
being or its tissue accumulate the considered element, 
and values over 2 represent super-concentrating tissues 
(Avigliano et al. 2019). Ali and Khan (2019) indicate that 
the BASF index would be a good indicator of the trophic 
transfer of heavy metals

Target hazard quotient To calculate the possible non-
carcinogenic health risk for the population exposed to any 
contaminants or toxins present in food, several authors have 
proposed using the target hazard quotient (THQ) index 
(Copat et al. 2018; Ramos-Miras et al. 2019; Traina et al. 
2019; Yu et al. 2020; Dietrich and Ayers 2021; Jiao et al. 
2021; Arisekar et al. 2022) .

For every contaminant, the THQ was calculated by con-
sidering the adult individuals with this formula:

where:

 (i) EF represents exposure frequency (in our case, 70 years)
 (ii) ED is the exposure duration (70 years)
 (iii) IR is the ingestion rate (g  day−1), which indicates the 

quantity of shrimps consumed per year. Based on 
the information in the bibliography, the mean con-
sumption in 2016 for Europe was 1.56 kg/person and 
year (EUMOFA 2018) and 2 kg/person and year for 
the USA (NationalMarineFisheriesService 2017). 
Placing more importance in the EU, where 38% of 
shrimps were imported from Ecuador as opposed to 
11% to the USA, makes Ecuador the third shrimp 
importer in volume terms in the EU (EUMOFA 
2018). In the USA, 11% of consumed shrimps come 
from Ecuador and the mean consumption in 2017 
was approximately 2 kg/person a year (National-
MarineFisheriesService 2017).

 (iv) C is the concentration of the contaminant in shrimp 
tissue, expressed as wet weight  (mgkg−1 WW).

BDAF =
Ct

Ci

(1)THQ =
(EF × ED × IR × C)

(RfD × BW × AT)
× 10

−3
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 (v) RfD is the oral reference dose (μg  g−1  day−1) set by 
the Environmental Protection Agency of the USA 
(USEPA 2000).

 (vi) BW is mean weight of adults (kg). For this calcula-
tion, the mean weight of adult citizens is considered, 
taken as 80.7 kg in the USA and as 70.8 kg in Europe 
(Walpole et al. 2012).

 (vii) AT represents the averaging time (AT = EF × LT, 
where LT denotes individuals’ lifetime mean for 
about 70 years).

For THQ index calculation purposes, the analysed Hg 
was taken as MeHg (methyl mercury) (García et al. 2016), 
and only 3% of the total As was considered to be inorganic 
(Copat et al. 2018). Calculating the index was limited to 
shrimp bodies because it is the main shrimp part that is 
eaten.

As exposure generally occurs with more than one toxin, 
and as toxins can have additive effects, the hazard index (HI) 
was calculated as the arithmetic sum of the different THQs 
 (THQi) as so:

If the obtained HI value exceeds 1, consuming the studied 
shrimps should be restricted because it poses a consumer 
health risk.

Multivariate statistical analysis

Classic statistics (mean, median, coefficient of variation, 
standard deviation, etc.) was carried out to evaluate PTEs 
contents (As, Cd, Co, Cr, Cu, Ni, Pb and Zn) in both the 
Pacific Whitelegs shrimp (head and body tissues) and the 
medium in which they are farmed (water and sediments). 
An analysis of variance (ANOVA) was used to explore the 
effects of shrimps and tissues on the evaluated PTE con-
tents. The multiway analysis of variance model included the 
main effects (tissues and sediments or water) and also the 
interactions between the main effects (tissue × diet). How-
ever, these classic statistical approaches ignore the relations 
between groups of variables. One approach to study the rela-
tions between the two sets of variables is to use the canonical 
correlation analysis (CCorA), which describes the relation 
between PTEs in shrimp (head and body tissues) and the 
shrimp biometrics (size and analytical body composition). 
The CCorA is a multivariate analysis of correlation in which 
one set of variables is not necessarily independent and the 
other is dependent, although that may potentially be the 
approach. This method is used considerably in ecology and, 
unlike the redundancy analysis (RDA), this method is sym-
metrical. With Y1 and Y2 (PTEs contents in head and body), 

(2)HI =
∑n

i=1
THQi

and response variables (Y2 based on the shrimp biometric 
indices and body composition parameters), with variables p 
and q, respectively, we obtain:

The CCorA provides two vectors, a(i) and b(i), which are 
maximised. Constraints must be introduced so that the solu-
tion for a(i) and b(i) is unique because the ultimate intention 
is to maximise the covariance between Y1a(i) and Y2b(i) 
and to minimise their respective variance (Jobson 1992; 
Takoutsing et al. 2018). The CCorA results are presented 
as graphical bi-plot scaling to evaluate the relation between 
biological variability and sensitivity to chemical disturbance 
(Losi et al. 2013; Campos-Herrera et al. 2016; Takoutsing 
et al. 2017). All the statistical analyses were carried out by 
the XLSTAT (Addinsoft Version, 2012.2.02) package for 
Windows.

Results and discussion

PTE level in shrimp farming associated with diet, 
water and sediment

The PTE concentration in the water, diet and sediments 
in the studied fish-farming ponds appear in Table 2. The 
PTE levels found in water were below the LoD, and only 
As was detected, but at very low concentrations (0.03 mg 
 l−1). A priori, this finding suggests that the environment in 
which shrimps are farmed is adequate and, if PTEs possibly 
appeared in ponds, it would not be in a soluble form. Gills 
are the first target of water pollutants because they are con-
stantly in contact with the external environment, although 
the epipodites of L. vannamei are more susceptible to the 
mixture of metals than gills (Frías-Espericueta et al. 2022).

(3)�(i) = cor(Y1a(i), Y2b(i)) =
cov(Y1a(i), Y2b(i))

var(Y1a(i)), var(Y2b(i))

Table 2  PTE in diet, water and sediment of shrimp farming

PTE contents in mg  kg−1 except Hg in μg  kg−1

PTE Water (mg  l−1) Sediment (mg 
 kg−1DM)

Shrimp diet (mg 
 kg−1DM)

As 0.03±0.02 131.4±8.8 2.68±0.13
Cd b.d 0.51±0.06 0.32±0.04
Co b.d 17.24±1.51 0.72±0.15
Cr b.d 33.18±1.99 2.10±0.45
Cu b.d 20.95±1.54 107.97±12.56
Hg b.d 31.43±13.40 19.07±3.36
Ni b.d 8.66±0.67 6.96±0.86
Pb b.d 34.09±2.33 1.03±0.22
Zn b.d 77.66±6.31 727.68±62.45
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As expected, the sediments in the shrimp ponds had a 
significantly higher percentage. These sediments play a fun-
damental role as indicators of contamination in marine eco-
systems (Caballero-Gallardo et al. 2020). One of the envi-
ronmental impacts of shrimp aquaculture is the accumulation 
of nutrients and other chemicals in sediments (Páez-Osuna 
2001). In fact the toxicological effect of the metals associ-
ated with sediments in water environments is contemplated 
in the Sediment Quality Guidelines (SQG) (Table S2) for the 
protection and management of water ecosystems (MacDon-
ald et al. 2000; Lopes et al. 2018; Caballero-Gallardo et al. 
2020). The SQG sets three levels: threshold effects level 
(TEL), defined as the level below which there are no nega-
tive effects on aquatic fauna; probable effect level (PEL), 
which represents the concentration over which the frequency 
at which adverse effects on organisms is expected to occur; 
effects range medium (ERM), which designates the level 
over which toxic effects are generally expected to occur on 
aquatic living beings like low species richness in benthic 
communities or chronic toxicity. The concentration of Cd 
(0.51 mg  kg−1), Cr (33.18 mg  kg−1) and Hg (0.03 mg  kg−1) 
in sediments in shrimp ponds (Table 2) was below the TEL 
(Table S2) and obtained similar levels to, or often lower lev-
els than other shrimp farms elsewhere in the world, such as 
Bangladesh (Dietrich and Ayers 2021), Indonesia (Hidayati 
et al. 2020), Hong Kong (Cheung and Wong 2006) or India 
(Guhathakurta and Kaviraj 2000). Likewise, the contents 
of Cu (20.95 mg  kg−1) and Pb (34.09 mg  kg−1) observed in 
sediments were slightly over the TEL (Table S2). The main 
source of Cu and Zn metals in aquiculture systems was diet 
because Cu and Zn are added to shrimp diet as a mineral 
supplement (León-Cañedo et al. 2017). In line with this, 
we found that the contents of Cu (107.99 mg  kg−1) and Zn 
(727.68 mg  kg−1) in diet (Table 2) were 5–10-fold higher 
than those in sediments. Nevertheless, the concentration of 
heavy metals in shrimps’ food was lower than the maximum 
residual limits (MRLs), which are regulated by European 
legislation for animal food, except for Zn, which was over 
the MRLs (582 mg  kg−1 WW vs. 150 mg  kg−1 EU) (EC-
EuropeanCommission 2015, 2002).

Nonetheless, the As levels found in these sediments 
(mean 131.4 mg  kg−1) lead to the greatest concern because 
they are 10-fold higher than those reported by other studies 
(Dietrich and Ayers 2021) and they also exceed the MRLs 
(70 mg  kg−1) according to the SQG criterion, which could 
lead to possible toxicity problems for shrimps and their con-
sequent effect on the humans who eat Ecuadoran aquaculture 
products These levels suggest that As in sediments are of 
anthropogenic origin and might be derived from mining. The 
presence of As in soils and sediments is the result of the dif-
ferent physico-chemical factors that allow this metalloid to 
be leached, transported and retained, and are closely linked 
with geological characteristics. As previously mentioned, 

the El Oro province is known for its alluvial gold depos-
its and has been an important gold-mining centre. As is a 
naturally occurring element commonly found as an impurity 
in metal ores. The processing of gold with sulphide min-
erals that contain arsenopyrite and other complex As sul-
phide minerals results in arsenic containing emissions and 
effluents, which must be carefully considered (Robins and 
Jayaweera 1992). Numerous studies have evaluated As in 
the vicinity of mining sites (Hoang et al. 2021) to assess the 
natural origin (Ramos-Miras et al. 2014; Nanos et al. 2015). 
Based on the As levels noted in sediments, our objective was 
to evaluate if they could be transferred to shrimps and pose 
human health risks.

PTE concentration in shrimps and the relation 
to biometric parameters

In general terms, the PTE concentration ranges in shrimps 
did not present very high values compared to the levels 
found in sediments and diet. The heavy metal contents in 
head (cephalothorax) and body (abdomen) of the shrimps 
collected from ponds are shown in Table 3. Heads contained 
significantly higher concentrations of all the PTEs (p<0.05) 
versus the body, except for Hg (higher in the body), and 
Cr showed similar concentrations in the head and the body 
(Table 3). The mean Cr value in the body was 1.09 mg 
 kg−1 (range of 0.01–6.52 mg  kg−1), which falls within the 
ranges noted for shrimps in Bangladesh with 0.24 mg  kg−1 
(Biswas et al. 2021) or 0.69 mg  kg−1 (Sultana et al. 2022), 
and in Malaysia with 0.99 mg  kg−1 (Lee et al. 2017) and 
Hong Kong with 2 mg  kg−1 (Cheung and Wong 2006), but 
are disproportionate to the concentration of 20.86 mg  kg−1 
encountered in the shrimps farmed in Guangdong (China) 
(Wu and Yang 2011).

There is high variability when comparing our level of 
PTEs to those in other studies. For example, Ni values in 
Ecuador lie at 0.15–2.03 mg  kg−1 (mean 0.55 mg  kg−1) 
and are similar to those indicated in Malaysia 0.45 mg 
 kg−1 (Lee et al. 2017) or 0.05 mg  kg−1 in Bangladesh (Bis-
was et al. 2021), but are much lower than the 400 mg  kg−1 
observed in the Hong Kong Nature Reserve (Cheung and 
Wong 2006). On the other hand, Cd content of most of the 
analysed shrimp in our study was below the analytical LoD 
(0.01 mg  kg−1) in the body, was in accordance with the con-
tents observed in other shrimp-farming areas, and was not 
detected on these farms in Malaysia (Lee et al. 2017) or in 
the Guangdong Province of China (Wu and Yang 2011), and 
its levels were low in shrimp-producing regions of Hong 
Kong (0.02 mg  kg−1) (Cheung and Wong 2006) and Bang-
ladesh (0.04 a 0.09 mg  kg−1) (Biswas et al. 2021; Sultana 
et al. 2022). It was surprising to find on farms in Mexico that 
commercialise shrimps with Cd contents of 19.2 mg  kg−1 
(Páez-Osuna and Tron-Mayen 1996).
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Other heavy metals to bear in mind on shrimp farms are 
Cu and Zn. These PTEs are essential trace elements that play 
a crucial role in the metabolism of crustaceans. Cu and Zn 
are present in the diet they are supplied with (Table 2), which 
means that these PTEs tend to accumulate in shrimp tissues 
(Arisekar et al. 2022; Aytekin et al. 2019; Páez-Osuna and 
Tron-Mayen 1996). The contents of Cu 46.17 (mg  kg−1) and 
Zn 53.94 (mg  kg−1) had the highest values in the PTEs evalu-
ated in the body (Table 3). Compared to other studies, our Cu 
and Zn contents are higher than those for Malaysia (Cu 5.85 
mg  kg−1 and Zn 2.17 mg  kg−1) (Lee et al. 2017) or Bang-
ladesh (Cu 9.43 mg  kg−1 and Zn 18.89 mg  kg−1) (Sultana 
et al. 2022), and fall within the range for those observed in the 
Guangdong area of China (Cu 24.26 mg  kg−1 and Zn 171.56 
mg  kg−1) (Wu and Yang 2011) or Bangladesh (Cu 31 mg 
 kg−1 and Zn 43 mg  kg−1) (Dietrich and Ayers 2021), but are 
lower than those in Hong Kong (Cu 110 mg  kg−1 and Zn 90 
mg  kg−1) (Cheung and Wong 2006). Regarding non-essential 
elements like Pb and Hg with marked toxic capacity, we found 
that both Pb (0.20 mg  kg−1) and Hg (40 μg  kg−1) (Table 3) fell 
within the ranges found in other countries. The Pb contents in 
the body of the shrimps farmed in Bangladesh are approxi-
mately 0.50 mg  kg−1 (Biswas et al. 2021; Dietrich and Ayers 
2021), and 0.02 mg  kg−1 in Malaysia, with a mean content of 

10 mg  kg−1 in Hong Kong (Cheung and Wong 2006). In the 
above-cited works, Hg presents less variability with about 20 
μg  kg−1 in Bangladesh (Sultana et al. 2022) or 70 μg  kg−1 in 
Hong Kong (Cheung and Wong 2006), with a similar mean 
concentration to that obtained in the present study (mean of 
40 μg  kg−1). In any case, none of these PTEs herein analysed 
on shrimp farms in Ecuador presents higher contents than the 
limits set by European Commission (EuropeanCommission 
2006), which sets maximum levels only for certain contami-
nants in foodstuff. Only our As levels, which went from 0.91 
to 3.21 mg  kg−1 in the body (mean of 2.02 mg  kg−1), can be 
taken as really high. The decision is based on a 2021 scientific 
report from the European Food Safety Authority (EFSA) and 
EU rules follow the Codex Alimentarius maximum level of 
0.5 mg/kg for total As. Our mean As contents are much higher 
than those detected in Bangladesh with 0.04 mg  kg−1 (Sultana 
et al. 2022) or Malaysia with 0.46 mg  kg−1 (Lee et al. 2017). 
However, we must highlight the mean values of 26.9 mg  kg−1 
found on shrimp farms in southern China (Wu et al. 2017).

In short, significantly higher As, Cd, Co, Cu, Ni, Pb and 
Zn concentrations were found in the cephalothorax of shrimp 
(Table 4). Only Hg presented higher concentrations in mus-
cles than in the head (Table 3), a tendency that has also been 
observed in some marine fish species (Sánchez-Muros et al. 

Table 3  Levels of PTE in 
shrimps head and body samples

PTE contents in mg  kg−1 except Hg in μg  kg−1

Min. minimum value, Max. maximum value, Mean mean value, SD standard deviation
*Different letter indicates statistically significant differences (P <0.05) after Kruskal–Wallis test, among 
head and body

Cephalothorax Abdomen (muscle)

TPE Min. Max. Median Mean SD Min. Max. Median Mean SD

As 3.52 6.11 4.60 4.63a 0.65 0.91 3.21 1.99 2.02b 0.49
Cd 0.02 0.10 0.05 0.05a 0.02 0.01 0.02 0.01 0.01b 0.00
Co 0.14 0.49 0.28 0.28a 0.10 0.01 0.43 0.05 0.08b 0.10
Cr 0.23 4.89 0.73 1.00a 0.99 0.01 6.52 0.38 1.09a 1.70
Cu 99.98 233.01 141.02 145.74a 35.02 20.70 72.44 47.56 46.17b 12.13
Hg 10.00 68.81 31.69 32.52a 13.31 10.00 67.18 43.87 40.13b 16.18
Ni 0.52 1.86 0.82 0.88a 0.28 0.15 2.03 0.42 0.55b 0.44
Pb 0.24 1.09 0.69 0.64a 0.19 0.01 0.69 0.14 0.20b 0.17
Zn 51.80 100.51 73.41 72.92a 9.36 31.21 66.11 53.75 53.94b 6.55

Table 4  Statistic report on the multi-way analysis of variance of the tissues (head and body) and the diet of shrimp with the interaction of the 
main effects

Differences between diet and tissue of Pacific White shrimp obtained by the ANOVA test.
Significant at 95% (P < 0.05) and 99% (P < 0.01). ns not significantly different

Source As Cd Co Cr Cu Hg Ni Pb Zn Weight Length

Diet 0.034 0.019 ns. ns. ns. ns. 0.022 ns. 0.015 ns. 0.006
Tissue P< 0.01 P< 0.01 P< 0.01 P< 0.01 P< 0.01 P< 0.05 P< 0.05 P< 0.01 P< 0.01 ns. ns.
Diet x Tissue ns. 0.032 ns. ns. ns. ns. ns. ns. ns. ns. ns.
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2018). Nonetheless, shrimps tend to accumulate more metals 
than fish, mainly in the head (gills, antennae and hepatopan-
creas) (Albuquerque et al. 2020; El-Said et al. 2021; Batvari 
et al. 2016). It was noted that viscera tended to accumu-
late higher concentrations of heavy metals than in muscle 
(Ramos-Miras et al. 2019; Lee et al. 2017). The principal 
component analysis (PCA) confirmed this situation (Fig. 1) 
and pointed out different behaviours for PTEs in shrimps in 
accordance with the evaluated body part. The tendency to 
accumulate PTEs is often associated with the species biom-
etric parameters (Sánchez-Muros et al. 2018; Ramos-Miras 
et al. 2019; Sofoulaki et al. 2018; Renteria et al. 2022). From 

this point of view, we analysed the PTE relation in muscle 
and head tissues versus the biometric indices. Canonical cor-
relation analyses (CCorA) were used to study these relations 
and were plotted separately for both (Fig. 2). In the cepha-
lothorax (Fig. 2a), we observed how high As contents were 
associated with head weight, while the other heavy metals, 
including Hg, were related to hepatopancreas weight and 
total shrimp length. However, in the body (Fig. 2b), where 
Hg tends to accumulate, this heavy metal was significantly 
associated with the contents of proteins and lipids, and also 
with total shrimp weight, whereas all the other PTEs were 
related mostly to head weight, which was not statistically 
significant. This behaviour conditions the possible toxicity 
of shrimps as food.

Bioaccumulation factors (BSAF, BDAF) and target 
hazard quotient

Heavy metals can accumulate in fish and shrimp tissues, 
which are generally found in the last zone of the aquatic food 
chain and have adverse effects on human health although 
these elements do not affect the biota. Crustaceans are able 
to accumulate metals at high body concentrations depend-
ing on the relation between the absorption and excretion of 
metals and the diluting body growth rate (Rainbow 2018), 
and can be transmitted through the food chain (Ali and 
Khan 2019). The PTE concentration in water and the food 
of aquatic species are important factors that affect PTE accu-
mulation in aquatic organisms (Maceda-Veiga et al. 2012). 
Figure 3 and Table S3 show the BSAF and BDAF values, 
which were calculated for the head and the body of the stud-
ied shrimp in Ecuador. Except for Cu and Zn, the BADF 
value was higher in all cases than that of BASF, and no toxic 
effects were observed on the studied shrimp. This made us 
realise that the main factor of the influence on their accu-
mulation might be diet. Nonetheless, it is not easy to deter-
mine if the metals that accumulate in shrimps come from 

Fig. 1  The principal component analysis for PTEs in shrimps accord-
ing to the evaluated shrimp part (head vs body)

Fig. 2  a, b Ordination diagram 
based on the canonical correla-
tion analyses (CCorA) of PTE 
in head and body tissues versus 
the biometric indices and body 
composition parameters
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diet or sediment because in semi-extensive shrimp farming, 
shrimps not only eat their diet, but also feed on the mixture 
of microorganisms that are produced in their ponds and on 
the remains of the organisms in these ponds. So, metals from 
the environment are incorporated into the shrimp food chain. 

However, as the levels of the heavy metals present in shrimp 
diet were much lower than those obtained in mud, except for 
Cu and Zn that are directly added to diet, their accumula-
tion probably occurs directly from mud or indirectly through 
their incorporation into the pond’s microbiota that, in turn, 
forms part of shrimps’ intake. Indeed shrimps eat on carrion, 
which stems from a wide range of materials and include 
other animals living on the bottom of ponds and residue 
(Jiao et al. 2021).

We can consider that as no PTE bioaccumulation 
occurred with shrimps, all the BSAF and BADF values 
were lower than 1 for all elements (values greater than 1 
would indicate bioaccumulation) except for Cu, which tends 
to accumulate in the cephalothorax (BADF = 1.6964). This 
aspect has been previously noted with shrimp farming 
(Prangnell et al. 2022), as in wild shrimps in the Persian Gulf 
(Dadar et al. 2014). However, this factor must be taken into 
account owing to the possible biomagnification of this metal 
in aquatic ecosystems (Griboff et al. 2020). Similarly, the 
values of both BSAF and BADF indices were significantly 
higher in the cephalothorax than in the body (Fig. 3), which 
limits the transfer of these PTEs during human consumption. 
The cephalothorax accommodates viscera, which generally 
present greater PTE accumulation than muscles or skeletal 
tissues (Albuquerque et al. 2020). Nevertheless, shrimps 
seem capable of limiting the concentration of contaminants 
in their organism by regulating their intestinal absorption 
and excretion (homeostasis) (Nascimento et al. 2016; Silva 
et al. 2016). Even other metals like Ni tend to accumulate in 

Fig. 3  Bioaccumulation factors (BSAF, BDAF) for PTE in the head and the body of the studied shrimp in Ecuador

Table  S4 contains the values obtained for the THQ and HI indices 
in edible shrimp parts. These indices are below 1 in all cases and 
 THQCu presents the highest values (16.99E−3 and 19.14E−3 for EU 
adults and US adults, respectively). Hence, there is no non-carcino-
genic health risk for eating shrimp bodies for the different studied ele-
ments either alone (THQ) or combined (HI). There are not enough 
data available to compare the values of these indices because daily 
intakes and exposure times vary in shrimps among countries and their 
gastronomic habits. Some research (Wang et al. 2020; Yu et al. 2020) 
studied wild shrimps, while other research (Hidayati et al. 2020) stud-
ied shrimps from aquiculture. They obtained THQi and HI values 
below 1. Likewise, the values herein obtained are of the same order 
as those reported by (Sarkar et  al. 2016) for shrimps farmed in SE 
Asia. Therefore, despite the population generally assuming that dif-
ferent shrimp species accumulate contaminants (Heidarieh et  al. 
2013), our data indicate that eating shrimps from Ecuador does not 
pose a health risk regarding the PTEs analysed in this study.
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the exoskeleton (Páez-Osuna and Tron-Mayen 1996) and are 
periodically removed through moulting. Only Hg displayed 
a significant tendency to accumulate in the body. Figure 3 
shows how both the BSAF and BADF accumulation indices 
are higher in the head than in the body, which contrasts with 
other studies indicating that hepatopancreas was the tissue 
where Hg mostly accumulated, followed by muscle and the 
exoskeleton (Ruelas-Inzunza et al. 2009). Such behaviour 
in the differing Hg distribution is reflected in the previous 
section (Fig. 2) by the lipid and protein contents in shrimps.

Conclusions

Our results show that levels of PTE in water and sediment 
do not present a toxicity problem for animals in this aquatic 
environment, despite being an area of uncontrolled min-
ing exploitations, except of As concentration in sediment, 
although its transfer to aquatic organisms appears to be lim-
ited. Furthermore, consumption of shrimps (L. vanamei) 
from Ecuador does not pose a consumer health risk because 
the levels of heavy metals are below the recommended lim-
its, especially in muscles that are the edible part. Only As 
had a higher concentration than that set in the regulations 
applied in Europe, and only in the cephalothorax. Gener-
ally speaking, most of the PTEs tend to accumulate in the 
cephalothorax, which restricts them being transferred to 
human beings by intake and their health effects. Nonethe-
less, considerable discrepancy exists for the PTEs contents 
that appear in the bibliography, which sometimes exceed the 
recommended limits for humans. The fact that coherence is 
lacking among the regulations that set limits for these PTEs 
in each country or zone makes it difficult to have a single 
perception of contaminants being transferred to the human 
food chain because these shrimps are exported all over the 
world. We must bear in mind shrimps’ origin and where they 
have been farmed, the food they have eaten and possible 
sources of contamination that may affect shrimp farms. It is 
not easy for consumers to acquire all this information, but 
the present study has noted that the accumulation of these 
metals is conditioned by the levels of the metals obtained 
where shrimps are farmed, especially Zn and Cu that are 
provided in their diet, but also in their environment and in 
industrial activity, which affect such levels in shrimp-farm-
ing ponds.
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