Molecular characterization of a novel waxy allele (Wx-A"1a) from Triticum urartu
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Abstract

Granule Bound Starch Synthase I, or waxy protein, is the sole enzyme responsible for
the accumulation of amylose during the development of starch granules in wheat. The full
coding region of the Wx gene was sequenced in T. urartu, (a wild diploid species) and is
related to the A genome of polyploid wheats. The Wx gene of T. urartu (Wx-A"1) showed a
homology of ~ 88.0% with Wx-Al from polyploid wheats. A greater homology was found
with Wx-A™1 from the diploid cultivated wheat einkorn. Most of the differences were found
in introns although several changes were also detected in exons that led to amino acid
changes in the transit peptide and mature protein. These results show the potential of T.
urartu as a source of new alleles that could be used in the breeding of durum and common

wheat in order to synthesize novel starches.



1. Introduction

Granule Bound Starch Synthase I, or waxy protein, is one of the most important
determinants of starch synthesis in plants (Baldwin 2001). In common wheat (Triticum
aestivum L. ssp. aestivum; 2n = 6x = 42, AABBDD), three waxy proteins, one for each
genome, have been identified and they are controlled by the same gene number located on
the chromosomes 7AS, 4AL (translocated from original 7BS) and 7DS, respectively
(Yamamori et al. 1994). These proteins have been shown to be the sole enzymes
responsible for the accumulation of amylose during the development of starch granules in
wheat (Nakamura et al. 1995), and thus have a crucial role in the quality and end use of the
product as the amylose status of cereal starches affects important functional properties such
as gelatinization, pasting and gelation (Zeng et al. 1997).

To date, different variants of each waxy protein have been reported and some of them
have been characterized at the molecular level. Among the alleles described are the null
alleles that lead to the absence of the protein (Vrinten at al. 1999; Saito et al. 2004; Saito
and Nakamura 2005) and others that cause a variation in the waxy protein status
(Yamamori 2009; Yamamori and Yamamoto 2011). All of them have been shown to be
very important in regulating the amylose content of all wheat cultivars. However the
number of alleles that have been detected are small when compared to other endosperm
storage proteins involved in wheat quality. This has led to the search for new alleles of
these genes in old and ancient wheat varieties (Rodriguez-Quijano et al. 1998; Urbano et al.
2002; Yamamori et al. 1995) together with their wild relatives (Caballero et al. 2008;

Guzman et al. 2009, 2011). Among the latter, the diploid wheats could be good candidates



for new Wx-A1 alleles that could be used to enlarge the gene pool of cultivated wheats.
One of them is T. urartu Thum. ex Gandil (2n = 2x = 14, A"A"), a wild diploid wheat
mainly distributed in the Fertile Crescent region (Johnson 1975; Miller 1987). Numerous
studies have suggested that this species generated wild emmer wheat (T. turgidum ssp.
dicoccoides Korn. ex Asch. & Graebner em. Thell.; 2n =4x = 28, A"A'BB) by a
spontaneous cross with an Aegilops species (probably Aegilops speltoides Tausch.; 2n =2x
= 14, SS) with later chromosomal duplication. The domestication of wild emmer wheat
produced cultivated emmer wheat (T. turgidum ssp. dicoccum Schrank ex Schubler em.
Thell.; 2n = 4x = 28, AYA"BB), the predecessor to durum wheat (T. turgidum ssp. durum
Desf. em. Husnot; 2n = 4x = 28, AYA"BB) and of common wheat by one additional cross
and chromosomal duplication with Ae. tauschii Coss. (2n = 2x = 148, DD). Consequently
the A genome of the all polyploid wheats has its origin in this wild diploid wheat (Dvorak
et al. 1988).

While waxy genes from other diploid wheats, such as T. monococcum L. ssp.
monococcum (2n = 2x = 14, A"A™) have been well characterized at the molecular level
(Murai et al. 1999; Yan et al. 2000), only two partial sequences of T. urartu Wx gene have
been reported (Mason-Gamer et al. 1998; Yan and Bhave 2000). Thus, the complete Wx
coding region and its deduced amino acid sequence are still unknown in this species.

The aims of the current study were to sequence the Wx gene in T. urartu, which
potentially could be an important source for improving starch quality and also provide

valuable information on the phylogeny of wild and cultivated wheats.

2. Material and Methods

2.1 Plant material



One Iraq accession (MG 26992) of T. urartu obtained from Instituto del
Germoplasma (Bari, Italy) was used. This accession was previously characterized for
morphological traits by Castagna et al. (1997) confirming its identity; and was used to the
development of introgression lines between T. urartu and durum wheat (Alvarez et al.

2009).

2.2 DNA extraction and PCR amplification

For DNA extraction, approximately 100 mg of young leaf tissue was excised,
immediately frozen in liquid nitrogen and stored at -80°C. DNA was isolated using the CTAB
method (Stacey and Isaac, 1994).

Three pairs of primers were designed to amplify the waxy gene in three fragments:
Waxyl Fw: 5-TTGCTGCAGGTAGCCACACC-3', and Waxyl Rv: 5'-
CCGCGCTTGTAGCAGTGGAA-3"; Waxy2 Fw: 5'-ATGGTCATCTCCCCGCGCTA-3',
and Waxy2 Rv: 5-GTTGACGGCGAGGAACTTGT-3; and Waxy3 Fw: 5'-
GGCATCGTCAACGGCATGGA-3, and Waxy3 Rv: 5'-
ATGGACGTCAGCGAGTGGGA-3'. Each 15-4l reaction included 50 ng DNA, 1.5 mM
MgClz, 0.2 M of each primer, 0.2 mM dNTPs, 1.5 4l 10x PCR Buffer and 0.75U DNA
polymerase (Promega, Madison, WI, USA). The PCR conditions included an initial
denaturation step of 3 min at 94°C followed by 35 cycles as follows: for Waxyl Fw/Waxy1
Rv, 40 s at 94°C, 45s at 62°C then 1 min at 72°C; for Waxy2 Fw/Waxy 2 Rv, 40 s at 94°C,
45 s at 62°C then 1 min 45 s at 72°C; and for Waxy3 Fw/Waxy 3 Ry, 40 s at 94°C, 45 s at
62°C then 1 min 30s at 72°C. After the 35 cycles all reactions included a final extension of

5 min at 72°C.



2.3 Sequencing analysis of PCR products

Amplification products were fractionated in vertical PAGE gels at 8% (wl/v, C:
1.28%) and the bands were visualized by ethidium bromide staining. After, PCR products
were excised from polyacrylamide gel and cloned into pPGEM T-easy vector (Promega) for
sequencing. Inserts were sequenced from at least three different clones using an ABI Prism
310 Genetic Analyzer (Applied Biosystems, Carlsban, CA, USA).

The sequence reported in the current study was compared to the sequences of the Wx-
Al gene available in the GenBank (NCBI) of common wheat cv. Chinese Spring
(AB019622), durum wheat cv. Langdon (AB029063), wild emmer (AB029061), emmer
(HM751941) and einkorn (AF110373), using Geneious Pro ver. 5.0.3 (Biomatters Ltd.)
software. A neighbour-joining cluster with all sequences analysed was generated using the
Maximun Composite likelihood method for the DNA sequences (Tamura et al. 2004) and
the Poisson correction method for aminoacid sequences (Zuckerkandl and Pauling 1965).
In both cases, one bootstrap consensus from 1000 replicates was used (Felsenstein 1985).

The analyses were conducted in MEGAS software (Tamura et al. 2011).

3. Results and Discussion

The entire coding sequence for the Wx gene of T. urartu (Wx-A"1) was 2783 bp long,
divided into eleven exons and ten introns. This structure and size is similar to the Wx genes
present in other wheats (2781 bp in common wheat). The complete sequence is available in
GenBank (JN857937).

Due to the A" genome potentially being an ancestor of the A genome found in

polyploid wheats (Dvorak et al. 1988), the Wx-A"1 sequence was compared with different
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Wx-A1 alleles detected in several species of polyploid wheat, together with the ones present
in cultivated diploid wheat (einkorn). This alignment and comparison is shown in Figure 1.
The initiation codon, ATG and the termination codon TGA for translation, as well as the
splice junctions of each intron of Wx-A"1, were in homologous positions to those in these
other Wx-A1 genes. In all cases the exons were the same size (Table 1), with the exception
of exon 1 that presented one additional codon in both diploid wheats (einkorn and T.
urartu). In contrast, nine out of ten introns of the Wx-A"1 gene were different to those of the
Wx-A1 gene of polyploid wheat, where only intron 4 was the same size. These differences
were smaller between the diploid wheats, which only showed different sizes for introns 1, 4
and 8.

The comparison between the six nucleotide sequences showed that the homology
among the Wx-A1 genes from polyploidy wheats and Wx-A"1 was around 88.0%, whereas
this homology was clearly higher between Wx-A"1 and Wx-A"1 (97.4%). Most of the
differences were found in introns, although several SNPs were also detected in exons.
These changes led to marked differences in the deduced sequences of the respective
proteins (Figure 2). In total, 27 amino acids changed in Wx-A"1 compared to Wx-Ala. The
comparison showed little conservation where 12 amino acids were different within the first
70 amino acid sequence that forms the transit peptide. Eleven were common to both diploid
wheats: Thr 14 — Ala, Ser 17 — Gly, Val 18 — lle, Pro 25 — Ala, Leu 30 — Val, Asn 34
— Val, - 54 — GIn, Pro 58 — Ala, Phe 61 — Gly, Asp 62 — Thr, Met 68 — Val; whereas
only one appeared in T. urartu (Val 5 — Ala). The amino acid change at position 61 was
also common to durum wheat and emmer, but in the latter species the Asp62 was replaced
by Asn.

The remaining differences were randomly placed in the mature protein, although the
-7-



central region of the sequence (220-350) was very conservative and no modification was
found. The amino acid changes found between Wx-A"1 and Wx-Ala were: Ser 75 — Gly,
Ala 105 — Pro, lle 133 — Val, Val 138 — lle, Val 139 — Ala, Arg 141 — Glu, Tyr 151 —»
Phe, GIn 191 — Leu, His 214 — Tyr, lle 358 — Thr, Thr 364 — Ala, Thr 451 — Ser, Trp
454 — Arg, Asp 575 — His and Leu 599 — Met. Three of these changes were exclusive to
the Wx-A"1 sequence and were not detected in the Wx-A™1 sequence (Ser 75 — Gly, Val
138 — lle and Thr 364 — Ala). This latter sequence also showed three exclusive amino
acid changes (Lys 361 — Asn, Asp 368 — Asn and Ala 377 — Val). Although further
studies need to be undertaken, these changes in the sequence of the waxy proteins could
cause activity differences and thus changes in starch composition. Consequently the Wx-
A1 allele was considered novel and tentatively named Wx-A'1a.

The phylogenetic relationships between the Wx-A"1 gene and the rest of the Wx-Al
genes analysed (Wx-A™1 from einkorn and Wx-A1 from polyploid wheats) were evaluated
using both nucleotide and amino acid sequences (Figure 3). In both cases (gene and
protein), the novel allele showed a higher homology with the Wx-A™1 than to those present
in polyploid wheats. This is contrary to the theory that suggests that the A genome of the
polyploid wheats is derived from T. urartu and not from einkorn (see Salamini et al. 2002
for revision). However, these data should be used cautiously because, due to the time that
has passed between the generation of the wild emmer wheat and present day, the Wx gene
of T. urartu could have evolved in a different way. This suggests that the variation in this
wild species could be very different to that present in modern wheat and thus could be a
good candidate as a source of this or other genes that might be used in the breeding of
durum or common wheat.

In conclusion, several sequence variations were found in the T. urartu sequence,
-8-



which translate to amino acid changes and that may have led to the synthesis of novel
starches in wheat, thus creating the potential for wheat breeders to manipulate starch
synthesis through conventional breeding or transgenic modification. The production of
wheats containing novel starches will reduce or eliminate the need for costly post-harvest

modifications.
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Table 1. Size of the different exons and introns in the sequence evaluated.

Species
Common Durum Wild emmer Emmer Einkorn T.
wheat wheat wheat wheat wheat urartu
Exon 1 321 321 321 313* 324 324
Exon 2 81 81 81 81 81 81
Exon 3 99 99 99 99 99 99
Exon 4 154 154 154 154 154 154
Exon 5 101 101 101 101 101 101
Exon 6 354 354 354 354 354 354
Exon 7 180 180 180 180 180 180
Exon 8 192 192 192 192 192 192
Exon 9 87 87 87 87 87 87
Exon 10 129 129 129 129 129 129
Exon 11 117 117 117 44* 117 117
Intron 1 82 82 82 82 88 89
Intron 2 84 84 84 84 88 88
Intron 3 109 109 109 109 118 118
Intron 4 125 125 125 125 143 125
Intron 5 99 99 99 99 81 81
Intron 6 91 91 91 91 89 89
Intron 7 95 95 95 95 81 81
Intron 8 90 90 90 90 83 80
Intron 9 98 98 98 98 99 99
Intron 93 93 93 93 115 115

10

* Sequence incomplete.

Caption figures
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HMATCCATGGCCATGACCGAAGTTRICTTMCAAA AGCCGTGCGCBITGCGCGTCMACMGGCGGGCTCGTCGACACMATCG TGGABMGGCAAGACCGGG
®MATCCATGGCCATGACCGAAGTTRCTTMCAAA AGCCGED%CGC-TGCGCGTC.ACW(:CGGGCTCGTCGACAC-ATCGTGGA.GGCAAGACCGGG

(elelolelele

0 243

TCATRCATCT

2450 2470
CABRCAG A'A‘ATG AAETGC TESCE
CASMCAGATEATGAAETGG TEEICA
CABMCAGATEATGA ﬁTGGT‘.
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CTGCATGATACAGGATCTCTCCTGGAAGG ('TAAGAGTIAAG-

2680 2690 2700 2750 2720 2730 2740 27% 2750 2770 2730
mCGAT TATCCATTAATGGTGGCTTGMGCATATGRTGC CCTGCCAAGAACTGGGAGHACGTGC GGAACTGGG.ST
S ————s C G A TG TATCCATTAATGG TGGCTTGMGCATATGRTG A

S8 C G A TG TATCCATTAATGG TGGCTTGMGCAT ATGRT
W C G A TG TATCCATTAATGG TGGCTTGMGCATATGRTG
VNS TSI ENEIWN G A TG TATCCATTAATGG TGGCTTGEGCAT ATGET
SV NEESESSNEWI CG ATG TATCCATTAATGG TGGCTTGEGCATATGETGCAGGG! ED%TGCCAAGAACTGGGAG!ACGTGC
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GGAACTGGGHEG TH

2790 2800 2810 2820 2830 2850 2883
GAGGGGAGCGAGCC.GG-ATCGTCGGCGAGGAGATCGCGCCGCTCGCC-TGGAGAACGTCGCC TCCCTGA
GAGGGGAGCGAGCCMGGMATCGTCGGCGAGGAGATCGCGCCGCTCGCCMTGGAGAACGTCGC TCCCTGA
GAGGGGAGCGAGCCHMGGMATCGTCGGCGAGGAGATCGCGCCGCTCGCCMTGGAGAACGTCGC CCCTGA

T
GAGGGGAGCGAGCC-GG.A;(C:GTCGGCGAGGAGATCGCGCCGCTCGCC.TGGAGAACGTCGC %CCCTGA

GC
GC
GC
GC
GAGGGGAGCGAGCCHEG CGTCGGCGAGGAGATCGCGCCGCTCGCCMTGGAGAACGTCGCCGCTCCCTGA

Qa Qa

Alignment of deduced protein sequences of the Wx-A1l gene from polyploid
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wheats, Wx-A™1 gene from einkorn and Wx-A"1 from T. urartu.

Common wheat 1
Durum wheat 1
Wild emmer wheat 1
Emmer wheat 1
Einkorn wheat 1
T. urartu 1

Common wheat 81
Durum wheat 81
Wild emmer wheat 81
Emmer wheat 81
Einkorn wheat 81
T. urartu 81
Common wheat 161
Durum wheat 161l
Wild emmer wheat 161
Emmer wheat 161
Einkorn wheat 161
T. urartu 161
Common wheat 241
Durum wheat 241
Wild emmer wheat 241
Emmer wheat 241
Einkorn wheat 241
T. urartu 241
Common wheat 321
Durum wheat 321
Wild emmer wheat 321
Emmer wheat 321
Einkorn wheat 321
T. urartu 321
Common wheat 401
Durum wheat 401
Wild emmer wheat 401
Emmer wheat 401
Einkorn wheat 401
T. urartu 401
Common wheat 481
Durum wheat 481
Wild emmer wheat 481
Emmer wheat 481
Einkorn wheat 481
T. urartu 481
Common wheat 561
Durum wheat 561
Wild emmer wheat 561
Emmer wheat 561
Einkorn wheat 561
T. urartu 561

Transit peptid -

MAALVTSQLATSGTVLSVIDRFRRPGFQGLRPRNPADAALGMRTVGASAAPKQ-SRKPHRFDRRCLSMVVRATGSGGMNL

........................ P. o e Vo o TRB s s e Bovavn ava
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- Mature protein



Fig. 3.-

Neighbour-joining tree based in the Maxi

(A) and the Poisson correction method

mun Composite likelihood method

(B) for nucleotide and aminoacid

sequences analysed, respectively. Number above node indicated bootstrap

estimates from 1,000 replications.
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e WX-A1. T. @aestivum ssp. aestivum



