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Abstract— Models derived from satellite image data are needed to monitor the status of terrestrial 26 

ecosystems across large spatial scales. However, a remote sensing-based approach to quantify soil 27 

multifunctionality at the global scale is missing despite significant research efforts on this topic. 28 

A major constraint for doing so is the availability of suitable global-scale field data to calibrate 29 

remote sensing indicators (RSI) and, to a lesser extent, the sensitivity of spectral data of available 30 

satellite sensors to soil background and atmospheric conditions. Here, we aimed to develop a soil 31 

multifunctionality model to monitor global drylands coupling ground data on 14 soil functions of 32 

222 dryland areas from six continents to 18 RSI derived from a time series (2006-2013) Landsat 33 

dataset. Among the RSI evaluated, the chlorophyll absorption ratio index was the best predictor of 34 

soil multifunctionality in single-variable-based models (r=0.66, p<0.01, NMRSE=0.17). However, 35 

a multi-variable RSI model combining the chlorophyll absorption ratio index, the global 36 

environment monitoring index and the canopy-air temperature difference improved the accuracy 37 

of quantifying soil multifunctionality (r=0.73, p<0.01, NMRSE=0.15). Furthermore, the 38 

correlation between RSI and soil variables shows a wide range of accuracy with upper and lower 39 

values obtained for AMI (r=0.889, NMRSE=0.05) and BGL (r=0.685, NMRSE=0.18), 40 

respectively. Our results provide new insights on assessing soil multifunctionality using RSI that 41 

may help to monitor temporal changes in the functioning of global drylands effectively. 42 

 43 

Index Terms— Soil multifunctionality, global monitoring, satellite data, drylands, artificial 44 

intelligence. 45 

 46 

Introduction 47 

Drylands, areas with a precipitation/potential evapotranspiration ratio below 0.65 (Huang et al., 48 



2016), are essential for sustaining life on our planet, as they cover around 42% of the global land 49 

surface, produce 42% of the world's food and host 30% of the world's endangered species (Gaur 50 

and Squires, 2017). However, drylands are threatened by climate change and desertification 51 

(Burrell et al., 2020), which can induce abrupt changes in their structure and functioning. These 52 

changes have been associated with increased aridity conditions (Berdugo et al., 2020) or reduced 53 

soil fertility and multifunctionality (Berdugo et al., 2017). Soil multifunctionality is understood as 54 

the ability of soils to maintain several ecosystem functions and services simultaneously (Garland 55 

et al., 2021). Consequently, it is crucial to monitor attributes of ecosystems, such as soil 56 

multifunctionality, in order to anticipate sudden changes that may be brought about by land 57 

degradation and the effects of climate change 58 

Earth observation satellites are critical for monitoring temporal trends in ecosystem 59 

attributes across global drylands. Optical sensors with coarse spatial resolution, such as the 60 

National Oceanic and Atmospheric Administration Advanced Very High-Resolution Radiometer 61 

or satellite passive microwave observation, have provided valuable information on quantifying 62 

dryland biomass at the regional scale (Tian et al., 2016). However, empirically validating the data 63 

from these sensors is challenging because it requires measuring similar areas to their pixel sizes 64 

(>10 km2). Broad-scale high-temporal frequency satellite data such as Landsat or MODIS have 65 

played an essential role in monitoring dryland vegetation dynamics. They have extensive spatial 66 

coverage and frequent observations, making them useful for this purpose. Landsat has been 67 

particularly successful in monitoring dryland vegetation attributes, with reliable accuracy in 68 

retrieving fractional cover and leaf area index at the regional scale (Sonnenschein et al., 2011; Sun, 69 

2015).  One of the methods most widely used to infer vegetation attributes has been the calculation 70 

of remote sensing indicators (RSI), such as the normalised difference vegetation index (NDVI) 71 



(Rouse et al., 1974). However, NDVI applicability on a global scale is limited due to the spectral 72 

influence of mixed sparse vegetation and bare soil (Huete and Jackson, 1987).  73 

Remote sensing indicators that minimise soil background have recently received 74 

considerable attention. Indices such as the soil-adjusted vegetation index (SAVI) (Huete et al., 75 

1985), the optimised soil-adjusted vegetation index (OSAVI) (Rondeaux et al., 1996), the 76 

atmospherically resistant vegetation index (ARVI) (Kaufman and Tanre, 1992), the modified 77 

chlorophyll absorption in reflectance index (MCARI) (Haboudane et al., 2004a) or the global 78 

environment monitoring index (GEMI) (Ren and Feng, 2015) are more resistant than NDVI to 79 

saturation, background reflectance conditions and atmospheric effects. For instance, ARVI has a 80 

similar dynamic range to NDVI, but on average, it is four times less sensitive to atmospheric effects 81 

than NDVI (Kaufman and Tanre, 1992). However, the sensitivity of vegetation indices has mainly 82 

been studied at local and regional scales, and no studies have evaluated their suitability across 83 

global drylands. For instance, some studies show that traditional indices like NDVI perform better 84 

than modified vegetation indices for monitoring above-ground green biomass in arid and semi-85 

arid grasslands (Ren and Feng, 2015). In contrast, other studies show that the modified vegetation 86 

indices, such as the SAVI and L-SAVI, improved the detection of spatio-temporal changes in the 87 

vegetation in a semi-arid area (Fatiha et al., 2013).  These examples underscore the current 88 

deficiency in assessing and comparing existing vegetation indices at the global scale.  89 

 Developing global models of soil multifunctionality faces significant challenges, one of 90 

which is the lack of suitable field data that fits the spatial resolution of satellite imagery required 91 

to build and validate these models. To overcome this challenge, we need to move beyond remote 92 

sensing indicators (RSI) mainly related to plant cover and incorporate other indicators that can 93 

potentially analyze biophysical properties such as plant composition and functioning. For instance, 94 



Zhao et al. (2018) demonstrated a significant relationship between visible black-sky albedo and 95 

soil multifunctionality across global drylands. However, this study was limited to a selection of 61 96 

homogeneous plots from the 224 dryland datasets compiled by Maestre et al. (2012) to avoid the 97 

mismatch between field data collected from 30 m × 30 m plots and MODIS image resolution of 98 

500 m × 500 m (NASA LP DAAC, 2017). Such limitations can be overcome by combining 99 

existing global datasets of ground-collected soil data collected within 30 x 30 m plots (Delgado-100 

Baquerizo et al., 2013; Maestre et al., 2012) with spectral data provided by Landsat 7 ETM. 101 

Landsat satellites offer the highest spatial resolution in the thermal region, with freely available 102 

imagery and the longest temporal record (roughly every 16 days) spanning the last 49 years 103 

(Wulder et al., 2022). 104 

In comparison, new missions such as Sentinel-3 cover this region with a 1,000-m spatial 105 

resolution. Landsat features spatial resolutions ranging from 15 to 80 m in the visible and infrared 106 

region and between 60 to 120 m in the thermal region, depending on the specific Landsat mission 107 

(Holden and Woodcock, 2016). Integrating medium spatial resolution image data (30 m × 30 m) 108 

such as Landsat data and field-based observations could improve the assessment of soil 109 

multifunctionality worldwide in a cost-effective and accessible manner. Furthermore, the high-110 

performance computational capacities of Google Earth Engine can be used to access and process 111 

satellite data on the cloud, providing new possibilities for analyzing large volumes of data globally 112 

(Gorelick et al., 2017). 113 

Here, we combine the use of 18 surface reflectance vegetation indices and thermal remote 114 

sensing-based indices, hereafter called remote sensing indicators (RSI), with a global assessment 115 

of 14 soil functions measured in situ in 222 dryland ecosystems on six continents (Maestre et al., 116 

2012; Ochoa-Hueso et al., 2018). Our study has two main objectives: firstly, to evaluate the 117 



sensitivity of remote sensing indicators (RSI) in characterizing soil multifunctionality in dryland 118 

ecosystems worldwide, and secondly, to develop models to upscale ground-based observations 119 

with RSI data. By achieving these objectives, we aim to provide robust and comprehensive models 120 

that can enhance our understanding of dryland ecosystems' current status and dynamics globally. 121 

Material and methods 122 

A. Study sites 123 

Field data were gathered from 222 sites in 19 countries (Argentina, Australia, Brazil, Chile, China, 124 

Ecuador, Iran, Israel, Kenya, Mexico, Morocco, Peru, Spain, Tunisia, USA, Venezuela, Botswana, 125 

Burkina Faso and Ghana; (Fig. 1). These sites are a subset of the 236 sites used in Ochoa-Hueso 126 

et al. (2018); we had to exclude 14 sites due to the lack of cloud-free images during the inventories 127 

at these sites. The 222 sites surveyed covered all major vegetation/soil types and the wide range 128 

of environmental conditions across global drylands (UNEP‐WCMC, 2007) (Fig. S1- 129 

Supplementary Material).  130 

At each site, field data were collected from 30 × 30 m plots between February 2006 and 131 

December 2013 using a standardised protocol described in detail in Maestre et al. (2012). Plant 132 

cover data were obtained from four 30 m-long transects using the line-intercept method (Tongway 133 

and Hindley, 2004). Soil samples were collected using a stratified procedure of five 50 x 50 cm 134 

quadrats randomly placed under the dominant perennial vegetation patch type and in open areas 135 

devoid of perennial vegetation. Five soil cores extracted at 0–7.5 cm depth from each quadrat were 136 

bulked and homogenised in the field. The composite included samples for microsites in open areas 137 

devoid of perennial vegetation and under the canopy of the dominant perennial plant species. The 138 

number of soil samples collected varied between 10 and 15 per site (depending on whether one or 139 

two dominant plant species were found at each site), accounting for more than 2600 samples. After 140 



field collection, the soil samples were taken to the laboratory, where they were sieved (2 mm 141 

mesh), air-dried for one month, and stored for laboratory analysis. Dry soil samples were then 142 

analysed for soil functions related to the cycling and storage of carbon (Table 1), as described in 143 

Maestre et al. (2012). A plot-level estimate of all the soil functions was obtained using a weighted 144 

average of values from open and vegetated microsites weighted by their respective cover at each 145 

plot. As a soil multifunctionality index, we used the average Z-score for all soil functions estimated 146 

at the plot level (Maestre et al., 2012). 147 

B. Satellite data and processing 148 

We used Landsat 5 TM and Landsat 7 ETM+ filtered products to obtain spectral data from 927 149 

available images collected between 2006 and 2013. First, we selected images taken as close as 150 

possible (within 1-3 months) to the day when field surveys were conducted for the 236 sites 151 

analysed in Ochoa-Hueso et al. (2018). We then used a local filter to select the cloud-free Landsat 152 

images closest to the field surveys, reducing the dataset to 222 sites.  153 

To correct for atmospheric gases and aerosols, which can vary in space and time and can 154 

significantly impact Landsat spectral data collected on different dates (Masek et al., 2006; Roy et 155 

al., 2014), we atmospherically corrected the Landsat imagery using the Landsat ecosystem 156 

disturbance adaptive processing system (LEDAPS, version 3.4.0) (Schmidt et al., 2013). We also 157 

corrected surface reflectance to account for data from plots measured on different dates. To retrieve 158 

surface temperature, we used a methodology proposed by Jimenez-Muñoz et al. (2009) that 159 

employs a single-channel algorithm using the thermal-infrared Landsat channel (band 6). This 160 

algorithm conducts emissivity and atmospheric corrections to retrieve the surface-level 161 

temperature. The algorithm has been extensively validated in other independent studies across 162 

various land covers, showing an RMSE between 1 and 2 K, which is typical accuracy for remotely 163 



sensed land surface temperature products (Copertino, 2012; Z. Zhang et al., 2016). First, we 164 

estimated surface emissivity using a simple approach based on fractional vegetation cover and 165 

NDVI (Sobrino et al., 2008). We then calculated atmospheric functions from total atmospheric 166 

water vapour values obtained from the Copernicus Climate Change Service implemented by the 167 

European Centre for Medium-Range Weather Forecasts (Muñoz-Sabater et al., 2021). The single-168 

channel algorithm needed these data to be applied (Hersbach et al., 2020). We applied a 30-metre 169 

buffer to extract data from each study area and weighted the value of each pixel covered in this 170 

area to minimize errors in the geolocation and referencing of each pixel. An average of the pixel 171 

weights by the percentage of the area overlapping each plot was used to ensure an extensive, 172 

systematically collected sample scheme.  173 

We obtained spectral reflectance for each TM and ETM+ reflective band and surface 174 

temperature, which we used to calculate the RSI dataset for each location. To estimate a wide 175 

range of soil and plant traits (Hernández-Clemente et al., 2019), we evaluated a list of 18 RSI, 176 

including formulations based on the near-infrared and visible regions (NDVI, GLI, SIPI), modified 177 

vegetation indices proposed to minimize background and soil effects (SAVI, TSAVI, OSAVI, 178 

TSAVI/OSAVI, MCARI2 and GEMI), modified vegetation indices considering atmospheric 179 

corrections (ARVI, AFRI and VARI), formulations based on the short-wave infrared (SWIR) 180 

bands (S1260 and NBR2), and thermal bands (Ts-Ta) and WDI. For definitions and descriptions 181 

of acronyms, refer to Table 2. 182 

C. Modelling approach 183 

In this study, we investigated the capacity of the RSI evaluated to predict soil multifunctionality 184 

across global drylands. The first step in data analysis entailed selecting the most significant RSI 185 

for determining soil multifunctionality, followed by an evaluation of the model's performance, as 186 



depicted in Fig. 2. To ensure the interpretability of our model output, we first reduced the number 187 

of variables by using a filter-based feature selection approach (Gosiewska et al., 2021). We 188 

excluded RSI that were highly correlated with each other (r > 0.85, (Dormann et al., 2013)) and 189 

used only those with a variance inflation factor lower than ten (Kutner et al., 2004). This resulted 190 

in an RSI selection referred to as RSI-mc. We then performed a principal component analysis 191 

(PCA) to interpret the contribution of each RSI based on the first two principal components with 192 

an importance higher than 15% (Pacheco et al., 2013). We identified the loading vectors in the 193 

biplot of the principal components explaining >60% of the variance, which were used to select the 194 

RSI variables with the highest eigenvalues per axis, resulting in an RSI selection referred to as 195 

RSI-pca. Lastly, we included a single-index selection using the RSI most correlated with soil 196 

multifunctionality, referred to as the 1-RSI model, to check the improvement achieved with the 197 

variable reduction approaches (RSI-mc and RSI-pca). 198 

To evaluate the suitability of our model, we compared three different approaches: two 199 

artificial intelligence methods, an evolutionary algorithm model (EAM) and a random forest model 200 

(RF), and simple linear regression (LR). The comparison between these three methods was made 201 

to analyse the suitability of each approach, which varies with the variability and dispersion of the 202 

data (Franklin and Miller, 2010). The EAM model was based on a genetic algorithm used to 203 

generate high-quality solutions to optimise model accuracy in computer science, known as 204 

evolutionary algorithms (Vikhar, 2016). We computed the models with the Eureqa software 205 

package v1.24 (Datarobot Inc, Boston, USA), combining the arithmetic, trigonometric and 206 

exponential building blocks for the best model accuracy. Eureqa uses evolutionarily search to 207 

determine the best predictive models, simplifying the final calculated model. The RF model was 208 

built by using the Caret library (Kuhn et al., 2020) within the R environment (R Core Team, 2013) 209 



and the package "caret". The adjustment parameter mtry (Randomly Selected Predictors) was 210 

established initially by iterating over the whole range of values. Then, a pre-processing 211 

transformation was applied by centring and scaling the training data. Comparatively, we also tested 212 

a simple method based on a linear fitting (Freedman, 2009) between RSI and soil 213 

multifunctionality.  Finally, the models were trained considering a resampling method of five k-214 

folds and three repetitions. The model accuracy was evaluated with a cross-validation bootstrap 215 

procedure (Austin and Tu, 2004). For doing so, data were randomly split into K=500 sets, selecting 216 

80% of our dataset to generate each predictive model, and the remaining 20% was set aside for 217 

validation purposes. The average and standard deviation from this cross-validation bootstrap 218 

procedure was used for validation. We calculated the R-squared (R2) and the normalised root-219 

mean-square error (NRMSE) by contrasting predicted versus observed values. 220 

Results 221 

A. Soil multifunctionality RSI determination 222 

The feature reduction simplified the number of variables included in the modelling process. For 223 

example, the first reduction, RSI-mc, resulted in a list of ten RSI: MCARI2, NBR2, MSAVI, GLI, 224 

S1260, AFRI22, TSAVI_OSAVI, GEMI, Ts-Ta, and WDI. In the PCA biplot, we observed that 225 

these RSI were grouped into three clusters of loading vectors, each associated with climate (Fig. 226 

3a) and vegetation type (Fig. 3b) and enclosed by concentration ellipses.  227 

The modified vegetation indices MCARI2, MSAVI, GLI, TSAVI_OSAVI, S1260, NBR2, 228 

and AFRI22 were negatively correlated to the same principal component (PC1), while GEMI was 229 

positively related to PC1. On an orthogonal axis, the third group of vectors, Ts-ta and WDI, were 230 

the best contributors to PC2. In the PCA biplot, the contribution of WDI and Ts-Ta was quite 231 

similar, with the eigenvalue being slightly higher for Ts-Ta. However, it should be noted that WDI 232 



was significantly more correlated than Ts-Ta with the soil functions evaluated (Fig. 4). 233 

The ellipses in the Standardized Principal Components (PC1 vs PC2) plot serve as visual 234 

representations of the distribution and variability of data points associated with the same climate 235 

(Fig. 3a) and vegetation type (Fig. 3b). In these plots (Fig. 3a and b), large ellipses centered within 236 

the graph represent semi-arid climates, grasslands, and open forests. These ellipses demonstrate a 237 

high degree of variability in the data for each cluster and a consistent representation across the ten 238 

RSI-mc selected. Conversely, certain ellipses are associated explicitly with particular RSI. For 239 

example, GEMI and water stress indicators (Ts-Ta and WDI) contribute more to sites in arid areas. 240 

At the same time, GEMI and soil-adjusted, atmospherically resistant RSI (MCARI2, MSAVI, GLI, 241 

TSAVI_OSAVI, S1260, NBR2, and AFRI22) are more prominent in dry-subhumid areas (Fig. 3a 242 

and S1 - Supplementary Material). In the standardized principal components plot of vegetation 243 

types (Fig. 3b), GEMI and water stress indicators mainly represent savannahs. Shrublands form a 244 

cluster to the left, characterized by soil-adjusted, atmospherically resistant RSI and water stress 245 

indicators (Fig. 3b). 246 

We selected one RSI per group with the highest eigenvalues from the three main groups of 247 

eigenvectors in the standardized principal components (PC1 vs PC2) plot (Fig. 3). As a result, RSI-248 

pca selection reduced the predictors to MCARI2, GEMI, and Ts-Ta. Finally, we compared the RSI 249 

reductions, RSI-mc and RSI-pca, to the 1-RSI with the highest correlation for estimating soil 250 

multifunctionality. According to Fig. 4, MCARI2 strongly correlates with soil multifunctionality 251 

(R=0.54, R2=0.28, p<0.01). 252 

 253 

B. Global models of soil multifunctionality 254 

The scaling-up of soil multifunctionality across a wide range of climates and vegetation types with 255 



EAM, RF and LM models showed R2 and NMRSE values ranging from 0.17 to 0.55 and from 0.25 256 

to 0.15, respectively, which depended on the type of model and number of RSI considered (Fig. 257 

5a). The highest accuracy for soil multifunctionality was obtained with models computed with 258 

EAM using the RSI-pca selection, which improved NRMSE by 25 % from RF and 27% from LM 259 

models, respectively (Fig. 5b). The EAM analysis reduced the NMRSE in soil multifunctionality 260 

estimations for the three variable selection methods followed (RSI-pca, RSI-mc and 1-RSI).  The 261 

EAM-driven analysis utilizing MCARI2 resulted in a 22% reduction in NMRSE compared to the 262 

linear analysis derived from RSI-pca. Furthermore, it was observed that employing models based 263 

on RSI-mc was unnecessary, as the RSI-pca produced the most reliable outcomes when processed 264 

through EAM (Fig. 5a).  265 

The accuracy of the soil multifunctionality model based on RSI-pca using EAM analyses 266 

(r=0.733, NMRSE=0.15) also shows consistency across soil functions, with upper and lower 267 

values obtained for AMI (r=0.889, NMRSE=0.05) and BGL (r=0.685, NMRSE=0.18), 268 

respectively (Fig. 6). 269 

 270 

Discussion 271 

We developed and validated a model to estimate soil multifunctionality across global drylands 272 

using a comprehensive global field survey and satellite imagery. Our results highlight the 273 

reliability of RSI, such as MCARI2, NBR2, MSAVI, GLI, S1260, AFRI22, TSAVI_OSAVI, or 274 

GEMI, to model dryland soil multifunctionality. These RSI were developed to reduce the influence 275 

of soil background and atmospheric effects on the regions with low-density vegetation cover. In 276 

contrast, other simpler RSI formulations, such as the widely used NDVI, showed about 50% lower 277 

coefficient of determination values than MCARI2 (see Fig. S2.- Supplementary Material) to model 278 



soil multifunctionality. These results may be related to a higher sensitivity of NDVI to soil 279 

brightness effects or to the presence of senesced vegetation and standing litter (Baret et al., 1993). 280 

However, NDVI could still provide complementary information to modelling soil 281 

multifunctionality with MCARI2 as a proxy for primary production (Prince, 1991; Tucker et al., 282 

1983) or ecosystem structure and functioning (Gaitán et al., 2013) over large scales. In contrast to 283 

studies mainly based on the relationship between fractional vegetation cover and NDVI (Song et 284 

al., 2017), here we developed a model to monitor soil multifunctionality, a key feature  of dryland 285 

ecosystems (Maestre et al., 2016). 286 

The models based on the combination of MCARI2, GEMI and Ts-Ta (RSI-pca) improved 287 

the accuracy in estimating soil multifunctionality compared to models using a single predictor. 288 

While Ts-Ta alone cannot serve as a reliable indicator of soil multifunctionality, it can complement 289 

other RSI, such as MCARI2 and GEMI, to enhance the accuracy of global models. When combined 290 

with MCARI2 and GEMI, Ts-Ta improves the accuracy of soil multifunctionality models, as 291 

demonstrated by a 12% decrease in NMRSE, and enhances the prediction of specific soil functions 292 

by 8-18%  (Table S1). This outcome may be attributed to the combination of RSI-pca selections 293 

(MCARI2, GEMI, and Ts-Ta), which more accurately represent the variability observed in 294 

drylands distributed across diverse climates and vegetation types worldwide. In addition to the 295 

strong correlations found between MCARI2, GEMI, and Ts-Ta and soil multifunctionality, further 296 

analyses using structural equation modelling (Table S2 and Fig. S3) demonstrate that these RSI 297 

provide the most reliable models for estimating soil multifunctionality in drylands. These findings 298 

align with prior research, indicating that MCARI2 and GEMI indices (Haboudane et al., 2004b; 299 

Pinty and Verstraete, 1992) exhibit lower sensitivity compared to other vegetation indices such as 300 



NDVI in detecting fractional cover variations ranging from 2% to 83% across analyzed dryland 301 

locations (Maestre et al., 2012). 302 

The RSI-pca model improves estimates of soil multifunctionality and individual soil 303 

functions. While the correlations of the 1-RSI model are significantly related to most of the soil 304 

functions (TON, BGL, ORC, PRO, PHE, ARO, HEX, and NTR), the RSI-pca model can generate 305 

models with errors of only 5-18% for all variables. This can be explained by the indirect 306 

relationship that many soil components have with different types of variables, such as variations 307 

in biomass, soil moisture, and primary production (Liu et al., 2023). The combined use of a model 308 

that absorbs this variability can reflect the specific variations of these compounds, as demonstrated 309 

in this work for AVP, NIT, AMI, and PEN. 310 

Our study emphasizes the importance of avoiding models based solely on best-fitting 311 

indices (Hornero et al., 2021). The PCA reduction method improves the results' interpretability by 312 

evaluating the RSI loading vectors used to assess soil multifunctionality and functions per climate 313 

and vegetation type. Among the selected RSI, MCARI2 and GEMI are used as a proxy for 314 

fractional cover (Haboudane et al., 2002; Pinty and Verstraete, 1992), where MCARI2 reduces the 315 

RSI's sensitivity to soil and background effects, and GEMI minimizes the impact of undesirable 316 

atmospheric perturbations. Additionally, Ts-Ta provides an indicator of the water stress condition 317 

of the vegetation linked to stomatal conductance and transpiration (Morillas et al., 2013), 318 

contributing to representing semi-arid dryland sites. 319 

Our study provides compelling evidence that EAM methods are a reliable tool for 320 

accurately upscaling ground-based observations of soil multifunctionality on a global scale. The 321 

EAM models developed in this study showed significant improvement in NRMSE values by 37% 322 

and 33%, respectively, compared to RF and LR models for quantifying soil multifunctionality 323 



(Table S1). Furthermore, the accuracy obtained for predicting soil multifunctionality using the 1-324 

RSI (r=0.66, p<0.01) and RSI-pca (r=0.73, p<0.01) models with Landsat data and EAM models 325 

represents a significant improvement compared to results from previous studies. For instance, 326 

Zhao et al. (2018) reported a correlation between soil multifunctionality and MODIS land surface 327 

albedo of only r= -0.314. These findings align with recent efforts to apply deep learning approaches 328 

to quantify soil organic carbon composition at the national level, as reported by Odebiri et al. 329 

(2022). These results demonstrate the potential of EAM models for providing reliable estimates of 330 

soil multifunctionality and support their application for global-scale monitoring and management 331 

of soil resources in drylands.  332 

Biocrusts are essential components of drylands globally, significantly regulating their 333 

structure and functioning (Bowker et al., 2013; Maestre et al., 2013, 2011). Biocrusts fix 334 

substantial amounts of atmospheric CO2 (over 2.6 Pg of C per year) (Elbert et al., 2012) and impact 335 

the temporal dynamics of soil CO2 efflux and net CO2 uptake. Additionally, biocrusts influence 336 

soil enzyme activity (Miralles et al., 2012), nitrification (Castillo-Monroy and Maestre, 2011), and 337 

runoff-infiltration rates (Zaady et al., 2013), all of which contribute to soil multifunctionality. 338 

Remote sensing provides a valuable and reliable method for mapping biocrusts. Nevertheless, due 339 

to the spectral resemblance between predominant dryland surface elements and biocrusts, it is 340 

necessary to utilize mapping indices based on hyperspectral data to identify areas dominated by 341 

biocrusts at the ecosystem level accurately (Rodríguez-Caballero et al., 2017). This limitation 342 

hinders the ability of most satellite imagery products, such as Sentinel, Landsat, or MODIS, to 343 

effectively detect biocrusts (Rozenstein and Adamowski, 2017). Because of this, we could not 344 

consider biocrusts explicitly in our analyses. However, they have been shown to influence the soil 345 

functions we evaluated in drylands significantly (Bowker et al., 2011), and, as such, they could 346 



have also influenced our results. Nevertheless, we don´t expect biocrusts to invalidate our results 347 

for two main reasons: i) we measured soil functions at 0-7.5 cm depth, and biocrusts affect soil 348 

functions largely at the 0-2 cm depth (Pointing and Belnap, 2012), and ii) the positive impacts of 349 

perennial vegetation on soil functions such as those studied here extend beyond plant canopies to 350 

influence adjacent open areas devoid of perennial vegetation (Maestre et al., 2009). 351 

This study demonstrates the potential of Landsat images and EAM-based models to assess 352 

soil multifunctionality over large areas, but several limitations must be acknowledged. Firstly, the 353 

temporal resolution of the sensor (one or two images per month) limits the estimations to monthly 354 

or yearly intervals, and advanced filters cannot be applied to select images with similar weather 355 

conditions within the same month. Secondly, the spectral resolution of the images, with spectral 356 

bands of ~30 nm on average in the VIS-NIR region, restricts the quantification of biocrusts, as 357 

discussed above, and of critical biophysical variables that evaluate the status of dryland 358 

ecosystems, such as the chlorophyll fluorescence or pigment contents of vegetation (Smith et al., 359 

2018; Y. Zhang et al., 2016). Thirdly, the spatial resolution of the images, with pixels of 30 × 30 360 

m, cannot capture the fine-scale spatial heterogeneity that characterizes dryland ecosystems (Smith 361 

et al., 2019), as well as that of biocrusts (Maestre and Cortina, 2002). However, new satellite 362 

missions will overcome some of these limitations. For instance, Sentinel 2 provides 13 spectral 363 

bands and a spatial resolution ranging from 10 m to 60 m, the NASA mission EMIT provides 364 

hyperspectral data from 400 nm to 2500 nm with a daily temporal resolution and a spatial 365 

resolution of 5 m, and the enhanced spectral resolution of the upcoming Landsat next missions. In 366 

addition, the future satellite mission FLEX will provide a single platform of a fluorescence-367 

dedicated imager at an unprecedented spatial resolution of 300m (Meng et al., 2022). The 368 

implementation of these new missions will enhance the ability to seamlessly integrate field data, 369 



such as those used in this study, with high-resolution indicators of photosynthetic activity and soil 370 

properties, such as texture, organic carbon, and moisture. This will improve the accuracy of global 371 

models for soil multifunctionality. 372 

 373 

Conclusions 374 

The combined use of a unique global field dataset including 14 soil functions and a wide range of 375 

RSI calculated from Landsat has enabled us to develop a predictive model for soil 376 

multifunctionality in drylands based on three RSI: MCARI2, a soil-atmosphere resistant VI; 377 

GEMI, an atmospherically resistant VI; and Ts-Ta, a proxy of water stress conditions. Our findings 378 

demonstrate that RSI, such as MCARI2, performs better than NDVI. These findings imply that 379 

NDVI is more sensitive to the variability of global dryland covers, a crucial factor in developing 380 

comprehensive models for soil multifunctionality in sparsely vegetated regions. To the best of our 381 

knowledge, our study is the first to use and demonstrate that thermal-based indicators such as Ts-382 

Ta, which are related to the evapotranspiration rate and water deficit, can improve global models 383 

of soil multifunctionality in combination with other RSI. Future research to improve our 384 

understanding of dryland dynamics should include EAM methods for accurately upscaling ground-385 

based observations. The soil multifunctionality models developed in this study open the possibility 386 

of accurately mapping regional- to global-scale essential soil processes at spatiotemporal 387 

resolutions relevant to land managers across drylands worldwide. 388 
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 640 

 641 

Figure 1. Distribution of the dryland sites used in this study. Dryland land areas are displayed in 642 

orange according to FAO/UNEP Land Cover Classification System (UNEP‐WCMC, 2007). 643 
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 647 
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 649 

Figure 2. Data analysis workflow – Remote sensing indicators (RSI) selection and model 650 

performance evaluation for soil multifunctionality determination. 651 

 652 



 653 

 654 

Figure 3. Standardised principal components (PC1 vs PC2) plot of the ten remote sensing 655 

indicators (RSI) less correlated among them. Biplot vectors are RSI loadings, whereas the position 656 

of the 222 sites is shown within each climate (arid, semi-arid and dry-subhumid, a) and vegetation 657 

type (grasslands, shrublands, open forests with shrubs and savannahs, b).  658 

 659 

 660 

b) 

a) b) 



 661 

Figure 4.  Pearson correlation coefficients between soil multifunctionality (M) and individual soil 662 

functions (Table 1) and the different vegetation indices used (Table 2); P > 0.05 value are shown 663 

with an "x" symbol (n= 222). 664 

 665 



 666 

Figure 5. (a) Accuracy results in the prediction of soil multifunctionality according to the 667 

coefficient of determination (R2) and the normalised root mean square error (NMRSE). Results 668 

are shown for the linear model (LM), random forest (RF) and evolutionary algorithm model 669 

a) 

b) 



(EAM) modelling approaches used, and for the three variables reduction sets used: RSI-mc based 670 

on MCARI2, NBR2, MSAVI, GLI, S1260, AFRI22, TSAVI_OSAVI, GEMI, Ts-Ta and WDI; 671 

RSI-pca based on MCARI2, GEMI and Ts-Ta; and 1-RSI based on MCARI2-. (b) Observed vs 672 

predicted soil multifunctionality for the RSI-pca selection with the EAM model using the remote 673 

sensing indicators MCARI2,  GEMI and Ts-Ta and EAM analysis (n=222). The dashed line 674 

represents the 1∶1 line. See Table 2 for the acronyms of the indices used. 675 

T 676 

Figure 6. Comparison of the accuracy of EAM-based predictions of soil multifunctionality (M) 677 

and soil functions (TON, AVP, BGL, FOS ORC, AMO, NIT, AMI, PRO, PHE, ARO, HEX, PEN 678 

and NTR described in Table 1. The results are shown in terms of the correlation coefficient (R) 679 

represented with blue columns and the normalised root mean square error (NMRSE) represented 680 

with red error bars. The predictions were made using three remote sensing indicators (MCARI2, 681 

GEMI and Ts-Ta) selected through principal component analysis (RSI-pca). 682 

 683 

  684 



Table 1. Soil variables used for the calculation of the soil functions. 685 

 686 

  687 

Total Nitrogen TON 
Available Potassium AVP 
Activity of b-glucosidase BGL 
Activity of phosphatase FOS 
Organic Carbon ORC 
Ammonium AMO 
Nitrate NIT 
Aminoacids AMI 
Proteins PRO 
Phenols PHE 
Aromatic compounds ARO 
Hexose content HEX 
Pentose content PEN 
Potential N transformation rate NTR 



Table 2. Remote sensing indicators and their formulations derived from Landsat data evaluated in 688 

this study. 689 

Remote sensing Indicator Formulation Reference  

GLI: Green Leaf Index 
GLI = (2· ρGreen − ρRed − 
ρBlue)/(2·ρGreen +  ρRed + 
ρBlue) 

(Louhaichi 
et al., 
2001) 

 

SIPI: Structure Insensitive Pigment Index 
SIPI = (ρNIR - ρBlue) / (ρNIR  + 
ρRed) 

(Peñuelas et 
al., 1995) 

   
NDVI: Normalized Difference Vegetation 
Index 

NDVI = (ρNIR – ρRed)/(ρNIR + 
ρRed) 

(Rouse et al., 
1974) 

SAVI: Soil-Adjusted Vegetation Index 
SAVI = (1+L)*((NIR-
Red)/(NIR+Red+L)) 

(Huete, 1988) 

TSAVI: Transformed Soil-Adjusted 
Vegetation Index 

TSAVI = (a*(ρNIR-a*ρRed - 
b))/( ρRed +a*ρNIR - 
(a*b)+0.08*(1+a^2))  

(Baret and 
Guyot, 1991) 

OSAVI: Optimised Soil-Adjusted 
Vegetation Index 

OSAVI = (ρNIR – ρRed)/(ρNIR 
+ ρRed +0.16) 

(Rondeaux et 
al., 1996) 

TSAVI/OSAVI TSAVI/OSAVI 
(Baret and 
Guyot, 1991) 

MSAVI: Modified Soil-Adjusted 
Vegetation Index 

MSAVI = 0.5*(2*ρNIR+1-(((2* 
ρNIR+1)^ 2)^0.5-8*(ρNIR - 
ρRed))) 

(Qi et al., 
1994) 

MCARI2: Modified Chlorophyll 
Absorption Ratio Index 2 

MCARI2 = (1.5*(2.5*( ρ800- 
ρ670)-1.3*( ρ800-R550) ))/((2* 
ρ800+1)^2-(6* ρ800-5*( 
ρ670)^0.5)-0.5)^0.5 

(Haboudane 
et al., 2002) 

EVI: Enhanced Vegetation Index 
EVI =2.5*(ρNIR – ρRed)/(ρNIR 
+6 *ρRed – 7.5* ρBlue +1) 

(Huete et al., 
2002) 

GEMI: Global Environment Monitoring 
Index 

GEMI = n(1-0.25*n)-(Red-
0.125)/(1-Red)); n=2(NIR^2-
Red^2)+1.5*NIR+0.5*Red)/(NI
R+Red+0.5)) 

(Pinty and 
Verstraete, 
1992) 

ARVI: Atmospherically Resistant 
Vegetation Index 

ARVI = (ρNIR -ρRed)-γ(ρRed-
ρBlue)/(ρNIR +ρRed)-γ(ρRed-
ρBlue) 

(Kaufman and 
Tanre, 1992) 

AFRI2100: Aerosol Free Vegetation Index 
2100 

AFRI2100 = (ρNIR -
0.5*ρ2100)/(ρNIR +0.5*ρ2100) 

(Karnieli et 
al., 2001) 

VARI: Visible Atmospherically Resistant 
Index 

VARI = (ρGreen − ρRed 
)/(ρGreen + ρRed− ρBlue) 

(Gitelson et 
al., 2002) 

S1260: Sulphur index 1260 
S1260 = (ρ1260-
ρ660)/(ρ1260+ρ660) 

(Mahajan et 
al., 2014) 

NBR2: Landsat Normalized Burn Ratio 2 
NBR2 = (SWIR1 - SWIR2) / 
(SWIR1 + SWIR2) 

(Norton et al., 
2009) 

Ts-Ta : Surface temperature minus air 
temperature 

Ts-Ta 
(Jackson et 
al., 1981) 

WDI: Water Deficit Index WDI 
(Moran et al., 
1994) 

 690 



Supplementary data  691 
Figure S1. Mean annual temperature and mean annual precipitation of the global distribution of drylands classified 692 
according to biomes (a) and type of vegetation (b). 693 
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 695 
 696 
 697 
 698 
 699 
 700 
 701 
 702 
 703 
Figure S2. Relationship between the vegetation indices MCARI2 (first line of boxplots) and NDVI (second line of 704 
boxplots) with soil multifunctionality (M), the soil functions total nitrogen (TON), and organic carbon (ORC) (n=222) 705 
according to the coefficient of determination (R2) and the correlation coefficient (R) .  706 

a) 

b) 



 707 

  708 



Figure S3. Relationships between soil multifunctionality, total cover and the RSI-pc, MCARI2, GEMI and Ts-Ta. Arrow 709 
widths are proportional to effect sizes and significance levels. Positive sizes are depicted with green arrows, and negative 710 
effects depicted in red. 711 
 712 

 713 

 714 

 715 

  716 



Table S1. Results from the three modelling approaches tested: linear model (LM), random forest (RF) and evolutionary 717 
algorithm model (EAM) for the quantification of the soil multifunctionality (M) and soil functions (TON, FOS and ORC) 718 
(n=222). Predictors tested include: (RSI-mc) based on MCARI2, NBR2, MSAVI, GLI, S1260, AFRI22, TSAVI_OSAVI, 719 
GEMI, Ts-Ta and WDI; (RSI-pc) based on MCARI2, GEMI and Ts-Ta; and (1-RSI) based on MCARI2. The best results 720 
for each case are highlighted in bold. 721 

Variable Method Predictors R2 NRMSE Variable Method Predictors R2 NRMSE 

M LM RSI-mc 0.338 0.211 TON LM RSI-mc 0.388 0.219 

M LM RSI-pc 0.313 0.215 TON LM RSI-pc 0.354 0.222 

M LM 1-RSI 0.284 0.220 TON LM 1-RSI 0.336 0.225 

M RF RSI-mc 0.481 0.186 TON RF RSI-mc 0.522 0.191 

M RF RSI-pc 0.351 0.209 TON RF RSI-pc 0.352 0.223 

M RF 1-RSI 0.167 0.254 TON RF 1-RSI 0.210 0.261 

M EAM RSI-mc 0.543 0.158 TON EAM 10VI 0.600 0.137 

M EAM RSI-pc 0.553 0.156 TON EAM RSI-pc 0.654 0.128 

M EAM 1-RSI 0.431 0.176 TON EAM 1-RSI 0.506 0.152 

Variable Method Predictors R2 NRMSE Variable Method Predictors R2 NRMSE 

FOS LM RSI-mc 0.259 0.221 ORC LM RSI-mc 0.397 0.207 

FOS LM RSI-pc 0.146 0.237 ORC LM RSI-pc 0.403 0.206 

FOS LM 1-RSI 0.153 0.236 ORC LM 1-RSI 0.383 0.209 

FOS RF RSI-mc 0.330 0.210 ORC RF RSI-mc 0.505 0.185 

FOS RF RSI-pc 0.231 0.225 ORC RF RSI-pc 0.408 0.205 

FOS RF 1-RSI 0.080 0.267 ORC RF 1-RSI 0.262 0.240 

FOS EAM RSI-mc 0.414 0.156 ORC EAM RSI-mc 0.593 0.128 

FOS EAM RSI-pc 0.473 0.148 ORC EAM RSI-pc 0.635 0.121 

FOS EAM 1-RSI 0.379 0.160 ORC EAM 1-RSI 0.520 0.139 
 722 

 723 
 724 
 725 
 726 
 727 
 728 
Table S2. Structural equation modelling between soil multifunctionality, total cover and the RSI-pc, MCARI2, GEMI and 729 
Ts-Ta. Estimate value, Standard Error, z-values, P(>z), and standardises to the latent factors (Std. lv) and standardised 730 
estimates for paths (Std. all). 731 



 732 

 733 
 734 
 735 

 736 

          Estimate  Std.Err  z-value  P(>|z|)   Std. lv  Std. all 

Soil multifunctionality                                                                   

MCARI2   9.482    0.990    9.583    0.000    9.482    0.714 

GEMI               2.269    0.652    3.479    0.001    2.269    0.258 

Ts_Ta             0.003    0.003    0.907    0.365    0.003    0.051 

Total cover                                                             

MCARI2           163.173   33.810    4.826    0.000  163.173    0.395 

GEMI             -14.421   22.281   -0.647    0.517  -14.421   -0.053 

Ts_Ta             0.175    0.111    1.570    0.116    0.175    0.097 

       

 Covariances:                   Estimate  Std.Err  z-value  P(>|z|)   Std. lv  Std. all 

Soil multifunctionality                                                      

Total cover  1.651    0.548    3.015    0.003    1.651    0.207 

 Variances: Estimate  Std.Err  z-value  P(>|z|)   Std. lv  Std. all 

soil multifunctionality                 0.234    0.022   10.536    0.000    0.234    0.673 

Total cover   273.094   25.921   10.536    0.000  273.094    0.813 


