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Abstract 30 

Forest ecosystems are increasingly exposed to the combined pressure of climate change 31 

and attacks by pests and pathogens. These stress factors can threaten already vulnerable 32 

species triggering dieback and rising defoliation and mortality rates. To characterize 33 

abiotic (drought, climate warmings) and biotic (pathogens) risks and their spatiotemporal 34 

patterns we quantified the recent loss of vitality for the endangered and relict Abies 35 

pinsapo forests from Andalusia, south-eastern Spain. Abies pinsapo is an iconic 36 

Mediterranean fir showing a high vulnerability to drought stress and also to several pests 37 

(Cryphalus numidicus) and root rot fungi (Armillaria mellea). We analyzed a monitoring 38 

network dataset of radial growth, defoliation and mortality from 2001 to 2017 including 39 

1025 trees situated in three major mountain ranges (Sierra de Grazalema, Sierra de las 40 

Nieves, and Sierra Bermeja). We fitted several statistical models to determine the main 41 

drivers of changes in defoliation, a proxy of tree vigor, and mortality. Defoliation and 42 

mortality rates were much higher towards the East of the study area, mirroring the 43 

gradient from Atlantic to Mediterranean climatic conditions. In the most affected stands 44 

tree defoliation increased in response to a combination of long and severe droughts, with 45 

attacks by the beetle C. numidicus. Mortality rates increased in response to a higher 46 

defoliation rate, a lower relative radial-growth rate, long and severe droughts and a higher 47 

incidence of A. mellea. Our findings illustrate the value of monitoring networks recording 48 

changes in forest health to quantify and forecast future vulnerability of threatened tree 49 

species. 50 

 51 

Keywords: Forest health, monitoring network, defoliation rate, mortality rate, 52 

Mediterranean fir forests.   53 
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1. Introduction 54 

Damaging biotic agents and climate change are two of the global-change components 55 

tightly interrelated which negatively impact forest health and affect the sustainability of 56 

forest resources (Trumbore et al., 2015). For instance, an increasing frequency of extreme 57 

climatic events such as droughts has been shown to threaten forest health at a global scale 58 

(McDowell et al., 2020). There is also evidence for an increasing impact of forest pests 59 

and diseases contributing to changes in forest composition, structure, and ecosystem 60 

processes (Ayres and Lombardero, 2000; Cobb and Metz 2017). However, we still do not 61 

have full understanding on how forests respond to the interaction between these threats, 62 

particularly in small remnants of threatened and vulnerable tree populations. This is due 63 

to the complexity of understanding the mechanisms underlying the relationship between 64 

forest health and stress factors (Hartmann et al., 2018; Senf et al., 2018; Seidling, 2019). 65 

In this context, a loss in forest health and tree vigour may compromise the ability of forest 66 

to maintain productivity, long-term sustainability of related ecosystems services, and 67 

resilience. 68 

Mediterranean fir forests are among the most threatened forest ecosystems in 69 

Europe (Linares 2011). For instance, several studies suggest that both abiotic and biotic 70 

stress factors significantly reduced radial growth in Mediterranean fir forests, causing 71 

extensive defoliation and triggering dieback and mortality events (Sánchez-Salguero et 72 

al. 2017; Gazol et al., 2020). This pattern is particularly relevant for those populations 73 

located at their southernmost or xeric limit of distribution, where they tend to form 74 

fragmented and relict populations. In these stands, additional stress imposed by climate 75 

change and droughts may make them more vulnerable to pest and pathogen attacks, 76 

ultimately threatening their existence. An emblematic species in this status is the Spanish 77 

fir (Abies pinsapo Boiss. subsp. pinsapo), currently occurring in small mountain areas in 78 
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Southern Spain (Linares et al. 2010a). Abiotic stress factors such as drought seem to act 79 

simultaneously with biotic factors driving A. pinsapo forest dynamics (Linares et al., 80 

2010a, 2011). In fact, the co-occurrence of drought and damage related to pests and 81 

pathogens such as the root rot fungus Heterobasidion annosum (Fr.) Bref. s.l. and the 82 

bark beetle Cryphalus numidicus (Eichhoff, 1878) have been related to periods of growth 83 

decline and high mortality rate of A. pinsapo (Navarro-Cerrillo and Calzado, 2004; 84 

Linares et al., 2010b). Lately, there is new evidence for the more widespread occurrence 85 

and effects of these mortality and defoliation events (Lechuga et al., 2017).  86 

Understanding the relevance of the different stress factors driving the 87 

phytosanitary status of unique, relict A. pinsapo forests is of paramount importance to 88 

promote adaptive management strategies towards their conservation. Forest health status 89 

is the result of complex mechanisms acting in conjunction. Overall, we expect higher 90 

fitness (e.g., increased growth) in those areas where the environmental conditions match 91 

the optima for the species (Dobbertin 2005). In contrast, increasing levels of stress proxies 92 

such as defoliation and mortality should indicate problems in forest health and 93 

productivity (Teshome et al., 2020). Unfortunately, the relationships between these two 94 

groups of factors are not always clear, as there might be lagged responses and complex 95 

site-dependent effects between abiotic and biotic stress factors.  96 

To address these uncertainties, systematic monitoring networks offer a unique 97 

source of information providing spatio-temporal information on forest health considering 98 

several proxies of tree vigour. Forest health assessment systems and networks are needed 99 

to understand current and future changes in biotic and abiotic stress factors and their 100 

relationship with tree health (Potter and Conkling, 2017). In Europe, the International 101 

Cooperative Programme on Assessment and Monitoring of Air Pollutant Effects on 102 

Forests (ICP Forests Network) has been monitoring forest condition using harmonized 103 
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methods and criteria (Bussotti and Pollastrini, 2017). ICP assessments have allowed 104 

compiling detailed cases of forest dieback and growth decline throughout Europe, 105 

showing an increased impact of biotic and abiotic stress agents on forest health and 106 

ecosystem processes (Ferretti et al, 2014; Seidling, 2019), including drought-prone 107 

Mediterranean countries. For instance, in Spain several episodes of defoliation loss and 108 

increased mortality have been shown in several conifers (Carnicer et al. 2011; Cruz et al., 109 

2014).  110 

Since the late 1990s, large areas of conifer forests in Andalusia (southern Spain) 111 

have shown dieback episodes characterized by high levels of defoliation and mortality 112 

(Sánchez-Salguero et al. 2012; Cruz et al., 2014). We used Spanish fir forests as study 113 

case to understand the critical factors affecting forest health on Mediterranean conifer 114 

forests. These forests have been monitored during the period 2001 2017 through an 115 

intensive Monitoring Forest Health Network using harmonized ICP methods (Navarro-116 

Cerrillo and Calzado, 2004). This network is a unique setup towards understanding 117 

complex mechanisms behind species decline on its whole distribution geographical scale 118 

(Axelson et al., 2019). The objective of this research is to describe the current status of 119 

health condition of A. pinsapo forests and to analyse the temporal trends in defoliation 120 

and mortality to identify potential drivers (i.e., climatic, edaphic, dasometric and biotic 121 

variables) underlying these processes. Specifically, we aim to: (i) describe the spatial and 122 

temporal trends of annual defoliation and mortality rates, (ii) identify the main abiotic 123 

and biotic stress factors contributing to mortality and defoliation of A. pinsapo, and (iii) 124 

understand the relationships between two key forest health indicators (growth and 125 

defoliation) driving A. pinsapo forest dynamics. We discuss findings in relation to the 126 

future stability of A. pinsapo forests threatened under global change and suggesting 127 

adaptive management and mitigation strategies.  128 
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2. Material and Methods 129 

2.1. Study area  130 

The study area consists of a long, northerly-running ridge located in southwestern Spain 131 

(Malaga and Cádiz provinces, Andalusia; 36° 43 . 1). The area ranges 132 

in elevation from 700 to 1800 m.a.s.l. with A. pinsapo occurring mainly in wet or mesic 133 

sites. The occurrence of these forests is concentrated in three distinct mountain regions: 134 

Sierra de las Nieves (hereafter SN), Sierra Grazalema (hereafter SG) and Sierra Bermeja 135 

(hereafter SB) (Fig. 1). These forests are subjected to water deficit in summer from June 136 

to September, a typical feature of Mediterranean climate. Average annual precipitation in 137 

the area is 1089 mm and mean annual temperature is 11.6 °C. Soils are predominantly 138 

calcareous. Most formerly pure A. pinsapo forests were converted by long-term human 139 

use to mixed forests with evergreen and deciduous oak species (Quercus ilex L. subsp. 140 

ballota (Desf.) Samp. and Q. faginea Lam., respectively), and natural and planted 141 

Mediterranean pine species (Pinus halepensis Mill., Pinus pinaster Aiton.).  142 

 143 

2.2. Forest health diagnosis 144 

In 2001, a Level I forest damage monitoring network (RED PINSAPO) was established 145 

according to a systematic sampling design (1×1 km; N=43 plots) (Fig. 1). Plots were of 146 

variable radius, and 24 trees were selected according to ICP methodology (6 trees per 147 

quadrant, NE, SE, SW and NW) (Eichhorn et al., 2016; Consejería de Medio Ambiente y 148 

Ordenación del Territorio, 2018). Plots were dominated by A. pinsapo (cover over 50%). 149 

Tree diameter at breast height (dbh, measured at 1.3 m) was measured to calculate a 150 

relative growth rate from 2001 to 2017 (RGR). Annual monitoring of several variables 151 

used to describe tree health was performed on all tagged trees each year in August or 152 

September (i.e., crown defoliation and mortality, and biotic and abiotic damages). 153 
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Defoliation was assessed visually on all the trees present in the plots into one of twenty 154 

percentage classes (intervals of 5 units between 0 and 100) in comparison to a local 155 

according to Level I ICP Forests standard (Eichhorn et al. 2010) by the 156 

same independent team. The use of defoliation as a tree health status condition is a 157 

practical convention, even though it cannot be considered a true tree physiological trait 158 

(Lorenz and Becher 2013). All dead trees were recorded and substituted by another tree 159 

of similar size and sociological status within the plot to estimate plot defoliation with the 160 

same number of individuals. For mortality analysis replacement trees were excluded from 161 

this study. The number of assessed trees in this period comprised 1025 A. pinsapo 162 

individuals.  163 

The mortality rate was calculated as: 164 

 165 

        (1) 166 

where Nt1 is the number of trees that survived the census interval (2001-2017), Nt0 the 167 

initial number of trees and T the time span (2001 2017). To provide a better 168 

understanding of the spatial drivers of mortality, mortality rates were also calculated for 169 

the three distribution areas (SB, SG and SN ranges) (Fig. 1).  170 

Biotic and abiotic agents were described using standard symptoms, apparent 171 

severity (level of damage and abundance), and the inferred cause (when known) (see ICP 172 

Forests 2004). Pest severity was expressed as number of trees damaged in 2017 by several 173 

major pathogens or pests including fungi (Armillaria mellea (Vahl.: Fr.) Kumm.) and 174 

insects (Cryphalus numidicus Eich., and Dioryctria auloi Barbey). Finally, tree species 175 

richness per plot was also obtained (TDv). 176 

  177 
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 178 

2.4. Environmental variables 179 

The dataset contains several categories of variables: mean climate (e.g., temperature, 180 

precipitation), annual climate (temperature, precipitation and drought index), topographic 181 

(e.g., slope, aspect), and edaphic conditions (e.g., texture, soil pH) (Table S1, 182 

Supplementary Material). All data layers were downloaded from the Andalusian 183 

Environmental Information Network  REDIAM 184 

(http://www.juntadeandalucia.es/medioambiente/site/rediam/). Mean climate (period 185 

1971 2000), topographic and edaphic data were extracted from the Forest Biomass 186 

project of Andalusia at a 100-m resolution (Table S1, Supplementary Material; see 187 

methods at Guzmán-Álvarez et al 2012). Annual climate variables were calculated from 188 

monthly precipitation and temperature interpolations of meteorological stations located 189 

in Andalusia at 500- and 100-m resolution, respectively. To quantify drought severity, we 190 

obtained the Standardised Precipitation-Evapotranspiration Index (SPEI) calculated at 191 

18- (SPEI18) and 24-month resolutions (SPEI24) from the SPEI global drought database 192 

at a 0.5º resolution (http://sac.csic.es/spei/index.html; accessed 12 December 2020). 193 

These two periods correspond to mid- and long-term duration droughts. This multi-scalar 194 

drought index allows characterizing deviations of normal water-balance conditions by 195 

considering changes in precipitation and evapotranspiration rates (Vicente-Serrano et al. 196 

2010).  197 

Prior to analysis we checked potential collinearity problems among the 198 

explanatory variables using the Pearson correlation coefficient (Zuur et al., 2010). We 199 

selected variables with a pair-wise correlation lower than 0.6 (Figure S1).  From the sets 200 

of highly correlated variables, we selected those with the widest use in the literature and 201 

clearest biological meaning in relation to the study system (Table S1, Supplementary 202 
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Material). The final selection included: drought index (24-month long SPEI in summer; 203 

SPEI24), average total precipitation (ptt), slope and insolation (ins) of each stand, soil 204 

depth (ps) as well as the relative growth rate (RGR) and stand Dbh in 2017 (D2017). 205 

Finally, we also considered the pest severity by Armillaria mellea (Am), Cryphalus 206 

numidicus (Cn) and Dioryctria auloi (Da) and tree diversity of the plot (TDv).  207 

 208 

2.5. Spatio-temporal patterns of defoliation and mortality rates 209 

Kernel Density Estimation (KDE) was used to assess the spatio-temporal correlation 210 

patterns of tree defoliation and mortality rates. This is a non-parametric method which 211 

estimates the probability density function of random variables and has been widely used 212 

in forest ecology (Wandresen et al., 2019). The distribution patterns of defoliation and 213 

mortality rates were explored based on finite data samples , and 214 

KDE was calculated for each year of the time series (2001 2017) weighting observations 215 

by the number of dead individuals recorded and the defoliation levels. We selected a 216 

Gaussian kernel density (KD) function, and the optimal bandwidth was estimated using 217 

leave-one-out least-squares cross-validation for bivariate KD bandwidths estimation in 218 

the sparr R package (Davies et al., 2018).  219 

 220 

2.6. Relationships between abiotic and biotic strees factors and defoliation 221 

The response function of defoliation with respect to environmental and management 222 

variables was studied in each of the monitoring network plots. We applied linear mixed-223 

effects models (Pinheiro and Bates 2000) to study the relationship between stand 224 

defoliation and the climatic, topographic and forest related conditions of each stand in the 225 

period 2001 2017. Models were created for all sites and for each site, separately 226 

(excluding Sierra Bermeja due to the low number of points). We used plot identity as a 227 
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random factor to account for the longitudinal structure of the data (i.e., defoliation was 228 

assessed in the same trees during the study period). Defoliation was log-transformed 229 

(log(x+1)) prior to the analyses. As explanatory variables we included all non-collinear 230 

variables indicated in previous section. We also considered potential interactions between 231 

the drought index and other variables (see full model variables in table S3). To determine 232 

the impact in the results of outliers and extreme values, we evaluated the fit of the model 233 

graphically by examining the residuals and the fitted values (Zuur et al. 2010). 234 

The resulting models that were generated with the different combinations of the 235 

explanatory variables were ranked according to the second order Akaike Information 236 

Criterion (AICc). The AICc of each model was calculated as the difference between the 237 

AICc of each model and the minimum AICc found for the set of models. The AICc can 238 

be used to select those models that best explain the response variable AIC 239 

values lower than 2 indicate the suitability of the selected model while values above 7 240 

indicate a poor fit as compared to the best model (Burnham and Anderson 2002). The 241 

relative importance of the explanatory variables included in the selected models was 242 

calculated based on the Akaike weights of each model. For each variable, the importance 243 

is calculated as the sum of model weights over all models including each variable. The 244 

larger the importance of the models in which the variable is present the more relative 245 

importance the variable has. 246 

Model comparison and averaging were used to select the best model and to assess 247 

the relative importance of each variable (Burnham and Anderson 2002). After selecting 248 

those models having a AICc lower than 10 (i.e., the best models), the coefficients for 249 

each one of the explanatory covariates included in the model were estimated by means of 250 

model averaging. To elucidate potential influences of outliers and extreme values, we 251 
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evaluated the fit of the model by graphical examination of the residuals and the fitted 252 

values (Zuur et al. 2010).  253 

Statistical analyses were carried out in the R environment v 3.6.3 (R Core Team, 254 

2020). nlme package was used to fit the linear mixed-effects 255 

models (Pinheiro et al., 2014). The MuMIn package was used to perform the multi-model 256 

selection (Barton 2012). The visreg package was used to visualize results of the linear 257 

mixed-effect models (Breheny and Burchett 2017). 258 

 259 

2.7. Models of mortality rates 260 

We studied the variability of mortality rates across regions and environmental factors 261 

with a combination of different analyses. First, we calculated the mortality time series for 262 

each individual tree. It comprised the number of years from the year of plot establishment 263 

(2001) to the date of tree death (up to 2017). Second, we used the Kaplan-Meier 264 

estimation method to create tree survival curves and to determine the unadjusted 265 

probabilities of survival (with associated 95% confidence intervals) for the studied period 266 

(2001 2017). Chi-squared test was performed to determine if significant differences were 267 

present among the survival probability of each mountain region, and pairwise multiple 268 

269 

between groups (Logan et al., 2005). Third, we explored the relation between mortality 270 

(i.e. time to death) and the three sets of non-collinear variables (i.e. tree level 271 

characteristics, health status and site conditions) using Cox proportional hazard models 272 

(Cox 1972). As trees were nested in plots, we controlled by plot id using two separate 273 

methods, clustering and random effect ( . As results were 274 

similar, we present for simplicity the clustering method. We implemented separate 275 

models for each group of variables and all combined. For each model we performed an 276 
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automatic selection of variables based on AIC following a similar procedure that 277 

Esquivel-Muelbert et al. (2020). Finally, we carried out and compared separate cox 278 

proportional hazard models for the two mountain regions with mortality (SG and SN). 279 

These analyses were performed using the following R packages: stats, survival, 280 

survminer, ggplot2, ggfortify, and ranger (Kassambara and Kosinski, 2018; Therneau and 281 

Grambsch, 2000). 282 

 283 

3. Results 284 

3.1. Spatial and temporal trends in defoliation and mortality rates 285 

Defoliation and mortality rates varied significantly across the distribution of A. pinsapo 286 

(Figs. 2 to 4, Supplementary Table S2). At the distribution area, defoliation (mean±SD) 287 

slightly increased from 2001 (D2001=16.67±1.66%) to 2017 (D2017=19.94±1.09%), 288 

decreasing in SB (D2017=13.12±2.24%), and increasing in SG (D2017=18.64±3.88%), and 289 

SN (D2017=20.98±0.98%). Defoliation of A. pinsapo showed a clear spatial pattern, 290 

increasing from western sites (SB) to the northeast (SN) (Fig. 4).  291 

Mortality was also higher in SN (1.03±0.30% year-1) than in SG (0.74±0.28% 292 

year-1), with high differences until the year 2012, but without significant differences at 293 

the end of the period (P=0.272) (Fig. 3). In SG we noticed a significant change in the 294 

mortality trend after this year, meanwhile the mortality trend was stable over the whole 295 

period in SN. There was not mortality in SB during the time span of this study. Similarly, 296 

the KDE approach highlighted some areas in SN with high mortality rates, with lower 297 

incidence in SG and no mortality in SB (Fig. 4). 298 

  299 
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 300 

3.2. Models of tree defoliation 301 

Defoliation did not differ significantly (P<0.01) between sites (Table S2 Supplementary 302 

Material). A. pinsapo defoliation was not directly associated with any of the tree, health 303 

or site factors considered (Table 1). We only found a significant interaction between the 304 

presence of C. numidicus and long-term droughts (SPEI24) (Table 1), indicating that 305 

higher defoliation levels appeared at the combination of higher pest and drought levels 306 

(Fig. 5). 307 

 308 

3.3. Models of mortality rate 309 

Tree mortality rates significantly differed among zones according to the Kaplan-Meier 310 

analysis (Fig. 3; 2=11, P<0.01). A. pinsapo mortality risk across the species distribution 311 

area depended on the characteristics of tree-level attributes, health status and site 312 

conditions (Table 2). Mortality models including all traits performed better than models 313 

with either group of risk factors alone (Table 2). Models with only health plot status traits 314 

predict mortality better than models containing only tree-level attributes (Table 2).  315 

Relative growth rates, defoliation changes and damage by A. mellea were the best 316 

predictors of tree mortality (Table 3). Specifically, we found higher mortality risk for 317 

slow growing trees, with defoliation above 50%, high occurrence of A. mellea and after 318 

drought events (Fig. 6). Patterns were similar across sites, although the relevance of 319 

variables varied (Fig. 6, Table S7). In SN fast growing trees with higher defoliation were 320 

at higher risk, whilst in SG pests, mid-term droughts (SPEI18) and tree diversity impacted 321 

mortality (Table S7). Pest and pathogen incidence interacted significantly with tree and 322 

site factors (Table 3). Specifically, A. mellea and C. numidicus produced higher mortality 323 

risk at higher insolation levels.  324 
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 325 

4. Discussion 326 

We provide here the first comprehensive, spatio-temporal assessment of A. pinsapo 327 

mortality and defoliation based on a systematic health monitoring network. Previous 328 

studies of health status in these forests have been highly localized or restricted to a small 329 

number of plots (Linares et al., 2009, 2010a; Lechuga et al. 2017). We show that a 330 

combination of stress factors is likely to be the most common cause of defoliation and 331 

mortality across the species distribution area in southern Spain. This is in line with 332 

previous studies showing how elevated tree mortality rates are one of the main symptoms 333 

of climate change impact on drought-prone A. pinsapo forests (Linares et al., 2009, 2011, 334 

Navarro-Cerrillo et al., 2020a). 335 

 336 

4.1. Spatial and temporal trends of defoliation and mortality rates 337 

Species-oriented forest health networks can describe the spatial and temporal patterns of 338 

tree defoliation and mortality over large areas (Carnicer et al., 2011) but also the 339 

characteristic health patterns of forest ecosystems of regional concern (Duque Lazo et al., 340 

2017; Sánchez-Cuesta et al., 2021). This information is of paramount importance for 341 

vulnerable populations situated at the geographic or climatic edges of their distribution 342 

or in xeric areas which are under high risk of being impacted by severe and long droughts. 343 

Specifically for A. pinsapo, we observed a consistent pattern in defoliation and mortality 344 

rates, which were higher in the North Eeastern part of the study area (i.e. Sierra de las 345 

Nieves) and related to drought and key pest damages. In the other locations (Sierra 346 

Bermeja and Sierra de Grazalema) defoliation and mortality rates were lower, and health 347 

drivers could not be identified. These contrasting findings across regions coincide with 348 

the dissimilar bioclimate types developed for A. pinsapo (Fernández Cancio et al. 2007). 349 
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Sierra de Grazalema and Bermeja locations show a clear Atlantic influence in comparison 350 

with the Mediterranean character of the highly affected Sierra de las Nieves. The higher 351 

mortality and defoliation rates spreading to the east during the study period, partially 352 

agree with previous studies based on species distribution models (Fernández-Cancio et 353 

al., 2007; López-Tirado and Hidalgo, 2014; Navarro-Cerrillo et al., 2021), which reported 354 

a rapid reduction of the optimal areas for A. pinsapo in Sierra de las Nieves, probably 355 

connected with a decrease of Mediterranean convective conditions.  356 

 357 

4.2. Drivers of defoliation rates 358 

The annual defoliation rate of A. pinsapo showed moderate average values (17.6%), 359 

similar or slightly lower to those obtained for other European tree species (Klap et al., 360 

2000; Cruz et al., 2014; Michel et al. 2014). The increasing defoliation trend showed here 361 

has been also identified in the European ICP Network for the most abundant tree species 362 

(Fischer et al., 2010). Particularly, defoliation of A. pinsapo was enhanced by an 363 

interaction of long droughts and damage related to attacks by the bark beetle C. 364 

numidicus. These results are consistent with spatial distribution models which identified 365 

drought-related climatic variables and microclimatic drivers (e.g., aspect) among the most 366 

relevant factors to explain current A. pinsapo distribution (Navarro-Cerrillo et al., 2021).  367 

 368 

4.3. Drivers of mortality rates 369 

Tree mortality is one of the most relevant variables assessed by European forest condition 370 

networks (Lorenz and Becher 2013; Neumann et al., 2017). Our empirical results from 371 

the A. pinsapo monitoring network show high values of accumulated tree mortality 372 

(11.53%), and mortality rates (0.90% year-1), significantly higher than that obtained from 373 

other forest health networks (0.010-0.015% year-1, Van Mantgem and Stephenson, 2007) 374 
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and other Mediterranean species (e.g., Q. ilex, 0.153%) in southern Spain (Sánchez-375 

Cuesta et al., 2021). High A. pinsapo mortality rates have been related to biotic (Navarro-376 

Cerrillo et al. 2003; Sánchez et al., 2007) and abiotic stress factors (Linares et al., 2010 377 

a) such as pests, pathogens and drought. In our study, mortality was higher for slow 378 

growing trees, with defoliation above 50%, high occurrence of A. mellea and after major 379 

drought events. Tree diversity was not a significant factor, but recent studies have 380 

highlighted the relationship between drought impacts in forests and functional diversity 381 

modulating, among others ecosystem functions, their vulnerability to climate-related 382 

stresses (see Grossiord, 2020). It should be better investigated if more diverse 383 

neighbourhoods increase functional diversity and buffer or provide resilience to A. 384 

pinsapo as it has been indicated for A. alba during drought (Gazol and Camarero 2016). 385 

Mortality risk increased with the occurrence of pathogenic fungi such as A. mellea 386 

and the insect C. numidicus. Both biotic agents are extremely relevant in the dynamic of 387 

A. pinsapo forests, particularly under stressing abiotic conditions (Arista et al. 1997). 388 

Specifically, we found higher mortality rates when these biotic agents occurred in sites 389 

of high insolation. We hypothesized that in these highly exposed areas (e.g. southern 390 

slope and higher altitudes) A. pinsapo is more vulnerable to the attack of pests, eventually 391 

producing mortality events. Other possible causes of the increase in mortality not studied 392 

here is the incidence of other pathogenic fungi such as Heterobasidium annosum (De Vita 393 

et al., 2010); or complex interactions (senescence with age, lack of suitable management, 394 

etc., Lechuga et al., 2017). Despite multiple causality of mortality, our results highlight 395 

some of the most relevant drivers of mortality on A. pinsapo forests, which can provide a 396 

better understanding of Spanish fir mortality.  397 

  398 
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Forest and natural resource managers must develop new adaptive strategies to 399 

respond to climatic changes (Nocentini et al., 2017). Those strategies should be supported 400 

by relevant information on observed and projected climate impacts. Regional and local 401 

forest health monitoring networks supply on-the-ground forest data for operational-scale 402 

adaptation measures to adapt forest ecosystems to climate change (Gustafson et al., 2020). 403 

Our results showed some key element for an adaptive silviculture for climate change on 404 

A. pinsapo forests: control of high-risk pests or maps of mortality pattern to orient the 405 

establishment of operational-scale adaptation plots to test specific ecosystem adaptation 406 

treatments to climate change through a gradient of adaptive approaches. Those actions 407 

contribute to integrate new conceptual tools and processes into silvicultural decisions and 408 

management in a context of climate change. 409 

5. Conclusions 410 

Regional and local forest-health monitoring networks are useful tools to provide robust 411 

data field changes in vigour and health of vulnerable tree species as we illustrated with 412 

the iconic Mediterranean fir A. pinsapo. The data recorded in the Spanish fir monitoring 413 

network allowed recording changes in forest health condition and assessing cause-effect 414 

relationships between tree status (defoliation and mortality), abiotic (drought, 415 

topography) and biotic (pests, pathogens) stress factors. Our results show that areas in the 416 

north-east part on the A. pinsapo distribution (Sierra de las Nieves) have shown increasing 417 

defoliation and mortality rates, which were overall related to drought severity, radial-418 

growth loss and damage caused by pests and pathogens (Armillaria mellea and Cryphalus 419 

numidicus). Those processes seem to be related to two major stress factors: first, the 420 

increase of the aridity gradient from west to east areas influenced by different atmospheric 421 

patterns from the Atlantic Ocean and the Mediterranean Sea, respectively; and second, 422 

the spread and increase of severity of forest pest and diseases during the last decades 423 
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(Navarro-Cerrillo et al., 2020b). Drought is supposed to be a predisposing factor which 424 

forces the sensitivity to other biotic and abiotic stress factors (Manion and Lachance, 425 

1992). Those biotic stressors such as fungi of Armillaria species or beetles have been 426 

featured as major damage agents in other conifer forests (Müller et al., 2018). Finally, 427 

there are very few studies considering the impact of atmospheric pollutants over time, but 428 

some reports conclude that it could be also important to explain A. pinsapo defoliation 429 

(Blanes et al., 2013). Therefore, a continuous increase in A. pinsapo dieback incidence 430 

can be expected in the coming years in the most defoliated areas (Sierras de las Nieves) 431 

as has been illustrated under different growing conditions (Linares et al., 2009, 2011; 432 

Navarro-Cerrillo et al., 2020b). Future monitoring efforts must consider ecosystem 433 

function and stressor indicator relationships within the framework of an appropriate 434 

statistical design.  435 
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Figure 1. Location of the three major mountain ranges (sierras) where Abies pinsapo 
stands are located in south-eastern Spain (Sierra Bermeja, Sierra de Grazalema and Sierra 
de las Nieves). 
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Figure 2. Defoliation trends of Abies pinsapo in Sierra de Grazalema (green line), Sierra Bermeja 
(black line) and Sierra de las Nieves (red line). The solid lines and dots represent the average 
defoliation while the shaded area represents the standard error for the mean (± SE). The solid blue 
line shows the drought index (average SPEI) in the Sierra de las Nieves site. 
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Figure 3. Survival probability graph of Abies pinsapo using Kaplan-Meier mortality 
estimation for the three main distribution locations (SB, Sierra Bermeja, black line; SG, 
Sierra de Grazalema, green line; SN, Sierra de las Nieves, red line). X-axis, years since 
the beginning of the monitoring of the health status of the trees on the study plots (2001-
2017); Y-axis, proportion of surviving trees (survival rate). The shaded area indicates the 
standard error of the estimate for each location. 
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Figure 4. Kernel density analysis of A. pinsapo defoliation rate (left, percent defoliation 
over 24 trees per plot; adimensional density scale) and mortality (right, adimensional 
density scale) in 2001 (top) and 2017 (bottom) across the species distribution area based 
on a Kernel density model. X and Y axis showed longitude and latitude respectively 
(CRS: ETRS89 / UTM 30N) 
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Figure 5. Defoliation rate increased as a function of long droughts (quantified as the 
Standardised Precipitation-Evapotranspiration Index-SPEI24 for the 24-month period, x 
axis) and pest severity expressed as number of trees damaged by Cryphalus numidicus 
(Cn) (y axis). 
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Figure 6. Risk factors identified in the Cox proportional hazard models predicting tree 
mortality across Abies pinsapo forests for all the study area (black line) and the two areas 
with more mortality: Sierra de las Nieves (green line), and Sierra de Grazalema (red line). 
Shaded areas represent the standard error for each coefficient and dotted lines represent 
non-significant risk factors. Selected explanatory variables include relative stem diameter 
growth rates, defoliation rate between 2001 and 2017, pest severity expressed as number 
of trees damaged by Armillaria mellea and Cryphalus numidicus, and drought severity 
represented as the average of Standardised Precipitation-Evapotranspiration Index 
(SPEI24) for a 24-month period. 
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Figure 7. Interaction between abundance two agents (Armillaria mellea and Cryphalus 
numidicus) and insolation to predict tree mortality across Abies pinsapo forests for all the 
study area. Shaded areas represent the standard error for each coefficient. Interaction is 
shown across three levels of abundance (1, 3 and 6 trees infected in the plot),  

 

 
 



 

Table 1. Defoliation model of Abies pinsapo. Multimodel inference results of the averaged best 
models explaining % defoliation (conditional average on models < 7 AICc). Defoliation factors 
include characteristics from the trees: size, represented by tree diameter at breast height in 2017 
(D2017), tree species richness (TDv), relative stem diameter growth rates (RGR); health status: pest 
severity expressed as number of trees damaged by Armillaria mellea (Am), Cryphalus numidicus 
(Cn), and Dioryctria aulloi (Da); and site conditions: and site conditions: drought represented as 
the Standardised Precipitation-Evapotranspiration Index (SPEI24) for the 24-month in the period 
2001-2017, insolation (ins), soil depth (ps), slope (pte) and total precipitation (ptt). Interactions 

. In bold, the coefficients that significantly differ from 
zero (p< 0.001).  

 
 Value Std.Error Adjusted SE z value  Pr(>|z|) 

All locations 
(Intercept) 1.159 0.186 0.186 6.223 0.000 
Cn 0.010 0.007 0.008 1.281 0.200 
Da -0.047 0.026 0.027 1.759 0.079 
D2017 0.001 0.001 0.001 1.180 0.238 
RGR -0.138 0.093 0.096 1.436 0.151 
SPEI24 -0.008 0.014 0.014 0.574 0.566 
Cn: SPEI24 -0.005 0.001 0.001 3.682 0.000 
D2017: SPEI24 0.000 0.000 0.000 1.860 0.063 
ps -0.001 0.001 0.001 0.813 0.416 
ptt 0.000 0.000 0.000 0.824 0.410 
TDv 0.030 0.045 0.046 0.664 0.507 
Am 0.009 0.023 0.024 0.393 0.694 
Di: SPEI24 -0.003 0.007 0.007 0.505 0.614 
ins -0.022 0.115 0.119 0.188 0.851 
pte 0.000 0.004 0.004 0.072 0.943 
ptt: SPEI24 0.000 0.000 0.000 0.122 0.903 
Am: SPEI24 0.001 0.005 0.005 0.177 0.860 
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Table 2. Comparison between different Cox proportional hazard models predicting tree 
mortality across Abies pinsapo forests. Models are sorted according to AIC values.  
 

Tree-level 
attributes 

Health status Site 
condition 

AIC Wald test Model description 

RGR***  SPEI24 

***+ins 
1064 297.7*** Full model 

 
Cn* 

 1119 579.7*** Health status only 

D2017* + RGR***   1300 133.1*** Tree-level only 

  SPEI24 + 
ps+pte+ins 

1596 0.54 Site conditions only 

Models vary according to risk factors considered, including tree-level characteristics: tree size, represented by tree 
diameter at breast height in 2017 (D2017) and relative stem diameter growth rates (RGR), health status: defoliation rate 

Armillaria mellea (Am), and 
Cryphalus numidicus (Cn); and site conditions: drought represented as the average of Standardised Precipitation-
Evapotranspiration Index (SPEI24) for the 24month period, insolation (ins), soil depth (ps), slope (pte) and total 
precipitation (ptt). Significance levels: ***: p < 0.001, *: p < 0.05.  

 
 

 



 

Table 3. Coefficients from the best (lowest AIC) Cox proportional hazard model of Abies 
pinsapo tree mortality for the full model and with mortality 
between biotic agents (Armillaria mellea (Am) and Cryphalus numidicus (Cn)) and the 
rest of variables. 
       

 coef exp(coef) se(coef) robust se z Sig. 
All sites (n=1023, d=117) 

RGR -1.85 0.16 0.79 0.51 -3.64 *** 
Am -1.21 0.30 0.63 0.38 -3.21 ** 
Cn -0.81 0.44 0.30 0.21 -3.92 *** 

 0.06 1.06 0.00 0.00 11.89 *** 
SPEI24 -1.62 0.20 0.52 0.62 -2.60 ** 
ins -2.28 0.10 1.29 1.12 -2.05 * 
RGR:Cn -0.40 0.67 0.24 0.20 -2.00 * 
Cn:ins 1.22 3.39 0.40 0.30 4.04 *** 
Am:ins 2.24 9.43 1.02 0.62 3.63 *** 

For each risk factor selected in the best model we provide the coefficient (coef), its standard error (SE), exponent (exp(coef)), and 
statistical significance (***<0.0001, **<0.001, *<0.05). Risk factors include: stem diameter growth rates (RGR), defoliation rate 

Armillaria mellea (Am) and Cryphalus numidicus (Cn), drought 
represented as the average of Standardised Precipitation-Evapotranspiration Index (SPEI24) for the 24-month period and insolation 
(ins). The number of trees included in the analysis (n) and the number of dead trees (d) are shown. 
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