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Divergent abiotic spectral pathways unravel pathogen stress signals across species 1 
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Abstract. Plant pathogens pose increasing threats to global food security, causing yield losses that 19 
exceed 30% in food-deficit regions. Xylella fastidiosa (Xf) represents the major transboundary 20 
plant pest and one of the world’s most damaging pathogens in terms of socioeconomic impact. 21 
Spectral screening methods are critical to detect non-visual symptoms of early infection and 22 
prevent spread. However, the subtle pathogen-induced physiological alterations that are spectrally 23 
detectable are entangled with the dynamics of abiotic stresses. Here, using airborne spectroscopy 24 
and thermal scanning of areas covering more than one million trees of different species, infections 25 
and water stress levels, we reveal the existence of divergent pathogen- and host-specific spectral 26 
pathways that can disentangle biotic-induced symptoms. We demonstrate that uncoupling this 27 
biotic–abiotic spectral dynamics diminishes the uncertainty in the Xf detection to below 6% across 28 
different hosts. Assessing these deviating pathways against another harmful vascular pathogen that 29 
produces analogous symptoms, Verticillium dahliae, the divergent routes remained pathogen- and 30 
host-specific, revealing detection accuracies exceeding 92% across pathosystems. These urgently 31 
needed hyperspectral methods advance early detection of devastating pathogens to reduce the 32 
billions in crop losses worldwide. 33 
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 37 
Acronyms – Anth.: Anthocyanins; Ca+b: Chlorophyll a+b; Cx+c: Carotenoids; CWSI: Crop Water Stress Index; DS: Disease 38 
Severity; Ft: Leaf-level steady-state fluorescence; FP: False Positives; : Kappa coefficient; LAI: Leaf Area Index; LIDF: Leaf 39 
Inclination Distribution function; ML: Machine Learning; NPQI: Normalised Phaeophytinization Index-based Spectral Trait; OA: 40 
Overall Accuracy; OOB: permutation of out-of-bag predictor methodology; PRI: Photochemical Reflectance Index; PCR: 41 
Polymerase Chain Reaction assay; qPCR: Quantitative PCR assay; RPA: recombinase-polymerase-amplification; RF: Random 42 
Forest algorithm; ROC: Receiver Operating Characteristic analysis; RT: Radiative Transfer; SIF@760: Solar-induced Fluorescence 43 
calculated at 760 nm; SVM: Support Vector Machine; TN: True Negatives; VIF: Variance Inflation Factor analysis; VNIR: Visible 44 
and Near-Infrared; Vd: Verticillium dahliae; Xf: Xylella fastidiosa. 45 
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Main Text. Each year, plant pathogens cause an estimated 16% production loss globally, a number 46 
that has not significantly diminished over the last 40 years despite increased pesticide use7; in 47 
food-deficit regions, yield losses due to plant pathogens can exceed 30%2. Climate change8 and 48 
global trade9 are escalating the damage to agricultural production and food security caused by 49 
invasive species10 and both emerging and reemerging pathogens responsible for plant diseases1,2,11. 50 
Globally, agricultural and forestry production is threatened by the rapid expansion of the Ug99 51 
race and other new races of stem rust (Puccinia graminis f.sp. tritici) infecting wheat (Triticum 52 
aestivum) in Africa, the Middle East and Asia12, as well as pathogens including the tropical race 4 53 
(TR4) of Fusarium oxysporum f.sp. cubense on banana (Musa acuminata) Cavendish cultivars in 54 
Southeast Asia13, Citrus canker (Xanthomonas axonopodis pv. citri)14 and Citrus greening 55 
(Candidatus Liberibacter spp.) in the Americas15, and Xylella fastidiosa within Europe infecting 56 
olive (Olea europaea)16, almond (Prunus dulcis)17 and grape (Vitis vinifera)18.  57 

Of these pathogens, Xylella fastidiosa (Xf)19 is arguably the greatest threat worldwide, causing 58 
enormous socioeconomic and environmental losses3,4. It can infect over 550 plant species20 and 59 
has been identified as a major transboundary plant pest21. In the Americas, Xf is associated with 60 
diseases of grapevine, almond, coffee (Coffea spp.) and citrus, causing sizable economic losses22. 61 
Its recent invasion into some European countries is devastating olive and almond groves, with both 62 
economic and environmental consequences. In a hypothetical scenario modelling massive spread 63 
throughout Europe, Xf was projected to disrupt agriculture production to the level of up to €5.2 64 
billion of losses per year in the olive sector alone23. Outside America and Europe, the spread of 65 
this pathogen in Asia via Iran24 and Taiwan25, and its 2019 identification in Israel has intensified 66 
international calls to contain this global Xf epidemic. 67 

The development of robust large-scale plant scanning methods will be key to successfully monitor 68 
detrimental crop pathogens and assist in their timely eradication or optimise containment 69 
measures26. Advanced imaging spectroscopy is the only large-scale method that allows early 70 
detection of infectious plant diseases, i.e. when symptoms are not visible yet but spread of the 71 
pathogen can occur5. Hyperspectral imaging has been recently used to detect, for example, rice 72 
sheath blight (Conrad et al., 2020), tobacco mosaic virus (Zhu et al., 2017), late blight, target and 73 
bacterial spots (Lu et al., 2018), spotted wilt virus in tomato (Wang et al., 2019), phytophthora-74 
induced decline (Hornero et al., 2021), verticillium wilt and the olive quick decline syndrome 75 
(Poblete et al., 2021). However, a major limitation of advanced hyperspectral, thermal scanning 76 
and radiative transfer methods in plant health monitoring is that the subtle physiological alterations 77 
caused by a disease reflect changes in plant physiological state, such as stomatal regulation27 and 78 
the coupled chlorophyll fluorescence-photosynthesis-transpiration dynamics28, which are all 79 
commonly modulated by both biotic and abiotic confounding factors. Revealing distinct spectral 80 
fingerprints associated with biotic- vs. abiotic-stress conditions is thus of paramount importance 81 
for large-scale remote detection efforts of early disease infection symptoms that occur in the 82 
context of natural physiological variability (e.g., due to water deficit or nutrient deficiencies) 83 
commonly found even in irrigated croplands. 84 

In this study, we successfully disentangled biotic stress caused by vascular system-invading 85 
pathogens from abiotic stress imposed by water limitation by revealing distinct spectral pathways 86 
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associated with the physiological alterations detected through imaging spectroscopy and thermal 87 
data. We carried out airborne campaigns scanning over one million infected and healthy trees 88 
across seven regions in Italy and Spain between 2011 and 2019 (Figure 0). To elucidate the host-89 
specific spectral fingerprints for Xylella fastidiosa infections, we flew over officially designated 90 
Xf outbreaks affecting olive and almond fields. In olive, we also investigated whether we could 91 
distinguish between the effects of distinct xylem-limited pathogens that cause similar 92 
physiological symptoms. We evaluated whether Xf-associated biotic–abiotic spectral fingerprints 93 
were distinct from those detected for Verticillium dahliae (Vd), the xylem-invading fungus that 94 
causes Verticillium wilt, the most devastating soilborne disease infecting olive trees worldwide29. 95 
Notably, these two distinct xylem-limited pathogens increase resistance and eventually block 96 
water flow through the vascular system30. This collapse in water flow reduces transpiration and 97 
induces water stress, thus causing analogous symptoms that also can be confounded with abiotic 98 
stress6. To assess the existence of divergent Xf- and Vd-induced biotic–abiotic spectral alterations, 99 
we analysed a subset of ca. 380,000 healthy trees encompassing agricultural fields grown under 100 
variable water stress levels for both host species. We used these data to monitor i) how the Xf 101 
pathogen affected two different species (almond vs. olive), and ii) how one species (olive) 102 
responded to infection by two different xylem-limited pathogens (Xf vs. Vd). Our aim was to 103 
evaluate the robustness of distinct spectral traits to detect the biotic stress-induced symptoms, 104 
comparing across species and pathogens, while disentangling their specific spectral alterations 105 
from those caused by abiotic stress-induced dynamics. 106 



4 
 

 107 

Fig. 0. High-resolution airborne hyperspectral image acquired over one of the Apulia Xylella 108 
fastidiosa (Xf)-infected areas. Similar datasets were collected from all Xf and Verticillium dahliae 109 
(Vd) outbreaks used for the analyses carried out in this study. a, mosaic covers ??? ha at ?? cm 110 
resolution in the 400-900 nm range with ??? spectral bands. b,c, individual trees could be identified 111 
on the images and properly located during field work, using tree-crown segmentation algorithms 112 
(d) for the selection of pure vegetation pixels. Extracted image reflectance (e) and radiance (f) 113 
were used to calculate spectral indices, plant traits by radiative transfer model inversion, and solar-114 
induced chlorophyll fluorescence emission (SIF) used as inputs for the disease detection models. 115 
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Our analysis of high-resolution airborne hyperspectral and thermal images collected over Vd 116 
(Figure 1a) and Xf (Figure 1b,c,d) outbreaks showed that infection-induced physiological 117 
alterations led to changes in biotic stress-sensitive spectral traits that were common between host 118 
species, while other traits deviated between the plant species and appeared to be host-specific 119 
(Figure 1b vs. 1c). The changes in the spectral plant traits induced by Xf infection in both host 120 
species related to stomatal conductance dynamics progressively blocked xylem vessels and thus 121 
reduced transpiration 31. Lower transpiration rates also raise the overall tree canopy temperature, 122 
as measured by the thermal crop water stress index, CWSI (Idso et al., 1981), which is 123 
accompanied by a reduction in photosynthesis observed through solar-induced fluorescence 124 
emission signal (SIF), and alterations in the dynamics of the xanthophyll pigment cycle (for which 125 
PRIn provides a proxy) (see Table 2, Extended Data for a complete list of spectral plant traits). 126 
Remarkably, our results illustrated species-specific spectral traits altered by Xf-induced stress: the 127 
blue-region spectral trait NPQI, which is related to chlorophyll-phaeophytin degradation5, and 128 
anthocyanin content (Anth.) were of limited importance under Xf infection in almond trees yet 129 
extremely relevant to detect Xf infection in olive trees (Figure 1b,c). 130 

We obtained these results through a multilayered functional plant-trait scheme5 derived from the 131 
inversion of a physical radiative transfer model and a machine learning (ML) algorithm (Poblete 132 
et al., 2021), applied here for the first time across two different host species. The numerous visible 133 
and near-infrared (VNIR) spectral indices initially calculated (Table 2, Extended Data) were 134 
reduced by a multicollinearity analysis based on the variance inflation factor (VIF). The latter 135 
enabled the enhanced contribution of the thermal trait (CWSI), the solar-induced fluorescence 136 
(SIF), and the model-estimated traits such as the leaf biochemical constituents and the canopy 137 
structural parameters on the disease detection. To make the results comparable across species and 138 
pathogens, the obtained importance for each spectral trait was normalised by the highest 139 
importance of each pathogen/species within each ML model (see Methods for detailed 140 
description). This approach revealed, on a common scale, how important individual spectral plant 141 
traits were in the overall response of the two host species studied here to biotic and abiotic 142 
stressors. We describe in detail how spectral plant traits are expressed in Xf-infected trees 143 
depending on the tree water status (Figure 1c vs. 1d). We show that anthocyanins are not a sensitive 144 
indicator of Xf infection in almond trees irrespective of their water stress levels (Figure 1c), while 145 
Xf infection evoked an NPQI response only in well-watered almond trees (Figure 1d). Importantly, 146 
we observed that the two xylem-limited pathogens (Xf and Vd) infecting olive trees left distinct 147 
spectral plant-trait fingerprints on their hosts (Figure 1a vs. 1b). We observed that a blue-region B 148 
spectral plant trait was expressed in Vd- but not Xf-infected plants, and that the most sensitive 149 
indicators of Xf infection in olive after CWSI, namely NPQI, chlorophyll fluorescence and PRIn-150 
xanthophyll spectral traits, were relatively uninformative for Vd infection. By contrast, CWSI and 151 
anthocyanin contents were sensitive spectral traits to both Xf and Vd infection in olive. These 152 
results demonstrate that the sensitivity of specific spectral plant traits is a function of the nature of 153 
the biotic stressor: when a pathogen (Xf) infects multiple host species (olive vs. almond) (Figure 154 
1b vs. c) and when different xylem-limited pathogens (Xf vs. Vd) infect the same host species 155 
(olive) (Figure 1a vs. b). 156 
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The spectral changes revealed in tree populations experiencing biotic stress in the form of Xf or 157 
Vd infections by means of imaging spectroscopy, thermal indicators and radiative transfer 158 
methods, are consistent with fundamental leaf-level physiological processes. Infected vegetation 159 
accumulates photoprotective compounds such as phenolics32, flavonoids and carotenoids (Cx+c) 160 
that also act against plant pathogens33. In the case of Xf infections, laboratory assays34 and spectral 161 
analyses have demonstrated an increase in leaf temperature and anthocyanins content, as well as a 162 
reduction of chlorophyll fluorescence5 that is accompanied by a degradation of photosynthetic 163 
pigments. Our optical measurements, taken in situ from leaves of Xf-infected olive and almond 164 
trees, confirmed the sensitivity of the spectral plant traits identified from airborne imaging 165 
spectroscopy (Figure 1e to 1j). Consistent with our tree crown-level image analyses, we observed 166 
that leaf temperature (Figure 1e), fluorescence emission (Figure 1h) and xanthophyll-related 167 
spectral traits (Figure 1i) were sensitive to Xf infection across species. By contrast, NPQI at the 168 
leaf level was only sensitive under well-watered conditions (Figure 1f). At the same time, our 169 
results demonstrate at two different scales (leaves and tree crowns through airborne imaging 170 
spectroscopy) that the sensitivity of specific spectral indicators induced by biotic stress is 171 
modulated by the water status of the infected vegetation.  172 
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Fig. 1 Importance of spectral traits to detect Xf- and Vd-infection symptoms. a–d Normalised 173 
importance of hyperspectral and thermal plant traits retrieved from the pool of spectral plant traits used 174 
to detect Verticillium dahliae, Vd- (a) and Xylella fastidiosa, Xf-induced infection symptoms (b,c,d) 175 
across olive (a,b) and almond (c,d) trees. For reference, the full list of spectral plant traits is available 176 
in the Extended Data, Table 2. The importance analysis was carried out using a balanced training 177 
dataset obtained from n=1,878 (a), n=7,296 (b), n=4,048 (c), n=2,680 (d) trees by the permutation of 178 
out-of-bag (OOB) predictor methodology. The importance of each spectral trait was normalised by the 179 
highest importance obtained for each disease/species within each ML model. e–j Analysis of spectral 180 
plant traits measured in the field from asymptomatic vs. Xf-infected olive and almond leaves. e, 181 
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Temperature at midday (t, n=2,584 leaf samples). f, Normalised phaeophytinization index-based 182 
Spectral Trait (NPQI, n=1,457 leaf spectral samples). g, Anthocyanins (Anth, n=1,318 leaf samples). 183 
h, Steady-state leaf chlorophyll fluorescence (Ft, n=2,887 leaf samples). i, Normalised xanthophyll 184 
cycle dynamics index (Photochemical Reflectance Index [PRIn], n=1,457 leaf spectra samples). j, leaf 185 
chlorophyll content (Ca+b, n= 2,584 leaf samples). Statistical analyses were carried out by a Kruskal-186 
Wallis test followed by a Wilcoxon post-hoc test with Bonferroni correction to examine significant 187 
differences at p < 0.05 between the leaf groups for each species. Severity levels with the same letter 188 
are not significantly different (p-value ≥0.05). The horizontal black line in the boxplots displays the 189 
median, and the top and bottom horizontal lines represent the 75th and 25th percentiles, respectively. 190 
Whiskers display the lower and upper limits of interquartile ranges (Q±1.5xIQR). 191 
 192 
 193 
A major limitation toward the wide use of the alterations induced by biotic stress that can be 194 
detected by imaging spectroscopy is how intrinsically entangled they are with physiological 195 
changes stemming from abiotic stressors that are routinely experienced in agricultural fields. In 196 
the absence of sources of biotic stress, the restriction of canopy growth under suboptimal water or 197 
nutrient levels is generally associated with stomatal closure35 and chlorosis36, thus imposing both 198 
water and nutritional stress due to reduced uptake by the root system. Similarly, photosynthetic 199 
rate diminishes in response to both stomatal and non-stomatal effects37, with a contrasting level of 200 
recovery after the release of stress38. In practice, these coupled biotic–abiotic physiological effects 201 
observed as broadly similar spectral fingerprints have thus far hindered the successful large-scale 202 
remote detection of infected trees. 203 

To unravel these confounding spectral alterations induced by biotic and abiotic stressors, we 204 
implemented a feature-weighted ML algorithm based on the methodology proposed by Liu and 205 
Zhao39. The feature-weighted layer that we developed accounts for the importance of the most 206 
sensitive spectral traits to detect Xf- and Vd-infected olive trees. Considering the predictions of the 207 
feature-weighted ML model, we evaluated the uncertainty and the performance of detection 208 
models for infection by Xf and Vd based on spectral plant traits in terms of their overall accuracy 209 
(OA) and kappa coefficients (κ). We then validated our detection models against molecular 210 
diagnostic assays performed in the field or on field samples: conventional PCR, quantitative PCR 211 
(qPCR) and recombinase-polymerase-amplification (RPA), and by visual inspections carried out 212 
in outbreak areas. Our feature-weighted models, which at this stage account only for the biotic 213 
stress-induced variability in the spectral traits yielded OA=84% (κ=0.68) for Xf detection of 214 
infection in almond (n=4,048 trees), and OA=77% (κ=0.43) and OA=75% (κ=0.49) for Xf and Vd 215 
detection of infection in olive, respectively (n=7,296 and n=1,852 trees, respectively). 216 

Despite obtaining classification accuracies exceeding 75%, we also noticed a large number of trees 217 
classified with high uncertainty based on the classification probabilities of the featured-weighted 218 
ML algorithm. These contained most of the trees misclassified as infected by the ML algorithms 219 
but showing no visual symptoms – thus considered as false positives (FP) for infection– and trees 220 
classified as not infected but showing visual symptoms – thus false negatives (FN) for infection – 221 
with a total of 65%, 72% and 50% uncertain trees for Xf and Vd in olive, and Xf in almond, 222 
respectively. We hypothesised that these large uncertainties in the detection of Xf and Vd infection 223 
symptoms across species might be due to the role of the physiological responses that are commonly 224 
triggered by both biotic and abiotic stressors, thereby causing similar reductions in leaf water 225 
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potential, CO2 assimilation, and stomatal conductance31 along with decreased chlorophyll 226 
fluorescence and changes in pigment concentrations5. 227 

We disentangled the changes in spectral plant traits caused by biotic (Xf and Vd infection) and 228 
abiotic stressors by analysing a temporal series of airborne imaging spectroscopy and thermal 229 
imagery acquired in areas free of pathogens yet experiencing variable water status levels. We flew 230 
over ca. 380,000 olive and almond trees across three geographical regions with our airborne 231 
imaging sensors over two summer growing seasons. This multitemporal dataset enabled the 232 
identification of individual trees that showed consistent and sustained water status levels across 233 
seasons. The temporal approach allowed clustering of trees with different stress levels over a long 234 
period of time (i.e., two growing seasons) rather than focusing the analysis on short-term water 235 
stress conditions potentially due to transitory environmental effects or irrigation system 236 
malfunctions in each orchard under study. Thus, the multiyear dataset improved the selection of 237 
trees consistently experiencing sustained water stress. The scanned fields contained irrigated 238 
groves that followed current best practices and water availability, with recorded values for stem 239 
water potential ranging from –1.7 to –1.9 MPa over the course of the season for almond trees, and 240 
–2.0 to –2.9 MPa in olive trees. Applying a modified three-sigma rule approach to these 241 
multitemporal datasets, we used the thermal-based transpiration trait CWSI calculated across years 242 
to cluster the ca. 50,000 scanned olive and almond trees into groups based on percentiles (10th, 243 
68th, 85th and 95th) corresponding to non-stressed trees (C0) vs. clusters with increasing water stress 244 
levels (C1 to C4) (Figure 2). We then used the multilayered radiative transfer model inversion and 245 
the weighted-based ML algorithm to assess the dynamics of the respective spectral traits as a 246 
function of increasing levels of water stress (indicated as S1 to S4 stress levels in Figure 2). 247 

We identified a set of spectral plant-trait indicators that was consistently sensitive to water 248 
limitation in both species and in the absence of biotic stress (Figure 2). The trends of these abiotic-249 
induced indicators deviated from those observed under Xf-infection conditions, which moreover 250 
differed across the two species (Figure 1b vs. 1c) as well as from those seen in the same host 251 
species for the two pathogens (Xf vs. Vd) (Figure 1a vs. 1b). The most important spectral trait 252 
across all water-limited abiotic stress levels was CWSI, which is consistent with the reduced 253 
stomatal conductance and transpiration of the plants, resulting in rising leaf temperatures, followed 254 
by an alteration of xanthophyll cycle dynamics (PRIn). Remarkably, our results show that, as water 255 
stress increased (Figure 2, S1 to S4 water stress levels), the relative importance of transpiration-256 
related spectral indicators such as CWSI decreased, while that of physiological traits related to 257 
plant pigments and tree structure increased. In almond (Figure 2b), adaptive mechanisms to severe 258 
water stress include defoliation to prevent desiccation40. In sharp contrast, olive trees (Figure 2a) 259 
predominantly control water loss via transpiration by strict stomatal regulation41. These species-260 
specific adaptive mechanisms led to distinct trends for the leaf area index (LAI) and chlorophyll 261 
content (Ca+b) spectral traits measured in both species (Figure 2a vs. 2b). We show that the 262 
importance of the spectral indicators CWSI, anthocyanins content and SIF exhibit an inverse 263 
correlation with water stress levels. We also discovered critical information to help disentangle the 264 
detection of biotic and abiotic stress: several highly sensitive spectral plant traits identified in the 265 
context of biotic stress responses in olive (Figure 1) showed either no sensitivity (such as the NPQI 266 
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spectral trait) or only a weak sensitivity (Anth.) to various abiotic stress conditions in both tree 267 
species (Figure 2a,b). 268 

 

Fig. 2 Importance of spectral traits to detect abiotic-induced water stress symptoms.  269 
Sensitivity of plant spectral traits calculated from hyperspectral and thermal imagery from trees 270 
under increasing abiotic stress (caused by decreasing water stress levels, from S1 to S4) across 271 
olive (a) and almond (b) trees. Analyses were carried out via clustering by comparing non-stressed 272 
trees (C0) vs. trees with rising CWSI levels (C1 to C4). Clustering was performed based on CWSI 273 
by following a modified three-sigma rule, where C0 consists of trees in the lowest 10th percentile. 274 
Clusters C1, C2, C3, and C4 were set to include only the trees with CWSI values above the 10th and 275 
below the 68th percentile (C1), between the 68th and 85th percentiles (C2), above the 85th and below 276 
the 95th percentile (C3), and above the 95th percentile (C4). For (a), the total number of trees was 277 
n=488 (C0), n=3,066 (C1), n=1,090 (C2), n=618 (C3) and n=222 (C4). For (b), the total number of 278 
trees was n=390 (C0), n=1,776 (C1), n=1,248 (C2), n=214 (C3) and n=24 (C4). The importance of 279 
each predictor on the classification was assessed by the permutation of out-of-bag (OOB) predictor 280 
methodology applied as a random forest algorithm. 281 

 

We used the specific spectral traits linked to the biotic stress imposed by Xf and Vd infection to 282 
determine, for each pathosystem, which indicators deviated from the abiotic stress response 283 
(Figure 3a,b, indicated with ✶), thereby unravelling the biotic–abiotic uncertainty affecting the 284 
screening models. Our results indicated that airborne-quantified fluorescence SIF@760 is effective 285 

a) b)a) b)
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in distinguishing between Xf infection and abiotic stress in both species. We also identified species-286 
specific spectral traits that accomplished the same distinction: the pigment degradation-related 287 
NPQI spectral trait and anthocyanins content were specific to olive trees (Figure 3a), while the 288 
xanthophylls-related trait PRIn and chlorophyll a+b were almond-specific (Figure 3b). However, 289 
these traits diverged when irrigated almond trees were analysed separately (Figure 3c), indicating 290 
that NPQI constitutes a distinct marker trait for Xf infection in almond trees only under non-water-291 
limited conditions. Interestingly, results from the Vd dataset identified spectral traits NPQI and B 292 
as specific markers for Vd infections independently of abiotic stress status (Figure 3d), 293 
demonstrating the importance of the blue spectral region for disentangling pathogen-induced stress 294 
from abiotic stress. 295 

We then applied these newly revealed spectral plant trait fingerprints to re-evaluate in detail the 296 
trees that were classified with high uncertainty earlier by the ML algorithm (38% of olive and  297 
17% of almond trees) and to reassess the results against the molecular diagnostic assays for false 298 
positive (FP) and false negative (FN) trees misclassified for each species. Using the spectral traits 299 
that distinguished between biotic and abiotic stressors as input for a spectral clustering algorithm, 300 
we disentangled the biotic–abiotic uncertainty, reducing the percentage of misclassified trees to 301 
6.5% and 6.6% for olive and almond trees, respectively. These results thus supported our 302 
hypothesis that the original misclassification of trees was predominantly caused by uncertainty 303 
related to confounding biotic–abiotic physiological disturbances, and that the newly identified 304 
biotic–abiotic spectral fingerprints significantly reduced uncertainty across species and pathogens. 305 
Accounting for species- and pathogen-specific spectral traits (Figure 3e,f displayed for Xf in olive 306 
and almond) greatly improved model performance for all datasets comprising both species and 307 
both pathogens. Model accuracies for Xf in almond reached OA=94% (κ=0.87), which we 308 
validated against qPCR results (n=265), up from the original OA=83% (κ=0.65), while we 309 
achieved OA=92% (κ=0.83), up from the original OA=62% (κ=0.25) (qPCR n=77) in olive trees. 310 
In the case of Vd-infected trees, we achieved OA=93% (κ=0.87), up from the original OA=75% 311 
(κ=0.49) (visual inspection, n=1,852). 312 

The work presented here demonstrates that potentially confounding symptoms of biotic and abiotic 313 
stress can be distinguished for particular host plant species. Our analyses of the most 314 
comprehensive high-resolution imaging dataset of pathogen-specific hyperspectral traits compiled 315 
so far show, for the first time, the existence of host- and pathogen-specific spectral plant responses 316 
that diverge between biotic and abiotic stresses. Our work goes beyond current knowledge, 317 
accurately detecting harmful xylem-limited pathogens across host species. 318 

Global warming and international trade are exacerbating risks related to emerging and reemerging 319 
pathogens threatening agriculture. At the same time, world food production needs to increase by 320 
50% over the next 30 years to feed a growing global population, despite decreasing arable land 321 
and climate disruption (cite).  With yield losses due to pathogens exceeding 30% in regions where 322 
food security is critical, the development of technologies for large-scale early detection of 323 
outbreaks is crucial. A global plant disease monitoring framework will require collaboration across 324 
disciplines, including remote sensing, physics, artificial intelligence, engineering and sensor 325 
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development, and space and drone industries, interacting closely with plant pathology, physiology, 326 
and agronomy. 327 

The analytical approach introduced here provides a transferrable framework to disentangle 328 
pathogen-induced stress from abiotic dynamics in a range of species, which is critical for the 329 
development of global disease-detection models. Detecting the coexistence of both factors is also 330 
fundamental to evaluate the evolution and treatment of the plant, either to adapt the treatment in 331 
case there is only one stress factor, or to control the interaction of biotic and abiotic stresses. For 332 
example, drought can play a key role in the development of plant diseases (cite). The applicability 333 
of this framework to other pathotypes will require further considerations; for individual plant 334 
diseases, it will depend on the degree of divergence of the spectral pathways induced by the 335 
coupled biotic–abiotic stress-related physiological alterations for each species. We expect results 336 
to further improve for non-xylem-limited pathogens that cause physiological responses uncoupled 337 
from the abiotic dynamics of water stress. Widespread use will require further developments of 338 
technology readiness; a critical limitation for the operational application of these methods lies in 339 
the need for high-spatial resolution hyperspectral and thermal imaging (i.e., at sub-meter 340 
resolutions), a technology currently available only from drones at small scale, and from manned 341 
airborne platforms such as the ones used here. Future hyperspectral sensors on board satellites or 342 
high-altitude drones may enable systematic data collections with imaging spectroscopy at sub-343 
meter resolution data, and, when combined with analytical frameworks, permit the real-time 344 
monitoring of diseases and abiotic stresses at global scales. 345 

 346 

 347 
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Fig. 3 Importance of spectral plant traits for Xf- and Vd-detection across species under 348 
simultaneous biotic and abiotic stress. Spectral plant traits that diverge under biotic and abiotic 349 
stress are indicated with ✶ for Xylella fastidiosa (Xf) infection, in olive (a) and almond trees (b,c) 350 
and for Verticillium dahliae (Vd) infection in almond trees (d). The particular case of Xf-infected 351 
almond trees grown under non-water limited conditions is shown in c). Importance of the different 352 
spectral regions for Xf detection in olive (e) and almond (f) trees showing the spectral radiance 353 
(L), irradiance (E) and reflectance (Rfl). The importance of each predictor was obtained by the 354 
permutation of out-of-bag (OOB) predictor methodology when classifying both biotic and abiotic 355 
stress–induced conditions using a random forest algorithm. The importance of each spectral trait 356 
was normalised by the highest importance obtained for each pathogen/species. Statistical analysis was 357 
carried out using a balanced training set obtained from the indicated number of trees: nbiotic =7,296 358 
and nabiotic=5,484 (a); nbiotic=4,048 and nabiotic=3,652 (b); nbiotic=2,680 and nabiotic=3,652 (c); 359 
nbiotic=1878 and nabiotic=5848 (d). 360 

 361 
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 446 

Methods 447 

Airborne hyperspectral and thermal image acquisition 448 

We scanned over one million olive and almond trees between 2011 and 2019 with an airborne 449 
imaging spectroscopy and thermal imaging facility targeting infected and healthy trees in seven 450 
different regions located in Apulia (Italy), Majorca (Balearic Islands, Spain), Alicante, Cordoba 451 
and Seville (mainland Spain). In olive groves, over 200,000 and 372,000 trees were imaged from 452 
Xf and Vd outbreaks, respectively. In almond groves, we scanned over 132,000 trees from Xf 453 
outbreaks in Alicante and Majorca. To evaluate the effects induced by abiotic stress on spectral 454 
plant traits, we surveyed over 370,000 healthy trees (outside the outbreak areas) comprising olive 455 
and almond species subjected to a wide range of water stress conditions. 456 

We surveyed these areas with airborne hyperspectral and thermal cameras on board a manned 457 
aircraft flying at 500 m altitude above ground, yielding 40 cm and 60 cm spatial resolution, 458 
respectively. We used a hyperspectral camera (VNIR model, Headwall Photonics, Fitchburg, MA, 459 
USA) collecting 260 bands in the 400–885 nm region at 1.85 nm/pixel and 12-bit radiometric 460 
resolution with a frame rate of 50 Hz. With this spectral configuration, we captured imagery at 6.4 461 
nm full-width at half-maximum (FWHM) bandwidth and obtained an instantaneous field of view 462 
(IFOV) of 0.93 mrad and an angular field of view (FOV) of 49.82 deg with an 8 mm focal length 463 
lens. The hyperspectral sensor was radiometrically calibrated in the laboratory using an integrating 464 
sphere (CSTM-USS-2000C Uniform Source System, LabSphere, North Sutton, NH, USA). At the 465 
time of flight, we measured aerosol optical thickness at 550 nm using a Sunphotometer (Microtops 466 
II S model 540, Solar LIGHT Co., Philadelphia, PA, USA). We then applied the resulting 467 
atmospheric correction of the calibrated radiance imagery with the SMARTS model42 to derive 468 
surface reflectance spectra. We carried out ortho-rectification of the hyperspectral imagery 469 
(PARGE, ReSe Applications Schläpfer, Wil, Switzerland) with readings acquired by the inertial 470 
measuring unit on board the airborne platform (IG500 model, SBG Systems, France). We applied 471 
spatial binning through object-based image analysis, thus increasing the signal-to-noise ratio 472 
(SNR) of the instrument. Additionally, we conducted spectral binning to reduce the number of 473 
spectral bands (260 bands at 1.85 nm resolution). SNR reached >300:1 after binning. We acquired 474 
high-resolution tree-crown temperature images with a thermal camera (FLIR SC655, FLIR 475 
Systems, USA) at 640×480 pixels resolution using a 24.6 mm f/1.0 lens, sensitive to the 7.5–14 476 
μm spectral range and sensitivity below 50 mK. 477 

We identified individual trees in the high-resolution hyperspectral and thermal images using 478 
object-based crown detection and segmentation methods43. We then calculated the mean 479 
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hyperspectral radiance, reflectance and temperature for each pure tree crown within every orchard 480 
under evaluation. We based our image segmentation methods on Niblack44 and Sauvola and 481 
Pietikäinen45, which allowed the isolation of tree crowns from the soil and shadow components. 482 
The segmentation of each tree crown was assessed visually to ensure a minimum number of pure 483 
vegetation pixels were selected within each tree crown and also spectrally to evaluate the purity of 484 
the reflectance extracted from the crown to avoid spectral mixture with soil, shadows and 485 
background components (Zarco-Tejada et al., 2018; Poblete et al., 2020). 486 

 487 

Field data collection 488 

1) Xf and Vd biotic stress dataset. Field assessments of Xf- and Vd-infected trees were carried out 489 
from outbreaks affecting olive and almond species in the indicated regions of Italy and Spain 490 
between 2011 and 20195,6,43. During these campaigns, we performed quantitative PCR (qPCR)46 491 
for Xf in olive and almond (Alicante), recombinase-polymerase-amplification (RPA) using the 492 
AmplifyRP XRT+ test (Agdia®, Inc., Elkhart, IN)47 for Xf in almond (Majorca) or conventional 493 
PCR48 assays for Vd, as well as visual assessments in individual trees of disease incidence (DI) 494 
and disease severity (DS). DS was scored using a 0–4 rating scale according to the percentage of 495 
the tree crown showing disease symptoms. 496 

In Apulia, the Xf-olive database comprised a total of 15 olive groves surveyed during the June 497 
2016 and July 2017 campaigns. Visual assessments for infection were conducted on 7,296 trees 498 
(3,324 in 2016 and 3,972 in 2017). In 2016, 1,886 symptomatic (and 1,438 asymptomatic) trees 499 
were surveyed (762 trees labelled as DS=1; 802 DS=2; 250 DS=3 and 72 DS=4). In 2017, 1,365 500 
were reported as symptomatic (and 2,607 asymptomatic) (686 DS=1; 542 DS=2; 122 DS=3 and 501 
15 DS=4). qPCR assays were carried out to diagnose Xf infection in 77 olive trees, whereby 39 502 
trees tested negative (qPCR=0) and 38 tested positive (qPCR=1). 503 

On the island of Majorca and at the Alicante province, the field-based Xf-almond database 504 
comprised a total of 19 almond groves surveyed in 2018 and 2019, respectively. In Alicante, the 505 
field surveys covered 83 ha with 9 almond groves consisting of 943 almond trees. During the field 506 
campaigns, almond trees were visually assessed to evaluate Xf-induced DI and DS indices. From 507 
this analysis, we identified 593 symptomatic trees and 350 asymptomatic trees. Out of all 508 
symptomatic trees, 163 were rated as DS=1, 214 DS=2, 157 DS=3, and 59 DS=4. Furthermore, 509 
qPCR analysis was carried out on 226 almond trees to diagnose Xf infection, resulting in 48 non-510 
infected (qPCR=0) almond trees and 178 infected trees (qPCR=1). In Majorca, field surveys in 511 
July 2019 covered a total of 2,803 ha and comprised 10 almond groves. During the field 512 
campaigns, visual observations were carried out on over 4,048 almond trees to assess DI and DS, 513 
yielding 1,387 symptomatic and 2,661 asymptomatic trees. From symptomatic trees, 537 were 514 
rated as DS=1, 449 DS=2, 359 DS=3, and 42 DS=4. We conducted AmplifyRP XRT+ assays on 515 
265 almond trees for diagnosing Xf infection the same day they were sampled and identified 141 516 
negative trees (qPCR=0) and 124 positive trees (qPCR=1). 517 

We carried out physiological measurements of leaf chlorophyll, anthocyanins, flavonoids, and 518 
nitrogen contents with a Dualex Scientific+ (Force-A, Orsay, France) instrument as well as leaf 519 
reflectance (400–1000 nm spectral range) and steady-state chlorophyll fluorescence (Ft) using the 520 
PolyPen RP400 and FluorPen FP100 instruments (Photon Systems Instruments, Drasov, Czech 521 
Republic) during the field evaluations of almond and olive groves conducted in Majorca, Alicante 522 
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and Apulia regions. In the Xf-olive study site in Apulia, we generated 1,023 leaf measurements 523 
with Dualex, 1,543 single leaf reflectance spectra, as well as 1,402 Ft readings over 67 olive trees. 524 
In the Xf-almond study sites in Majorca, we measured 1,242 leaves with Dualex, 1,094 leaves with 525 
the PolyPen, and 1,218 with the Fluorpen instruments from 87 almond trees across a wide range 526 
of disease severity levels. For the Xf-almond study sites located at Alicante, we conducted 1,649 527 
leaf measurements with Dualex, 632 leaf measurements with PolyPen and 563 leaf measurements 528 
with FluorPen FP100 over 43 almond trees. 529 

We assessed Vd-infected olive trees from 11 olive groves by surveying an area of over 3,000 ha in 530 
Castro del Rio and Ecija, southern Spain, in 2011 and 2013, respectively. In Castro del Rio, we 531 
conducted visual assessments in an infected area of 96 ha comprising 1,878 olive trees, thus 532 
identifying 1,569 asymptomatic and 283 symptomatic olive trees. Out of the 283 symptomatic 533 
trees, 218 were rated as DS=1; 45 DS=2; 12 DS=3 and 8 DS=4. We measured leaf Fs and Fm’ 534 
fluorescence parameters from 25 leaves per tree using a PAM-2100 Pulse-Amplitude Modulated 535 
Fluorometer (Heinz Walz GMBH, Effeltrich, Germany). In addition, leaf PRI570 was measured 536 
from 25 leaves per tree using a custom-made PlantPen device (Photon System Instrument, Drasov, 537 
Czech Republic). Finally, we measured leaf conductance (Gs) on five leaves per tree using a leaf 538 
porometer (model SC-1, Decagon Devices, Washington, DC, USA). In the Écija region, the 539 
surveyed area covered 3,424 ha, and 5223 olive trees were evaluated. We performed visual 540 
assessment to determine DI and DS indices of Vd-infected trees, identifying 5,040 asymptomatic 541 
olive trees. Of the remaining 183 olive trees that were symptomatic, 112 were trees rated as DS=1; 542 
41 DS=2; 22 DS=3 and 8 DS=4. 543 

Trees were evaluated for disease severity and incidence by visual assessment in each outbreak 544 
region. PCR assays were carried out on a subset of these trees within each orchard to i) validate 545 
that the pathogen (Xf or Vd) was actually present and the biotic source of symptoms; and ii) validate 546 
that asymptomatic (DS=0) but infected (PCR=1) trees were detected using the hyperspectral plant 547 
traits estimated through the methodology described in this paper. In general, PCR assays are i) 548 
time consuming and costly, and ii) difficult to make in large infected trees due to the non-uniform 549 
distribution of the infection within each tree crown. These PCR data for each tree along with the 550 
field evaluations of DS, DI, and non-destructive physiological measurements derived for each tree 551 
within every orchard were matched with the high-resolution hyperspectral images to build the 552 
biotic databases used in this study. We carried out the field work at each orchard guiding the 553 
evaluations and measurements using a high-resolution image to map the location of each tree 554 
within the orchard. Due to the planting grids typical of almond and olive species, which were not 555 
contiguous or in row-structured patterns, the identification of each individual tree in the images 556 
was straightforward. 557 

2) Abiotic stress dataset. We monitored over 3,600 ha of olive and almond groves located outside 558 
any infected area in Cordoba and Seville, Southern Spain. We performed a multitemporal analysis 559 
to study the spectral plant-trait alterations induced by abiotic stress relative to healthy olive and 560 
almond trees with data we collected over a 468 ha area comprising two olive and one almond 561 
groves throughout July 2016 and August 2017 growing seasons. We analysed 2,975 olive and 562 
1,964 almond trees in 2016, and 2,865 olive and 2,063 and almond trees in 2017. At both study 563 
sites, we monitored the midday stem water potential (SWP) using a pressure chamber (Soil 564 
Moisture Equipment Corp. model 3000, Santa Barbara, CA, USA) on 16 trees per grove. SWP 565 
values showed differences between two existing irrigation levels (well-watered and mild water 566 
stress), averaging –1.7 and –1.9 MPa across the season in the case of almonds. In olive, SWP in 567 
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one of the groves reached –3.8 and –3.5 MPa. In 2017, water potential levels averaged –2.9 and –568 
2.0 MPa. In the second grove, irrigation levels were higher, reaching an average SWP of –1.5 MPa. 569 
We used an additional study site located in Casariche (Seville province), southern Spain, to 570 
validate the results obtained from the multitemporal analysis. This study site covered 3,371 ha 571 
containing 55 olive groves grown under irrigated and rainfed conditions, with 21,071 olive trees 572 
used for statistical analysis. 573 

The multitemporal dataset was used to evaluate the water-induced abiotic stress by quantifying the 574 
evolution of the importance of the most sensitive spectral traits by clustering non-stressed trees 575 
(C0) against groups of trees exposed to increasing levels of water stress (C1 to C4). The 576 
multitemporal component of this assessment enabled the evaluation of every single tree across 577 
time, therefore selecting the trees for each cluster based on a sustained water stress level, avoiding 578 
the selection of trees under short-term stress dynamics. Thus, the clusters were determined based 579 
on their CWSI levels, and only the trees with stable water stress levels across two consecutive 580 
years (2016 and 2017) were selected for the analysis. For this purpose, we did not include trees 581 
that deviated beyond 95% of the CWSI differences calculated between the first and second year in 582 
the analysis. After this trimming step, we retained 5,484 olive trees (from 5,566 trees) and 3,652 583 
almond trees (from 3882 almond trees). Trees were then grouped through CWSI clustering 584 
analysis using a modified three-sigma rule62. This rule describes the density of a distribution within 585 
standard deviation bands on both sides of the mean point into the 68th, 95th and 99.7th percentiles62, 586 
representing µ±σ, µ±2σ and µ±3σ, respectively. The first interval defined by the classic three-587 
sigma rule (µ±σ) represented most trees, while the third interval (µ±3σ) consisted of very few 588 
trees, raising issues for the determination of statistical significance analysis. Based on this 589 
observation, we adjusted the breakpoints between groups as follows: we classified those trees that 590 
were in the lowest 10th percentile as C0. Trees between the 10th and 68th percentiles (µ+σ) were 591 
classified as C1, trees between the 68th and 85th percentile were classified as C2, trees between the 592 
85th and 95th percentile were classified as C3, and finally the trees over the 95th (µ+2σ) percentile 593 
were classified as C4. We thus selected 488 C0, 3066 C1, 1090 C2, 618 C3 and 222 C4 olives trees. 594 
Likewise, we grouped almond trees into 390 C0, 1776 C1, 1248 C2, 214 Ce and 24 C4 clusters. 595 
Moreover, the analysis of the contribution of a given trait was performed using ML modelling 596 
strategies to classify unstressed trees against the clusters defined above that were exposed to 597 
increasing levels of water stress. Furthermore, we assessed the consistency of the obtained 598 
indicators by performing the classification between stressed and non-stressed trees at an 599 
independent olive study site. For this purpose, we evaluated our predictors and compared their 600 
contribution over an additional site (Casariche). 601 

 602 

Model inversion methods for plant-trait estimation 603 

We quantified chlorophyll content (Ca+b), carotenoid content (Cx+c), anthocyanin content (Anth.), 604 
mesophyll structure (N), leaf area index (LAI) and average leaf angle (leaf inclination distribution 605 
function or LIDF) by radiative transfer model inversion of PROSPECT-D49 and 4SAIL50, as in 606 
Zarco-Tejada et al. (2018)5. We inverted PROSPECT-D + 4SAIL using a look-up-table (LUT) 607 
generated with randomised input parameters. The LUT was generated with 100,000 simulations 608 
within fixed ranges (Table 1, Extended Data). We implemented a wavelet analysis51 into 6 609 
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wavelets by a Gaussian kernel, estimating the parameters in the top 1% entries ranking the lowest 610 
root mean square error (RMSE) values. We then retrieved each plant trait independently by 611 
training supported vector machine (SVM) algorithms using the simulated reflectance data as input. 612 
We built SVMs in Matlab (MATLAB; Statistics and Machine Learning toolbox and Deep 613 
Learning toolbox; Mathworks Inc., Matick, MA, USA) using a Gaussian kernel (radial basis 614 
function) with hyperparameters optimised for each model. The training processes were carried out 615 
in parallel using the Matlab parallel computing toolbox. With these trained models, we then used 616 
the spectral reflectance extracted from the delineated crowns to predict plant traits for each 617 
individual tree at each study site. The model inversions were carried out for each tree using the 618 
crown reflectance. The latter was calculated as an average across all the pixels belonging to the 619 
tree crown, delineated using segmentation. This method5 avoids the problem of pixels from within-620 
crown shadows, from tree edges or from sunlit or shaded soil background affecting the spectra, as 621 
it retrieves the plant traits from pure sunlit vegetation components of the trees. We also calculated 622 
narrow-band spectral indices from reflectance spectra (Table 2, Extended Data), which are 623 
sensitive to leaf traits and potentially related to disease-induced symptoms. Tree-crown radiance 624 
and temperature were used to calculate sun-induced chlorophyll fluorescence at 760 nm (SIF@760) 625 
and the crop water stress index (CWSI)52. SIF@760 was quantified using the O2-A in-filling 626 
Fraunhofer Line Depth (FLD) method53 and CWSI was calculated by incorporating the tree 627 
temperature and the weather data obtained at each study site52. 628 

 629 

Statistical analysis 630 

We implemented random forest (RF)54 algorithms to classify healthy vs. infected (biotically 631 
stressed) trees, and non-stressed vs. water (i.e. abiotically) stressed trees for both tree species. RF 632 
algorithms have been widely used in remote sensing studies since they have shown excellent 633 
classification accuracies and high processing speeds with high-dimensional data (Belgiu and 634 
Dragut, 2016) and have shown to be accurate in detection of several diseases (Hornero et al., 2021; 635 
Selvaraj et al., 2020; Liu et al., 2021; Johansen et al., 2020). The spectral plant traits estimated by 636 
radiative transfer model inversion (Ca+b, Cx+c, Anth., LAI and LIDF), CWSI and SIF@760 were used 637 
as inputs for the models. In addition, using a recursive feature elimination approach58 the narrow-638 
band indices that improved the classification in terms of overall accuracy (OA) and kappa 639 
coefficient () were added to the models. The pool of narrow-band indices was reduced based on 640 
a variance inflation factor (VIF) analysis59 to avoid collinearity among the input features. 641 

The RF algorithms were built in Matlab and the hyperparameters were optimised using Bayesian 642 
optimisation. The importance of a feature using the RF algorithm was assessed based on the 643 
permutation of out-of-bag (OOB) predictor methodology60. To compare the relative differences of 644 
the spectral traits in classification of the biotic and abiotic stress, the importance was normalised by 645 
dividing the importance of each trait by the highest contribution obtained for each pathogen/species. 646 
For  the RF models, 500 iterations were run by randomly partitioning each dataset into training 647 
(80% of samples) and testing sets (20% of samples). For the training subset, a balanced number of 648 
samples from each class was randomly selected at each iteration. The importance obtained by the 649 
OOB permutation algorithms was used to build a feature-weighted random forest algorithm (based 650 
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on Liu and Zhao39),  accounting for the importance of each variable on the classification process, 651 
evaluating the model against PCR data and visual observations for each biotic stress dataset in 652 
terms of OA and  levels. 653 

Probabilities of the predictions were obtained for each sample61 and the uncertain trees were 654 
assessed. To extract the uncertainty for each individual tree on the classification, we evaluated the 655 
probability distribution for each class from each dataset independently. Then, those trees with a 656 
classification probability below the 68th percentile (µ [mean] + σ [standard deviation]) were 657 
considered as uncertain and incorporated into a second-stage classification process. The second 658 
stage consisted of an unsupervised graph theory–based spectral clustering algorithm (Liu et al., 659 
2013) and included traits selected by focusing on the divergent biotic–abiotic stress obtained from 660 
the biotic and the abiotic stress databases. Spectral clustering was performed in R using the kernlab 661 
package63 662 

To determine the spectral traits that differed between Xf- and Vd-infected plants and those from 663 
the abiotic pathway, we first normalised the importance of the specific traits independently. Then, 664 
we compared the common traits between abiotic and biotic stress sets, selecting only biotic stress–665 
related traits that differed in ratio by more than 0.5 over their homologous abiotic stress trait values. 666 
Traits that were only expressed under biotic stress conditions and that showed a normalised 667 
importance over 0.5 were included for the second-stage classification process only including those 668 
divergent-specific biotic and abiotic stress–related spectral traits as inputs. Specifically, NPQI, 669 
Anth., and SIF@760 were considered for the classification of Xf-infected olive trees. Ca+b, SIF@760 670 
and PRIn were used for classifying Xf-infected almond trees. Furthermore, NPQI, Anth. and B 671 
spectral traits were selected for classifying uncertain Vd-infected olive trees. Finally, we validated 672 
our feature-weighted methodology coupled with the second-stage spectral clustering method 673 
against qPCR assays and visual assessment of symptom severity. 674 

 675 
Data and code availability. The data and the custom code required for the analysis conducted in 676 
this study are available at the GitHub repository, address: https://github.com/HyperSens/spectral-677 
fingerprints 678 
 679 
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Extended data 

 
Extended Data. Table 1. Values and ranges used for the model inversion and look-up-table 
(LUT) generation for the PROSAIL (PROSPECT-D + 4SAIL) radiative transfer model. 
 
Parameter Abbreviation Value / range 
Chlorophyll content [μg/cm²] Ca+b 10–70 
Carotenoid content [μg/cm²] Cx+c 0–20 
Anthocyanin content [μg/cm²] Anth 0–7.5 
Dry matter content [g/cm²] Cm 0.012 
Water content [g/cm²] Cw 0.009 
Mesophyll struct. coeff. N 1–2.5 
Leaf Area Index [m²/m²] LAI 0.3–5 
Average leaf angle [deg.] Lidfa 0–90 
Hot spot parameter  Hot 0.01 
Soil reflectance Rsoil - 
Observer angle [deg.] tto 0 
Sun zenith angle [deg.] tts 0–53.75 
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Relative azimuth angle [deg.] psi 0 
 
 
Extended Data. Table 2. Narrow-band hyperspectral indices derived from hyperspectral and 
thermal data included in this study and their formulations. 
 
Hyperspectral indices Equation Reference 
 
Structural indices   

Normalised Difference Veg. Index 𝑁𝐷𝑉𝐼 = (𝑅 − 𝑅 )/(𝑅 + 𝑅 ) Rouse et al. (1974)64  
Renormalised Difference Veg. Index 𝑅𝐷𝑉𝐼 = (𝑅 − 𝑅 )/ (𝑅 + 𝑅 ) Roujean & Breon (1995)65  

Optimised Soil-Adjusted Veg. Index 𝑂𝑆𝐴𝑉𝐼 = ((1 + 0.16) · (𝑅 − 𝑅 )/(𝑅 + 𝑅

+ 0.16)) 
Rondeaux et al. (1996)66  

Modified Soil-Adjusted Vegetation 
Index 

𝑀𝑆𝐴𝑉𝐼

=
2 · 𝑅 + 1 − (2 · 𝑅 + 1) − 8(𝑅 − 𝑅 )

2
 

Qi et al. (1994)67 

Triangular Vegetation Index 𝑇𝑉𝐼 = 0.5 · [120 · (𝑅 − 𝑅 ) − 200

· (𝑅 − 𝑅 )] 
Broge & Leblanc (2001)68  

Modified Triangular Veg. Index 1 𝑀𝑇𝑉𝐼1 = 1.2[1.2(𝑅 − 𝑅 ) − 2.5(𝑅 − 𝑅 )] Haboudane et al. (2004)69  

Modified Triangular Veg. Index 2 

𝑀𝑇𝑉𝐼2

=
1.5[1.2(𝑅 − 𝑅 ) − 2.5(𝑅 − 𝑅 )]

(2𝑅 + 1) − 6𝑅 − 5 𝑅 − 0.5

 Haboudane et al. (2004)69 

Modified Chlorophyll Abs. Index 𝑀𝐶𝐴𝑅𝐼 = [(𝑅 − 𝑅 ) − 0.2(𝑅 − 𝑅 )]

· (𝑅 /𝑅 ) 
Haboudane et al. (2004)69 

Modified Chlorophyll Abs. Index 1 𝑀𝐶𝐴𝑅𝐼1 = 1.2[2.5(𝑅 − 𝑅 )

− 1.3(𝑅 − 𝑅 )] 
Haboudane et al. (2004)69 

Modified Chlorophyll Abs. Index 2 

𝑀𝐶𝐴𝑅𝐼2

=
1.5[2.5(𝑅 − 𝑅 ) − 1.3(𝑅 − 𝑅 )]

(2𝑅 + 1) − 6𝑅 − 5 𝑅 − 0.5

 Haboudane et al. (2004)69 

Simple Ratio 𝑆𝑅 = 𝑅 /𝑅  Jordan (1969)70  

Modified Simple Ratio 𝑀𝑆𝑅 =
𝑅 /𝑅 − 1

(𝑅 /𝑅 ) . + 1
 Chen (1996)71  

Enhanced Vegetation Index 
𝐸𝑉𝐼 = 2.5 · (𝑅 − 𝑅 )

/(𝑅 + 6 · 𝑅 − 7.5 · 𝑅

+ 1) 
Liu & Huete (1995)72  

 
Pigment indices 

  

Vogelmann indices 𝑉𝑂𝐺1 = 𝑅 /𝑅  Vogelmann et al. (1993)73  
 𝑉𝑂𝐺2 = (𝑅 − 𝑅 )/(𝑅 + 𝑅 ) Vogelmann et al. (1993)73 
 𝑉𝑂𝐺3 = (𝑅 − 𝑅 )/(𝑅 + 𝑅 ) Vogelmann et al. (1993)73 
Gitelson & Merzlyak indices 𝐺𝑀1 = 𝑅 /𝑅  Gitelson & Merzlyak (1997)74  
 𝐺𝑀2 = 𝑅 /𝑅  Gitelson & Merzlyak (1997)74 
Transformed Chlorophyll Absorption in 
Reflectance Index 

𝑇𝐶𝐴𝑅𝐼 = 3 · [(𝑅 − 𝑅 ) − 0.2 · (𝑅 − 𝑅 )

· (𝑅 /𝑅 ) 
Haboudane et al. (2002)75  

Transformed Chlorophyll Absorption in 
Reflectance Index/ Optimised Soil-
Adjusted Vegetation Index 

𝑇𝐶𝐴𝑅𝐼

𝑂𝑆𝐴𝑉𝐼

=
3 · [(𝑅 − 𝑅 ) − 0.2 · (𝑅 − 𝑅 ) · (𝑅 /𝑅

((1 + 0.16) · (𝑅 − 𝑅 )/(𝑅 + 𝑅 + 0.16))

Haboudane et al. (2002)75 

Chlorophyll Index Red Edge 𝐶𝐼 = 𝑅 /𝑅  Haboudane et al. (2002)75 
Simple Ratio Pigment Index 𝑆𝑅𝑃𝐼 = 𝑅 /𝑅  Peñuelas et al. (1995)76  

Normalised Phaeophytinization Index 𝑁𝑃𝑄𝐼 = (𝑅 − 𝑅 )/(𝑅 + 𝑅 ) 

Barnes et al. (1992)77  
Peñuelas et al. (1995)76 
Barnes et al., 1992)77 
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Normalised Pigments Index 𝑁𝑃𝐶𝐼 = (𝑅 − 𝑅 )/(𝑅 + 𝑅 ) Peñuelas et al. (1995)76 
Carter indices 𝐶𝑇𝑅𝐼1 = 𝑅 /𝑅  Carter (1994)78  
 𝐶𝐴𝑅 = 𝑅 /𝑅  Carter et al. (1996)79  
Reflectance band ratio indices 𝐷𝐶𝑎𝑏𝐶𝑥𝑐 = 𝑅 /(𝑅 · 3𝑅 ) Datt et al. (1998)80  
 𝐷𝑁𝐼𝑅𝐶𝑎𝑏𝐶𝑥𝑐 = 𝑅 /(𝑅 · 𝑅 ) Datt et al. (1998)80 
Structure-Intensive Pigment Index 𝑆𝐼𝑃𝐼 = (𝑅 − 𝑅 )/(𝑅 + 𝑅 ) Peñuelas et al. (1995)76 
Carotenoid Reflectance Indices 𝐶𝑅𝐼 = (1/𝑅 ) − (1/𝑅 ) Gitelson et al. (2003; 2006)81,82  
 𝐶𝑅𝐼 = (1/𝑅 ) − (1/𝑅 ) Gitelson et al. (2003; 2006)81,82 
 𝐶𝑅𝐼 _ = (1/𝑅 ) − (1/𝑅 ) Gitelson et al. (2006)82  
 𝐶𝑅𝐼 _ = (1/𝑅 ) − (1/𝑅 ) Gitelson et al. (2006)82 
 𝑅𝑁𝐼𝑅 · 𝐶𝑅𝐼 = (1/𝑅 ) − (1/𝑅 ) · 𝑅  Gitelson et al. (2003; 2006)81,82 

 
𝑅𝑁𝐼𝑅 · 𝐶𝑅𝐼 = (1/𝑅 ) − (1/𝑅 ) · 𝑅  

Gitelson et al. (2003; 2006)81,82 

Plant Senescencing Reflectance Index 𝑃𝑆𝑅𝐼 = (𝑅 − 𝑅 )/𝑅  Merzlyak et al. (1999)83  
Pigment Specific Simple Ratio 
Chlorophyll a 𝑃𝑆𝑆𝑅𝑎 = 𝑅 /𝑅  Blackburn (1998)84  

Pigment Spec. Simple Ratio Chl. b 𝑃𝑆𝑆𝑅𝑏 = 𝑅 /𝑅  Blackburn (1998)84 
Pigment Specific Simple Ratio Carot. 𝑃𝑆𝑅𝑅𝑐 = 𝑅 /𝑅  Blackburn (1998)84 
Pigment Specific Normalised 
Difference 𝑃𝑆𝑁𝐷𝑐 = (𝑅 − 𝑅 )/(𝑅 + 𝑅 ) Blackburn (1998)84 

 
Xanthophyll indices   

Photochemical Refl. Index (570) 𝑃𝑅𝐼 = (𝑅 − 𝑅 )/(𝑅 + 𝑅 ) Gamon et al. (1992)85  
Photochemical Refl. Index (515) 𝑃𝑅𝐼 = (𝑅 − 𝑅 )/(𝑅 + 𝑅 ) Hernández-Clemente et al. (2011)86  
Photochemical Refl. Index (512) 𝑃𝑅𝐼 = (𝑅 − 𝑅 )/(𝑅 + 𝑅 ) Hernández-Clemente et al. (2011)86 
Photochemical Refl. Index (600) 𝑃𝑅𝐼 = (𝑅 − 𝑅 )/(𝑅 + 𝑅 ) Gamon et al. (1992)85 
Photochemical Refl. Index (670) 𝑃𝑅𝐼 = (𝑅 − 𝑅 )/(𝑅 + 𝑅 ) Gamon et al. (1992)85 
Photochemical Refl. Index (670 and 
570) 

𝑃𝑅𝐼 = (𝑅 − 𝑅 − 𝑅 )/(𝑅 + 𝑅

+ 𝑅 ) 
Hernández-Clemente et al. (2011)86 

Normalised Photoch. Refl. Index 𝑃𝑅𝐼 = 𝑃𝑅𝐼 /[𝑅𝐷𝑉𝐼 · (𝑅 /𝑅 ) Zarco-Tejada et al. (2013)87  

Carotenoid/Chlorophyll Ratio Index 𝑃𝑅𝐼 · 𝐶𝐼 = (𝑅 − 𝑅 )/(𝑅 + 𝑅 )

· ((𝑅 /𝑅 ) − 1) 
Garrity et al. (2011)88  

R/G/B indices   
Redness Index 𝑅 = 𝑅 /𝑅  Gitelson et al. (2000)89  
Greenness Index 𝐺 = 𝑅 /𝑅  Calderon et al. (2013)90  
Blue Index 𝐵 = 𝑅 /𝑅  Calderon et al. (2013)90 
Blue/green indices 𝐵𝐺𝐼1 = 𝑅 /𝑅  Zarco-Tejada et al. (2005)91  
 𝐵𝐺𝐼2 = 𝑅 /𝑅  Zarco-Tejada et al. (2005)91 
Blue/red indices 𝐵𝑅𝐼1 = 𝑅 /𝑅  Zarco-Tejada et al. (2012)92  
 𝐵𝑅𝐼2 = 𝑅 /𝑅  Zarco-Tejada et al. (2012)92 
BF1 𝐵𝐹1 = 𝑅 /𝑅  Zarco-Tejada et al. (2018)5  
BF2 𝐵𝐹2 = 𝑅 /𝑅  Zarco-Tejada et al. (2018)5 
BF3 𝐵𝐹3 = 𝑅 /𝑅  Zarco-Tejada et al. (2018)5 
BF4 𝐵𝐹4 = 𝑅 /𝑅  Zarco-Tejada et al. (2018)5 
BF5 𝐵𝐹5 = 𝑅 /𝑅  Zarco-Tejada et al. (2018)5 
Red/green indices 𝑅𝐺𝐼 = 𝑅 /𝑅  Zarco-Tejada et al. (2005)91 
Ratio Analysis of Reflectance Spectra 𝑅𝐴𝑅𝑆 = 𝑅 /𝑅  Chappelle et al. (1992)93  
Lichtenthaler Index 𝐿𝐼𝐶1 = (𝑅 − 𝑅 )/(𝑅 + 𝑅 )] Lichtenhaler et al. (1996)94  
 𝐿𝐼𝐶2 = 𝑅 /𝑅  Lichtenhaler et al. (1996)94 
 𝐿𝐼𝐶3 = 𝑅 /𝑅  Lichtenhaler et al. (1996)94 

Chlorophyll fluorescence   
Reflectance Curvature Index 𝐶𝑈𝑅 = (𝑅 · 𝑅 )/𝑅  

 
Zarco-Tejada et al. (2000)95  
 



25 
 

Fraunhofer Line Depth (FLD) principle 𝐹𝐿𝐷 =
· ·    

Plascyk (1975)53 
see Mohammed et al. (2019)96 

 

Plant disease index   

Healthy-index 𝐻𝐼 =
(𝑅 − 𝑅 )/

𝑅 + 𝑅
−

1

2
· 𝑅  Mahlein et al. (2012)97  

 
Thermal index   

Crop Water Stress Index (CWSI) 
𝐶𝑊𝑆𝐼 =

(𝑇 − 𝑇 ) − (𝑇 − 𝑇 )

(𝑇 − 𝑇 ) − (𝑇 − 𝑇 ) )
 

LL, UL = lower and upper limits, respectively 
Idso et al. (1981)52 
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