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Abstract. Fire-damaged ecosystems have often been monitored by applying a combination of field survey information 
and vegetation indices derived from remotely sensed data. Furthermore, it has been demonstrated that remotely sensed 
data can be integrated as a useful tool in predicting the recovery of fire-damaged ecosystems over time. Using regression 
models, the present study analyzes the trend function described by the Normalized Difference Vegetation Index (NDVI) 
and Fractional Vegetation Cover (FVC) 7 and 12 years after the fire. The method was performed through (i) permanent 
plot collection per plant community type and data reduction; (ii) comparison of the correlation established between FVC 
with different vegetation index contrasted with the NDVI; (iii) monitoring vegetation recovery; and (iv) a supervised 
classification of FVC. The NDVI was the one that correlated most with the FVC. In both the seventh and twelfth year 
after fire, the linear regression model was used to accurately quantify FVC based on the NDVI. Results show that 12 years 
after the fire, the recovery rate of the FVC associated with scrub was higher than that of the FVC of other forest classes. 
Although vegetation recovery is taking place, the continuing increase in the FVC associated with shrub land classes could 
create a state of successional stagnation. 

 
Additional keywords: dynamic modelling, Mediterranean communities, multitemporal analysis, NDVI, plant cover, 
regression model. 

 
Introduction 
Owing to various climatic and social factors, fire plays an inte- 
gral role in Mediterranean ecosystems. However, the frequency 
and intensity of forest fires has increased considerably in recent 
decades (Piñol et al. 1998), resulting in biodiversity loss and soil 
erosion. Repeated fires change ecological community structure, 
turning potentially deciduous forests into evergreen shrublands 
with a marked dominance of taxa such as Rhamnus, Junipe- 
rus, Cistus, Ulex, Lavandula, Thymus and Rosmarinus (Trabaud 
1987; Barbero et al. 1990). Various studies have been carried out 
on vegetation recovery processes. Short-term species regrowth 
has frequently been observed (Quintana et al. 2004; Keeley et al. 
2005). Medium-term species recovery has rarely been moni- 
tored, but only predicted (Trabaud and Lepart 1981; Kazanis 
and Arianoutsou 2004; Rodrigo et al. 2004). Long-term effects 
of wildfire on species regeneration are difficult to predict in 
degraded Mediterranean communities (Terradas 2001). Yet, dur- 
ing recovery, there are some succession restraints caused by plant 
invasion that may result in a reinforcement of the fire regime 
itself. The long-term measurement and modeling of vegetation 
recovery is essential to the understanding of fire and its effects 
on the ecosystem. Traditionally, this monitoring has been done 
by time-consuming, arduous and expensive field surveys. 

As an alternative, remote sensing methods could be used in 
order to develop mapping, monitoring and modeling techniques. 
A combined strategy results in an accurate long-term monitoring 
of wildfire effects. In these efforts, remote sensing has been used 
by various authors (Viedma et al. 1997; Riaño et al. 2002; Twele 
and Barbosa 2004) to evaluate regeneration patterns in Mediter- 
ranean ecosystems.  Other authors (Hall et al.  1991; Gamon  
et al. 1995; Henry and Hope 1998) have also used this approach 
to study the relationships between vegetation indices and bio- 
physical variables. Vegetation Indices (VIs) frequently represent 
different combinations between red and near-infrared channels 
in remote sensing imagery. These channels often contain over 
90% of the information related to vegetation (Bannari et al. 
1995). The Normalized Difference Vegetation Index (NDVI) has 
been widely applied in order to assess the post-fire recovery pro- 
cess (Viedma et al. 1997; Díaz-Delgado and Pons 1999; Riaño 
et al. 2002). 

However, few studies integrate both remote sensing and field- 
based approaches (Hall et al. 1991). Multitemporal field surveys 
must be undertaken in order to support corresponding spectral 
data. Henry and Hope (1998) even question whether remote sens- 
ing can be used to study ecosystem recovery after fire. Based on 
the need to validate plant recovery models and vegetation index 

 

mailto:%20g82heclr@uco.es


- PREPRINT - 

∼ 

 
 

 
 

Fig. 1. Study site location, with latitude and longitude of 37◦15I38.94IIN, 3◦23I45.51IIW. Forest fire occurred in 1992 in Granada (Spain). 
 

calibration, the current study focussed on regeneration patterns 
12 years (1993–2005) after a wildfire in Sierra de Huétor. The 
aim of the present research was to evaluate the post-fire recovery 
trajectory of the vegetation based on the trend function described 
by the NDVI and the FVC (Fractional Vegetation Cover) over 
time. The objectives were to: (i) make a permanent plot collection 
per plant community type and data reduction; (ii) compare the 
correlation established between FVC and different VI contrasted 
with the NDVI; (iii) analyze regression models associated with 
FVC and VIs and select the model that most accurately tracked 
vegetation recovery; and (iv) carry out a supervised classification 
of FVC. 

 

Study area 
The study area (Fig. 1), Sierra de Huétor, located in Beas de 
Granada, southern Spain, has a central latitude of 37◦15I38.94IIN 
and longitude of 3◦23I45.51IIW and an area of 204 km2. The cli- 
mate is transitional, varying between Mediterranean semiarid 
and Mediterranean subhumid, and the average annual rainfall 
is 500 mm. According to Rivas-Martinez et al. (1997), the area 
belongs to the Malacitano–Almijarense sector, with meso- and 
supra-Mediterranean climates. It is characterized by typically 
continental variations, of over 15◦C between winter and sum- 
mer, and between maximum and minimum daily values. The 
lithology is homogeneous and chiefly composed of basic soils, 
such as carbonate stone, limestone and dolomites, which cover 

almost 80% of the study area. The remaining area is covered by 
acidic soils, such as mica-schists, gneisses (phyllites) and slates. 
According to the USDA Soil Taxonomy, the soils are classified 
as skeletal (Lithosols and Regosols) and are underdeveloped 
owing to the original hardness of the high, rocky (limestone) 
slopes on which they have evolved. Prefire vegetation types were 
defined based on the vegetation series given in Rivas Goday and 
Rivas-Martinez (1966), and from 1956 aerial photos (1 : 30 000). 
The vegetation in the area shows advanced degradation, altered 
by human activities. In the 1940s, an intense reforestation pro- 
gram was initiated in which Pinus pinaster Ait., Pinus halepensis 
Mill., Pinus nigra Arnold and, to a lesser extent, Pinus sylvestris 
L. and Populus sp. were planted. 

A fire occurring between 23 and 26 August 1993 burned 
7000 ha. The fire severity level was ranked as extreme in 40% 

of the area, moderate in 47% and low for the remaining 13% of 
the area (Hernández-Clemente et al. 2006). The severity levels 
were estimated according to Escuin et al. (2008). The burned 
area was mainly covered by maritime pine (Pinus pinaster) and 
less so by Holm oak (Quercus ilex subsp. ballota (Desf.) Samp.), 
Mediterranean gorses (Ulex spp., Genista spp.) and Aleppo pine 

(Pinus halepensis). Although altitudes ranging from 1000 to 
1700 m exist within the burned area, the topography is fairly 
uniform. After the 1993 wildfire, few reforestation efforts took 
place. The first such effort, in 1996, consisted of aerial sowing, 
which gave poor results even after spraying almost 78 million 

seeds of 16 species of pine tree and shrub. The next attempt, 
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Fig. 2. Methodology flow chart for monitoring post-fire regeneration patterns using multitemporal satellite imagery. 

 
direct machine planting in the field, was sporadic and not very 
effective. Fourteen years after the fire, dwarf gorse largely covers 
the burned area, but the presence of Holm oak, maritime pine 
and Aleppo pine has also been noted. However, the predominant 
type of ground cover is Mediterranean shrubland, mainly domi- 
nated by Ulex parviflorus Pourret, Rosmarinus officinalis L. and 
Cistus clusii Dunal, representing a fire-degraded stage of forest 
communities as they are fire-adapted species. 

 

Material and methods 
The methodology is presented in the following flow  chart 
(Fig. 2). The analyses are divided into three categories: the field 
data and multitemporal image preprocessing, the comparison 
of VIs and the monitoring of the recovery processes. The final 
step was a supervised classification based on correlation model 
prediction of FVC. 

 

Field data 
Field surveys of the permanent plots took place in mid-August 
of 2000 (Escuin et al. 2006) and 2005. During both field 
inventories, identical methodology was used. Permanent plot 
selection (Fig. 1) was based on visual analysis of a 1998 Indian 
Remote Sensing Panchromatic (IRS-PAN) image and 1999 
orthophotography (1-m resolution) provided by the Government 
of Andalusia. Plots with a homogeneous coverage, representing 
the various communities within the burned area, were selected. 
The total area sampled in 2000 (33 plots, each with a 25-m radius) 
was 66 759 m2, representing 0.09% of the total burned area. In 

2005, repeated measurements were taken on 15 plots. The selec- 
tion of these plots was based on a hierarchical cluster analysis 
performed on the survey plots in 2000. Ward’s method (Ward 
1963) was used to evaluate the Euclidean distance between clus- 
ters. The results were interpreted and related to other types of 
variables (such as altitude or soil composition) that might influ- 
ence the grouping criteria. Once the main vegetation classes were 
established, clusters were identified and related to each class. 
The aim of this last step was to optimize the number of perma- 
nent plots surveyed in 2000 in order to repeat measurements in 
following years. 

On the ground, plot locations were identified using a hand- 
held global positioning system (GPS) with an average error   
of <3–5 m. Two 50-m long perpendicular linear transects (one 
in the direction of the maximum slope) were defined for each 
plot and measured in both years (2000 and 2005) following the 
same methodology (linear interception method, Bonham 1989). 
The plants identified were registered with references COA00925 
to COA00957 and then incorporated into the COA herbarium 
(Agricultural and Forest Sciences Resources Department, Uni- 
versity of Córdoba). This incorporation served to aid the future 
identification of specimens from within the study area. 

Ground data were used to calculate FVC in 2000 (FVC00) 
and in 2005 (FVC05) as the percentage of vegetation occupying 
a unit area. For each transect (t1 and t2), the sum of intercepted 
fraction (IF) per species was calculated as: 

 
IFt1 = :Elk/d (1) 

IFt2 = :Elk/d (2) 
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Table 1. Remote sensing data set used for multitemporal analysis of regeneration patterns 
 
 
 
 
 
 

TM 18/08/04-200-34 
 
 
 
 

Table 2. Vegetation indices tested for post-fire Fractional Vegetation Cover (FVC) recovery monitoring 
NIR, Infrared; MIR, Medium Infrared 

 

Vegetation index Algorithm Reference 
 

Class A: sensitive to soil optical properties 
Normalized Difference Infrared Index NDII = (NIR − MIR)/(NIR + MIR) Hardisky et al. (1983) 
Ratio Vegetation Index RVI = NIR/red Pearson and Miller (1972) 
Normalized Difference Vegetation Index NDVI = (NIR − red)/(NIR + red) Rouse et al. (1974) 

Class B: consider soil effects introducing parameters such as the correction factor (L), the soil line intercept (a), 
the soil line slope (s) or the adjustment factor (X), L = 0.5, 0.8 and 1 

Soil Adjusted Vegetation Index SAVI = (1 + L) + (NIR − red)/(NIR + red + L) Huete (1988) 
Transformed Soil Adjusted Vegetation Index TSAVI = s × (NIR − s × red − a)/(a × NIR + red − a × s + X × (1 + s × s)) Baret and Guyot (1991) Modified 
Soil Adjusted Vegetation Index MSAVI2 = 1/2((2(NIR + 1)) − (((2NIR) + 1)2 − 8(NIR − red))1/2) Qi et al. (1994) 
Enhanced Vegetation Index EVI = G × ((NIR − red)/(NIR + (c1 × red) − (c2 × blue) + L)) Huete et al. (2002) 

 
 

lk being equal to the distance intercepted (l) for each species 
(k) and d, the length of each transect (50 m). By measuring two 
transects per sample, the FVC was obtained as 

FVC = (IFt1 + IFt2) (3) 

Multitemporal image data preprocessing 
The images used in the present study are presented in Table 1. 
Standard gain and offset coefficients for each satellite and period 
were applied in order to transform digital numbers into radiance 
levels. Finally, a relative atmospheric correction was required 
to normalize remotely sensed images for a time-series analysis. 
The relative atmospheric correction was based on invariant tar- 
gets following the methodology applied by Caselles and López 
(1989). Results obtained from the image normalization yielded 
a mean correlation coefficient (r) of 0.98 with a standard error 
of 0.029. The 2000 image was georectified using ground control 
points and high-resolution digital orthophoto quadraught (DOQ) 
of the study area obtained from the Regional Government of 
Andalusia in 2001. The remaining images were georeferenced 
to the 2000 image. Corrected images provided a maximum root 
mean square (RMS) error of less than one pixel. Finally, a multi- 
temporal data set of NDVI was obtained from images acquired in 
1992 (before the fire), and in 1993, 2000 and 2004 (after the fire). 

 
Monitoring vegetation recovery 
Vegetation recovery models were obtained by regression anal- 
ysis. The variables intersected were FVC and the NDVI. The 
regression models tested were obtained from the 2000 data set 
and the 2005 data set: 

NDVI00 = f (FVC00) (4) 

NDVI05 = f (FVC05) (5) 

The regression model applied for obtaining Eqns 4 and 5 was 
selected by comparing different regression models. The regres- 
sion analysis was performed on the 2000 data set. The input data 
were the FVC of the 33 plots measured in 2000 and the NDVI 
related to them. The models tested were: linear, exponential, 
square-root-x and logistic. The regression model with the best 
fit to the data was applied to obtain Eqns 4 and 5. Both equa- 
tions were compared in order to analyze the spectral dynamics of 
the vegetation recovery. Comparison of the models obtained for 
2000 and 2005 could only be performed under the assumption of 
non-variance of the vegetation communities. A previous change 
analysis showed that plant-community types did not vary during 
the period 2000–05 (Hernández-Clemente et al. 2006). 

Finally, a vegetation recovery assessment was performed. The 
analyses consisted of modifying the input parameters and com- 
paring the precision of the models. In the first analysis, the 
NDVI was substituted by other VIs. The second analysis con- 
sisted of reducing the number of sample plots, introducing the 
plots selected for the 2005 survey. 

The seven indices tested in the first analysis are included  
in Table 2. The FVC input data were those of the 33 sample 
plots measured in 2000. VIs were related to the FVC per plot 
and compared through a Pearson correlation matrix. The VIs 
selected (Table 2) can be divided into two different groups; the 
first group, composed of Normalized Difference Infrared Index 
(NDII), Ratio Vegetation Index (RVI) and NDVI, is sensitive  
to the optical properties of the soil. The second group (Soil 
Adjusted Vegetation Index, SAVI; Transformed Soil Adjusted 
Vegetation Index, TSAVI; Modified Soil Adjusted Vegetation 
Index, MSAVI; and Enhanced Vegetation Index, EVI) has a fit 

Period Satellite Band Elevation angle (◦) Azimuth (◦) 

Pre-fire (1992) Landsat 5 TM 17/08/92-200-34 53.27 122.96 
Post-fire (1993) Landsat 5 TM 05/09/93-200-34 49.26 130.97 
Post-fire, field work (2000) 
Post-fire, field work (2005) 

Landsat 7 
Landsat 5 

ETM+ 31/08/00-200-34 54.29 
60.18 

138.56 
139.90 
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Fig. 3. Dendogram of plant communities obtained from the cluster analysis of the plant cover per species 
surveyed in the year 2000. The x-axis represents sample plot number identification and y-axis the distance 
between groups. 

 
factor that minimizes soil background sensitivity (a value of 
0.5 is considered to be appropriate for most soils). However, soil 
spectral deviations affect all spectral indices (Huete 1987). Spec- 
tral properties for ground survey location were extracted from 
the image by calculating the mean reflectance of a 3 3 matrix 
of pixels. It has been widely accepted that the approach of using 
a pixel matrix reduces potential geolocation errors (Ahern et al. 
1991), which are difficult to avoid in time-series studies. 

Finally, the regression model obtained from the 33 plots 
inventoried in 2000 (Eqn 4) was evaluated by reducing the num- 
ber of plots to 15, selected from the cluster analysis. The objective 
of that reduction was to verify that the fit of the function did not 
significantly vary with the diminution of the number of plots 
introduced. 

 
 

Supervised classification of vegetation cover 
The final step involved the mapping of the vegetation cover 
obtained from regression model equations based on 2000 and 
2005 data. This classification approach was used to define dif- 
ferent FVC classes, and then compare the change in the FVC 
classes over time using a multitemporal data set. Owing to the 
lack of field data before the fire, 1992 ground data measure- 
ments were evaluated from the regression model obtained in 
2005. This last criterion was accepted assuming the error asso- 
ciated with the differences in vegetation composition before the 
fire and 13 years later. However, in Mediterranean ecosystems, 
disturbances often modify the species’relative abundances rather 
than composition, and recovery only involves the return to initial 
abundances (Lavorel 1999). 

Five plant-cover classes were defined based on the prefire 
vegetation cover types: 

• 0–10%, barren land and herbaceous; 
• 10–25%, herbaceous and shrub rangeland; 
• 25–50%, brushland with dispersed trees; 
• 50–80%, dispersed forest; and 
• 80–100%, dense forest. 

Threshold values of NDVI for each class were then calculated 
based on Eqns 4 and 5. Based on these FVC classes, the relative 
spectral response from the VI was calculated for each class. A 
supervised classification was then applied to 1992, 2000 and 
2005 NDVI images using the previously defined FVC classes. 
Each unknown pixel was assigned to a class using the maximum 
likelihood method. The accuracy assessment of the classification 
was based on the Cohen Kappa coefficient. The kappa coeffi- 
cient of agreement method is a simple cross-tabulation of the 
mapped class label against that observed on the ground or in ref- 
erence data for a sample of cases at specified locations (Foody 
2002). Next, an error matrix was created; both the global accu- 
racy and the kappa coefficient of agreement were calculated for 
the supervised classifications. 

 
Results and discussion 
Plant community classification for test site selection 
The hierarchical cluster analysis (Fig. 3) performed from FVC 
measurements of the 33 plots surveyed in 2000 permitted the 
description of the current main communities (Table 3) and the 
selection of the most representative sample plots. The results 
showed two well-differentiated groups with a Euclidian distance 
of 80. These classes are strongly influenced by the soil com- 
position and topography of the plots. The dendrogram showed 
six subgroups, which were representative of the different plant 
communities found in the area. The clusters rightly show the 
floristic classification described in Rivas Goday and Rivas- 
Martinez (1966). Plant communities were distinguished in the 
cluster according to the presence of dominant plant species, soil 
type, or altitude. The cluster analysis enabled the distinction of 
different communities composed of Ulex parviflorus, Rosmar- 
inus officinalis and Cistus clusii. This co-dominance reappears 
in a mosaic pattern in Sierra de Húetor. 

The number of plots to be analyzed in 2005 was reduced, 
after classifying all plots in the hierarchical cluster analysis. This 
was done in order to develop permanent plots to be used in a 
field collection scheme compatible with remote sensing data for 
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Table 4. Pearson correlation matrix between vegetation indices (Nor- 
malized Difference Vegetation Index, NDVI; Soil Adjusted Vegetation 
Index, SAVI; Normalized Difference Infrared Index, NDII) and Frac- 
tional Vegetation Cover  (FVC) (m2/m2) of year 2000-surveyed plots  

(n    36) 
SAVI index calculated for L 0.5, 0.8 and 1. n 39. Significant level: 0.05 

(two-tailed) 
 

FVC NDVI SAVI NDII 
  L = 0.5       L = 0.8    L = 1  

 

FVC 1.00 0.92 0.89 0.88 0.86 0.84 
 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

 
multitemporal analysis. The plot reduction was undertaken in a 
stepwise fashion based on the following plant community types 
defined by the hierarchical cluster analysis (see Table 3): 

A1: Dwarf gorse (Ulex parviflorus)-dominated shrub land with 
Rosmarinus officinalis and Cistus clusii. 

A2: Dwarf gorse with evergreen oaks (Quercus ilex and 
Q. coccifera L.). 

A3: Shrubland composed of Ulex parviflorus, Rosmarinus 
officinalis and Cistus clusii with a large number of accom- 
panying species. 

B1: Pine forest chiefly composed of Pinus pinaster and 
P. halepensis and forest understorey. 

B2: Holm oak forest composed of Quercus ilex mixed with 
forest understorey. 

B3: Laurel-leaved rock rose mainly composed of Cistus lauri- 
folius L. 

 
Vegetation index analysis 
All seven types of VIs calculated in the present study had a 
higher correlation coefficient than 0.68. In Table  4, a Pear-  
son correlation matrix shows that the regression line of the  
VIs fitted the FVC surveyed per plot best. Judging from the 
results, NDVI presents the best goodness-of-fit with a correlation 
coefficient of 0.92. The suitability of this index in post-fire regen- 
eration studies has been widely confirmed by various authors 
(Viedma et al. 1997; Díaz-Delgado and Pons 2001; Riaño et al. 
2002). The SAVI, which might be expected to be more sta-  
ble than the NDVI across the varying soil backgrounds (Huete 
1988), showed the second best goodness-of-fit. Nevertheless, 
both indices showed similar correlations. This similarity is in 
agreement with the results obtained by Henry and Hope (1998), 
who monitored the post-burn recovery of chaparral vegetation 
in Southern California. 

Changes in NDVI recorded among the four observation dates 
(1992, 1993, 2000 and 2005) for each permanent plot are dis- 
played in Fig. 4. In order to visually assess the evolution of 
NDVI values, a normal curve was displayed. Except for the 
NDVI  for 1993, taken some days after fire, the distribution   
of NDVI for 1992, 2000 and 2004 was normal (Table 5) with 
(P > 0.05) associated with the Kolmogorov–Smirnov statistics. 
The regeneration pattern effects on the spectral signature can be 
interpreted by examining the shapes of the histograms (Fig. 4) 
and the descriptive statistics of the variation in NDVI (Table 5). 
NDVI values showed an increasing trend since the fire event 
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Fig. 4.   Box-and-whisker plot (a); and histogram (b) obtained from the NDVI  values extracted from the    
34 plots (no. of obs.) monitored in 1992 (before forest fire); and 1993, 2000 and 2004 (after forest fire). 

 
Table 5. Descriptive statistics obtained from Normalized Difference Vegetation Index (NDVI) values related to the field survey locations within the 

burned area in 2005, 2000 and 1992 
n = 34 plots 

 

Mean Minimum Maximum Sum Std error Std deviation Variance Kolmogorov–Smirnov Std error 

NDVI92 0.320 0.135 0.477 10.891 0.012 0.071 0.005 0.200 0.403 
NDVI93 0.061 0.029 0.229 2.079 0.010 0.060 0.004 0.006 0.403 
NDVI00 0.206 0.118 0.312 7.015 0.009 0.053 0.003 0.200 0.403 
NDVI04 0.281 0.144 0.384 9.543 0.011 0.062 0.004 0.200 0.403 

(1993), approaching the prefire values for 1992. The histogram 
derived from the first post-fire stage (barely 1 month after the 
fire) showed the lowest spectral values, responding to the strong 
decrease recorded in NDVI after the fire. However, there is 

recovery over time, with 2004 values close to those recorded 
in 1992. In fact, recovery tends to advance towards similar dis- 
tribution patterns. These results imply that if vegetation remains 
undisturbed, post-fire spectral distribution may be similar to its 
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Table 6. Model regression comparison between Normalized Difference Vegetation Index (NDVI) and Fractional Vegetation Cover (FVC) recovery 
 

 Y = a + bX Y = (a + bX )2 Y = a + bsqrt(X) Y = a + bln(X) 

r (correlation coefficient) 0.92 0.93 0.89 0.80 
R2 86.22 89.17 79.24 65.00 
R2 (adjusted) 85.84 88.87 78.68 64.06 
Standard error 0.07 0.08 0.11 0.14 
Durbin–Watson statistics 1.515 1.57 1.68 1.68 
Significance (P value; F-test) <0.001; 233.93 <0.001; 304.70 <0.001; 141.25 <0.001; 68.94 
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Fig. 5. Linear regression models established between plant cover and NDVI value per plot. Models were obtained from 2000 and 2005 data sets. 2000 data 
were also tested to evaluate the effects of reducing the number of sample plots (from n = 33 to n = 15, adding in both cases three plots of bare soil). 

 
prefire state. However, four plots influenced these results, as their 
spectral signatures remained invariant. These cases were related 
to grazing interactions that hindered vegetation regeneration. 

 

Monitoring FVC recovery processes 
Based on results derived from a regression analysis between 
NDVI and FVC, a linear regression model was selected. Table 6 
shows the statistical results of different regression models estab- 
lished between the NDVI and the FVC. With correlations of 
88.17 and 86.22, multiplicative and linear regression models 
had the best fit. However, the linear model had a lower standard 
error than that of the multiplicative model, so that the linear 
model (NDVI00   a   b(FVC00)) was considered to be the best 
fit option. Estimation of the post-fire FVC had been evaluated 
through linear regression analysis previously (Twele and Barbosa 
2004) based on a spectral mixture analysis. 

In order to validate the reduction of invariant plots surveyed, 
the same regression type was calculated for 2000 data, at first 
considering all 33 plots. Plots were then removed using the step- 
wise method until reduced to 15. The reduction in the number of 
plots did not produce any significant variations in the regression 
model parameters, as shown in Fig. 5. Three bare-soil points were 
introduced into the regression model in order to fit the equations 
better. 

A comparison of the results between the data set regres- 
sion models (NDVI00–05 = a + b(FVC00–05)) (n = 18) indicated 

a slight statistical improvement for 2005, likely to be due to a 
decrease in the effect of soil reflectance on spectral data (Huete 
1987). Nonetheless, FVC regeneration was related to NDVI val- 
ues through a similar linear regression equation in the 7th and 
the 12th year after the fire. These results indicate that the regen- 
eration trend of the main vegetation groups measured within the 
burned area remained constant. A detailed analysis of the post- 
fire ecological dynamics within the burned areas from 1992 to 
2005 can be found in Hernández-Clemente et al. (2006). 

Finally, the models obtained were used for performing a 
supervised classification of the plant recovery. Fig. 6 shows 
the results obtained from the time-series supervised classifi- 
cations. The global accuracy of the FVC classification for the 
2000 data was 80.5%, with a kappa coefficient of 0.74, whereas 
a global accuracy of 76.5% with a kappa coefficient of 0.71 
was reached for the 2005 data. The FVC averages calculated for 
the entire burned area showed that the vegetation had already 
reached 38% ground coverage within 7 years, and 52% 12 years 
after the fire. Given that the prefire ground coverage was 63%, 
the results could be interpreted to indicate adequate recovery 
rates (Trabaud 1987). However, the recovery distribution area 
per class (Table 7) shows communities at ecological stages far 
removed from the prefire ecological stage. Areas with 50–100% 
FVC have yet to reclaim the prefire distribution. Although the 
tendency of these classes is to increase, the global FVC regen- 
erated is still low considering that these FVC classes represent 
the recovered as well as the unburnt vegetation. Data show an 
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Fig. 6. Supervised classification obtained from the regression models established between FVC and NDVI value per plot within the burned area in 2000 
and 2005. The prefire classification was calculated using the 2005 model. 

 
 

Table 7. Percentage area of Fractional Vegetation Cover (FVC) classification derived from the multitem- 
poral linear regression model obtained from 2005, 2000 and 1992 data sets 

 
Classes Vegetation classes NDVI92 (%) NDVI00 (%) NDVI05 (%) 

0–10% Barren land 0.79 4.52 1.41 
10–25% Herbaceous 3.26 13.26 4.37 
25–50% Brushland 32.48 43.76 40.94 
50–80% Disperse canopy forest 51.38 32.25 46.85 
80–100% Dense canopy forest 12.09 6.20 6.43 

 
 
 

initial strong increase in shrubland-associated classes (0–50% 
FVC), which, judging from 2005 data, have now decreased. This 
could serve as a strong indicator of succession evidenced by 
FVC recovery. Shrubland-associated coverage classes should be 
treated with caution, considering that from those in a previous 
study, it was observed that gorse–rosemary hindered Holm oak 
regeneration (Hernández-Clemente et al. 2006). Finally, barren 
land and grasses followed their expected post-fire regeneration, 
reaching a maximum during the first years and then decreasing 
in the long term (Trabaud and Lepart 1981). 

 

Conclusions 
The spectral post-fire analysis revealed that regeneration was 
related to gradual spectral changes over time within different 
communities. In this context, the proposed linear regression 
model showed itself to be capable of deriving accurate FVC esti- 
mates from NDVI data. Time-series analysis regression models 

 
indicated that, 7 years after the fire, the FVC regeneration was 
correlated with NDVI values. No significant differences were 
observed between regression equations for the 7th and the 12th 
year after the fire. This suggests that, during that period, the 
regeneration trend within the area remained constant. In this con- 
text, the proposed linear regression model proved to be capable 
of deriving accurate plant cover estimates from NDVI data over 
time. The sample plot selection method developed in the cur- 
rent study was essential in building a multitemporal regression 
model. 

Results obtained from the present analysis indicate that the 
recovery of classes with the highest FVC, which are associ- 
ated with woody species, is progressing at a slower rate than the 
change in FVC of the classes associated with shrubland. The 
reasons for this discrepancy in the recovery of vegetation types 
are two-fold: first, an increase in the FVC has been generated 
for shrubland classes, while, second, the accumulation of dry 
biomass from shrubland species perpetuates the fire risk. This 
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process has arisen from the historical reforestation of the area and 
the loss of traditional uses (grazing) after fire. This final obser- 
vation is indispensable for planning reforestation strategies in 
the area. In the future, the continuation of such a multitemporal 
study will be essential to evaluate the recovery pattern of these 
communities and to assess fire risk within the burned area. 
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