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Abstract 12 

Mediterranean grasslands are a cornerstone ecosystem to provide ecosystem services 13 

and sustain human societies. The sustainability and provision of ecosystem services by 14 

these systems rely on their management. One of the main attributes to perform 15 

sustainable and effective management is pasture quality, which is crucial for animal 16 

performance in rainfed extensive systems. Remote sensing of grasslands can be an 17 

effective tool to inform the management of grasslands. The forthcoming high-priority 18 

mission candidate of the European Space Agency, Copernicus Hyperspectral Imaging 19 

Mission for the Environment (CHIME) with continuous narrow bands of ≥10 nm 20 

spectral resolution could be an asset to provide accurate information on the pasture 21 

quality of high-diverse and heterogeneous grasslands. In this study, we investigated the 22 

potential of CHIME-like field spectroscopy data at 10 nm resolution to assess the 23 

quality of Mediterranean permanent grasslands. The pasture quality indicators used 24 

were: crude protein (CP), neutral detergent fibre (NDF), acid detergent fibre (ADF) and 25 

enzyme digestibility of organic matter (EDOM). To do so, two machine learning 26 

methods commonly used in remote sensing were implemented: Partial Least Squares 27 

(PLS) regression and Random Forest (RF) regression. The results using all bands in the 28 

400-2300 nm spectral range and the results obtained by Backward Feature Elimination 29 
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(BFE) were also compared. Finally, using importance measures of PLS and RF and the 30 

BFE approach, the importance and stability of the bands to assess the pasture quality 31 

indicators were explored. The results showed that field spectroscopy CHIME-like data 32 

at 10 nm of spectral resolution show potential to predict CP at “good” accuracy and 33 

NDF at “moderate” accuracy level in Mediterranean permanent grasslands. PLS 34 

outperformed RF to predict CP and NDF in terms of accuracy and certainty of the 35 

predictions. The BFE approach increased the accuracy of the predictions, especially in 36 

PLS, for which a ∆RMSE= -12.5 was achieved in cross-validation to predict CP. The 37 

models built by BFE approach to predict CP using PLS provided a mean R2 value of 38 

0.82 and a range of 0.68-0.90 in bootstrapped predictions. The RMSE was low (mean 39 

RMSE=2.23%) and the mean RPD=2.47 with values ranging from 1.81 to 3.23. RF 40 

models to predict CP produced mean R2 value of 0.68, mean RMSE=3.00% and mean 41 

RPD=1.82. ADF and EDOM were predicted with poor accuracy and similarly by both, 42 

PLS and RF. The bands located in the red-edge and NIR region showed high 43 

importance and stability to assess the best-predicted variables. Bands centred at 700, 44 

710, 1160, 1170 and 1180 are highly stable and important to predict CP. The bands 45 

from the SWIR region had lower stability. This study provides insightful results on the 46 

use of hyperspectral data and future satellite missions such as CHIME to assess the 47 

pasture quality of Mediterranean grasslands that can be crucial to inform the 48 

management and monitoring of Mediterranean permanent grasslands. 49 

Keywords: Crude protein, Band selection, Backward feature elimination, CHIME, 50 
Band importance, Heterogeneity 51 
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1. Introduction  53 

The high diversity of vascular plants, strongly related to the management practices and 54 

characteristics of the Mediterranean climate, make the Mediterranean Basin a global 55 
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biodiversity hotspot (Cosentino et al., 2014; Myers et al., 2000). Grasslands of the 56 

Mediterranean-climate zones contribute substantially to the biodiversity of the 57 

Mediterranean Basin and have traditionally played a major role to sustain human 58 

livelihood (Jouven et al., 2010; Porqueddu et al., 2016). Mediterranean grasslands are 59 

mainly annual high-diverse communities of grasses, legumes and forbs, of low biomass 60 

production due to the low rainfall and its high intra- and inter-annual variability which 61 

together with the grazing and occasional cropping are responsible for the strong 62 

heterogeneity of this ecosystem (Cosentino et al., 2014; Olea and San Miguel-Ayanz, 63 

2006; Porqueddu et al., 2016). In the last decades, increasing attention has been directed 64 

to the potential of Mediterranean grasslands ecosystems to provide multiple ecosystem 65 

services highly appreciated by the society and of crucial importance for the global 66 

environment such as biodiversity conservation, wildfires control and rural population 67 

sustain (D’Ottavio et al., 2018; Porqueddu et al., 2016; Porqueddu et al., 2017). 68 

Mediterranean grasslands are associated with extensive livestock grazing by small 69 

ruminants and beef cattle (Cosentino et al., 2014) that act as a major driver determining 70 

stability, sustainability, and potential of ecosystem services provision (D’Ottavio et al., 71 

2018; Porqueddu et al., 2017; Sollenberger et al., 2019). The increasing effects of 72 

climate change challenge the stability and functions of Mediterranean grasslands 73 

compromising their resilience (Giannakopoulos et al., 2009; Giorgi and Lionello, 2008; 74 

Chang et al., 2017; Ma et al., 2017, Carpintero etl al., 2020). In this context, it is crucial 75 

to have accurate and routine information on the attributes of grasslands to i) improve the 76 

economic, environmental sustainability and efficiency of grassland management at farm 77 

level, and ii) monitor their dynamics and conservation status at a larger scale. One of the 78 

most important attributes of grasslands concerning their management for livestock 79 

rearing is the pasture quality. Pasture’s quality can be understood in many ways, but in 80 
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the context of animal feeding, it usually refers to proximate nutritional principles 81 

(Dumont et al., 2015) such as crude protein and fibre, ether extract, minerals, ash, or the 82 

energy provided (Pullanagari et al., 2013).  83 

The main methods to assess pasture quality are: i) laboratory-based methods, ii) 84 

proximal remote sensing, iii) aerial remote sensing (aircrafts and UAVs) and iv) space-85 

based remote sensing (Pullanagari et al., 2013). The accuracy of the estimations is 86 

reduced following the order in with these methods have been listed (Pullanagari et al., 87 

2013). Laboratory-based methods are the standard and commonly used methods  to 88 

assess pasture quality. However, through the previous calibration using reference data 89 

determined by laboratory methods, indirect methods based on the remote sensing of the 90 

pasture reflectance are gaining importance in pasture quality determination. Concerning 91 

the cost, laboratory-based methods are the most expensive methods due to laborious 92 

manual sampling collection and analysis compared to the sensing methods (Starks et al., 93 

2004). Within the sensing methods, satellite technology is especially interesting because 94 

of the large-scale coverage and regular data provision. In particular, Sentinel-2 satellites 95 

have demonstrated a great potential to monitor grasslands ecosystems (Askari et al., 96 

2019; Fernández-Habas et al., 2021; Raab et al., 2020; Ramoelo et al., 2014; Sibanda et 97 

al., 2015) due to the free provision of multispectral data at worldwide level with a 98 

frequency of 5 days (ESA, 2021). However, because of the intrinsic heterogeneity of 99 

Mediterranean grasslands, multispectral data might have limited potential to provide 100 

accurate information on quality grasslands attributes (Fernández-Habas et al., 2021). 101 

The European Space Agency has a new high-priority mission candidate Copernicus 102 

Hyperspectral Imaging Mission for the Environment (CHIME) (Nieke and Rast, 2018; 103 

Rast et al., 2019). The objective of this mission is: “To provide routine hyperspectral 104 

observations through the Copernicus Programme in support of EU- and related policies 105 
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for the management of natural resources, assets and benefits”. According to the 106 

Mission Requirements Document, this imaging spectrometer will measure in the 400-107 

2500 nm spectral range with continuous narrow bands of ≥10 nm spectral resolution, 108 

spatial resolution of 20-30 m and revisiting time of 10 to 12.5 days (Nieke and Rast, 109 

2018; Rast et al., 2019).  110 

In addition to satellite sensors, field spectroscopy has also demonstrated great potential 111 

and applicability to in-field pasture quality assessments (Pullanagari et al., 2012). Field 112 

spectroscopy has also been used to upscale models to satellite data and to simulate the 113 

applicability of different satellite spectral resolutions (Fernández-Habas et al., 2021; 114 

Lugassi et al., 2019; Mutanga et al., 2015; Ramoelo and Cho, 2018; Sibanda et al., 115 

2015). In this study, we apply this approach to investigate the potential of the CHIME 116 

mission to assess the quality of high-diverse Mediterranean permanent grasslands.  117 

Machine learning algorithms have a great potential to exploit hyperspectral data and to 118 

retrieve grasslands attributes (Verrelst et al., 2015). The number of variables is usually 119 

larger than the number of samples and, on the other hand, these data tend to suffer from 120 

multicollinearity (Adjorlolo et al., 2013; Rivera-Caicedo et al., 2017). The redundancy 121 

and correlation between variables in hyperspectral data lead to the ‘Hughes 122 

phenomenon’ where the accuracy of the classification/predictions increases gradually 123 

with an increasing number of spectral bands or dimensions to a certain number of bands 124 

when it decreases dramatically (Hughes, 1968; Ma et al., 2013). Therefore, the 125 

algorithms used have to be efficient in dealing with these issues to avoid the ‘Hughes 126 

phenomenon’, also known as ‘curse of dimensionality’ (Rivera-Caicedo et al., 2017; 127 

Verrelst et al., 2015).The algorithms used have to be efficient in dealing with these 128 

issues to avoid the Hughes phenomenon (Verrelst et al., 2015). Two methods are 129 

commonly used in remote sensing and chemometrics to analyse hyperspectral data: 130 
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Partial Least Squares (PLS) regression and Random Forest (RF) regression. These 131 

methods have been extensively implemented in remote sensing demonstrating their 132 

robustness and reliability (Verrelst et al., 2015). PLS is the state-of-the-art non-133 

parametric method for analysing spectroscopic data, widely used in chemometrics 134 

(Kucheryavskiy, 2018; Wold et al., 2001) and vegetation properties mapping (Biewer, 135 

et al., 2009b; Verrelst et al., 2015). RF is an ensemble classification and regression 136 

algorithm consisting of an evolution Classification and Regression Trees (CARTs) 137 

developed by Breiman (2001) that combines bagging and bootstrapping approaches. It 138 

has become popular for remote sensing applications due to its high accuracy, flexibility 139 

to be used with complex datasets and few hyperparameters to be set (Belgiu and Drăgu, 140 

2016). 141 

Previous studies have provided insightful information about the potential of field 142 

spectroscopy at different spectral resolutions (Pullanagari et al., 2012). For example, 143 

Zhou et al. (2019) demonstrated the feasibility of the Yara N-sensor spectrometer at 10 144 

nm spectral resolution to predict the yield and quality of legume and grass mixtures. 145 

The recently published research by Pullanagari et al. (2021) provided conclusive results 146 

about the prediction of canopy nitrogen concentration in temperate grasslands by a 147 

convolutional neural network, PLS and gaussian process regression using field 148 

spectroscopy.  149 

Although PLS and RF can deal with multicollinearity, feature selection approaches are 150 

highly recommended when using hyperspectral data due to the issues mentioned above 151 

(Belgiu and Drăgu, 2016). Several studies have demonstrated that predictions using 152 

both PLS and RF can benefit from data reduction by feature selection in hyperspectral 153 

data (Mansour et al., 2012; Belgiu and Drăgu, 2016; Kawamura et al., 2008). Another 154 

important application of this approach is the identification of important bands or the 155 
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removal of redundant information. PLS and RF can also provide estimates of the bands 156 

importance (Belgiu and Drăgu, 2016; Mehmood et al., 2012; Santos-Rufo et al., 2020). 157 

This information has relevant implications to: i) inform the use of hyperspectral data ii) 158 

optimise the models and data used and iii) inform the design of hyperspectral-based 159 

devices (Chan and Paelinckx, 2008; Pullanagari et al., 2012). These approaches of band 160 

selection and band importance identification have direct application to the use of the 161 

data provided by the forthcoming CHIME mission whose spectrometer is expected to be 162 

equipped with 210 bands (Nieke and Rast, 2018). In fact, the Mission Requirements 163 

Document by Rast et al. (2019) pointed out that one of the following analyses of the 164 

Mission would be to “confirm the spectral sampling requirements (10 nm at FWHM) 165 

for the target applications and related products, incl. support to product quality 166 

specification”. To the best of our knowledge, the applicability of hyperspectral narrow 167 

bands to assess the pasture quality of Mediterranean grasslands has received poor 168 

attention. Given the particularities (high heterogeneity and variability) and interest of 169 

these ecosystems outlined before, further research focused on this type of grasslands is 170 

required to advance in the use of sensing methods in their management and monitoring. 171 

In this context, the overall objective of this study was to assess the potential of 172 

hyperspectral data CHIME-like at 10nm spectral resolution to estimate pasture quality 173 

in Mediterranean permanent grasslands using field spectroscopy. To achieve this goal, 174 

we established the following specific objectives: 175 

i) Evaluate and compare the performance and prediction accuracy of RF and 176 

PLS regressions to assess crude protein (CP), neutral detergent fibre (NDF), 177 

acid detergent fibre (ADF) and enzyme digestibility of organic matter 178 

(EDOM).  179 
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ii) Test the implementation of backward feature elimination techniques (BFE) 180 

to optimise the predictive models. and to  181 

iii)ii) Iidentify the most important narrow bands to predict the pasture quality 182 

indicators.  183 

iv)iii) Interpret the implications of the outcomes for the management and 184 

monitoring of Mediterranean permanent grasslands.  185 

2. Material and methods 186 

2.1. Pasture sampling  187 

Pasture samples were taken in five Dehesa farms from the Cordoba province, in the 188 

north of Andalusia region (Spain) during the growing season of 2012-2013 (farms 1-4) 189 

and 2018-2019 (farm 5) (Table 1Fig. 1). The pasture sampling conducted in 2012-2013 190 

was aimed at studying the grazing effect on pasture quality of natural permanent 191 

grasslands of Dehesas in a previous study (Fernández et al., 2014). Four sampling 192 

quadrats of 0.4 x 0.4 m were randomly set within grazing exclusion plots and four 193 

outside of them. This sampling was repeated on five dates; January/February, March, 194 

April, May and June which provided 125 samples (Table 1) after removal of those with 195 

extremely low pasture biomass for laboratory analysis. Locations of 0.4 x 0.4 m 196 

quadrats sampled on previous dates were avoided. In farm 5, pasture samples were 197 

collected in May of 2019. Plots of 10x10 m were located in irrigated grasslands (3 198 

plots) natural grasslands (3 plots) and improved grasslands with commercial seed 199 

mixtures (6 plots). Within each 10 x 10 m plot, four sampling quadrats were randomly 200 

set, providing 48 pasture samples. The pasture contained within the quadrats was 201 

clipped to ground level, dried in the oven for 48 h at 60ºC and ground to pass through a 202 

1-mm sieve. In total, 173 samples (Table 1) were analysed at the Laboratory of Animal 203 

Nutrition of SERIDA (Villaviciosa, Asturias, Spain) to determine the percentage of 204 
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crude protein (CP), neutral detergent fibre (NDF), acid detergent fibre (ADF) and 205 

enzyme digestibility of organic matter (EDOM). The grasslands sampled consisted of 206 

communities mainly dominated by annuals with species such as Avena spp., Astragalus 207 

pelecinus, Bromus spp., Diplotaxis spp., Erodium spp., Hordeum spp., Lolium spp., 208 

Ornithopus compressus, Plantago spp., Trifolium subterraneum, T. cherleri, T. 209 

tomentosum, T. glomeratum, and Vulpia spp in natural grasslands, T. repens and Lolium 210 

spp., in the irrigated field and T. vesiculosum, T. michelianum, T. resupinatum, O. 211 

compressus and L. multiflorum in improved grasslands from farm 5. 212 

2.2. Canopy reflectance measurement and preprocessing  213 

Before pasture clipping, the reflectance of the pasture contained in the 0.4x0.4 m 214 

quadrats was recorded using an ASD FieldSpec Spectroradiometer (ASD Inc, Boulder, 215 

Colorado, USA). The measurements were taken under clear sky between 10:00 and 216 

15:00. The spectroradiometer records reflectance at a spectral resolution of 1.4 nm 217 

within the 350-1000 nm range and 2 nm within the 1000-2500 nm range. The output 218 

data is an interpolated reflectance at 1 nm spectral resolution in the whole range of 350-219 

2500 nm. The device is equipped with a fibre optic probe assembled to a pistol grip that 220 

is held at 1.20 m height resulting in a 0.22 m2 measurement area. Four replicated were 221 

recorded per quadrat and averaged to provide a unique representative reflectance 222 

measurement of the quadrat. Calibrations on white references were done on a 223 

Spectralon panel (Labsphere, NorthSutton, NH) every four samples.  224 

The spectra were smoothed applying the Savitzky-Golay (Savitzky and Golay, 1964) 225 

filter using a width of filter window of three and second-order of polynomial. Those 226 

regions of the spectra displaying noise due to instrumental noise (350-395 nm and 2300-227 

2500 nm), atmospheric noise (1370-1410 nm and 1816-1941 nm) or detector change 228 

(1000-1005 nm) were removed. In order to match the spectral specifications of the high-229 
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priority candidate mission of the European Space Agency: Copernicus Hyperspectral 230 

Imaging Mission for the Environment (CHIME) (Nieke and Rast, 2018), the spectra 231 

were resampled to 10 nm spectral resolution using the “resample2” function of the 232 

CRAN-package “prospectr” (Stevens and Ramirez-Lopez, 2015) resulting in 168 233 

hyperspectral bands of 10 nm resolution. Spectral outliers were identified by principal 234 

component analysis (PCA) (Morellos et al., 2016; Xu et al., 2018). All analyses, 235 

preprocessing and modelling were performed in R v. 3.6.1 (R Development Core Team, 236 

2019). 237 

2.3. Partial Least Squares 238 

PLS consist of a lineal multivariate regression model that relates a Y matrix of response 239 

variables (CP, NDF, ADF or EDOM) with an X matrix of predictor variables (168 240 

hyperspectral bands) by decomposing both Y and X in n-orthogonal Latent Variables 241 

(LV) to maximise their covariance. PLS models were calibrated by Leave-One-Out 242 

cross-validation (LOOcv). The only parameter to be adjusted in PLS, the optimal 243 

number of LV, was selected based on the first local minimum of the root mean squared 244 

error (RMSE) of the cross-validated predictions. In this study we describe the basic 245 

functioning and characteristics of PLS, further information can be found on Geladi and 246 

Kowalski (1986), De Jong (1993) and Wold et al. (2001).  PLS models were 247 

implemented using CRAN-package “mdatools” (Kucheryavskiy 2019; Kucheryavskiy 248 

2020).  249 

2.4. Random Forest 250 

The RF regression is a machine learning technique that uses the ensemble of a set of 251 

Classification and Regression Trees (CARTs) to make predictions (Breiman, 2001). By 252 

bagging approach, RF uses two-thirds of the samples (in-bag samples) to create n user-253 
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defined unpruned and independent trees (ntrees). The remaining third of the samples, 254 

the so-called out-of-bag (OOB) samples, are used to estimate the Mean Squared Error 255 

(MSE), known as the OOB error. The OOB error is considered an accurate estimate of 256 

the performance of the model (Grimm et al.,2008; Liaw and Wiener, 2002; Mutanga et 257 

al., 2012). At each node of the regression trees, instead of choosing the best split among 258 

the predictors as in CARTs, RF randomly selects an user-defined number of predictors 259 

(mtry) (Liaw and Wiener, 2002). The final predicted value is obtained by averaging the 260 

predictions of the ntrees. The RF algorithm was implemented with CRAN-261 

package“randomForest” (Liaw and Wiener, 2002). As explained above, RF has two 262 

mains hyperparameters, the number of trees to grow (ntree) and the number of 263 

predictors to select at each node (mtry). The default values of “randomForest” were 264 

used for ntree (500 trees) and mtry (1/3 of the total number of predictrospredictors) 265 

since they have shown to be acceptable values and the most common recommendation 266 

(Belgiu and Drăgu, 2016; Díaz-Uriarte and Alvarez de Andrés, 2006). To ensure the 267 

right choice of these parameters, RMSE was calculated with the default of mtry, half of 268 

the default, and twice the default as suggested by Liaw and Wiener (2002).  269 

2.5. Band importance and selection by backward feature elimination in PLS 270 

and RF 271 

The modelling approach followed in this study is schematised in Fig. 1Fig. 2. Band 272 

importance in PLS models was measured based on the absolute value of the regression 273 

coefficients which is a “single measure of association between each variable and the 274 

response” (Mehmood et al., 2012). Bands with a large absolute magnitude of their 275 

associated regression coefficients are expected to have a high impact on the models 276 

while small absolute values of regression coefficients indicate that these bands are 277 

unimportant or redundant (Garrido Frenich et al., 1995; Kawamura et al., 2008). This 278 
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technique has shown to be a robust method in variable selection with PLS (Garrido 279 

Frenich et al., 1995; Palermo et al., 2009).  280 

The most reliable method for variable importance estimation in RF is the so-called 281 

“permutation importance”. The rationale of this method consists of randomly permuting 282 

a predictor variable Xj (band in this case) and calculating the MSE of the prediction of 283 

the OOB set with the remaining predictors. The difference between the MSE when Xj is 284 

permuted and the baseline MSE calculated with all predictors (measured as the 285 

percentage increase of MSE) is a measure of the variable importance (Strobl et al., 286 

2007). This process is repeated over all predictors. If the predictor Xj is strongly 287 

associated with the response, its exclusion from the predictors produces a substantial 288 

increase in the MSE.  289 

The most important bands for the prediction of the studied pasture quality variables 290 

were selected based on backward feature elimination (BFE). The BFE in PLS was 291 

carried out by means of the filter method based on removing at each iteration the band 292 

with the smallest absolute value of its regression coefficient (Mehmood et al., 2012). 293 

After removing the least important band, a LOOcv is performed to select the optimal 294 

number of LV and the new regression coefficients recalculated. This process was 295 

repeated until only two bands were left. At each step, the coefficient of determination 296 

(R2) and the RMSE of the LOOcv are calculated. A similar method was applied to RF.  297 

The least important band (based on the lowest increase in MSE) was removed at each 298 

step until only two bands were left (Adam et al., 2014; Díaz-Uriarte and Alvarez de 299 

Andrés, 2006; Odindi, 2014). The R2 and the RMSE of the OOB estimation were also 300 

calculated at each step. The selection of the most important set of bands was determined 301 

by selecting the model that yielded the highest R2 and the lowest RMSE of LOOcv and 302 

OOB estimates in PLS and RF respectively in the BFE process.  303 
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To study the effect of the dataset and the stability of the selected bands, the BFE process 304 

was repeated n=100 times over 70% of samples selected by bootstrap. The percentage 305 

of times that the bands were selected in the 100 repetitions of the BFE was used as an 306 

estimate of their stability.  307 

2.6. Assessment of performance and predictive ability of PLS and RF models  308 

Following Kawamura et al. (2008), Mutanga et al. (2004) and Mutanga et al. (2015) a 309 

bootstrap approach was applied to test the performance, robustness and predictive 310 

ability of the models built with the selected bands by BFE. The original dataset (n=164) 311 

was randomly split into 70% for calibration and 30% for independent test. This random 312 

split was repeated 100 times. For both, PLS and RF, models were built with the 313 

calibration set (70% bootstrapped samples) to predict over the remaining 30%. The R2, 314 

RMSE and Ratio of Performance to Deviation (RPD) of the test predictions were 315 

recorded. Mean and confidence intervals (CI) (2.5 and 97.5 percentiles) of R2, RMSE 316 

and RPD were calculated and reported. Following Askari et al. (2015), the performance 317 

and predictive ability of the models were assessed considering the thresholds: “poor” 318 

accuracy (RPD < 1.5 and R2< 0.6), “moderate” (1.5 ≤ RPD<2 and R2 ≥ 0.60), “good” (2 319 

≤ RPD< 2.5 and R2≥ 0.7) and “excellent” (RPD  ≥ 2.5 and R2≥ 0.8).  320 

3. Results  321 

3.1. Statistics of pasture quality variables 322 

Table 2 shows the descriptive statistics of CP, NDF, ADF and EDOM. There was a 323 

wide range of data and large variability for all variables. CP had the largest CV with 324 

45.4 % while the rest of the variables had a CV close to 19%. These variables also 325 

showed high variability across the different dates of sampling (Fig. S1).  326 
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3.2. Performance of PLS and RF models with all bands and with bands selected 327 

by backward feature elimination 328 

The PCA of the spectral data revealed nine points laying outside the 95% confidence 329 

ellipse (Fig. 2Fig. 3) that were omitted from the dataset used in the analysis.  330 

Overall, the best models were obtained for CP, with R2 values over 0.70 using all bands 331 

and the selected bands with both PLS and RF, having also the smallest RMSE values. 332 

R2 values for NDF were in the range of 0.52-0.67 and between 0.47-0.59 for EDOM. 333 

ADF was the parameter that showed the worst statistics with R2 always below 0.50. 334 

PLS outperformed RF in both cases, with all bands and with selected bands for all 335 

variables (Table 3). The backward feature elimination improved the performance of the 336 

models for all pasture quality variables and for both regression methods, PLS and RF. 337 

The ∆RMSE denotes that the improvement was different depending on the variable and 338 

always higher for PLS (Table 3). The greatest improvement (-12.5 ∆RMSE) with 339 

selected bands was obtained for CP with PLS regression, which was the model that 340 

showed the best performance with R2=0.84 and RMSE=2.17 using 21 bands.  341 

Fig. 3Fig. 4 illustrates the changes of R2 and RMSE in backward feature elimination in 342 

PLS and RF regressions. In both R2 and RMSE, the changes in PLS models are more 343 

evident than in RF, in which the changes are steadier. In the same line, in PLS both 344 

parameters R2 and RMSE show abrupt changes just after the optimal number of bands 345 

selected (Fig. 3Fig. 4). However, in RF after this point, there is a steady interval until 346 

the values drop rapidly. RF showed the best results or negligible variations with the 347 

default value of mtry=1/3 and stabilisation of RMSE before the 500 trees are grown 348 

(Fig. S4Fig. S5 and Fig. S5Fig. S6) (Belgiu and Drăgu, 2016; Díaz-Uriarte and Alvarez 349 

de Andrés, 2006; Liaw and Wiener, 2002).   350 
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3.3. Bands selected by backward feature elimination and importance in PLS 351 

and RF 352 

The number and proportion of bands selected by backward feature elimination for each 353 

pasture quality variable are shown in Table 3. Several differences can be observed 354 

between models. PLS tended to select fewer bands than RF in all variables. The variable 355 

with a higher proportion of bands selected using backward feature elimination was 356 

NDF, for which 15.5% and 48.8% of the bands were selected with PLS and RF 357 

respectively (Table 3). Only 7 bands were selected for ADF with PLS while 53 bands 358 

were selected using RF. For CP and EDOM, 12.5% and 10.1% were selected with PLS 359 

and 32.7% and 20.2% using RF.  360 

The position of these selected bands in the spectral range of 400-2300 nm is illustrated 361 

in Fig. 4Fig. 5. This figure also illustrates the reflectance curve depending on the 362 

content of the pasture quality variable. It can be observed how samples with high values 363 

of CP and EDOM and low fibre content show higher reflectance values in the Near 364 

Infra-Red region (NIR) (800-1300 nm). Again, some differences can be observed 365 

between models. Especially concerning the visible region, while in RF the bands 366 

located in this region are mostly selected, in PLS these bands are almost absent. The 367 

same happened in the region between 800 nm and 900 nm, in which just band 880 was 368 

selected for NDF in PLS, whereas in RF several bands were selected in this spectral 369 

region. 370 

Bands from the red-edge region (680-750 nm) were commonly selected for all variables 371 

using both PLS and RF (Fig. 4Fig. 5). Especially the band centered at 700 nm was 372 

selected for all models but ADF using PLS. This band also showed high importance and 373 

stability in the predictions (Fig. 64.). For example, for the predictions of CP with PLS 374 
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and RF, this band was the second and the most important band respectively, having also 375 

the highest value of stability (Fig. 64.).  376 

Bands from the NIR (800-1300 nm), especially from 900 nm onwards in PLS, and the 377 

shortwave infrared region (SWIR) from 1300-2300 were also intensively selected in 378 

most of the variables using both, PLS and RF except for ADF using PLS. Bands 960 379 

and 1160 for example were selected with PLS in CP (Fig. 64.), and NDF (Fig. S1Fig. 380 

S2.). Band 1960 was selected in all models for CP and NDF. 381 

Fig. 65 shows the importance of the bands selected with PLS and RF for CP prediction. 382 

The importance for the rest of the variables can be consulted on Supplementary Material 383 

(Fig. S21-Fig. S43). Overall, bands belonging to sections 1100-1300 nm of the NIR and 384 

2100-2300 of the SWIR regions were rated as the most important bands in PLS. For CP, 385 

the red-edge region (680-750 nm) was especially important (Fig. 65.). In RF models, the 386 

most important bands were located at the visible (400-680 nm), especially those 387 

belonging to the green and red sections, and red-edge regions.  388 

Important differences can be observed in the stability of the variables. In PLS models, 389 

some variables highly ranked showed low values of stability. That is the case of band 390 

2230, which was the most important band for predicting CP and was selected in only 391 

7% of the times that the backward feature elimination was repeated with bootstrapped 392 

data (Fig. 64.). On the contrary, band 710, with a lower regression coefficient had a 393 

stability value of 85%. For CP using PLS, bands 700 and 710 from red-edge and bands 394 

1160, 1170 and 1180 from NIR were highly stable (Fig. 4.6).  In RF the stability of the 395 

top-ranked bands is, overall, more in line with their importance value.  396 

3.4. Predictive ability and robustness of PLS and RF models   397 
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CP was the variable with the most accurate and stable predictions with both, PLS and 398 

RF regressions (Fig. 6Fig. 7.). PLS outperformed the predictive ability and robustness 399 

of RF for CP and NDF, being the predictive statistics of both methods very similar for 400 

ADF and EDOM (Fig. 6Fig. 7.). The prediction of CP using PLS showed “good” 401 

accuracy (2 ≤ RPD< 2.5 and R2≥ 0.7) with a mean R2 value of 0.82 and a range of 0.68-402 

0.90. The mean RMSE=2.23% was low and the mean RPD=2.47 with values ranging 403 

from 1.81 to 3.23. These statistics were considerably worse when RF was used. RF 404 

models to predict CP produced mean R2 value of 0.68, mean RMSE=3.00% and mean 405 

RPD=1.82, indicating “moderate” accuracy (1.5 ≤ RPD<2 and R2 ≥ 0.60). For NDF, the 406 

PLS models had a “moderate” accuracy with mean values of R2 and RPD 0.62 and 1.71 407 

respectively and mean RMSE=6.05%. However, the accuracy of NDF models dropped 408 

to “poor” when the predictions were made with RF, reporting a mean R2=0.47, mean 409 

RPD= 1.41, and mean RMSE=7.20%. For ADF and EDOM, “poor” accuracy was 410 

obtained using both PLS and RF since the RMSE was high and mean values of R2< 0.6 411 

and RPD < 1.5. Only for EDOM predictions with PLS accuracy close to “moderate” 412 

was obtained, with mean values of R2=0.54 and RPD=1.55.  413 

4. Discussion 414 

4.1. Performance of PLS and RF, prediction ability, certainty and backward 415 

feature elimination 416 

This study compared two machine learning algorithms widely used in remote sensing, 417 

PLS and RF. The results showed that PLS outperformed RF in terms of prediction 418 

accuracy and certainty of the predictions of CP and NDF (Fig. 6Fig. 7). This result 419 

differs from several studies reporting higher performance of non-linear algorithms such 420 

as Support Vector Machine (SVM), RF or Convolutional neural network (CNN) using 421 

hyperspectral data due to their capability to explain complex non-linear relationships in 422 
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contrast to conventional PLS regression (Pullanagari et al., 2021;  Pullanagari et al., 423 

2016; Pullanagari et al., 2018; Ramoelo et al., 2013; Verrelst et al., 2015; Wijesingha et 424 

al., 2020;  Yao et al., 2015; Zhou et al., 2019). Wijesingha et al. (2020) reported RF 425 

outperforming PLS to predict CP and ADF from 194 samples in mountain hay meadows 426 

and Nardus stricta grasslands using hyperspectral data from UAVs (118 bands of 5 nm 427 

spectral resolution, 482–950 nm).  However, as Pullanagari et al. (2021) demonstrated 428 

using similar data with CNN and PLS, there is a trade off between the number of 429 

samples and the performance of the models. In this study, they found that PLS needs a 430 

minimum of 200 samples to stabilise the calibration while at least 1500 samples are 431 

required for CNN calibration. Little research has been found comparing RF and PLS to 432 

predict pasture variables using similar grasslands and comparable hyperspectral canopy 433 

reflectance. Further research is needed to explore if the trade off mentioned above 434 

between the number of samples and the performance exists comparing RF and PLS 435 

regressions.  436 

The results reported on the predictive ability of the models indicate that quantitative 437 

predictions of “good” accuracy for CP (2 ≤ RPD< 2.5 and R2≥ 0.7) of Mediterranean 438 

permanent grasslands can be achieved using data at a spectral resolution of 10nm. The 439 

accuracy drops to “moderate” (1.5 ≤ RPD<2 and R2 ≥ 0.60) for NDF. Fernández-Habas 440 

et al. (2021), also obtained better calibrations for CP and NDF than for ADF and 441 

EDOM using Sentinel-2 data to predict pasture quality in Mediterranean permanent 442 

grasslands. Therefore, pasture quality maps in Mediterranean grasslands might be based 443 

on CP and NDF predictions.  444 

The performance of the models was comparable or even better than results reported 445 

from previous studies using similar data. For example, Biewer et al. (2009b) obtained 446 

R2CV = 0.83 and RPD=2.4 to predict CP in pure swards and binary legume-grass 447 
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mixtures using field spectroscopy of spectral resolution 3 nm and 30 nm in the 350-448 

1000 nm region and 1000-2500 nm region respectively. However, the accuracy obtained 449 

for ADF (R2CV = 0.75 and RPD=2) was considerably better than in our case. Safari et al. 450 

(2016) obtained worse calibrations for CP than Biewer et al. (2009b), despite using 451 

higher spectral resolution which was attributed to the heterogeneity of the grasslands 452 

and the reduced spectral range up to 1700 nm. The effect of multiple species 453 

composition of grasslands in lower regression accuracy was also pointed out by 454 

Kawamura et al. (2008) who reported worse mean R2=0.62 but lower mean RMSE=1.27 455 

to predict CP. Their results for ADF were slightly better than in this study and worse in 456 

the case of NDF. Zhou et al. (2019) reported similar statistics of validation (R2=0.84) to 457 

predict CP in legume and grass mixtures using the 10nm spectral resolution Yara-N 458 

sensor by Support Vector Machine, while worse results were obtained by PLS 459 

(R2=0.64). There is still a considerable variation in the accuracy of the results of studies 460 

using field spectroscopy to assess pasture quality. The main reasons might be related to 461 

variations in sample size and differences in the grasslands assessed (Pullanagari et al., 462 

2012). A key factor that enabled high accuracy to predict CP and NDF in this study is 463 

the wide range of the data used to calibrate the models (Table 2), promoted by the 464 

heterogeneity and inter-annual variability of Mediterranean grasslands. The growth 465 

stage of the grasslands is another factor affecting the canopy reflectance (Zeng and 466 

Chen, 2018), and thus the accuracy of the models. In this study, the models have been 467 

calibrated using samples from different growth stages and managements to test the 468 

accuracy of general models rather than the accuracy of specific models for different 469 

growth stages or compositions. Previous studies have investigated the effect of different 470 

growth stages and stand mixtures on the estimation of biomass and nutrient contents 471 

(Biewer et al., 2009a; Biewer et al., 2009b; Zeng and Chen, 2018; Zhou et al., 2019). 472 
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Zeng and Chen (2018) showed differences in reflectance of samples from boot stage, 473 

peak growth, and dormancy. However, the PLS models showed improved R2 from 474 

cross-validation and predictions when samples from all three growth stages were 475 

combined. Although the reduced number of samples used for the specific growth stages 476 

models might have affected the results. They concluded that is feasible to use a model 477 

to predict nutrient contents from vegetative to dormancy stages. Biewer et al. (2009a) 478 

and Biewer et al. (2009b) reported improved accuracy of predictions of yield and CP by 479 

legume-specific calibrations. On the contrary, Zhou et al. (2019) did not find an 480 

influence of sites, developmental stage, and species mixtures on the performance of 481 

PLS models. Pullanagari et al. (2021) also reported better performance of models using 482 

samples from all seasons combined due to a better cover of the variability compared to 483 

the season specific models. In agreement with Zhou et al. (2019), we consider that 484 

models developed with samples representing different grow stages, managements 485 

(grazed or non-grazed) and sites are more generalisable and useful than models 486 

calibrated for specific situations. This is especially important in Mediterranean 487 

grasslands due to the high heterogeneity promoted by the high species and functional 488 

diversity, management, and differing synchrony of growth stages. Thus, specific models 489 

might be of limited application in Mediterranean grasslands. As highlighted by Zeng 490 

and Chen (2018), the sample diversification of the calibration dataset covering a wide 491 

range of situations (phenological stages, sites, management and species composition) is 492 

crucial to improve the estimative ability of the models.  493 

Compared to results reported using Sentinel-2 by Fernández-Habas et al. (2021) to 494 

predict CP and NDF, the accuracy was improved considerably. This demonstrates that 495 

future high-priority mission candidate CHIME (Nieke and Rast, 2018), could improve 496 

the quality of the predictions and the retrieval of information from grasslands canopy 497 
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compared to currently operating multispectral sensors (Berger et al., 2020; Obermeier et 498 

al., 2019; Rast et al., 2019; Thenkabail et al., 2000). This improvement in the quality of 499 

the predictions is especially important in Mediterranean ecosystems due to the higher 500 

heterogeneity of the grasslands (Fava et al., 2009), which demands finer spectral 501 

resolution to provide accurate information on the grassland's attributes. However, it has 502 

to be considered that the spatial resolution of CHIME (20-30 m) will also play a major 503 

role in its potential to monitor grasslands ecosystems (Meier et al., 2020). Here we only 504 

tested the spectral resolution, further research involving the spatial resolution is required 505 

to get a complete picture of the potential of this promising sensor (Casa et al., 2020). 506 

These studies should aim at including the spatial resolution of 20-30 m of the CHIME 507 

data in the sampling approach, which together with the results provided in this study 508 

could additionally contribute to defining the sources of error and uncertainty of models 509 

developed with true CHIME data in the future. Lastly, although the simulation of the 510 

spectral resolution of satellites from field spectroscopy has been extensively used in 511 

previous research (Adjorlolo et al., 2015; Lugassi et al., 2019; Mutanga et al., 2015; 512 

Ramoelo and Cho, 2018; Sibanda et al., 2015), the results obtained from this data must 513 

be treated as an approximation to the potential of the future satellite, not as the actual 514 

performance of it.  515 

Fig. 6Fig. 7 illustrates the importance of implementing bootstrap approaches to test the 516 

performance and predictive ability of the models. Pullanagari et al. (2021) highlighted 517 

the relevance of quantifying and reporting the uncertainty of the predictions as well as 518 

using an appropriate sample size. The variation of the models’ performance statistics 519 

associated with the data partition (Fig. 6Fig. 7) reveals an inherent uncertainty of the 520 

dataset. Reporting information of a single model without testing the certainty of the 521 

predictions can lead to biased information (Verrelst et al., 2015). In this study, the 522 
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interpretation of the model performance was associated with its corresponding 523 

uncertainty. This is also relevant when implementing this technology in the 524 

management and monitoring of grasslands. It is therefore advisable when reporting 525 

information of the predictions, supporting it with the corresponding confidence 526 

intervals.  527 

The improvement achieved by the BFE using both algorithms, PLS and RF, is also 528 

consistent with previous literature (Mutanga, 2004; Adam et al. , 2014; Díaz-Uriarte and 529 

Alvarez de Andrés, 2006; Odindi, 2014; Belgiu and Drăgu, 2016; Kawamura et al., 530 

2017; Santos-Rufo et al., 2020). For example, Kawamura et al. (2008) also reported an 531 

important decrease of RMSE in cross-validation for CP, NDF and ADF using PLS and 532 

5 nm of spectral resolution of field spectroscopy. The same authors also compared the 533 

performance of models using canopy reflectance of the pasture and first derivative 534 

reflectance (Kawamura et al., 2008). They found some differences in performance and 535 

band selection of models fitted with first derivative reflectance. The spectral 536 

preprocessing of the spectra is an interesting topic for future research that, to our 537 

knowledge, has not been investigated in deep for pasture quality estimation using field 538 

spectroscopy. For example, Dotto et al. (2018) performed a systematic study on 63 539 

spectral preprocessing and multivariate prediction models of soil organic carbon by Vis-540 

NIR spectra using a FieldSpec 3 Spectroradiometer (ASD Inc.). These studies could 541 

support choices of spectral preprocessing to improve the prediction capability of the 542 

models.  543 

4.2. Importance and stability of bands to predict pasture quality variables  544 

Most of the bands of known absorption features (see Adjorlolo et al. (2013) and 545 

Kawamura et al. (2008) for review) or those close to them were selected and highly 546 

ranked for the prediction of the corresponding compounds. The results of the bands 547 
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importance analysis align with results from previous studies highlighting the role of the 548 

red-edge region to assess pasture quality due to its relationship to the chlorophyll 549 

content of the vegetation (Adjorlolo et al., 2015; Horler, 1983; Kawamura et al., 2008; 550 

Ramoelo et al., 2011; Ramoelo and Cho, 2018). Our results showed that this region was 551 

commonly selected for all pasture quality variables in both models (Fig. 4Fig. 5), being 552 

also some bands such as band centred at 700 nm highly stable (Fig. 5Fig. 6). In this 553 

study, the 700 nm centred band, ranked second and first in PLS and RF models 554 

respectively to predict CP. Adjorlolo et al. (2015) also found the 700 nm waveband as 555 

the most important according to the PLS’ variable importance projection (VIP) to 556 

predict nitrogen content in C3 and C4 grass species. They also found a strong 557 

relationship between the 720 nm waveband and CP.  This demonstrates the reliability 558 

and importance of this region the red-edge region to assess pasture quality. Bands from 559 

NIR and SWIR regions were also commonly selected in PLS and RF for CP and NDF 560 

(the best-predicted variables). The selection of bands in these regions lies in the well-561 

known absorption features of cellulose, protein, nitrogen, and starch due to C–H, C–N, 562 

N–H, and O–H bonds (Carter, 1994; Clark and Lamb,1991; Curran, 1989; Kawamura et 563 

al., 2008; Kokaly, 2001). These results show that a target-oriented selection of bands in 564 

these regions can lead to accurate predictions of pasture quality with few bands 565 

(Adjorlolo et al., 2015; Kawamura et al., 2008).  566 

The main difference from previous studies is the contrasting selection of bands in the 567 

visible region and their importance in RF models compared to PLS models (Fig. 5, Fig. 568 

6, and Fig. S2). The visible region is related to the content of the pigment of vegetation 569 

(Blackburn, 1998; Ustin et al., 2009). The pigment content is strongly related to the CP 570 

and fibre content, and it is subjected to changes of the phenological stages during the 571 

growing season. However, as pointed out by Kattenborn et al. (2019), the up-scaling of 572 
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pigment concentration to the canopy scale is challenging. Although this trend should be 573 

carefully interpreted due to the tendency of RF to select a higher number of bands than 574 

PLS by backward feature elimination, one possible explanation for that could lie in the 575 

fundamental differences between PLS and RF to model the relationship between 576 

predictors and the dependent variable. Since PLS is less suitable for deriving strong 577 

non-linear relationships than non-linear models (Pullanagari et al., 2021; Verrelst et al., 578 

2015), RF could better capture the relationships between pigments and canopy 579 

reflectance in this region of the spectra. This non-linear relationship between reflectance 580 

in the visible range and leaf chlorophyll content has been pointed out in previous 581 

research (Blackburn, 1998; Gitelson et al., 2003). For example, Qin (2011) attributed an 582 

improved pigments content estimation in grape leaves, using hyperspectral data in the 583 

400-750 nm spectrum, to a non-linear modelling by SVM.  584 

Some of the selected bands showed low stability to the variation of the dataset. This 585 

outcome highlights again the importance of testing the uncertainty of the results. The 586 

information on the most important bands in these types of studies should be tied to a 587 

stability analysis to be more informative. Because of the confounding effect on the 588 

reflectance of canopy structure, leaf inclination, plant diversity, plant water content, or 589 

different phenological stages (Curran, 1989; Fava et al., 2009; Kattenborn et al., 2019; 590 

Pullanagari et al., 2021; Tong and He, 2017; Zhou et al., 2019), the response of the 591 

stability of the selected bands in relation to changes in the dataset has important 592 

implications to select stable and reliable bands to perform predictions. The stability of 593 

band 700 and 710 and 1160-1180 in PLS to predict CP could indicate a strong CP 594 

content-reflectance relationship despite the possible cofounding effects mentioned 595 

above. However, the bands selected in the region of the spectra from 2000 to 2300 nm 596 

reported low stability. This might be caused by the water content of leaves and soil 597 
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background since Ripple (1986) found the 2080-2350 nm region to be sensitive to both 598 

factors. Ramoelo et al. (2011) also highlighted the water effects in the SWIR region for 599 

the retrieval of grass nitrogen. In this study, some samples taken in May and June were 600 

senescent. The reflectance of senescent grasslands can distinctively show absorption 601 

features in the 2006-2196 region of the spectra that otherwise would be masked by the 602 

water content in non-senescent grasslands (Mutanga et al., 2004). This can be 603 

appreciated in Fig. 4Fig. 5 where the reflectance of samples with higher fibre content 604 

and lower CP content (senescent conditions), clearly show absorption features in the 605 

SWIR region compared to the reflectance of samples with lower fibre content. In RF, 606 

the stability was higher, although the considerable number of bands selected might 607 

influence that stability measure. Nevertheless, it can be also observed that bands from 608 

the SWIR region tend to show lower stability compared to those from the red-edge 609 

region. The mix of senescent and non-senescent samples could lead to the lower 610 

stability of the SWIR bands in both models. Independent calibration models for 611 

different stages could improve the stability of these bands. However, this would reduce 612 

the range of the dataset and the generalization of the models since the mix of senescent 613 

and non-senescent grasslands is common in Mediterranean grasslands and the transition 614 

between both stages is also an important moment to have information about the pasture 615 

quality.  616 

4.3.  Implication for the management and monitoring of Mediterranean 617 

permanent grasslands  618 

PLS models calibrated with the selected bands (from the red-edge and NIR regions) by 619 

BFE showed good accuracy in the predictiospredictions, with high R2=0.82 and low 620 

mean RMSE=2.23%. These results demonstrate that future sensors at this spectral 621 
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resolution can provide useful information for the management and monitoring of 622 

Mediterranean permanent grasslands.  623 

CP content is a crucial attribute of the pasture to inform the management of grasslands 624 

and livestock. Having accurate predictions on the content of CP can help the farmers to 625 

perform more efficient grazing of Mediterranean grasslands which are subject to high 626 

interannual variations of CP. If the predictions can be performed at quantitative level, 627 

the utility of the information compared to qualitative predictions increase considerably 628 

since it might allow more precise calculation of information such as the carrying 629 

capacity of the grasslands or the need and type for supplementary feedstuff for the 630 

livestock (Pullanagari et al., 2013; Ramoelo and Cho, 2018; Raab et al., 2020; Starks et 631 

al., 2006). If this level of accuracy is achieved with future operational sensors such as 632 

CHIME (Nieke and Rast, 2018), this technology might substitute labour manual 633 

collection of samples to determine pasture quality (Starks et al., 2004). The difference 634 

of precision can be assumed in benefit for spatial predictions acquired on a regular basis 635 

in nearly real-time (Pullanagari et al., 2013; Starks et al., 2004).  Indeed, pasture quality 636 

determination is not frequently performed in farms of Mediterranean permanent 637 

grasslands, where the information provided by these determinations might not 638 

compensate for the cost of the analysis. Additionally, the delay between manual 639 

sampling collection and the reception of the data limits its usefulness since the quality 640 

and phenology of Mediterranean grasslands can change rapidly (Pérez-Ramos et al., 641 

2020, Gómez-Giráldez et al. 2020). Therefore, the availability of hyperspectral data can 642 

mean a step forward in the adoption of smart farming in Mediterranean grasslands-643 

based farms. However, it has to be considered that a high proportion of Mediterranean 644 

grasslands are devoted to traditional small farming (Lowder et al., 2016) for which the 645 
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implementation of remote sensing technologies might be of limited application and low 646 

interest for smallholders.   647 

The analysis of the bands importance and stability to predict the pasture quality 648 

indicators has important implications to inform the design of devices aimed at 649 

optimising the range of the spectra and the spectral resolution used to assess in-field 650 

pasture quality. For example, in the case of CP, it has been demonstrated that field 651 

spectrometers with a spectral resolution of 10 nm and 19 target-oriented bands can be 652 

sufficient to achieve good accuracy of the predictions.  653 

Finally, the enhanced accuracy provided by forthcoming CHIME in combination with 654 

currently operating services such as Sentinel-2 opens new opportunities to monitor 655 

Mediterranean grasslands ecosystems in the context of the next renewal of the Common 656 

Agricultural Policy (CAP) (Rast et al., 2019). This technology can be used to assess the 657 

compliance of the CAP and Natura 2000 regulations and the conservation status of 658 

grasslands ecosystems at the national scale (Griffiths et al., 2020).  659 

5. Conclusion  660 

Concerning the objectives of the study the conclusions are: 661 

i) Hyperspectral narrow bands from field spectroscopy at 10 nm of spectral 662 

resolution CHIME-like show potential to predict CP at good accuracy and 663 

NDF at moderate accuracy level in Mediterranean permanent grasslands. 664 

ADF and EDOM were predicted with poor accuracy.  665 

ii) PLS outperformed RF to predict CP and NDF in terms of accuracy and 666 

certainty of the predictions.  667 

iii) BFE can considerably reduce the number of bands used in the predictions 668 

while improving the accuracy of the models, especially in PLS regressions. 669 
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iv) Bands from the red-edge and NIR regions show high importance and 670 

stability to assess the best-predicted variables. Bands centred at 700, 710, 671 

1160, 1170 and 1180 are highly stable and important to predict CP. The 672 

bands belonging to the SWIR region show lower stability. 673 

v) These results prove the potential of hyperspectral data and future satellite 674 

missions such as CHIME to inform the management and monitoring of 675 

Mediterranean permanent grasslands.  676 

Further research needs to be carried out to advance towards the applicability of the 677 

results here reported to practical farming in Mediterranean permanent grasslands.  678 
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Table 1. Grassland type, number of samples and date of sampling of the farms used in 
the study. 

Farm Coordinates* Grassland type Sampling date Number of 
samples 

1 x= 315534.34 
y= 4263109.14 

Permanent natural 
grasslands 2012/2013 

January/ 
February 
March 
April 
May 
June 

28 

2 x= 350946.02 
y= 4244905.06 

Permanent natural 
grasslands 2012/2013 

January/ 
February 
March 
April 
May 
June 

33 

3 x= 352598.98 
y= 4235836.66 

Permanent natural 
grasslands 2012/2013 

January/ 
February 
March 
April 
May 
June 

33 

4 x= 387377.62 
y= 4230454.12 

Permanent natural 
grasslands 2012/2013 

January/ 
February 
March 
April 
May 
June 

31 

5 x= 331065.33 
y= 4197542.60 

Permanent natural 
grasslands 

2018/2019 May 

12 

 
Reseeded grasslands 

 
24 

Irrigated grasslands 
 12 

    Total 
samples 173 

*Projected coordinate system: ETRS 1989 UTM Zone 30N 
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Table 2. Descriptive statistics of the pasture quality variables used to fit the models. 

Pasture 
variables  
(% of DM) 

Minimum Mean Maximum Range  SD CV 

 
CP  3.7 11.9 27.7 24.0 5.4 45.4  
NDF  24.9 52.0 71.3 46.5 10.1 19.4  
ADF  15.7 31.8 44.8 29.1 6.2 19.4  

EDOM  38.5 58.4 86.2 47.8 10.8 18.4  
CP: crude protein; NDF: neutral detergent fibre; ADF: acid detergent fibre; EDOM: enzyme digestibility 
of organic matter; SD: standard deviation; CV: coefficient of variation. 
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Table 3. Performance of PLS and RF models with all bands and with selected bands.  
Coefficient of determination R2 and root mean square error (RMSE) correspond to 
leave-one-out and out-of-bag estimations for PLS and RF respectively.    

  All bands  Selected bands 
Pasture 
variables 
(% of 
DM) 

Model NLV R2 RMSE 

 
NL
V R2 RMSE NBS %BS ∆RMSE  

CP PLS 11 0.79 2.48  11 0.84 2.17 21 12.5 -12.5 
RF - 0.70 2.95  - 0.71 2.89 55 32.7 -2.0 

NDF PLS 11 0.60 6.34  10 0.67 5.77 26 15.5 -9.0 
RF - 0.52 6.98  - 0.53 6.86 82 48.8 -1.7 

ADF PLS 3 0.40 4.74  6 0.46 4.52 7 4.2 -4.6 
RF - 0.42 4.68  - 0.45 4.55 53 31.5 -2.8 

EDOM PLS 9 0.53 7.35  6 0.59 6.89 17 10.1 -6.3 
RF - 0.47 7.83  - 0.51 7.52 34 20.2 -4.0 

N=164; NBS: number of bands selected by backward feature elimination; %BS: 
percentage of bands selected from the original dataset (n=168); ΔRMSE: decrease in root mean 
squared error from model with all bands to models with selected bands. CP: crude protein; 
NDF: neutral detergent fibre; ADF: acid detergent fibre; EDOM: enzyme digestibility of 
organic matter 

 
 



 

Fig.  1. Location of farms where the grasslands samplings were performed. Farms are 
located within the Dehesa area of Cordoba province, in the north of Andalusia region 
(Spain). Dehesa area layer, coloured in green, is provided by the WMS of the Dehesa 
systems distribution in Andalusia (REDIAM, 2020). 



 

Fig. 2. Modelling approach of the study.   

 
  



 

 

Fig. 3. Detection of outliers after principal component analysis (PCA) of the pasture 
samples (n=173). Blue line represents 95% confidence ellipse.  

 
  



 

 

Fig. 4. Changes of R2 and RMSE in backward feature elimination of redundant bands 
using PLS (leave-one-out estimations) and RF (out-of-bag estimations) regressions for 
crude protein (CP), neutral detergent fibre (NDF), acid detergent fibre (ADF), and 
enzyme digestibility of organic matter (EDOM) (n=164). Dashed lines indicate the 
minimum RMSE value and maximum R2 at which the optimal number of bands is 
reached. 

 
  



 

 
Fig. 5. Canopy reflectance of the pasture samples (n=164) coloured by the content of 
the respective pasture quality variable: crude protein (CP); neutral detergent fibre 
(NDF); acid detergent fibre (ADF); and enzyme digestibility of organic matter 
(EDOM). Vertical red lines indicate the selected bands by backward stepwise feature 
elimination using PLS (left) and RF (right). 

 
  



 
Fig. 6. Importance and stability of selected bands for crude protein (CP) by backward 
stepwise feature elimination with PLS (21 bands) and RF (55 bands). Importance is 
measured in absolute value of the regression coefficients of selected bands in PLs and in 
% increase of mean squared error (MSE) in RF. Stability is indicated as % times the 
bands were selected in 100 repetitions of the backward feature elimination with using 
70% of the samples each time selected by bootstrap with replacement. 

  



 

Fig. 7. Density distribution of values of R2, root mean square error (RMSE %) and ratio 
of predicted deviation (RPD) from predictions over 30% of bootstrapped samples using 
PLS and RF models.  Calculated from n=100 random partitions of the dataset (n=164) 
into 70% for calibration and 30% for test with replacement. The predicted parameters 
are; crude protein (CP); neutral detergent fibre (NDF); acid detergent fibre (ADF); and 
enzyme digestibility of organic matter (EDOM). Solid lines show the mean and dashed 
lines show the confidence intervals (2.5 and 97.5 percentiles). 
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Fig. S1. Variation of pasture quality variables used to fit the models (N=164) by month. 29 
Black centre line, median; box, interquartile range; box limits, lower and upper 30 
quartiles; whiskers, 1.5× interquartile range; points, outliers. Coloured area indicates the 31 
sample distribution. *May includes samples from 2013 and 2019. CP: crude protein; 32 
NDF: neutral detergent fibre; ADF: acid detergent fibre; and EDOM: enzyme 33 
digestibility of organic matter. 34 



 35 

Fig. S2. Importance and stability of selected bands for neutral detergent fibre (NDF) by 36 
backward stepwise feature elimination with PLS (21 bands) and RF (55 bands). 37 
Importance is measured in the absolute value of the regression coefficients of selected 38 
bands in PLs and in % increase of mean squared error (MSE) in RF. Stability is 39 
indicated as % of times the bands were selected in 100 repetitions of the backward 40 
feature elimination with using 70% of the samples each time selected by bootstrap with 41 
replacement. 42 

  43 



 44 

Fig. S3. Importance and stability of selected bands for acid detergent fibre (ADF) by 45 
backward stepwise feature elimination with PLS (21 bands) and RF (55 bands). 46 
Importance is measured in the absolute value of the regression coefficients of selected 47 
bands in PLs and in % increase of mean squared error (MSE) in RF. Stability is 48 
indicated as % of times the bands were selected in 100 repetitions of the backward 49 
feature elimination with using 70% of the samples each time selected by bootstrap with 50 
replacement. 51 



 52 

Fig. S4. Importance and stability of selected bands for enzyme digestibility of organic 53 
matter (EDOM) by backward stepwise feature elimination with PLS (21 bands) and RF 54 
(55 bands). Importance is measured in the absolute value of the regression coefficients 55 
of selected bands in PLs and in % increase of mean squared error (MSE) in RF. 56 
Stability is indicated as % of times the bands were selected in 100 repetitions of the 57 
backward feature elimination with using 70% of the samples each time selected by 58 
bootstrap with replacement. 59 

 60 



 61 

Fig. S5. Changes in RMSE of RF models using all bands for each pasture quality 62 
variable with different mtry and ntree values. Default settings are mtry=1/3 and 63 
ntree=500. CP: crude protein; NDF: neutral detergent fibre; ADF: acid detergent fibre; 64 
and EDOM: enzyme digestibility of organic matter. 65 
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 67 

Fig. S6. Changes in RMSE of RF models using the selected bands for each pasture 68 
quality variable with different mtry and ntree values. Default settings are mtry=1/3 and 69 
ntree=500. CP: crude protein; NDF: neutral detergent fibre; ADF: acid detergent fibre; 70 
and EDOM: enzyme digestibility of organic matter. 71 
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