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a b s t r a c t

Stochastic models for predicting human behavior have become an essential part of the development of
demand planning strategies, as well as a high-resolution base information for building simulation
software. Due to the close relationship between human presence and consumption, occupancy patterns
allow for the recognition of activity peaks, and subsequently, potential maximum demand hours. This
contributes to the improvement of control strategies, which combined with the active participation of
consumers will drive to major energy savings. In this paper, a novel behavior model for nine economic
sectors in Spain has been developed using a Markov Chain methodology that can easily be extrapolated
to other locations. The model can generate daily occupancy profiles with a 10-min resolution for the
selected sectors, distinguishing between the type of day and type of working hours. The results, which
have been validated and compared with other works showing good accuracy, have highlighted the
characteristic patterns and maximum occupancy hours of each studied sector. Furthermore, these
simulated profiles have been used as input datasets for the estimation of consumption in some selected
sectors, illustrating the potential link that can be established between occupancy profiles and energy
usage by means of different modeling techniques.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Within the total energetic consumption in developed countries,
the combination of residential and office buildings comprises be-
tween 20% and 40% of the total demand. In some cases, figures
higher than other sectors such as industry or transportation are
reached as indicated in P�erez-Lombard et al. work, where the en-
ergy consumption in buildings was analyzed for the USA and other
European countries (P�erez-Lombard et al., 2008). Specifically, in
Spain, according to the latest energy report for 2015, the demand
from residential and office buildings represents 31% of the aggre-
gate energy consumption, a value close to othermajor consumption
sectors such as industries with 24% and transportation with 42%
(IDAE and Spanish Ministry of industry energy and tourism, 2015).
More specifically, disaggregating the energy demand to a lower
level, the electricity consumption that takes place in buildings that
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belong to the tertiary sector represents around 12% of the aggregate
energy. This sector includes stores, hotels, and offices. The energy
associated with office buildings represents half of the energy
consumed by the service sector in Spain.

These energy consumption figures indicate that some new en-
ergy policies must be taken in order to decrease the energy needs of
those sectors. New concepts such as Smart Grid, Smart Energy, and
Smart Metering have recently arisen in this context. Therefore, as
depicted in the literature analysis related to energy distribution,
performed by Cardenas et al., the main area of interest nowadays is
the simulation of these potential future scenarios (Cardenas et al.,
2014). At the same time, a redefinition of the electrical system is
needed for renewable integration, storage system, communications
and new control strategies as is indicated in Strasser et al., 2015.
Subsequently, the three main objectives in the distribution system
are (i) an efficient distribution of energy depending on demand by
means of demand side management methods (DSM) as the one
proposed by Palensky and Dietrich, 2011 taking also into account
the balance between robustness and user discomfort as indicated in
Pournaras et al., 2014, (ii) real-time power monitoring, where the
deployment of smart meters and smart metering infrastructure has
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promoted new applications as Kabalci, and Zhou and Brown's
research concluded (Kabalci, 2016; Zhou and Brown, 2016), and (iii)
devices and methods that allow optimizing the energy demand
from the user side both in the residential sector, as the analysis of
Zhou et al. showed (Zhou et al., 2016), as well as in the industrial
environment (Ding et al., 2014). All these goals, along with demand
response (DR) strategies, provide an opportunity for consumers to
actively participate and modify their power consumption.

However, in order to apply all these concepts and reduce the
energy consumption within these sectors, a better understanding
of the demand is essential. For these aim, many works focused on
the consumption forecasting are being carried out, however, as
concluded in Arguira et al. work, where various energy prediction
methods were analyzed, the consumer's behavior strongly influ-
ence this consumption (Arghira et al., 2012). This idea is backed up
by Torriti, who after analyzing the occupancy patterns in 15
countries concluded that DR and demand side management (DSM)
techniques require a high level of granularity between 5 and 30min
for accurately taking the control decisions (Torriti, 2012). Therefore,
and due to the absence of real measured data, stochastic models for
predicting the behavior of users in commercial and industrial sec-
tors are becoming more popular, since occupancy is directly related
to energy consumption. In this field, various studies that apply this
relationship between occupancy and consumption can be found
such as Jia et al. (2017), where the acquisition technologies, as well
as the modeling techniques for building occupancy assessing were
addressed, and Kim and Srebric (2017) that proved the existence of
a high correlation between occupancy and electrical consumption,
especially that generated by plug loads.

An overview of modeling techniques for energy consumption is
addressed in Swan and Ugursal, 2009 and Grandjean et al., 2012.
These reviews depict that, from the wide range of possible types of
models, the so-called bottom-up approach is the most suitable for
implementing and simulating new control strategies and technol-
ogies. These models base their predictions on variables that are in a
level below energy consumption such as occupancy profiles, ac-
tivities schedule, and appliances technologies.

Focusing the interest on the bottom-up stochastic models,
previous works have been developed for the residential sector.
Richardson et al. modeled the occupancy profiles in the UK
(Richardson et al., 2008) and used this data as the basic input for a
global energy consumption model that estimates the domestic
lighting consumption (Richardson et al., 2009), as well as the
appliance energy demand (Richardson et al., 2010), having pub-
lished recently an enhanced version of this model (McKenna and
Thomson, 2016). In the case of Sweden, similar works were car-
ried out by Wid�en et al. relating activity patterns with energy in
households (Wid�en and W€ackelgård, 2010).

In the Spanish residential sector, a stochastic model was
implemented and validated by Lopez et al., which modeled occu-
pancy patterns in Spanish households showing the close relation
between occupants’ activity and energy consumption (Lopez et al.,
2013). The stochastic model allowed for the calculation of daily
active occupancy profiles of Spanish households with 10-min res-
olution and distinguished between the number of residents, loca-
tion and the type of day, which are the input parameters required
for the simulation. These occupancy profiles were finally used in a
higher level algorithm for estimating the electrical consumption of
some appliances (Santiago et al., 2013). In addition, this occupancy
model was also used as the base input for a recently developed
lighting demand estimation system in dwellings (Palacios-Garcia
et al., 2015).

All these energy consumption models have common sources of
information from which the occupancy profiles were extracted.
These sources are the time use surveys (TUS), several statistical
studies carried out in most European countries, and whose most
interesting characteristic is that the interviewees write down their
daily activity in 10-min intervals. That confers this model one main
feature, which is the simulation of the energetic consumption with
a high temporal resolution and detailed enough so that energy
management strategies or policies can be derived from the appli-
cation of these models.

Nevertheless, the situation in the commercial, and industrial
sectors or other economic activities is significantly different. In
Europe, only projects regarding residential demand were devel-
oped, such as the REMODECE (de Almeida et al., 2011), but neither
data nor models are available for the other sectors. The situation is
slightly different in the United States, where some general studies
are periodically performed by the U.S. Energy Information
Administration (U. S Energy Information Administration, 2012).
However, Spanish daily schedules differ from those found in U.S. or
even within Europe, so a detailed model is needed in this country.

Regarding this situation, and the lack of high-resolution con-
sumption models for the main economic activities, the goal of this
paper is to develop a stochastic model that aims to simulate the
users’ behavior in the framework of these sectors. This model will
provide output data for the daily occupancy profiles for different
kinds of buildings (offices, retail stores, industries, etc.). This pre-
diction will be based on a set of input parameters, which are the
number of workers, the division of working hours during the day
and whether it is a weekday or the weekend.

The article is structured as follows. In Section 2, the methodol-
ogy followed in the development of the model is addressed. Section
3 provides and discusses the simulation results. Subsequently, the
model validation for the studied sectors is exposed in Section 4,
whereas Section 5 compares the results with previous works. In
Section 6, the link between occupancy and energy intensity is
presented with two examples of widely used modeling method-
ologies. Finally, Section 7 summarizes the main ideas presented in
the paper and related future works.

2. Methods

The development of the model presented in this article is
divided into three different methodological stages. The first step
was the selection of the input data necessary for constructing the
models. Subsequently, those data were processed and analyzed to
construct the model. Finally, due to the stochastic methodology
that was applied to obtain the model, a simulation mechanismwas
to be implemented. These three stages are addressed in detail in the
following subsections.

2.1. Time use survey

The base information employed in the development of this
model was collected by the time use survey (TUS). Those surveys
have been carried out inmany European countries and their results,
as well as their microdata, are usually available. Moreover, the
statistical office of the European Union (Eurostat) together with
some national statistical institutes have joined efforts to establish
several guidelines under the harmonized European time use sur-
veys (HETUS) database to make the results of these works com-
parable between each other.

In the case of Spain, the last TUS was conducted in 2010 with
19,295 people who were at least 10 years old and lived in a total of
9,541 households. In the TUS, the interviewees wrote down in a
diary, in 10-min intervals, data about the activities performed
during the 24 h of one random day, the place where the activities
took place and whether someone accompanied them (National
Statistics Institute of Spain. Ministry of Economy and



E.J. Palacios-García et al. / Journal of Cleaner Production 183 (2018) 1093e1109 1095
Competitiveness, 2010).
Moreover, regarding work, the survey also records those people

who develop a paid employment and the economic activity asso-
ciated with it using a normalized classification. Therefore, as it is
addressed in the next subsection, the behavior and daily patterns
for the different economic sectors can be studied. Furthermore,
other variables can be included in the study such as the type of day
(weekday or weekend) and the configuration of the working hours
or schedules (continuous or split shifts).
Fig. 1. Markov chain states and possible transitions between them.
2.1.1. Economic activities classification
The survey contains a specific field where the economic activity

is encoded using the definitions established by the national codes
for economic activities (CNAE) in its 2009 version (Official Bulletin
of Spanish Government (BOE) No.102, 2009). In the basic version,
the codes are composed of a two-digit number related unequivo-
cally to a normalized economic activity and are grouped into
different sectors. However, not only is the CNAE encoding system
regulated in Spain, but it also compliances with the statistical
classification of economic activities in the European Community
(NACE Rev. 2) (Eurostat, 2008), which provides a correspondence
with the international standard industrial classification of all eco-
nomic activities (ISIC Rev. 4) (United Nations, 2008). Therefore, the
same sectors studied in Spain can be extrapolated to any country
following the same methodology.

The CNAE codes range from 1 to 99 for the different economic
activities. Nevertheless, these codes were not individually consid-
ered in the study, but two criteriawere followed to select and group
each one. First, since the goal of this study is to relate the daily
human activity profiles with the energy consumption in various
sectors, only those that represent an important part of the demand
has been considered. On the other hand, due to the relatively
reduced number of samples in the survey and with the aim to
maintain a statistically significant population, no individual codes
were considered, but the smallest division unit was the groups
defined in the CNAE. In addition, some groups were studied
together because of their close relationship as far as energy con-
sumption is regarded. The selected groups are listed below.

� Group A (01e03): Agriculture, forestry, and fishing.
� Group C (10e33): Manufacturing.
� Group F (41e43): Construction.
� Group G (45e47): Wholesale and retail trade.
� Group H (49e53): Transportation and storage.
� Group I (55e56): Accommodation and food service activities.
� Group J, K, L, M, N and O (58e84): Information and communi-
cation; Financial and insurance activities; Real estate activities;
Professional, scientific and technical activities; Administrative
and support service activities, Public administration and de-
fense; compulsory social security.

� Group P (85): Education
� Group Q (86e88): Human health and social work activities.

As it can be observed, one of the divisions includes several
groups (from group J to O) with different economic activities.
However, despite the clear difference in their final service, they all
have one characteristic in common, which is being carried out in an
office or laboratory. Subsequently, from the energetic point of view,
the human activity in all these groups means the occupancy of a
space in a building and, therefore, the usage at least of lighting, as
well as heating, ventilation and cooling (HVAC) equipment whose
consumption in most of the cases is far higher than the specific
appliances related with each sector (P�erez-Lombard et al., 2008).
2.1.2. Types of days and working hours
In addition to the definition of nine economic sectors, two

additional situations were considered. On the one hand, those in-
terviewees that completed the survey for a weekday (Monday to
Friday), have been distinguished from the ones that did it for a
weekend (Saturday or Sunday). On the other hand, the configura-
tion of the working hours during the day was also taken into ac-
count differentiating between continuous working hours, meaning
that the person is actively working more than 6 h with breaks no
longer than 30min or split working hours, where the working time
is divided into two main shifts no longer than 6 h with a break of at
least 1 h between them.
2.2. Model fundamentals

The goal of the model is to determine for each instant of the day
the number of active workers that can be found in each one of the
previously defined sectors and under certain conditions of working
hours and type of day. Hence, the first element thatmust be defined
is the concept of an active worker.

An active worker is defined as a person who is in the workplace
at a given instant, independently of the activity that he or she is
developing (e.g., a worker who is having lunch at the workplace is
not developing a work during that period, however, he or she is
using energetic resources that are found there). This fact should be
pointed out since the mere occupancy of the workplace implies an
energy consumption due to the human activity and subsequently
represents the cornerstone of many of research fields such as en-
ergy simulation, building efficiency assessing or energy planning.

Regarding all the previously exposed, the proposed methodol-
ogy to model this occupancy was based on the Markov chains
theory, whose principle of operation as well as some practical ap-
plications can be found in Gamerman (2006) and Gilks et al. (1996).
This theory defines a stochastic process that consists of a discrete
number of states where the probability of moving from one state to
the next one is only determined by the current state. In our case, the
space of possible states is defined as follow.

S ¼ fw;ng (1)

where w represents the state of a worker being active, whereas n
means a person who is not in the workplace. The possibility to
move from one state to other is determined by the so-called tran-
sition probabilities pij. Therefore, if a person is in the workplace,
there is a probability pww that in the next instant of time he or she
remains in the same state, as well as a probability pwn meaning that
he or she becomes an inactive worker. Likewise, for a personwho is
not currently in the workplace, he or she will either stay inactive
with a probability pnn or will move to the active state, according to
pnw. All this process can be clearly seen in Fig. 1 where the different
states and transition probabilities for the proposed model have
been represented.

These transition probabilities are not usually expressed
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independently, but the combination of every transition probability
between the defined states is joined into the so-called matrix of
transition probabilities or transition matrix P, as it can be seen in
(2), where each row represents the current state, whilst the col-
umns are the next state.

P ¼
�
pww pwn
pnw pnn

�
(2)

In the case of using only one transition matrix P for the whole
system, the Markov process is called homogeneous. However, the
TUS offers information recorded with 10-min resolution or 144
samples for a day. Therefore, for each instant t a different transition
matrix PðtÞ was calculated forming a non-homogeneous transition
process. In addition, the model not only distinguishes between the
nine above-mentioned economic activities, but, as previous
exposed, it also takes into account the type of day (weekday or
weekend) and the type of working hours (continuous or split).
Thus,144 transitionmatrices were calculated using the TUS data for
each combination of conditions (economic activity, type of day and
type of working hours).

The process to obtain this number of transitions between states
and calculate the transition probabilities was fully automatized
using an SQL database where the TUS data were stored following a
relational philosophy and the environment and high-level pro-
gramming language MATLAB was used to perform the necessary
queries. The steps for these queries were as follow:

1. Select those interviewees whose economic activity corresponds
with the studied group.

2. Select those interviewees with a specific type of working hours.
3. Select those interviewees who fill out the diary or activity

notebook for a specific type of day.
4. From 1 to 144 select the time step s and the next time step sþ 1

and count the number of occurrences for each transition.
5. Calculate the transition probabilities according to (3) where nij is

the number of transitions between the initial state i and the next
state j and between the current instant t and the following
instant tþ 1, whereas ni is the total count of people being at
state i in the instant t.

pijðtÞ ¼
nijðtjt þ 1Þ

niðtÞ
(3)

An example of this calculus is illustrated in Table 1 where the
number of transitions between 00:00 h and 00:10 h were obtained
from the TUS in the manufacturing sector (C), in a weekday and
working with continuous shifts. As it can be seen, if the current
state of a worker is to be at the workplace (w), the probability of
staying in this place at 00:10 h is 0.9615 against a 0.0385 probability
of becoming inactive. Opposite, if a person is inactive this state will
remain at 00:10 h, since the probability of not being in the work-
place at that time is 1. All the values calculated in this example
corresponds to the previously mentioned probabilities pijðtÞ for a
specific sector, type of day, and type of working hours, conse-
quently, they can be also expressed using matrix format as in (2).
Table 1
Example of the number of transitions in the manufacturing sector (C) for a weekday wit

Current state
00:00 h (i)

Next State 00:10 h (j)

Work (w)

Work (w) 25 25/26¼ 0.9601
No Work (n) 0 0/288¼ 0
2.3. Simulation procedure

The previous methodology allows calculating the transition
matrices for the Markov process. Nevertheless, due to the sto-
chastic nature of the model, a simulation algorithm had to be
implemented for obtaining the results. The simulation procedure
was based on Monte Carlo methods using repeated random sam-
plings in order to generate the initial state of the system, as well as
the successive transitions. The following subsections address this
process.

2.3.1. Input parameters
As it was exposed, various economic activities have been

modeled and among them, different conditions regarding the type
of day and working hours have been established. Therefore, three
inputs parameters were provided to indicate each of these char-
acteristics. In addition, the Markov process models the daily profile
of only one worker. Thus, a variable that indicated the number of
workers to be simulated was added to the system. Subsequently,
the set of input parameters whichmust be provided before running
the process contains the below input data.

� Economic Activity or sector (sn): It establishes the sector for
which the simulation will be carried out. The possibilities are
the nine sectors discussed in Section 2.1.1.

� Type of day (Day): The parameter distinguishes whether the
simulation is performed for a weekday (WD) or a weekend
(WE).

� Type of working hours (Hours): This parameter differentiates
between those employees that work continuously (Cont.) and
the ones that have split shifts (Split).

� Number of workers (N): It represents the number of people to be
simulated. For instance, this number can correspond to the
number of employees in an office or workers in a manufacturing
factory.

The three first parameters (economic activity, type of day and
type of working hours) allow the selection of the transition
matrices suitable for the process, whereas the number of workers
determines the number of iterations.

2.3.2. Initial state
One of the main problems of a Markov process is defining the

initial state of the system. This state will determine the following
transitions and it is necessary for the simulation algorithm to start
running. Moreover, the proposed Markov model is non-
homogeneous so not only the method for determining the initial
state had to be defined but also the instant for which this initial
state will be generated.

For the study, the 00:00 h was selected as the initial instant for
the simulation process. Subsequently, for each conditions of sector,
type of day and type of working hours, and using the TUS data, the
probability mass function (PMF) poðXÞ of a person being in the
workplace for this time was calculated. In this function, X can take
two possible discrete values: 0 when the worker is inactive or 1 for
a worker in the workplace. This PMF in the form of discrete
h continuous working hours.

Total

No Work (n)

1 1/26¼ 0.0385 26
288 288/288¼ 1 288
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cumulative distribution function (CDF) PoðXÞ will be used in the
first step of the algorithm to generate the initial state of each
worker to be simulated.
2.3.3. Algorithm
The stochastic process to generate the occupancy profile is

similar regardless of the input parameters provided to the system.
It consists of two different parts, as it can be observed in Fig. 2. In
the first part, the initialization of the system is performed. Hence,
after providing the systemwith the required input parameters, the
initial state probability function and the transition matrices for the
different time steps are loaded into the simulation system.

After this previous initialization, the remaining process is
equivalent for each of the worker (n) and it is repeated as many
times as the number of selected workers N. Therefore, as it was
exposed in the previous section, the first state is calculated before
starting the Markov process using the CDF at 00:00 h. For this aim,
first a random number R0 uniformly distributed between 0 and 1 is
generated.

R0 � Uð½0� 1�Þ (4)

As it is indicated in (5) and using this number R0, a random
inverse transform sampling is performed in the initial state CDF,
P0ðXÞ, obtaining the activity state OnðtÞ of this person n for the first
step (00:00 h, t ¼ 0). The state of the worker OnðtÞ is a binary
variable that can take the same values as the CDF for the initial
state, i.e., 0 if the worker is inactive or 1 if the worker is in the
workplace.
Fig. 2. Flowchart of the
Onðt ¼ 0Þ ¼ P�1
0 ðR0Þ (5)

Once this initial state has been established, the iteration for each
interval of time t starts. Since the TUS sample was taken every
10min, 144 intervals are possible, but the first state is already
determined so only 143 transitions and, therefore, different tran-
sition matrices, are required to simulate a day. Nevertheless, the
transition matrix between 23:50 h and 00:00 h was also calculated
so various consecutive days can be simulated.

In this way, for each instant t, a random sampled number Rt
uniformly distributed between 0 and 1 is generated as in (4). After
this, the random number is employed to calculate the following
state of the worker by means of the transition matrix for the step t
and the previous activity state of the worker Onðt� 1Þ.

OnðtÞ ¼ P�1
ij ðtjOnðt � 1Þ;Rt

�
(6)

This second part is repeated as many times as the number of
workers selected ðNÞ, calculating for all of them the period of oc-
cupancy of the workplace for each instant. Finally, the total daily
occupancy profile OT ðtÞ for the selected input parameters is ob-
tained as the aggregated of each individual employee OnðtÞ, using
(7).

OT ðtÞ ¼
XN
n¼1

OnðtÞ (7)
simulation process.
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2.4. Output data

Using the above-described input data and calculation algorithm,
the implemented model can generate the workers’ daily activity
profile named as OT ðtÞ for nine different economic activities, with a
temporal resolution of 10min and being able to distinguish be-
tween the type of day and working hours. Such a profile will have a
deterministic nature since each individual employee has associated
exact periods when he or she is in the workplace, but as an
aggregate, it will represent the average trend observed in the
sector.

2.5. Model implementation

The calculation of the matrix for the model and simulation al-
gorithm were implemented using the MATLAB software. The
transition matrices for each sector, type of day, and type of working
hours were programmatically calculated and stored in theMAT-File
format, so they can be easily loaded into the development envi-
ronment. Likewise, the simulation algorithmwas programmed as a
MATLAB function using the high-level programming language
provided by this tool. This function can be called from the MATLAB
command line, nevertheless, to ease the simulation and analysis
process a general user interface (GUI) was also implemented.

2.6. Model update mechanisms and application to other regions

One of the main features of the system that should be pointed
out is the functional independence of the simulation algorithm and
the transitionmatrices. The simulation system, described in Section
2.3 encapsulates the functionalities for loading the transition
matrices and performing the Markov Chain procedure. Neverthe-
less, the transition matrices are not part of the simulation but are
loaded from the MAT files indicated in Section 2.5 based on the
given input parameters.

Therefore, if new data are available or new locations are to be
included, the system can be updated in a seamless way, only by
including the new MAT files with the transition matrices and the
initial probabilities. The calculation of these transition matrices for
the MAT files is the one described in Section 2.2, which can be
Fig. 3. Snapshot of the General User Interface (
applied to any other TUS since they are standardized all around
Europe. Therefore, the system is not only flexible but also easy to
maintain and update.

3. Results

Once the methodology of the model has been explained, the
obtained results achieved running the implemented model are
shown. These results are presented for the different sectors
considered to be modeled, as well as the different additional con-
ditions of type of day, and working hours. Moreover, the imple-
mented GUI is also described in the following subsections.

3.1. User application

The GUI provides a friendly interface for inserting all the
necessary input parameters required by the model, visualizing the
daily profiles or saving the numeric results of each simulation. As it
is shown in Fig. 3, it is composed of three main panels. The one on
the top left named as Input Parameters allows the user to indicate
the simulation parameters, as well as the initialization of the
simulation procedure by clicking the button label as Simulate
Results.

Regarding the panel on the right side, it is devoted to the rep-
resentation of the results once the simulation is finished. Finally,
the panel named as Measures shows several statistical indicators of
the aggregated results such as the mean active workers along the
day, as well as the maximum and the minimum level of occupancy.
Likewise, an estimation of the main occupancy periods is per-
formed. The system can detect up to two periods calculating the
starting and end time of the day, and the number of hours of high
occupancy. Furthermore, the individual worker details can be saved
to a CSV file using the provided button in the same panel and the
field FName to assign the name of this file.

3.2. Distribution of interviewees among economic activities

First, and before the calculation of the transition matrices or the
initial state of the Markov process, the distribution of interviewees
among sectors were studied, taking into account their subdivision
GUI) built for performing the simulations.



Table 2
Distribution of interviewees among sectors, type of day and type of working hours.

Economic Activity Continuous Split Total

WD WE WD WE

A 71 32 148 70 321
C 314 164 338 170 986
F 90 50 276 136 552
G 216 120 448 238 1022
H 137 73 104 39 353
I 170 84 111 60 425
J-O 707 368 391 231 1697
P 175 107 103 69 454
Q 284 146 50 29 509

Fig. 4. Relative distribution of type of day and working hours among sectors.

Fig. 5. Probabilities of a worker to be in the workplace at the initial state 00:00 h.
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regarding the type of workings hours and type of day for which
they filled out the diary. As exposed in Section 2.1 the number of
interviewees in the TUS was 19,285, of this figure, only 7810
developed a pay economic activity at the time the Survey was
performed. Within this fraction, the distribution among the study
conditions is collated in Table 2 where each sector was expressed
using its group letter and each column represents the number of
records in the survey for those conditions. However, since not all
the sector where included in themodel, the sum of the column total
in Table 2 is lower than 7810.

As it can be observed in Table 2 the activities with the larger
number of interviewees are the jobs related to offices (J-O), the
wholesale and retail trade sector (G) and the manufacturing in-
dustry (C). Opposite, the sectors of agriculture, forestry and fishing
(A) and transportation and storage (H) present the lower number of
records in the survey. In addition, as it could be expected the
number of interviewees developing a paid activity during the
weekend is lower.

This fact can also be better observed in Fig. 4 where the distri-
bution of type of days and type of working hours was represented
as a percentage of the total number of records for each sector. The
results depict that for all the sectors the percentage of interviewees
working during weekdays is higher than 60%. Furthermore,
regarding the type of working hours, the continuous shifts prevail
in the sectors of human health (Q), education (P), offices related
jobs (J-O), accommodation (I), and transportation (H), whereas in
agriculture (A), manufacturing (C), construction (F) and retails (G) is
more common to work in split shifts.

3.3. Start states

After the analysis of the survey population, the discrete proba-
bility function for the initial states was calculated following the
previously exposed methodology. Those initial results indicate
significant differences between the sectors as it can be seen in Fig. 5
where the initial probability for a worker to be in the workplace
was represented for the different types of days and working hours.
Fig. 5 shows that, as it might be anticipated, most of the sectors

have a low probability of having active workers at midnight.
Nevertheless, four sectors showed a relatively high level of occu-
pancy. The highest values were found for the accommodation and
food service sector (I) where the average percentage of active
workers at midnight for any type of day or working hours is around
20%. This may be justified due to the necessity of having workers
that serve the guest during this period.

With lower values, the transportation sector (H) can be also
pointed out with an average occupancy higher than 10%, although
in the case of split working hours the level is significantly lower.
Finally, the human health (Q) and manufacturing (C) sectors have
also a level of activity higher than the rest. This can be related to the
24/7 schedules that many of these works imply.

3.4. Simulations results

Using the previous distribution functions for the initial states,
together with the transition matrices and the implemented simu-
lation procedure several simulations were performed selecting
different values of the input parameters. The following subsections
will discuss these results.

3.4.1. Individual results
As it was exposed in themethodology, each employee or worker

is individually simulated using the calculated transition matrices
for the sector, the type of day and the type of working hours.
Therefore, the daily profile of an individual simulation presents a
deterministic pattern where the state can be either 0, inactive
worker, or 1 employee in the workplace. This fact is depicted by
Fig. 6 whose top chart shows the occupancy periods (black rect-
angles) of 20 different persons working in the wholesale and retail
sector (G).

It can be observed that there are no two equal profiles, therefore,
confirming the stochastic nature of the process and the high degree
of determinism in the individual results. It can also be seen that one
employee is continuously active despite working in split shifts.
Nevertheless, as it was previously commented the model only ac-
counts for the occupancy of the workplace. Thus, a worker that is
having lunch in the workplace is not developing any work but it is
considered as an active worker in the model. However, as shown in
the bottom graph of Fig. 6 if the individual results are aggregated
following (7) a general trend can be observed, which depicts two
differentiate occupancy peaks.

This is one of the most useful features of this model. Whereas
other simulation methods only provide aggregate results, using the



Fig. 6. Individual simulations and aggregate results of active occupancy for economic
activity G with split-shift working hours for a weekday.
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proposed model the total profiles are obtained as a consequence of
the individual human behavior. Therefore, if the system is to be
employed for predicting or assessing the energy demand, some
consumptions such as those related to PCs, tools, individual HVAC
system or other appliances can directly be attributed to each in-
dividual worker, whilst also having a global knowledge of the
aggregate pattern and the common energetic needs. For instance,
in this case, the simulation was performed for split working hours,
so two different peaks are observed that correspond to the two
daily shifts, being the periods where the higher occupancy is
concentrated and, consequently, the higher energetic demand for
this sector.

3.5. Aggregate results

The previous section showed the benefits of this methodology
where having both individual and aggregate results provide a
broader perspective of the human behavior and, subsequently, a
better estimation. However, when the aggregate results are
considered the different profiles can also be studied aiming to
recognize the periods where the highest occupancy is located and
the relationship between them in order to improve the energy
planning policies.

In this way, the aggregated daily profiles for 1000 workers were
obtained for each sector and for a weekday distinguishing between
continuous and split working hours. The results can be observed in
Fig. 7 where each sector is presented using a different graph. The X-
Axis indicates the hour of the day, whereas the Y-Axis shows the
aggregate percentage of active workers. In addition, the profiles for
continuous working hours are illustrated with a solid black line,
whilst a solid gray line was used for the split working hours.

First, it can be observed that some characteristics are common
to every sector, specifically those related to the type of working
hours. In the case of continuous working hours, all the sectors
present a period of high occupancy that starts in the first hours of
the morning and continues until the afternoon. Likewise, the oc-
cupancy after this first period keeps normally values that are
relatively low, although in some sectors such as the agriculture,
forestry, and fishing (A), the wholesale and retails (G) and the ac-
commodation and food service (I) a second occupancy peak can be
found. Nevertheless, the level of this peak is significantly lower
than the first one.
This scenario contrasts with the case of split working hours
where two occupancy peaks are observed during mornings and
afternoons. The second peak is also lower than the first one, but its
value is higher compared with the case of the continuous working
hours. In this way, just the mere knowledge of the type of working
hours for a certain sector provides valuable information about the
major occupancy periods and, therefore, when the highest demand
is likely to occur. However, each of the selected sectors presents
individual characteristics that should be pointed out. These differ-
ences can mainly be observed in three aspects which are the
starting and end hours of the occupancy peaks, the width of the
periods and the base occupancy that remains out of the periods of
high activity. All these characteristics can not only be depicted from
Fig. 7, but Table 3 also gathers together this information in a
numeric form.

As far as the starting hours are concerned, they are all comprised
between 06:00 h and 09:00 h. Within this interval, the sectors that
present a high level of occupancy during the early hours are the
agriculture, forestry, and fishing sector (A), the construction sector
(F) and the transportation and storage sector (H). Nevertheless, in
the case of split working hours, the starting time is delayed an hour
except for the construction sector (F) where it remains unaltered.
For the rest of the sectors, the most common starting hour is
around 08:00 h for both continuous and split working hours.
However, a sudden gradient can be seen in sectors such as offices
related jobs (J-O), education (P) or human health (Q), whereas in
others this transition is more gradual as in the case of thewholesale
and retail sector (G), as well as in the accommodation and food
service sector (I).

Regarding the duration of the first occupancy peak, in the case of
continuousworking hours, it comprises inmost of the cases a larger
time interval since there is no activity during the afternoon.
Opposite, the width of the first peak is smaller for the split working
hours, distinguishing in all the cases an occupancy valley between
mornings and afternoons. The only exception is the accommoda-
tion and food service sector (I) where not only is the morning oc-
cupancy peak wider, but the transition valley is not as pronounced
as in the rest of the sectors. This is justified due to the activity of the
sector itself, where the highest activity is found duringmeals hours.
In addition to this, another unique characteristic is observed in the
profiles of offices related jobs (J-O) for continuous working hours.
This feature is a short but clearly visible period of low occupancy
around 11:00 h which coincides with the breakfast break in Spain.

On the other hand, for the end time and the base occupation,
two different trends are observed. In the case of continuous
working hours, a negative gradient can be seen between 14:00 h
and 15:00 h except for the accommodation and food service sector
(I) where this decrease does not take place until 16:00 h. Moreover,
whilst in all the sector the level of occupancy has low and
decreasing values until 22:00 h, the accommodation, and food
service sector (I) has an opposite trend, reaching a second peak at
that time. Finally, regarding the base occupancy during no peak
hours, three sectors stand out with relatively high values. These
sectors are the manufacturing (C), the transportation, and storage
(H), and the human health (Q). In addition, the accommodation and
food service sector (I) presents again substantial differences which
an occupancy trend that decreases from 22:00 h to 04:00 h in a
profile that resembles the one observed in the residential sector.

In the case of split working hours, the situation is significantly
different and after the second occupancy peak, a pronounced
negative gradient takes place until reaching low values of occu-
pancy. Furthermore, the base occupancy is also lower than for
continuous working hours, except in the accommodation and food
service sector (I) that differs again from the other with a higher
occupancy.



Fig. 7. Aggregated results for 1000 workers in different sectors for a weekday distinguishing between continuous and split working hours.

Table 3
Occupancy periods and statistics during weekdays for each sector.

Sector Working Hours Peak 1 Peak 2 Mean Max Min

From To Total From To Total

A Continuous 07:00 h 14:00 h 07:00 h 17:00 h 20:30 h 03:30 h 28% 70% 1%
Split 08:00 h 14:00 h 06:00 h 16:00 h 19:00 h 03:00 h 27% 66% 1%

C Continuous 06:00 h 14:00 h 08:00 h e e e 27% 54% 8%
Split 08:00 h 13:00 h 05:00 h 15:00 h 18:00 h 03:00 h 27% 72% 1%

F Continuous 08:00 h 14:00 h 06:00 h e e e 25% 62% 2%
Split 08:00 h 13:00 h 05:00 h 15:00 h 19:00 h 04:00 h 26% 68% 0%

G Continuous 08:00 h 14:00 h 06:00 h 17:00 h 20:00 h 03:00 h 24% 58% 2%
Split 09:00 h 14:00 h 05:00 h 17:00 h 20:00 h 03:00 h 26% 74% 0%

H Continuous 07:00 h 14:00 h 07:00 h e e e 28% 51% 14%
Split 08:00 h 14:00 h 06:00 h 15:00 h 20:00 h 05:00 h 24% 56% 2%

I Continuous 08:00 h 16:00 h 08:00 h 20:00 h 23:00 h 03:00 h 32% 62% 3%
Split 09:00 h 14:00 h 05:00 h 20:00 h 23:00 h 03:00 h 37% 75% 0%

J-O Continuous 08:00 h 15:00 h 07:00 h e e e 20% 54% 3%
Split 09:00 h 14:00 h 05:00 h 16:00 h 20:00 h 04:00 h 22% 63% 1%

P Continuous 08:00 h 15:00 h 07:00 h e e e 19% 65% 1%
Split 08:00 h 14:00 h 06:00 h 15:00 h 18:00 h 02:00 h 21% 68% 0%

Q Continuous 08:00 h 15:00 h 07:00 h e e e 24% 50% 6%
Split 08:00 h 14:00 h 06:00 h 16:00 h 20:00 h 04:00 h 21% 68% 0%
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Thus, summarizing the above-discussed trends, four types of
occupancy patterns can be distinguished, especially in the case of
continuous working hours. First, the manufacturing (C), trans-
portation (H) and human health (Q) sectors present a high base
occupation, as well as a long period of activity. The second type is
characterized by two periods of high occupancy during mornings
and afternoons that despite the continuous working hours are
significant. This profile is found in the agriculture, forestry and



Fig. 8. Aggregated results for 1000 workers in different sectors for a weekend distinguishing between continuous and split working hours.
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fishing sector (A), the wholesale and retail sector (G) and the
construction sector (F). The jobs related to offices (J-O) together
with the education sector (P) constitute a third group where the
main occupancy period is depicted with very low values for the rest
of the day. Finally, and with some features that differ from the rest
of sectors, the accommodation and food service sector (I) stands out
with occupancy peaks that take place where the occupancy valleys
of the other sectors are found.

Further conclusions can be detected when the profiles for
weekends are observed. Those patterns are illustrated in Fig. 8
where the aggregate results for 1000 workers distinguishing be-
tween continuous and Split working hours can be seen. Likewise,
the numeric results for the occupancy periods and some statistic
are summarized in Table 4.

The first difference between weekdays and weekends is the
lower levels of occupancy in general terms. Nevertheless, some
exceptions are found such as the agriculture, forestry, and fishing
(A) or the accommodation and food service sectors (I) whose levels
are similar for both types of days. The duration of the occupancy
peaks is also lower, generally at least an hour shorter than for the
weekdays. In the same way, the two peaks of the split working
hours are less pronounced and the afternoon occupancy period
presents a lower activity, especially in the sectors of construction
(F), offices related jobs (J-O), education (P) and human health (Q).

In conclusion, therefore, the results show the diversity of
existing profiles, not only due to the economic activity but also
because of the type of day and type of working hours within the
same sector. Thus, a good estimation of the energetic consumption
and the effective energy planning of the systems must take into
account all these particular features that this model allows us to
recognize.
4. Validation

Once the results have been presented and discussed the vali-
dation process is addressed. This process aims to estimate the
ability of the proposed model to simulate occupancy profiles which
match the ones observed in the TUS and the uncertain in the
modeled data. Therefore, the validation was carried out using the
original data recorded in the TUS and generating daily occupancy
profiles with the model per sector. The selected number of workers
matched the population of the TUS which was indicated in Table 2,
so the samples can be compared. Two tests were developed to test
the global error per sector and the individual uncertain for each
input parameter.

First, the global error of the model for each sector was evaluated
by mean of the root mean squared error (RMSE). This indicator
accounts for the absolute instant discrepancies between the TUS
data and the synthetic profiles generated by the model. The
expression used for the RMSE is given in (8)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
t¼0

ðOMðtÞ � OTUSðtÞÞ2
vuut (8)

where n is the number of instants or time steps in the day (144 due



Table 4
Occupancy periods and statistics during weekends for each sector.

Sector Working Hours Peak 1 Peak 2 Mean Max Min

From To Total From To Total

A Continuous 08:00 h 14:00 h 06:00 h e e e 204 581 0
Split 08:00 h 14:00 h 06:00 h 16:00 h 20:00 h 04:00 h 239 628 0

C Continuous 06:00 h 14:00 h 08:00 h e e e 149 206 32
Split 09:00 h 13:00 h 04:00 h 16:00 h 20:00 h 04:00 h 178 494 6

F Continuous 08:00 h 14:00 h 06:00 h e e e 157 445 0
Split 08:00 h 13:00 h 05:00 h 16:00 h 19:00 h 03:00 h 143 407 0

G Continuous 08:00 h 15:00 h 07:00 h e e e 203 558 8
Split 10:00 h 14:00 h 04:00 h 17:00 h 20:00 h 03:00 h 194 610 0

H Continuous 07:00 h 14:00 h 07:00 h e e e 177 333 69
Split 08:00 h 14:00 h 06:00 h 16:00 h 19:00 h 03:00 h 170 430 0

I Continuous 09:00 h 16:00 h 07:00 h e e e 303 601 11
Split 10:00 h 17:00 h 07:00 h 20:00 h 23:00 h 03:00 h 275 639 19

J-O Continuous 08:00 h 15:00 h 07:00 h e e e 123 319 28
Split 08:00 h 14:00 h 06:00 h 16:00 h 19:00 h 03:00 h 141 404 9

P Continuous 08:00 h 05:00 h 07:00 h 17:00 19:00 h 02:00 h 137 419 8
Split 09:00 h 14:00 h 05:00 h 15:00 h 17:00 h 02:00 h 80 272 0

Q Continuous 08:00 h 15:00 h 07:00 h e e e 146 294 32
Split 10:00 h 14:00 h 04:00 h 17:00 h 20:00 h 03:00 h 98 377 0
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to the 10-min resolution), OM is the aggregated occupancy profile
obtained using the model and with the same population of the TUS,
and OTUS is the daily pattern registered in the TUS for a given sector,
type of day and type of working hours. To increase the number of
reference samples from the TUS, each sector was validated as an
aggregate. Thismeans that the profile used in the validation process
for a given sector is the sum of the four combinations of inputs
parameters of the model (i.e. weekday continuous working hours,
weekday split working hours, weekend continuous working hours,
and weekend split working hours).

The results of this process are illustrated in Fig. 9 where the
patterns generated by the model for each sector (solid black line)
are presented together with the original TUS data (cross symbol).
As it can be seen, the nine sectors match almost perfectly the
original data with very low RMSE values, which proves the validity
of this methodology for simulating the human behavior in certain
economic activities by means of a stochastic process and using
individual workers’ profiles as the basis for the calculus.

The same conclusions can be drawn if the relative error (Err%) is
observed. This value was calculated according to (9) and it is the
RMSE referenced to the number of samples per sector ns used for
the validation, which was taken from Table 2.

Err% ¼ RMSE
ns

(9)

As it can be seen, the relative error is always below 1%, even
when the reference sample is small, which numerically confirms
the great ability of the model for reproducing the TUS profiles with
a high accuracy.

The RMSE showed a low error in the aggregate profiles, never-
theless, the stochastic nature of the simulation procedure means
that the model results have an associated uncertain component.
Subsequently, after testing the RMSE of the model the dispersion
and variability of the results referred to the data collected by the
TUS were analyzed. For this aim, the Normalized Variation Factor
(NVF) was employed. This indicator is a pseudo-variance in which
the mean squared error (MSE) existing between the generated
profiles and the original data are normalized using the squared
mean of the reference population as it is indicated in (10).

NVF ¼ MSE

OTUS
2 ¼

Pn
t¼0ðOMðtÞ � OTUSðtÞÞ2

n
�1
n
Pn

t¼0OTUSðtÞ
�2 (10)
The variables included in this equation have the same meaning
as the ones in (8). Due to the stochastic nature of the model, in
order to evaluate the maximum and minimum limits of uncertain,
the NVF was calculated for 100 different simulation selecting
among all of them the observed extreme values for this indicator.

The obtained figures can be seen in Table 5 for each different
input condition of the type of day and working hours, as well as for
the aggregated case. All of them took values lower than one, this
means that the variability of the results is below the 10% of the
original results’ mean. An exception is observed in the human
health sector (Q) for weekends and split working hours where the
maximum NVF resulted in 1.293. This high value is justified due to
the small number of records found in the TUS, which are not sta-
tistically significant. The same problem, although with a lower
impact, can be depicted from the results of the agriculture, forestry,
and fishing (A), or the transport and storage sectors where both
high NVF values and a small sample in the TUS exist too.

This relationship between the uncertain accounted by the NVF
and the number of samples can be better understood with the
scatter plot in Fig. 10. As previously stated, the number of em-
ployees simulated for each casewas equal to the number of samples
recorded in the TUS. This data is represented in the X-Axis, whereas
the Y-Axis illustrates in a logarithmic way the obtained scattered
mass of NVF values. The Figure depicts how the uncertain of the
simulation results decreases with the number of employees being
simulated, which is totally consistent with the random nature of
the simulation process.

Hence, after the validation process, it can be seen that the ca-
pacity of the model to reproduce the original information is
extremely good, as indicated the low RMSE values. Likewise, the
low NVF figures confirm the quality of the model, although it was
detected that small simulation populations led to higher variability
and uncertain in the individual generated profiles.

5. Comparison with other works

In addition to the validation process, the model was compared
with previous works in order to confirm the consistency of the
generated results. Due to the lack of research papers addressing this
problem the Commercial Buildings Energy Consumption Survey
(CBECS) was selected as the reference source for the comparison (U.
S Energy Information Administration, 2012). This survey carried out
periodically by the U. S. Energy Information Administration (EIA)



Fig. 9. Model Validation. Comparison of TUS data with the model. Aggregated results of weekdays and weekends, as well as continuous and split working hours.

Table 5
Normalized Variation Factor (NVF) for each sector, type of day and type of working hours. Maximum and minimum values for 100 simulations using the TUS sample size.

Sector WD Continuous WD Split WE Continuous WE Split Total

Min Max Min Max Min Max Min Max Min Max

A 0.006 0.079 0.002 0.031 0.019 0.313 0.010 0.091 0.002 0.025
C 0.002 0.021 0.002 0.020 0.005 0.120 0.006 0.076 0.001 0.010
F 0.005 0.116 0.001 0.021 0.014 0.485 0.005 0.211 0.001 0.017
G 0.003 0.032 0.001 0.012 0.005 0.095 0.003 0.036 0.000 0.006
H 0.005 0.063 0.009 0.074 0.010 0.151 0.018 0.316 0.002 0.025
I 0.002 0.033 0.003 0.031 0.003 0.070 0.008 0.184 0.001 0.015
J-O 0.001 0.018 0.001 0.015 0.003 0.086 0.006 0.079 0.000 0.010
P 0.003 0.055 0.006 0.094 0.010 0.209 0.018 0.485 0.002 0.038
Q 0.001 0.028 0.007 0.112 0.006 0.157 0.038 1.293 0.001 0.017
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contains information regarding the characteristic of different
buildings according to the economic activity that is being devel-
oped in them.

Among the data collected in the CBECS, the number of hours for
which the buildings were weekly occupied was recorded. Since the
study aims to account for the energy consumption and expendi-
tures exclusively in buildings not all the studied economic activities
have their equivalence in the CBECS. However, most of them can be
associated with a certain type of building as it is shown in Table 6
where the equivalences adopted between our model and the
CBECS are stated.

In this way, by using the codes normalized in the survey for the
field primary building activity (PBA) the probability mass function
for the hours of activity in each sector was calculated. Those dis-
tributions were subsequently compared with the ones obtained
with the proposed model. The results of this comparison are shown
in Fig. 11 where the black bars represent the probability distribu-
tions of the model, whereas the white bars correspond with the
CBECS data.

In all the graphs, the X-Axis is the number of hours a day that the
building is occupied, whilst in the Y-Axis the probability is repre-
sented. The main observed difference is that the model predicts
with a relatively high probability short periods of occupancy which
are not visible in the CBECS. Nevertheless, whereas our model



Fig. 10. NVF vs number of samples in the TUS/Number of employees simulated for the
validation.

Table 6
Equivalences between the studied economic activities and the CBECS codes to filter the data.

Economic Activity CNAE Group/s (codes) CBECS Code for field PBA

Wholesale and retail trade Group G (45e47) 25 e Retail other than mall
Transportation and storage Group H (44e53) 05 e Nonrefrigerated warehouse

11 e Refrigerated warehouse
Accommodation and food service Group I (55e56) 15 e Food Service

18 e Lodging
Offices related jobs Groups J-O (58e84) 02 e Office

04 e Laboratory
Education Group P (85) 14 e Education
Human health and social work Group Q (86e88) 08 e Outpatient health care

16 e Inpatient health care
17 e Nursing

Fig. 11. Comparison between the mean daily hours of occupancy. Probability mass functions for the model and the CBECS.
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simulated the occupancy using the individual human behavior, the
CBECS only studied the occupancy of the building taken as a whole.
Thus, the existence of high probabilities for short periods is un-
likely. Moreover, the results were obtained for different countries.
The CBECS data belongs to the USA, whereas the model was
developedwith the data collected in the Spanish version of the TUS.
Therefore, the significant differences in the schedules that exist
directly affect the mean number of occupancy hours.
However, both studies present similarities that prove the
capability of the proposed model for predicting the daily activity
profiles. As it can be observed in Fig. 10 the jobs related to offices (J-
O), the transportation (H), the education (P) and the human health
(Q) sectors reach the maximum probability for similar intervals of
occupancy. In contrast, in the wholesale and retail sector (G), as
well as in the accommodation and food service sector (I) the CBECS
projects occupancy periods larger than the proposed model.
Nevertheless, as previously commented, this can be justified by the
differences in schedules among countries. In this specific case, one
of the behaviors that might provoke these differences is the period
devoted to having lunch, since in Spain people usually go back
home during that time, which results in lunch breaks longer than
2 h in most of the cases.

Finally, another important result that should be highlighted is
the characteristic shape of both the CBECS and the model proba-
bility mass functions, which resemble a Weibull distribution. This
indicates that in other fields of study where a high-resolution
model is not needed, a probabilistic model can be an alternative
to the Markov Chain processes whose accuracy is higher but at the
expense of a more complex methodology and computational
intensive calculations.
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6. The occupancy-energy link

The occupancy profiles provided by the model mean a valuable
source of information by themselves. The mere occupancy data
allowed identifying the main daily peaks where the consumption
will be concentrated, as it was indicated in Tables 3 and 4, as well as
the hours of activity in building-related sectors, as exposed in
Fig. 11. Furthermore, its high flexibility also makes possible to use it
as a base system for generating coherent profiles that can be used in
other advanced buildings or energy simulations tools as the ones
analyzed in Al-Homoud, 2001, Mohd-Nor and Grant, 2014 such as
EnergyPlus, TRNSYS or BLAST.

Although nowadays smart meters and smart metering in-
frastructures provide detailed information regarding energy con-
sumption in buildings, as well as other indicators such as voltage
events or basic power quality indicators (Palacios-Garcia et al.,
2017), there are still a wide variety of scenarios where metered
data cannot be used. For instance, in a new construction building,
since it has not been operating yet, no metered data are available.
Nevertheless, the estimation of the building energy performance in
the design stage is essential and is usually done by the aforemen-
tioned tools which require detailed input occupancy profiles such
as the ones provided by this model. Likewise, smart meters data
might provide an accurate estimation of the current consumption
situation, but they cannot be used to predict future scenarios and
the long-term impact that new energy policies or technological
changes might have on the system.

Therefore, the previous knowledge of occupancy profiles is of
special interest for new buildings planning, when detailed meter-
ing data are not available, or for assessing energy-saving actions or
potential future scenarios. In order to illustrate the possibilities of
the system, two modeling scenarios are proposed in the following
subsections, both aiming to use the occupancy profiles as an input
parameter in the energy quantification problem for some of the
modeled sectors.

6.1. Top-down estimations

The top-down estimations or modeling processes are those in
which the input or base parameters for the model are at a con-
ceptual level above the consumption profiles. These data are usu-
ally socio-economic indicators, aggregated energy figures,
employment rates, appliances usage rates, etc. In our case, two
main indicators were used which are the annual electricity con-
sumption Eyear=emp and the total working hours in a year hyear=emp,
both figures referred to an employee in a given sector.

The results for the energy figures were obtained from the
Odyssee-Mure project database (ADEME, 2017). This project, co-
ordinated by ADAME, contains detailed energy consumption fig-
ures and indicators of all EU countries, as well as Norway,
Switzerland and Serbia. Among the information, the main in-
dicators regarding agriculture and services sectors were studied,
which allowed us to obtain the figures included in Table 7.
Regarding the working hours in a year for each selected sector, the
statistic report on working hours of the National Statistics Institute
Table 7
Average annual energy consumption per employee and total working hours in a year.

Economic Activity Eyear/emp [kWh]

Wholesale and retail trade 9881.44
Accommodation and food service 5409.18
Offices related jobs 3781.09
Education 2051.21
Human health and social work 3777.57
of Spain was used (National Statistics Institute of Spain. Ministry of
Economy and Competitiveness., 2000).

Using the data collected from both sources (ADEME, 2017) and
(National Statistics Institute of Spain. Ministry of Economy and
Competitiveness., 2000), it is possible to establish for each sector
an average energy intensity for a worker performing the economic
activity for an hour Ehour as it is indicated in (11).

Ehour ¼
Eyear=emp

hyear=emp
(11)

In the same way, if this hourly consumptionwants to be directly
related to one occupant activity, the 10-min interval associated
energy that should be demanded E10min can be obtained by dividing
(11) by the corresponding temporal factor, six in this case as indi-
cated in (12).

E10min ¼ Ehour
6

(12)

Using (11) and (12) the two last columns of Table 7 were
calculated. In particular, the figures in the last column allowed
directly associating the active number of employees predicted by
the model OT ðtjsÞ for given sector s to the 10-min energy intensity
EðtjsÞ by means of (13).

EðtjsÞ ¼ OTðtjsÞ,E10minðsÞ (13)

By using this expression, the daily energy intensity profiles for
the five selected sectors were calculated for an aggregate of 1000
employees in a weekday. As it can be observed in Fig. 12, although
the total number of employees included in each economic sector is
the same, the different consumption per occupant produced
different energy intensities.

The sector with the lowest consumption was the education
sector (P), followed by the human health and social work (Q) and
the offices’ sector (J-O). The wholesale and retail (G) and the ac-
commodation and food service (I) sectors stood out as the largest
consumers.

Furthermore, the 10-min resolution energy figures estimated by
the occupancy model can be now used to predict back the aggre-
gate figures of annual consumption based on the active hours. This
will provide an indicator of the accuracy of the model. For that aim,
the instantaneous figures of energy for weekdays E10minðtjs;WDÞ
and weekend days E10minðtjs;WDÞ can be first aggregated to
calculate the daily consumption of each type of day and type of
working hours, and, subsequently, the annual energy intensity.
Since in the studied region the percentage of working days in a year
is 68%, a weighting factor was included for considering both types
of days. The expression used in the annual energy estimation can be
seen in (14).
hyear/emp [h] Ehour [kWh] P10min [kWh]

1723.8 5.73 0.9554
1796.2 3.01 0.5019
1660.8 2.28 0.3794
1449 1.42 0.2359
1663.9 2.27 0.3784



Fig. 12. Daily power profile for 1000 employees with continuous working hours in a
weekday.

Table 8
Daily and annual energy figures estimated by the model and relative error to the
reference values.

Sector Continuous Working Hours Split Working Hours

Daily [kWh] Annual [kWh] Daily [kWh] Annual [kWh]

WD WE Eyear Err WD WE Eyear Err

G 33.6 27.6 11570.0 17.1 37.3 28.2 12565.4 27.2
I 22.6 21.5 8124.2 50.2 26.5 19.9 8900.8 64.6
J-O 11.4 6.6 3590.3 5.0 11.9 7.5 3836.3 1.5
P 6.4 4.6 2119.5 3.3 7.1 2.9 2093.6 2.1
Q 12.4 7.9 4001.2 5.9 13.1 5.3 3858.6 2.1

Table 9
Individual appliances characteristic for the high temporal resolution power
simulation.

Appliance PON [W] POFF [W] Usage Probability

Desktop PC 100 5 1.0
LCD Monitor 16 3 1.0

Fig. 13. Aggregate daily consumption profile for 1000-employee office in a working
day for desktop PCs and LCD monitors.
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EyearðsÞ ¼
"X144

t¼0

E10minðtjs;WDÞ,0:68

þ
X144
t¼0

E10minðtjs;WEÞ,0:32
#
,365 (14)

In this equation, each sum of the brackets represents the total
daily energy for weekdays and weekends respectively, weighted by
the scaling factor of working days and multiplied by the total
number of days in a year. The results of these daily and annual
figures per employee are listed in Table 8, where the relative error
between the annual estimation and the reference annual energy
figures in Table 7 was also indicated.

As it can be observed, the predictions are accurate for the office
(J-O), education (P) and human health and social work (Q) sectors
with relative errors lower than 6%. Nevertheless, in the case of the
wholesale and retail (G) and the accommodation and food service
(I) sectors the relative errors came to represent more than 25% and
50% respectively. The main reason of this mismatch may be
attributed to the existence of a large number of devices such as cold
storage room, machinery, shop window lighting, etc, which are not
directly related to the occupancy but that were accounted in
Table 7, therefore resulting in an overestimation of the final
aggregate consumption. Hence, in these particular sectors, a pre-
vious knowledge of the baseload consumption is needed for as-
suring accurate estimations as the results depicted.

6.2. Bottom-up estimations

Together with the top-down estimation, an advantageous and
novel use of the proposed model is the bottom-up simulation of
plug loads consumption. In contrast to the previously presented
methodology, the bottom-up approach uses indicators that are
below the consumption profiles such as the human behavior, ap-
pliances operation cycles, daily activity schedules, etc.

As stated in the introduction, occupancy patterns are one of the
main influence factors in the consumption of plug loads in offices.
In contrast to HVAC or lighting systems that are usually centralized,
individual loads are activated by the employees and its high-
resolution energy consumption is difficult to predict. Therefore,
an application case of the proposed model for a seamless energy
estimation is shown in this section for the office sector (J-O) one of
the larger consumers of these type of loads.

Two simple loads were simulated to show the capabilities of the
model, desktop PCs and their associated LCD monitors. These office
appliances were assigned an active power PON and an inactive
power POFF extracted from a report in the USA evaluating the IT
equipment in the office sector (Roth et al., 2002). Nevertheless, in a
real scenario, the actual power rate of the devices can be used. In
addition, each appliance was weighted with a usage probability of
1.0 meaning that every time an employee is active at the workplace
the appliance will be active, the rest of the day, if no energy
curtailment measures are implemented in the office, the appliance
will consume the standby or POFF. The selected values can be seen in
Table 9.

Using the proposed values and the usage probability per
employee included in Table 9 for each appliance, the aggregate
consumption of a 1000-employee office for a weekday with
continuous working hours was simulated distinguishing the active
and the inactive consumptions of the selected equipment. The re-
sults can be observed in Fig. 13, where the PC consumption is
represented with black lines and the monitor energy with gray
lines (solid for the active power and dashed for the inactive).

As it can be seen, due to the usage probability of 1.0, the ap-
pliances’ consumption matches the occupancy pattern. Neverthe-
less, if additional appliances such as printers, fax or copy machines
were included a probability lower than one and a decision mech-
anism for the switch on/off events should be provided. Further-
more, the system allowed observing the relatively high impact on



Table 10
Daily and annual energy consumptions per appliance and employee. Estimated standby energy saving potential.

Appliance Daily consumption per Employee Yearly Consumption per Employee Standby

EON [Wh] EOFF [Wh] EON [kWh] EOFF [kWh] ETotal [kWh]

Desktop PC 499.7 95.0 124.0 23.6 147.6 16%
LCD Monitor 79.9 57.0 19.8 14.1 34.0 41%
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the load profile of the inactive power consumption of the selected
equipment. The energy figures associatedwith this profile are listed
in Table 10, where an estimation of the yearly consumption was
included, considering the 68% of working days factor and only a
weekday operation of the office.

As the figures depicted, the inactive power consumption of
these appliances means a relatively high percentage of the yearly
energy demand, being especially high for the LCD Monitors (41%).
Thus, the model not only allowed us to estimate the yearly con-
sumption of selected appliances based on their instantaneous de-
mand but also helped highlight the problematic of standby devices
in an office. Moreover, as well as the inactive demands, the
assessment of appliances replacement campaigns with more effi-
ciency devices could be carried out only by the knowledge of the
occupancy profile, being a simple but effective tool in the estima-
tion of future scenarios, something that even the most detailed
monitoring or meter collection data cannot directly perform.

Therefore, the occupancy model proposed in the paper is able to
establish a seamless link with the energy consumption in both the
top-down and the bottom-up perspective. The first approach
allowed easy global estimations with widely available data, but
with difficulties to accurately represent the high temporal resolu-
tion results. The second, the bottom-up approach, showed very
good results in the instant power profiles and the capability of
assessing future scenarios, but with the limitation of the detailed
knowledge of the appliances and devices that is required.
7. Conclusion

The proposed paper has addressed the development, imple-
mentation, simulation and validation of a stochastic model for the
generation of daily occupancy patterns in different economic sec-
tors with a high impact in the total energy demand of a country.

The TUS was highlighted as a useful source of information for
this aim that together with the Markov Chains methodology and a
stochastic simulation allowed obtaining the necessaries transition
matrices for the process in the context of Spain. Nevertheless, the
proposed methodology can easily be adapted to any other location
due to the effort to harmonize the TUS at least within Europe.

Subsequently and using the proposed simulation method both
individual and aggregated occupancy results for the different sector
were obtained distinguishing between the type of day and the type
of working hours. Those results showed the broad variety of daily
patterns and pointed out the importance of having the type of day
and the type of working hours as additional input parameters.

The results were validated using the original TUS information.
Both the RMSE and the NVF were studied due to the stochastic
nature of the process. Furthermore, the comparison with other
works demonstrated the consistency of the proposed model with
other analysis carried out in real buildings. These studies presented
some differences in the probability distribution of the mean
number hours of occupancy. However, a strong similarity between
the probability function and theWeibull distributionwas observed,
being a simplified alternative for future works.

Finally, the occupancy profiles were used for estimating various
energy indicators using the top-down and the bottom-upmodeling
philosophies. The top-down estimation results showed the accu-
racy of the model to estimate low-level consumption intensity
curves based on global indicators when the main influence factor is
the occupancy. However, it presented relatively significant errors in
sectors with a large baseload consumption. On the other hand, the
bottom-up approach indicated the possibilities of the model to be
used as a prediction and assessment tool for future scenarios by
means of simulating the high temporal resolution power profiles
based on the working cycles of the devices.

Therefore, and considering all the above exposed, the proposed
model stands out as an essential first step for the knowledge of the
occupancy patterns and linked energy intensity in the selected
sectors, offering a high temporal resolution in the results that also
makes them an invaluable source of information for building
simulation and assessment tools. Future works will be therefore
focused on the usage of this occupancy model as the input dataset
for the estimation of energy consumption in the commercial sector
and the assessment of energy policies aiming to reduce the con-
sumption and the integration of renewable energy sources.
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