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Abstract 15 

Question: A comparison between predictive models to study the habitat distribution of Buxus 16 

balearica Lam. at a local scale.  17 

Location: The distribution area of Buxus balearica studied was the Málaga and Granada 18 

populations (Southern Spain), which includes almost its total Iberian Peninsula distribution 19 

(36º and 38º N). The study area was restricted to basic soils, mainly marls and chalky ones, 20 

which occupied a surface of 38,180 km2. 21 

Methods: The prediction models were tested based on 17 environmental variables. Six 22 

methods were compared: Multivariate adaptative regression spline (MARS), Maximum 23 

entropy approach to modelling species’ distributions (Maxent), two generic algorithms based 24 

on environmental metrics dissimilarity (Bioclim and Domain), Algorithm for Rule-set 25 

Prediction (GARP), and supervised learning methods based on generalized linear classifiers 26 

(Support vector machines-SVMs). As a test of the predictive power of the models we used 27 

Kappa index. 28 

Results: Maxent showed the better predictive accuracy, following by GARP models. All the 29 

other models tested obtained lower accuracy values. By comparing the predictive power of 30 

Models, climate variables showed the highest contributions of the environmental variables 31 

studied. The variables with lowest contributions were the isolation models. A test of 32 

sensitivity to the reduction in the number of variables obtained an accuracy of over 0.90 by 33 

applying just 3 climatic variables (spring rainfall, mean temperature of warmest month, and 34 

mean temperature of coldest month). All algorithms produced maps that coincided well with 35 

the known distribution of the species.  36 

Conclusions: Maxent has showed the better habitat-specific predictive mapping model of the 37 

Buxus balearica communities in southern Spain.  38 

Keywords: Environmental gradient; Habitat distribution model; Mediterranean shrubs. 39 
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1. Introduction 40 

The genus Buxus is represented in Spain by two species, B. sempervirens L. and B. 41 

balearica Lam. B. balearica is an evergreen shrub, rarely small trees, monoecious, more 42 

robust and bigger than Buxus sempervirens, up to 5 m. high. It has glabrous stems and entire, 43 

coriaceous and opposite (9-18 x 25-40 mm) leaves, dark green on their adaxial side and light 44 

green on their back, with short petiole. Small flowers in inflorescence c. 10 mm in some leaf 45 

axils, where only one is female, sessile in the centre of the clusters, and the rest are male, 46 

shortly pedicelled with four yellowish pieces and four stamens; the female ones have three 47 

persistent styles. Flowering is IV-VI, and fruits are ovoid, loculicide capsules, trilocule, up to 48 

7 mm. widely oblong, with its styles as long as its capsule. Seeds are black, with 2 in each 49 

loculus.  50 

Chorological studies show that B. balearica is a relict of Tertiary flora, which was 51 

much more abundant before but is nowadays relegated to calcareous soils at sea level or close 52 

to the coast. B. balearica is confined to the Western Mediterranean area, concretely in the 53 

Balearic Islands, Sardinia, and North of Morocco and also in sub-coastal mountains in the 54 

South East of the Iberian Peninsula (Lázaro et al. 2006). Two other populations are also 55 

known in Turkey, initially considered a different species. Its current distribution in Andalusía 56 

consists of a few fragmented and isolated populations distributed throughout it from Malaga 57 

to Almeria (Blanca 1999). Its populations have drastically decreased and a significantly 58 

reduced number of individuals are found due to both climate change in the Mediterranean 59 

region during the Holocene (Yll et al. 1997) and human activity during the last centuries (Yll 60 

et al. 1997, Lázaro et al. 2006). It has been catalogued as ‘‘vulnerable’’ by the UICN, and in 61 

Spain, it is considered to be at risk of extinction in Andalusia (Blanca 1999).  62 

All the evidence shows that B. balearica in southern Spain finds acceptable conditions 63 

for flowering; fructification, seed production, dispersion and germination (Lázaro et al. 2006). 64 
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However, summer drought, the most crucial factor affecting the regeneration process in a 65 

number of Mediterranean species promotes an extreme environmental restriction for seedling 66 

establishment. Populations are thus doomed to disappear in the long term. The situation is 67 

even tougher due to the effect of wild fires and human pressure, which accelerate the 68 

population’s fragmentation process and vanishment. This situation is creating a restrictive 69 

scenario for the species’ conservation programs, demanding a higher precision in repopulation 70 

activities.  71 

Ecological niche modelling is important for a variety of applications in ecology and 72 

conservation (Graham and Hijmans 2006). For example, they attempt to provide detailed 73 

distribution cartography related to the spread of species (Thuiller et al. 2004), impacts on 74 

climate change (Thomas et al. 2004, Matsui et al. 2009), and spatial patterns of species 75 

diversity (Feldemeyer-Christe et al. 2007). As such, ecological niche modelling has been the 76 

target for an impressive growth in attention in recent years (Guisan & Zimmermann 2000, 77 

Thuiller et al. 2004, Thomas et al. 2004, Araújo et al. 2005, Soberón & Peterson 2005, 78 

Graham and Hijmans 2006; Elith et al. 2006, Matsui et al. 2009) placing this technique among 79 

emerging new approaches relevant to ecology, biogeography, and conservation biology. 80 

The basic approach of these models is to combine a set of known occurrences together 81 

with prediction variables such as topographic, climatic, edaphic, biogeography and remotely 82 

sensed ones. Accurate occurrence data (presence and absence) are rarely available, especially 83 

for rare species or inaccessible site locations. Correlative models using species presence and 84 

absence locations records for habitat predictions have been referred to as discrimination 85 

techniques, while those using only species presence records have been referred to as profile 86 

techniques (Jeschke & Strayer, 2008). Examples of discrimination techniques include those 87 

models based on discriminant analysis (Rogers et al. 1996), general linear model regression 88 

(GLM) (Cumming 2000), generalized additive models (GAM) (Leathwick & Whitehead 89 
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2001), Multivariate Adaptive Regression Spline (MARS) (Muñoz & Felicísimo 2004) and 90 

decision-tree based methods (Araújo & Williams 2000). On the other hand, climate envelope 91 

techniques (e.g., ANUCLIM, BIOCLIM, DOMAIN, FEM, HABITAT, and Mahalanobis 92 

distance) used a classic bioclimatic modelling approach (Hirzel et al. 2002, Anderson et al. 93 

2003). Comparisons of modelling techniques are a current issue of research (Jeschke & 94 

Strayer 2008). 95 

MARS has been applied to Mediterranean species in the past few years for many 96 

authors dealing with habitat prediction (Muñoz & Felicísimo 2004; Navarro-Cerrillo et al. 97 

2006) reporting accurate results for tree species. Classification algorithms commonly used are 98 

CART or TREE NET, often less accurate than MARS (Muñoz & Felicisimo, 2004; Segurado 99 

& Araujo 2004). Another group of techniques are generics algorithms based on environmental 100 

dissimilarity metrics (BIOCLIM, HABITAT, DOMAIN o ENFA) (Beaumont et al., 2005). 101 

More recently, a machine learning approach to predictive modelling has applied new 102 

algorithms such as GARP (Genetic Algorithm for Rule-Set Prediction) (Stockwell & Peterson 103 

2002, Anderson et al. 2003, Pape & Gaubert 2007) or MAXENT (Maximum Entropy) 104 

(Phillips & Dubik 2008), which has proven especially successful in predicting species 105 

potential distributions under a wide variety of situations.  106 

Modelling prediction methods results in different geographic distributions depending 107 

mainly on species ecology specialization and number of samples (Stockwell & Peters 2002; 108 

Randin et al. 2006, Pearson 2006), so it is important to compare the performance of the many 109 

algorithms and approaches to project distributions within the same regions used to train the 110 

models (Elith et al. 2006, Guisan et al. 2007). Most studies have focused on species with a 111 

wide geographical distribution and large number of presence data (Beaumont et al. 2005; 112 

Phillips & Dubik 2008). On the contrary, spatial distribution modelling at a local scale has 113 
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been less tested and experience obtained with habitat prediction of spread species cannot be 114 

easily generalized. 115 

The aim of this contribution is to provide a comparison between modelling algorithms 116 

to study the habitat distribution of such a fragmented species as Buxus balearica Lam. by 117 

evaluating the prediction capability of different spatial distribution models at a local scale.  118 

2. Methods 119 

2.1. Study area  120 

Buxus balearica was chosen as the species for analysis based on the criteria of 121 

ecological relevance and fairly broad geographic distributions, giving sample sizes sufficient 122 

for analysis. The distribution area of Buxus balearica studied in this work was the Málaga and 123 

Granada populations, which includes almost its total Iberian Peninsula distribution with the 124 

exception of the Rágol locality (Almeria province) (36º and 38º north) (Figure 1). This area 125 

extends along the southern slope of the Sierras de Almijara, Cázulas and Los Guájares. Part of 126 

these mountains is nowadays protected by the Andalusian Government, the Natural Park of 127 

the Sierras de Tejeda, Almijara and Alhama, with 40,600 ha. The study area was restricted to 128 

basic soils, mainly marls and chalky ones, which occupied a surface of 38,180 km2. 129 

Those mountain ranges form a geographical barrier between the provinces of Málaga 130 

and Granada and constitute a continuous alignment of rocky escarpments reaching the most 131 

prominent height in the South of Spain and Portuguese coast (Maroma summit, 2,068 m). It 132 

acts as a corridor, connecting the Sierras of Málaga with Sierra Nevada, due to its longitudinal 133 

distribution. The predominant geology is a consistent limestone, although in some areas there 134 

are also Eocene loamy sandstones, limestones, and dolomite marbles. The growing season is 135 

about 8-months (March to October), and annual precipitation averages from 450 or 500 mm 136 

in coastal areas (Almuñécar, Vélez-Málaga) to more than 1000 mm in some mountainous 137 

areas of the northern slope (Alfarnate, Zafarraya), the average values being 600-700 mm in 138 
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medium height mountainous areas facing the Mediterranean Sea (Cómpeta, Canillas). 139 

Dominant climate is a semi-arid Mediterranean (sensu Quézel) below 500 m above sea level 140 

and sub-humid Mediterranean (in mountains above 600 and 700 m). Monthly average 141 

temperatures oscillate between 11ºC and 26ºC. In spite of its Mediterranean climate, with a 142 

long dry period during the summer, Western warm and humid winds from the Strait of 143 

Gibraltar reach these mountains. These sea breezes condense at a certain altitude (generally in 144 

the evening) and compensate water deficit. 145 

Forest species composition includes many myrtled-shape leaf species well adapted to 146 

Mediterranean conditions, such as Pistacia lentiscus L., P. terebinthus L., Rhamnus alaternus 147 

L., Buxus balearica, Coriaria myrtifolia L., Osyris quadripartite Salzman ex Decaine, 148 

Cneorum tricoccon L. and Quercus coccifera L. among others. B. balearica can only be 149 

found in the termo and meso-Mediterranean belts.  150 

2.2. Data processing 151 

The prediction models were tested based on 17 environmental variables 152 

(Environmental Information Network of Andalusia-Consejerıa de Medio Ambiente) (Table 153 

1). All data sets were resampled to 10 m resolution for analysis to reflect the spatial resolution 154 

of the occurrence data. 155 

The topographical data – aspect (ASP), slope (SLP), Euclidean distance to the closest 156 

drainage (EDW), and isolation models (MPI) – were derived from a Land Digital Model (10 157 

m resolution) (CMA, 1998). Altitude was not considered because the species appears 158 

indistinctly distributed from approx. 0 to 800 m. (Elevation range registers within the study 159 

area). Isolation was calculated with SHORTWAVC aml application (Felicísimo et al. 2002). 160 

Eight isolation models were calculated, one every 45 days throughout the year, on which total 161 

radiation received at the surface of the earth over a period of time was estimated (Table 2). 162 
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Finally, taking into account the preference of B. balearica for areas where ambient humidity 163 

may accumulate, Euclidean distance to the closest drainage area was calculated.  164 

Meteorological data – winter rainfall (TP1), spring rainfall (TP2), summer rainfall 165 

(TP3), autumn rainfall (TP4), mean temperature of warmest month (ATWM), mean maximum 166 

temperature of warmest month (AMTWM), mean temperature of coldest month (ATCM), 167 

mean minimum temperature of coldest month (AMTCM), – were obtained from a 28 weather 168 

station network (National Institute of Meteorology). The time serial data were 1956–2000. 169 

The methodology applied to obtain a 100 m grid of meteorological variables was the 170 

interpolation of data from each station. This interpolation was based on multiple regression 171 

analysis taking into account the position of each point (coordinates x, y), the altitude 172 

(obtained from Land Digital Model), the distance to the sea and orientation weight (maximum 173 

value of 4 to SW orientation and minimum value of 0 to NE). The litology (LITO) was 174 

obtained form a digital lithological map of the study area (scale: 1:100,000).  175 

Current locations of Buxus balearica were obtained by field surveys using a GPS 176 

(GPSmap® 60CSx), from herbarium specimens (Botanical Gardens-University of Córdoba) 177 

and from historical citations. A value of presence (1) of B. balearica was assigned to 220 178 

points and it was considered when the species presented itself, independently of population 179 

density. 180 

2.3. Modelling methods 181 

Several approaches have been used to approximate the ecological niches of species 182 

(Elith et al. 2006). In this study, six methods were compared: 183 

a) Multivariate adaptative regression spline, MARS, proposed by Friedman (1991) 184 

provides an alternative regression-based method for fitting non-linear responses, using 185 

piecewise linear fits rather than smooth functions. MARS uses a stepwise addition/deletion 186 
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strategy with linear splines and it adopts the generalized cross-validation criterion to add and 187 

select basic functions.  188 

b) Maximum entropy approach to modelling species’ distributions (Maxent) (Phillips 189 

et al. 2006, Phillips 2006). Maxent estimates species probability distribution by finding the 190 

probability distribution of the maximum entropy, subject to a set of constraints that represent 191 

our incomplete information about the target distribution. Mathematical approach of Maxent is 192 

based on the estimation of probability function for a species satisfying all the bioclimatic or 193 

environmental limits associated while maintaining its distribution and maximum entropy. The 194 

Maxent algorithm calculates the distance between the given environmental conditions to each 195 

occurrence point and selects the closest distance. In terms of potential distribution, the 196 

probability of the presence of a species can be interpreted as the probability of not finding any 197 

biophysical limitations to the species’ existence; therefore, the greater the entropy of a 198 

system, the greater the probability of encountering sites without such limitations (Phillips & 199 

Dubik 2008). 200 

c) Climate envelope techniques.- The climate envelope modelling approach has its 201 

foundations in ecological niche theory. Climate envelopes can be defined as constituting the 202 

climatic component of the fundamental ecological niche, or the ‘climatic niche’. Some 203 

bioclimatic models are based on empirical relationships between observed species 204 

distributions and environmental variables (Peterson 2006). Some examples are ANUCLIM, 205 

BIOCLIM, DOMAIN, FEM, HABITAT, and Mahalanobis distance. They fit a minimal 206 

envelope in a multidimensional climate space and use presence-only instead of 207 

presence/absence data. On this study, two models were selected: BIOCLIM and DOMAIN.  208 

d) Genetic Algorithm for Rule-set Prediction (GARP) (Stockwell & Noble 1992) is a 209 

genetic algorithm that creates ecological niche models for species. The models describe 210 

environmental conditions under which the species should be able to maintain populations. For 211 
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input, GARP uses a set of point localities where the species is known to occur and a set of 212 

geographic layers representing the environmental parameters that might limit the species' 213 

capability to survive. GARP works in an iterative process of rule selection, testing, and 214 

incorporation or rejection: first, a method is chosen from a set of possibilities (logistic 215 

regression, bioclimatic rules, range rules, negated range rules), and then is applied to the 216 

training data and a rule developed to maximize predictivity (Anderson et al. 2003). 217 

e) Support vector machines (SVMs) are a group of supervised learning methods that 218 

belong to a family of generalized linear classifiers. They can also be considered a special case 219 

of Tikhonov regularization. SVMs can perform binary classification (pattern recognition) and 220 

real valued function approximation (regression estimation). A special property of SVMs is 221 

that they simultaneously minimize the empirical classification error and maximize the 222 

geometric margin; hence they are also known as maximum margin classifiers. Support vector 223 

machines map input vectors to a higher dimensional space, where a maximal separating hyper 224 

plane is constructed. This hyper plane will attempt to split the input data into two classes. The 225 

separating hyper plane is that which maximises the distance between the two classes. The 226 

model only depends on a subset of the training data, because the cost function for building the 227 

model does not care about training points that lie beyond the margin. Intuitively, this would 228 

make the classification correct for testing data that was near, but not identical to the training 229 

data. 230 

2.4. Model evaluation 231 

To assess the agreement between the presence-absence and the predictor’s records 232 

three statistics were used: the area under curve (AUC), the correlation coefficient (COR) and 233 

the maximum Kappa (κ). The AUC ranges between 0 and 1. Cohen’s Kappa (κ) is one 234 

measurement that can be derived from the confusion matrix. As a validation tool (i.e. when 235 

the ‘truth’ is known), it states the overall accuracy of a prediction once the element of chance 236 
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has been removed (Liu et al. 2005). Otherwise, Kappa can serve as a tool to assess reliability 237 

of prediction in terms of relative agreement. A value near 0 indicates no discrimination 238 

(agreement by chance); a value of 1 represents perfect discrimination (agreement); a value of 239 

> 0.6 is considered ‘good’ and >0.8 as ‘excellent’ (Graham & Hijmans, 2006). Kappa is 240 

relatively tolerant to zeros in the confusion matrix and considers both omission and 241 

commission errors in one parameter. However, Kappa is unimodally dependent on 242 

prevalence, i.e. on the proportion of all presences in the full validation dataset (Allouche et al. 243 

2006). This would have been a problem in this project, because the presences of known 244 

species were few (training: ~ 150; test: ~70) compared to the large number of random 245 

background points (>1000), which were deemed necessary for a reliable confusion matrix 246 

given the large study area. Hence, the TSS (Allouche et al. 2006) was computed instead of 247 

Kappa. It is defined as TSS = sensitivity + specificity – 1. In contrast to Kappa, TSS values 248 

can be used to compare prediction performance regardless of both the validation dataset size 249 

and the prevalence contained therein, while still featuring the same strengths of Kappa: full 250 

consideration of sensitivity, specificity and chance (Allouche et al. 2006). Finally, the 251 

concordance among models was evaluated through a correlation analysis.  252 

3. Results 253 

The area under curve (AUC) scores for these models showed a value of 0.73 for 254 

Maxent, compared with 0.60 for GARP models, suggesting that GARP models are less 255 

predictive than Maxent models (Figure 2). The same results were obtained with the kappa (κ) 256 

coefficient and the correlation coefficient (COR) (Figure 2). All the other models tested 257 

obtained lower accuracy values. The lowest accuracy was ranked by the Environmental 258 

Distance model. The correlation matrix of the different models shows the spatial prediction 259 

concordance between models (Table 2). The highest correlations were obtained in two 260 

separate groups; first, between the generic algorithms based on environmental dissimilarity 261 
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metrics. The highest correlations were ranked by the Environmental Distance and the SVM 262 

and Bioclime. The second was between Maxent and MARS, obtaining the highest 263 

significance of the correlation  264 

Maxent and MARS are different algorithms and follow different computational 265 

routines although both produced similar potential distribution models on this study. The 266 

relative contributions of the environmental variables were similar as well. Figure 3 shows a 267 

heuristic estimate of the relative contributions of the environmental variables to the Maxent 268 

and MARS model. To determine the estimate in each iteration of the training algorithm, 269 

increase in regularized gain was added to the contribution of the corresponding variable. The 270 

highest contributions fell on the climate variables: spring rainfall (TP2), mean temperature of 271 

warmest month (ATWM), and mean temperature of coldest month (ATCM) with proportional 272 

weights. The variables with lowest contributions were the terrain isolation models. Figure 4 273 

shows the results of the jackknife test of a variable importance. The environmental variable 274 

with the highest gain when used in isolation is ATCM, which therefore appears to have the 275 

most useful information by itself. The environmental variable that decreases the gain the most 276 

when it is omitted is ATCM, which therefore appears to have the largest amount of 277 

information that was not present in the other variables. 278 

Once Maxent was identified as the most accurate model, a test of sensitivity to the 279 

reduction in the number of variables and number of presence input data was performed. 280 

Figure 5 shows the curve described by the AUC depending on the number of variables 281 

introduced in the analysis. The number of variables introduced in each model is explained in 282 

Table 3. Results show a decreasing tendency of the AUC with the reduction of the number of 283 

variables. However, the model obtains an accuracy of over 0.90 by applying just 3 variables 284 

(TP2, ATWM, and ATCM). In contrast, the reduction in the number of presence input data 285 

shows a greater sensitivity (Figure 6). The maximum number of points taken into the analysis 286 
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reach high values in the accuracy assessment of both Maxent and MARS. A reduction of 50% 287 

in the number of presence data shows a reduction in kappa coefficient around 14.5% for 288 

MARS and 6.7% for Maxent. Comparing both models, MARS is more sensitive to the 289 

reduction in the number of presence input data.  290 

All algorithms produced maps that coincided well with the known distribution of the 291 

species (Figure 7), although the GARP prediction tended to be overly extensive, and the 292 

Maxent model tended to be somewhat underpredicted. GARP models continued to reconstruct 293 

many of the species’ known distributions. Maxent models, on the other hand, produced an 294 

odd pattern coincident with the input data set at higher probability values reconstructing the 295 

on-diagonal quadrants or the off-diagonal quadrants, depending on which were used to train 296 

the models (Figure 7). 297 

4. Discussion 298 

4.1 Model evaluation. 299 

Differences in prediction performance between modelling methods at a local scale is 300 

shown on this study. In general terms, results agree with those obtained from the application 301 

of the same models to the species distribution at a regional and global scale (Elith et al. 2006, 302 

Austin 2007). The generics algorithms based on environmental dissimilarity metrics obtain 303 

poor results compared with those obtained by the machine learning approach. The accuracy of 304 

Maxent was significantly higher than all the prediction models evaluated. The computational 305 

efficiency of each model should be evaluated considering three main aspects: pre- processing 306 

required for the input data, processing efficiency of the model itself, post-processing required 307 

to acquire statistical and cartographical prediction. Generic algorithm models based as 308 

BIOCLIM, DOMAIN, SVC, or GARP, are of a great computational efficiency. Implemented 309 

in common free software like the open modeller (http://openmodeller.sourceforge.net), and 310 

identical input data are used for all of them. The user-friendly interface and the fast 311 
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computation of the algorithm may prove the usefulness of these models at a regional and 312 

global scale. Nevertheless, at a local scale, the results show low accuracy values and poor 313 

prediction maps. Maxent and MARS significantly improves all the predictions. Although 314 

Maxent share all the computational advantages of generic algorithms, MARS presents some 315 

drawbacks. The input data have to be introduced in a specific format (.sav) with the 316 

environmental data information extracted from the presence/absence data. This process 317 

involves the necessity to process all the information with Arc/info. Once the functions are 318 

generated, it is necessary to apply a specific routine programmed in AML to obtain the raster 319 

prediction with ArcInfo.  320 

In contrast, Maxent not only exhibits a high computational efficiency, it also produces 321 

an extensive statistical report of the model. In order to test the sensitivity of the model to 322 

different analysis were performed. The first one consisted of the reduction of the number of 323 

variables. The high accuracy obtained with just three climate variables shows the strong 324 

dependency of the species studied on the climatology conditions. This last result is a very 325 

important one from the point of view of the study and assessment of the distribution of Buxus 326 

balearica. The last test performed on the Maxent model was the reduction in the number of 327 

presence input data. Compared to the MARS model, the reduction in accuracy was 328 

significantly lower with the Maxent model. This last result is also very important insofar as 329 

the input data of presence are relatively inaccessible. Apart from this difference in accuracy 330 

and computational efficiency, the prediction maps agree between Maxent and MARS, as well 331 

as the importance of the variables in the model. 332 

4.2. Potential distribution model of Buxus balearica. 333 

Within the meso-Mediterranean and supra-Mediterranean climate types, B. balearica 334 

was observed at 220 locations. The digital model developed for predicting the distribution of 335 

B. balearica is a probabilistic raster map, shown in Figure 7. Kappa index results achieved 336 
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0.84 accuracy rating in predicting both presence and absence of the species. Response curve 337 

diagrams produced along with the model output indicate the effect of individual variables on 338 

the Maxent prediction. Environmental variables based on meteorological data made the 339 

highest contribution to the potential distribution. The single variable making the greatest 340 

contribution to defining the potential distribution of the species was mean temperature of 341 

warmest month (ATWM). The species presents an alarming sensitivity to thermic variations. 342 

B. balearica limits itself to areas with average temperatures ranging from 24.6 to 25.4ºC 343 

during the warmest month. Results of the mean maximum temperature of warmest month 344 

(AMTWM) indicate a species tolerance within a range between 31ºC and 32ºC. As a 345 

consequence, a climate change scenario of solely one degree could greatly diminish the 346 

survival possibilities of this species. It is also clear that the low tolerance of B. balearica to 347 

frost, disappearing as a result of competition with other species in areas where mean 348 

temperature of coldest month (ATCM) is below 7ºC and mean minimum temperature of 349 

coldest month (AMTCM) is below 3ºC. 350 

Seasonal precipitation also showed itself to have a great impact on the distribution 351 

model, measured by total trimester precipitation. Spring rainfall (TP2) showed yet again the 352 

species’s sensitivity to climatic and irregularity during the spring-summer season. It could be 353 

said that in areas with the presence of B. balearica annual precipitation is above 500 mm, 354 

with spring precipitations above 110 mm and summer rainfall (TP3) at least 25 or 30 mm. 355 

Consequently, B. balearica requires certain soil moisture. However, this interpretation may be 356 

incomplete, considering the lack of data concerning crypto-precipitations. This added 357 

condensation is continually scarcer due to the climate variations observed in the last decades 358 

within the region. 359 

The response to orientation models MDI5 (12.5º) and MDI4 (22.5º) with respect to 360 

MDI2 (0º) showed a significant contrast. During the summer solstice (sun at its maximum 361 
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height), the majority of locations with presence of the species receive a great amount of 362 

energy while during the winter solstice (sun at its lowest position) solar radiation is at its 363 

lowest. According to model results, B. balearica distribution is more affected by solar 364 

isolation during the period between the summer solstice and fall equinox (MDI5-12.5º). The 365 

distribution of the species, on the other hand, was indifferent to aspect, even though a slight 366 

preference was shown for a southerly orientation. These results agree with field observations, 367 

in which B. balearica was seen to be distributed with various orientations. Slope was also no 368 

significant in determining the presence or absence of the species, as it appears in slopes of a 369 

varying steepness. 370 

Euclidean distance to nearest drainage, based on a watershed model, was an influential 371 

factor in determining the presence of the species. B. balearica specimens appear to take 372 

refuge in precipices, streams and rivers, and certainly not so much because of subsoil 373 

moisture, but more likely because it is in such areas that the species is subject to less incident 374 

radiation. Even more so because in these areas it is able to avoid forest fires, which here do 375 

not reach great intensity, and conditions allow the plant resprouting. Moreover, seedling 376 

mortality due to summer drought can be overcome in the riparian zone (brooks and streams of 377 

seasonal flows).  378 

5. Conclusion 379 

An evaluation of model performance to predict the distribution of Buxus balearica is 380 

described in this paper. It is important to note that many applications of species distribution 381 

models depend on predicting potential distributions, rather than realized distributions. Facing 382 

increasing climate change and human pressure, B. balearica populations will tend to shelter in 383 

areas with microclimate conditions that are less unfavourable and which limit 384 

evapotranspiration, regardless of altitude or topography. Average performance of different 385 

habitat distribution models for current versions showed that Maxent, evaluated on 386 
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independent presence/absence test, may be applied to predict potential distributions of B. 387 

balearica. 388 
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 496 

Table 1. Environmental variables resampled to 10 m resolution used on the prediction 497 

models.  498 

Variable COD Source 

Aspect ASP Generated from DEM 

Slope SLO Generated from DEM 

Euclidean distance to watershed EDW Generated from DEM   

Model of Potential Insolation , 
Solar Declination 22.5° 

MPI+22.5 Generated from DEM   

Model of Potential Insolation, 
Solar Declination  12.5° 

MPI+12.5 Generated from DEM   

Model of Potential Insolation, 
Solar Declination 0° 

MPI 0 Generated from DEM   

Model of Potential Insolation,  
Solar Declination  -12.5° 

MPI-12.5 Generated from DEM   

Model of Potential Insolation, 
Solar Declination  -22.5° 

MPI-22.5 Generated from DEM   

Total Precipitation (January-
March) 

TP1 National Institute of metherology  
(INM) (www.mapya.es) 

Total Precipitation (April-June) TP2 National Institute of metherology  
(INM) (www.mapya.es) 

Total Precipitation (July-
September) 

TP3 National Institute of metherology  
(INM) (www.mapya.es) 

Total Precipitation (October-
December) 

TP4 National Institute of metherology  
(INM) (www.mapya.es) 

Average temperature of the 
warmest month 

ATWM National Institute of metherology  
(INM) (www.mapya.es) 

Average maximum temperature of 
the warmest month 

AMTWM National Institute of metherology  
(INM) (www.mapya.es) 

Average temperature of the coldest 
month 

ATCM National Institute of metherology  
(INM) (www.mapya.es) 

Average minimum temperature of 
the coldest month 

AMTCM National Institute of metherology  
(INM) (www.mapya.es) 

Lithology LITO Department of Environment of the 
Government of Andalusia 

 499 
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Table 2. Bivariate Pearson Correlation matrix of the concordance of the different spatial 500 
distribution models analysed. 501 

 502 

 Bioclim Maxent MARS GARP SVM ENV_DIST 

Bioclim 1.000      

Maxent -0.040 1.000     

MARS -0.180 0.807*** 1.000    

GARP 0.769** 0.303* 0.240 1.000   

SVM 0.856** 0.290 -0.110 0.798** 1.000  

ENV_DIST 0.856** 0.290 -0.110 0.798** 1.000** 1.000 

**. Correlation is significant at the 0.01 level (2-tailed) 503 

***. Correlation is significant at the 0.001 level (2-tailed) 504 
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Table 3. Sensitivity analysis of Maxent model. The table shows from right to left, the 505 
variables introduced, the code assigned to the model and the relative importance of the last 506 
variable introduced. Variables on table 1. 507 

 508 

Model Cod Imp. 

ATWM Mod_01 24 

ATWM, ATCM Mod_02 12.9 

ATWM, ATCM, TP2 Mod_03 12.2 

ATWM, ATCM, TP2, AMTCM Mod_04 7.8 

ATWM, ATCM, TP2, AMTCM, MPI-22.5 Mod_05 5.8 

ATWM, ATCM, TP2, AMTCM, MPI-22.5 Mod_06 5.6 

ATWM, ATCM, TP2, AMTCM, MPI-22.5, TP3 Mod_07 5.3 

ATWM, ATCM, TP2, AMTCM, MPI-22.5, TP3,  Mod_08 5.2 

ATWM, ATCM, TP2, AMTCM, MPI-22.5, TP3, TP4 Mod_09 5.1 

ATWM, ATCM, TP2, AMTCM, MPI-22.5, TP3, TP4, TP Mod_10 4.7 

ATWM, ATCM, TP2, AMTCM, MPI-22.5, TP3, TP4, TP, AMTWM Mod_11 3.8 

ATWM, ATCM, TP2, AMTCM, MPI-22.5, TP3, TP4, TP, AMTWM, 
EDW 

Mod_12 3.5 

ATWM, ATCM, TP2, AMTCM, MPI-22.5, TP3, TP4, TP, AMTWM, 
EDW, TP1 

Mod_13 2.1 

ATWM, ATCM, TP2, AMTCM, MPI-22.5, TP3, TP4, TP, AMTWM, 
EDW, TP1, MPI0 

Mod_14 0.7 

ATWM, ATCM, TP2, AMTCM, MPI-22.5, TP3, TP4, TP, AMTWM, 
EDW, TP1, MPI0, MPI-12.5 

Mod_15 0.7 

ATWM, ATCM, TP2, AMTCM, MPI-22.5, TP3, TP4, TP, AMTWM, 
EDW, TP1, MPI0, MPI-12.5, ASP 

Mod_16 0.4 

ATWM, ATCM, TP2, AMTCM, MPI-22.5, TP3, TP4, TP, AMTWM, 
EDW, TP1, MPI0, MPI-12.5, ASP, MPI+12.5 

Mod_17 0.1 

ATWM, ATCM, TP2, AMTCM, MPI-22.5, TP3, TP4, TP, AMTWM, 
EDW, TP1, MPI0, MPI-12.5, ASP, MPI+12.5, MPI+22.5 

Mod_18 0.1 

 509 
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 529 

Figure 1. Distribution of Buxus balearica on the study locations area (Southern Spain). 530 
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 533 

Figure 2. Comparison of the validation coefficients obtained by the application of six 534 

different spatial distribution models: BIOCLIM (BIO), GARP, DOMAIN (ENV_DIST), 535 

SVM, MARS and MAXENT. 536 

 537 
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 544 
Figure 3.- Relative contributions of the environmental variables to the Maxent model (a) and 545 
to the MARS model (b). 546 
 547 
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 551 
Figure 4.- Jack-knife test of variable importance to the Maxent model. 552 
 553 
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 557 
Figure 5.- Sensitivity analysis of Maxent model based on the reduction in the number of 558 
variables.  559 
 560 
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Figure 6.- Accuracy functions of Maxent model and MARS depending on the number of 571 
presence input data.  572 
 573 
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 575 

 576 
 577 
Figure 7.- Potential distributions of Buxus balearica obtained by the application of MAXENT, 578 

MARS, GARP and ENVIRONMENTAL DISTANCE (ENV_DIST).  579 
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