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Abstract: Plant phenology is affected by climate conditions and therefore provides a sensitive
indicator to changes in climate. Studying the evolution and change in plant phenology aids in a
better understanding of and predicting changes in ecosystems. Vegetation Indices (VIs) have been
recognized for their utility in indicating vegetation activity. Understanding climatic variables and
their relationship to VI support the knowledge base of how ecosystems are changing under a new
climatic scenario. This study evaluates grassland growth phenology in the Biobio, Chile, biweekly
with Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation
Index (NDVI) time series. Four growth parameters for the six agro-climatic regions were analyzed
from 2001 to 2020: start and end of the season, time and value of maximum NDVI. For this purpose,
the NDVI time series were smoothed using Savitzky–Golay filtering. In addition, by using monthly
gridded database climate data, we studied correlations between phenology markers and rainfall,
maximum temperature and minimum temperature. The results show that both the start and end
of the growing season did not significantly change; however, all agro-climatic regions grow faster
and more vigorously. Thus, climatic conditions in Biobio have become more conducive to grassland
growth over the 2001–2020 period.

Keywords: phenology markers; vegetation index; climate; grassland

1. Introduction

Vegetation phenology is the study of biological patterns in plant growth over time,
such as germination, flowering, fruiting, lead emergence, etc. Moreover, it examines how
these patterns relate to environmental factors, such as rainfall and air temperature, thus
providing information about vegetation productivity, carbon reserve and carbon dynam-
ics [1], which, in turn, yields data on the responses and adaptations of vegetation to climate
change [2]. Therefore, monitoring vegetation with phenological metrics provides data to
track changes in vegetation linked to events such as drought, fire, climate fluctuations or
directional climate change [3]. The impact of climate change on vegetation causes variations
in the phenological patterns of vegetation such as temporal displacement of phenological
cycles, changes in plant morphology, colonization by other species, or even extinction of
other species. Thus, these processes generate important indicators in ecosystem functions
and species composition [4,5].

Grasslands are widely distributed around the world and play an important role
in carbon storage [6], which is a crucial factor in the mitigation of climate change [7].
Grasslands also provide essential resources for animal life and humankind as well as
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maintain the stability of ecological systems [8]. Grasslands are especially important to food
supply as ruminants produce 37% more food, milk and meat than from pig and poultry [9].

As noted above, grassland plant growth is sensitive to regional and global climatic
conditions. Previous research has described how grasslands show complex and varied
responses to climate change [10,11]. Some studies concluded that warmer springs result
in an earlier start of season (SOS) [12,13]. However, if rainfall decreases, increasing tem-
peratures do not have a significant impact on phenology [14]. Due to the varied effects
of climate change on grassland phenology, it is important to understand the responses to
phenological events.

Changes in vegetation phenology were studied at a global level as well as regionally in
areas of Africa [15], Europe [16], the Tibetan Plateau [17] and the northern high latitudes [1].
Results show that the magnitude of these changes varies depending on location, species
and the temporal windows analyzed. Changes in phenology are mainly a response to
human activity, rainfall, and temperature [18]. Of all the phenological stages, the SOS
and the end of the growing season (EOS) are the most sensitive to climate change [19],
more specifically to the effects of global warming caused by the increased atmospheric
concentration of greenhouse gasses [20] and water availability [21]. At the same time, the
sensitivity to rainfall and temperature differs from region to region [22]. The consequence
of this is that the estimated long-term trends in phenological changes are different from one
location to another and even for the same location. For example, Jeong et al. [23] showed
different values of SOS and EOS in the northern hemisphere depending on the temporal
window analyzed.

The two approaches, ground observations and earth observation (EO), can be, respec-
tively, conducted to monitor vegetation phenology at a small scale [24,25] or at a large
scale [26,27]. The former provides highly accurate and detailed species-specific phenolog-
ical information, which is conducted through (a) visual observation of the states of the
plant life cycle [24], (b) gas exchange measurement [28] or, (c) on-ground near-spectral
measurements [29]. However, ground observations are inefficient, time-limited and expen-
sive [30]. Despite these disadvantages, ground observations are very useful in precision
agriculture for crop-specific phenological monitoring as they provide information for crop
management such as irrigation, fertilization, and other such practices. On the other hand,
EO images from sensors onboard satellite platforms offer vegetation data derived from
various spatial, spectral, radiometric and temporal resolutions [31,32] and have lower costs
and better spatial-temporal continuity [20]. However, specific phenological events are not
all directly detected, and therefore, vegetation patterns are calculated using Land Surface
Phenology (LSP) [33], which is more generalized. Remote phenological studies can be
divided into two groups, those which analyze trends in Vegetation Indices (VI) and those
that derive the duration of status of phenophases to detect changes in phenological patterns.
In both cases, data from remote sensing are obtained through temporal series of vegetation
indices (VI), mainly the Normalized Difference Vegetation Index (NDVI) [34,35] and the
Enhanced Vegetation Index (EVI) [36,37]. Of all the Earth observation projects, products
obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) are the most
efficient to develop long-term time series of vegetation phenology [38]. MODIS vegetation
products are used to monitor the phenology of forestall [39–41] and agricultural [42,43]
ecosystems, drought monitoring [44,45] and classify crop species [46].

The process of deriving phenological information from remote sensing data includes
three steps: (a) analyzing and improving the quality of VI time series, (b) VI time-series
smoothing and, finally, (c) identifying relevant periods such as SOS or EOS [31,47]. Firstly,
to reduce noise, such as the presence of clouds and/or shadows, off-nadir viewing ef-
fect or other errors, Maximum Value Composite (MVC) is applied to obtain temporally
composite data [48]. The outputted VI time-series still includes noise artifacts, making
smoothing necessary to minimize these residuals to be more representative [49]. The meth-
ods of VI time-series smoothing are classified into three groups: empirical methods [50,51],
curve fitting methods [52,53] and data transformation [54]. Finally, phenological met-
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rics extraction methods can be divided into two categories, threshold-based and change
detection methods.

The objective of this study was to track phenological changes in Biobio grasslands.
The study was carried out with the specific aims: (i) Are there significant differences in the
timing of phenological markers? (ii) What climatic variables contribute to them? (iii) Are
there any trends in these markers in the 2001–2020 period?

2. Materials and Methods
2.1. Study Area

The Biobio Region (Chile) (central coordinates 37◦15′ S, 72◦30′ W, WGS-84) covers an
area of 37,068 km2 (Figure 1a) and is divided in six agro-climatic regions: Secano Costero,
Secano Interior, Depresión Intermedia, Cordón Isla, Precordillera and Cordillera (Figure 1b).
This region is in a transition area ranging from a warm Mediterranean climate to a humid
and temperate climate which makes it sensitive to ecological changes, such as human land
use and the effects of climate change. Its bioclimatic variables per Hijmans et al. [55] and
through monthly rainfall and temperature values show a total annual range of precipitation
from 750 mm to 2000 mm, with the precipitation in the driest month being lower than
35 mm while in wettest month ranging from 150 mm to 350 mm. The temperature in the
warmest month is around 25 ◦C while the coldest month ranges from 0 ◦C to 7 ◦C, with the
annual mean temperature equal to 10 ◦C. Most of the region is covered by forest, followed
by croplands and grasslands.
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Figure 1. Study area: (a) general context and (b) agro-climatic regions in Biobio (Chile).

The Grasslands in the Biobio region are composed of temperate climate forage species
and are classified as natural and sown grassland. Natural grassland yields range from
1.7 to 8.0 tonnes DM × ha−1 × year−1 while sown grassland yields can exceed 15 tonnes,
DM × ha−1 × year−1. The natural grasslands are composed of species such as Avena
barbata, Bromus mollis, Hordeum murinum, Aira caryophyllea, Paspalum dilatatatum, Brisa minor,
Hypochoeris glabra, Erodium cicutarium, Lolium rigidum, Lolium multiflorum, Trifolium glomera-
tum and Medicago polymorpha; the sown grassland are composed of Lolium perenne, Lolium
multiflorum, Dactilis glomerata, Festuca arundinacea, Phalaris aquatica, Trifolium suterráneum,
Trifolium michelianum, Trifolium pratense, Trifolium incarnatum, Trifolium repens, Lotus peduncu-
latus, Medicago sativa and others [56].
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2.2. Evolution of Climatic Variables

This section explains the evolution of the accumulated rainfall and maximum and
minimum temperature variables for the six agro-climatic regions of the study area over the
period of 2001–2020. The per-year graph densities are shown in Figure 2, which includes
the agro-climatic region and climatic variable, the differences between the monthly mean
values and their corresponding monthly mean value over the whole time series. In addition,
in Appendix A, Figures A1–A3, represented in the boxplot, graphs the temporal evolution
of these variables on a monthly scale for the period studied.
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The variations in accumulated rainfall are represented in Figure 2a. When the density
graph shifts to the right of 0 in any given year, it means that that year had greater rainfall
within the period analyzed. On the other hand, when shifted to the left, that year was dry.
In addition, the density graphs in Figure 2a present a binomial distribution, implying an
irregular distribution of rainfall between very rainy and very dry periods and presenting
similar behaviors across the agro-climatic regions in overall accumulated rainfall. In general
terms, between 2001 and 2010, the annual density graphs show a distribution shifted to the
right, and therefore accumulated rainfall was higher than the mean of the total period. On
the other hand, from 2010 onwards, the curves shifted to the left and, therefore, it was drier.
Thus, the accumulated rainfall has been decreasing over the years. There are, however,
years with extreme accumulated rainfall values, both due to excess and deficiency. Thus,
years such as 2001, 2002, 2005, 2006 and 2014 show higher values than the average of the
values recorded between 2001 and 2020, while years such as 2007, 2010, 2012, 2013, 2016
and 2018 had values lower than the average.

In regard to temperature, density graphs shifted to the right of 0 mean warmer years,
while those shifted to the left mean colder years. The density graphs with variations of
the maximum temperatures with respect to their monthly mean values (Figure 2b) show
a tendency to shift to the right with respect to the central value of 0, which indicates an
increase in maximum temperatures at the end of the temporal series. The year 2016, in
particular, stands out for its increase in maximum temperatures to levels much higher than
those in other years within the study period. In addition, it can be seen that the peaks
of the density graphs are left at 0 at the beginning of the time series, which means that
monthly maximum temperatures were lower than the mean values for 2001–2020. As the
time series progresses, the crests of the density graphs move to the right, thus showing
increasing maximum temperatures. As with accumulated rainfall, this trend appears across
all the agro-climatic regions. Finally, the minimum temperatures, shown in Figure 2c,
display the same behavior as the maximum temperatures in such a way that the minimum
temperatures at the beginning of the time series were lower than the mean monthly values
of the time series analyzed and gradually shift to the right indicating an increase.

The time series of accumulated rainfall, maximum temperature and minimum temper-
ature was decomposed into three components: trend, seasonal and irregular components
through an additive model. Each agro-climatic region in Figure 3 shows the trend of the
climatic variables analyzed. All of the regions show a downward trend related to accumu-
lated rainfall (Figure 3a). This progressive decrease follows sinusoidal behavior, with very
wet years interspersed with drier ones. Moreover, this trend is evident from the beginning
of all the agro-climatic series. The Cordón Isla region (Figure 3(a.4)) is the driest of all the
regions with a mean value of 860 mm × year−1. On the other hand, Secano Costero, Pre-
cordillera, and Cordillera regions are the rainiest with 1478, 1434 and 1431 mm × year−1

average, respectively. Finally, Secano Interior and Depresión Intermedia have a mean
accumulated rainfall equal to 1071 and 1059 mm × year−1, respectively. In addition, the
Precordillera, Cordillera and Secano Costero regions present the most variability with
a standard deviation equal to ±270.9, 268 and 265 mm × year−1. The Cordón Isla, on
the other hand, has the least variability with ±214.0 mm × year−1. Lastly, the Secano
Interior and Depresión Intermedia regions have a standard deviation equal to ±244 and
231 mm × year−1, respectively. The wettest year was 2002 in all regions, reaching values
between 2093 mm in the Cordillera region and 1293 mm in Cordón Isla. The year 2013 was
the driest year in the regions of Secano Costero, Secano Interior and Depresión Intermedia,
with values equal to 1022, 724 and 767 mm, respectively, while 2007 was the driest year in
the regions of Cordón Isla, Precordillera and Cordillera, with annual rainfall values equal
to 601, 1055 and 1037 mm.
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In the case of temperatures, both maximum (Figure 3b) and minimum (Figure 3c)
temperatures show an upward trend in all the agro-climatic regions, with maximum
temperatures being more evident compared to minimum temperatures. In the case of
maximum temperatures (Figure 3b), the trend curves obtained show that from 2001 to 2010,
the upward trend is moderate. From 2010 onwards, the increase in maximum temperatures
is greater. The Cordillera region has the lowest mean maximum temperatures (16.5 ◦C) and
Cordon Isla has the highest (20.0 ◦C). The year 2016 had the highest maximum temper-
atures, with an average value for all regions equal to 20.7 ◦C, while 2007 had the lowest
maximum temperatures, with an average value equal to 17.8 ◦C. The standard deviation
of maximum temperatures in all regions was equal to ±0.5 ◦C. On the other hand, the
minimum temperatures (Figure 3c) between 2001 and 2010 present a negative trend, show-
ing lower temperatures. However, from 2010 onwards, minimum temperatures change
to an upward trend. The Cordillera region has the lowest mean minimum temperature
(2.01 ◦C) and Cordon Isla has the highest (7.98 ◦C). As with maximum temperature, the
year 2016 presented the highest minimum temperatures, with an average value for all
regions equal to 8.30 ◦C, while the year 2007 had the lowest minimum temperatures, with
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an average value equal to 5.35 ◦C. The standard deviation of maximum temperatures for
all regions is equal to ±0.5 ◦C. Based on the resulting trends obtained for accumulated
rainfall, maximum temperatures and minimum temperatures in the 2001–2020 period, the
six agro-climatic regions in Biobío are undergoing a reduction in water and an increase in
temperature.

2.3. Datasets and Image Processing

Figure 4 summarizes the methodology applied to this research. MODIS MOD13Q1
normalized difference vegetation index (NDVI) [57] was used as the remote sensing dataset,
while TERRACLIMATE [58] was used as the climate database. The extraction of remote
sensing and climate data for the study area between 2001 and 2020 was carried out with
Google Earth Engine (GEE) using Earth Engine Python API as the client server to connect
with Earth Engine Services. These extracted data, stored in Google Drive, were downloaded
for further processing on a local machine. Information on the areas occupied by grasslands
as well as the delimitation of the agro-climatic regions was obtained from the Corporación
Nacional Forestal (CONAF) [59]. Grassland areas for each region were used to determine
accumulated rainfall, maximum and minimum temperature, and NDVI trends. These data
were then analyzed to determine the statistical relationships between climatic variables
and NDVI. The phenological markers of the grassland were determined according to each
agro-climatic region.
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MODIS MOD13Q1 [57] data were used to study spatiotemporal changes in the grass-
lands. This dataset was computed from atmospherically corrected surface reflectance scenes
with a temporal resolution of 16 days and a spatial resolution of 250 m. These were masked
for water, clouds, cloud-shadow and heavy aerosols. Monthly climate data of maximum
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and minimum temperatures as well as rainfall were extracted from the TERRACLIMATE
database.

A total of 480 MOD13Q1 NDVI images, as well as 240 images for each climatic variable,
maximum and minimum temperature, and rainfall, from TERRACLIMATE from 2001 to
2021 were extracted. In addition, as TERRACLIMATE data have a monthly resolution,
MOD13Q1 NDVI data were processed using the Maximum Value Composites (MVC)
method to acquire monthly NDVI. We used the MVC method to avoid the influence of
solar altitude angle, clouds and/or atmospheric effects [60], thus permitting the study of
the relationships between the two types of variables.

2.4. NDVI Time-Series

The phenological markers SOS, EOS, the peak of maximum NDVI and the grassland
values from 2001 to 2020 were extracted from the MOD13Q1 dataset. Firstly, referencing
land coverage and land use (LCLU) maps from CONAF [59], pure pixels occupied by
grasslands were identified. In order to perform this, the polygons categorized as grasslands
were extracted and intersected with the MODIS pixel grid. On this spatial division, only
those pixels completely occupied by grassland were selected for each agro-climatic region,
thereby removing mixed pixels. For each MOD13Q1 scene and agro-climatic region, the
median NDVI was determined, obtaining six NDVI time-series, one for each agroclimatic
region, with a temporal resolution of 16 days. R-commander was used for this purpose.

The six NDVI time-series were processed with TIMESAT software v3.3 [53] where
annual NDVI values were smoothed using the Savitzky–Golay filter [61]. The phenological
markers were determined as the 20% of the season amplitude from the left and right mini-
mum values of NDVI fitted values, respectively [62,63]. Based on previous research [64],
grassland phenology for each agro-climatic region was summarized as they are relatively
homogeneous both in climate and biological diversity.

2.5. Statistical Analysis

First, to obtain an overview of the dynamics of the climate variables, the mean value of
these variables for the period of 2001–2020 was determined for each month. Subsequently,
for each month and year, their difference with the monthly mean value for the whole period
was determined. These differences were represented by annual density plots to describe
the behavior of the variables over the period analyzed.

Secondly, climatic variables and NDVI time series were decomposed into trend, cycle
and residual. Trend corresponds to a long-term process that occurs over time, and the cycle
explains the cyclical process that operates for each cycle once the trend is accounted for and
residual, obtained after accounting for trend and cycle, explains local process caused by
variability between cycles. Next, via cross-correlation analysis, the relationships between
NDVI values and climatic variables for each agro-climatic region were examined in order
to evaluate the climatic dependency of the Biobio grasslands.

Finally, as in other research [65,66], temporal trends in the data sets were evaluated
with a linear regression model in which time was the independent variable while pheno-
logical markers were the dependent variables.

3. Results
3.1. NDVI Time-Series

The evolution of the monthly mean NDVI for the six regions studied is shown in
Figure 5. Each region shows a different development curve. Thus, in regions such as the
Cordillera (Figure 5f), there is little variation in NDVI throughout the year, while in Cordón
Isla (Figure 5d), there is a greater difference in the NDVI values recorded in the different
seasons of the year. For the Secano Costero region (Figure 5a), the month with the lowest
NDVI value was February (0.62), rising to stabilize in May, reaching the maximum value in
November (0.76). In addition, the month with the highest interquartile range was January
(0.06), and the lowest was November (0.01), both close to SOS and EOS. The regions of
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Secano Interior (Figure 5b), and Depresión Intermedia (Figure 5c) show a similar NDVI
evolution. In the case of the Secano Interior region (Figure 5b), the minimum and maximum
NDVI values appear in February (0.49) and July (0.64), respectively, with December and
April showing the lowest and highest variability, the interquartile ranges being equal to
0.03 and 0.08. The Depression Intermedia region (Figure 5c) had the highest NDVI value in
September (0.67) and the lowest in February (0.52), the months with the highest variability
being the same as in Secano Interior.
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Cordon Isla (Figure 5d) is the region with the greatest differences in NDVI between
months. The lowest NDVI value is March (0.383), and the highest is September (0.641).
From March to May, the NDVI increases progressively, the latter being the one with the
largest interquartile range (0.08). Until September, the NDVI remains stable at high values
and then starts to decrease. For the Precordillera region (Figure 5e), the NDVI has its lowest
values in February (0.56). From February onwards, the index increases progressively until
November (0.76), where it starts to decrease. Finally, the Cordillera region (Figure 5f) is the
one with the most stable NDVI value annually, with respective maximum and minimum
values of 0.67 in November and 0.58 in May, registering the highest interquartile range in
the season of growth for grasslands (December–March).

Seasonal parameters, SOS and EOS, extracted from TIMESAT for each agro-climatic
region are shown in Table 1, where the term season refers to the annual cycle of NDVI.
In addition, Figure A4 in Appendix A represents the NDVI time series and phenological
markers SOS and EOS for each agro-climatic region. Based on these data, in the Biobío
region, the average SOS between 2001 and 2020 is on the day of the year (DOY) 133, while
EOS is on 388, resulting in a mean duration of the grassland cycle equal to 255. However,
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each agro-climatic region presented different phenological markers. The grasslands in
the Secano Costero region are the ones that start the cycle earlier (SOS equals DOY 103).
As they move away from the coast towards the interior, SOS increases until reaching the
Precordillera region, where SOS decreases. Thus, mean SOS in Secano Interior, Depresión
Intermedia, Cordón Isla and Precordillera appears on DOY 111, 113, 118 and 107, respec-
tively. Finally, the grasslands in the Cordillera region present the greatest delayed mean
SOS with a DOY equal to 245. On the other hand, EOS markers in grasslands according
to the agro-climatic region do not show a pattern similar to SOS. The Cordillera region
presents a mean EOS in DOY 506, i.e., the grassland cycle is between two years, while
Cordon Isla presents in DOY 349. On the other hand, Secano Costero, Secano Interior,
Depresión Intermedia and Precordillera present a mean SOS in DOYs equal to 383, 361, 364,
349 and 368, respectively. With these phenological markers, the average grassland cycle
in the Biobio regions ranges from 279 days in Secano Costero to 231 days in Cordon Isla.
In the Secano Interior and Depresión Intermedia regions, the average grassland cycle is
250 days, while in the Precordillera and Cordillera, it is 260 days.

Table 1. Start and End of growing Season of grassland in Biobio from 2001 to 2020 by agro-climatic
regions.

Start of Growing Season End of Growing Season

Year A B C D E F A B C D E F

2001 118.5 96 115.5 121.5 114 217.5 372.45 360.9 356.85 338.7 360.15 500.7
2002 75 75 70.5 72 76.5 207 391.2 367.5 374.55 353.55 379.05 442.5
2003 147 144 145.5 157.5 150 270 379.95 372.9 376.35 358.2 374.1 508.05
2004 81 85.5 84 88.5 85.5 241.5 386.1 367.8 369.3 347.25 369 514.5
2005 99 123 130.5 126 109.5 255 399 384 379.5 352.5 376.5 546
2006 112.5 121.5 141 130.5 120 258 384 354 348 340.5 364.5 532.5
2007 112.5 94.5 94.5 103.5 87 228 396 363 370.5 352.5 376.5 502.5
2008 117 123 121.5 112.5 118.5 256.5 373.5 357 361.5 340.5 364.5 534
2009 102 132 127.5 130.5 115.5 276 375 355.5 360 355.5 370.5 540
2010 135 148.5 144 138 139.5 235.5 390 367.5 372 358.5 373.5 550.5
2011 99 93 96 112.5 94.5 235.5 372 346.5 346.5 337.5 355.5 514.5
2012 64.5 115.5 102 126 63 255 396 376.5 382.5 363 364.5 522
2013 106.5 121.5 126 121.5 124.5 265.5 364.5 351 352.5 345 354 519
2014 96 108 105 115.5 96 204 378 357 364.5 346.5 369 393
2015 111 114 117 135 114 274.5 394.5 360 361.5 345 370.5 381
2016 108 106.5 106.5 112.5 106.5 253.5 373.5 351 351 337.5 366 559.5
2017 81 97.5 105 109.5 94.5 252 385.5 367.5 366 351 372 529.5
2018 88.5 90 91.5 111 87 274.5 388.5 376.5 376.5 363 373.5 525
2019 117 129 132 124.5 135 217.5 382.5 357 357 349.5 363 508.5
2020 106.5 118.5 112.5 120 126 237 378 345 355.5 358.5 366 498

Agro-climatic region: (A) Secano Costero, (B) Secano Interior, (C) Depresión Intermedia, (D) Cordón Isla, (E)
Precordillera and (F) Cordillera.

3.2. Analysis of Relations between Climatic Variables and NDVI

Previous research projects have shown that the time lag between NDVI to climatic
factors ranges from 0 to 3 months [67–69]. Each agro-climatic region was analyzed for the
correlation coefficient values between concurrent average monthly NDVI and concurrent
average monthly climatic variables (lag 0), the monthly average of the previous month
(lag 1) and monthly averages of the two previous months (lag 2) (Table 2).
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Table 2. Correlation between monthly NDVI with accumulated rainfall, maximum and minimum
temperatures at different intervals.

Accumulated Rainfall Maximum Temperature Minimum Temperature

Agro-Climatic Area Lag (0) Lag (1) Lag (2) Lag (0) Lag (1) Lag (2) Lag (0) Lag (1) Lag (2)

Secano costero 0.68 0.64 0.41 −0.56 −0.21 0.21 −0.49 −0.27 0.05
Secano interior 0.50 0.62 0.52 −0.66 −0.38 0.03 −0.59 −0.34 0.02

Depresion intermedia 0.58 0.68 0.54 −0.63 −0.32 0.10 −0.56 −0.29 0.10
Cordón Isla 0.55 0.71 0.68 −0.74 −0.43 0.02 −0.71 −0.42 0.00

Precordillera 0.67 0.61 0.34 −0.38 −0.06 0.30 −0.36 −0.01 0.35
Cordillera 0.36 0.12 −0.23 0.21 0.38 0.45 0.19 0.41 0.50

All values with a significance level α = 0.05 (p-value < 0.001).

Positive correlation results between accumulated rainfall and NDVI were obtained
in lag 0 and 1 for all agro-climatic regions, while for lag 2, the Cordillera region showed a
negative correlation, mainly due to the presence of snow. Accumulated rainfall and NDVI
showed a significant positive correlation from lag 0 and, therefore, an immediate positive
impact on grasslands. Particularly, in Secano Costero, Precordillera and Cordillera, the
response of NDVI to accumulated rainfall showed the highest correlation at lag 0 while in
Secano Interior, Depresión Intermedia and Cordón Isla was at lag 1, which means that the
highest positive effect appears the following month. In Lag 2, high values are maintained
above all in the areas where it rains less, Secano Interior, Depresión Intermedia and Cordón
Isla. However, in the areas where rainfall is less necessary, a drop in the correlation in lag
2 can be observed. For maximum and minimum temperature, except in the Cordillera
region, the highest correlations were obtained in Lag 0 for both maximum and minimum
temperatures. The correlation was negative, indicating that higher temperatures have a
negative effect on NDVI, reducing it. Moreover, its effect on grassland appears immediately,
with lag equal to 0. The Cordon Isla region showed the highest values, corresponding
to the driest region of all the analyzed regions. At the opposite extreme, temperatures in
the Cordillera region, both maximum and minimum, have a positive effect on vegetation,
increasing the NDVI. The result of an increase in temperature is reflected in the following
two months (Lag 2). The results obtained show how climatic variables are related to NDVI
values. Thus, an increase in rainfall results in an increase in NDVI values, while they
decrease with increasing temperatures.

Having proved that climatic variables influence grassland development in Biobio,
with a growing tendency towards reduced rainfall and increased maximum and minimum
temperatures, the general trend and phenological markers of NDVI in each region between
2001 and 2020 are presented below. Trends of NDVI values for each region are shown
in Figure 6. The trends of the NDVI series of the agro-climatic regions in Biobio show a
similar pattern, differentiating an initial period with little change in the NDVI and a second
period with an increase in the index. Thus, between 2001 and 2007, NDVI values do not
show a clear change in their evolution. In 2008 there was a reduction in the NDVI value
in each region, and from that year onwards, there was an increase in NDVI, with greater
or lesser intensity depending on the agro-climatic region. Such NDVI trends are aligned
with the evolution of the climatic variables presented in Section 3.1. Of all the regions, the
Secano Costero region is the one with the highest NDVI values and the smallest increase,
presenting stability compared to the other regions. On the other hand, the Precordillera
region presents the highest increase in NDVI, reaching similar values to the Secano Costero
region in recent years. The Secano Interior and Depresión Intermedia regions behave
similarly, with shared increases in NDVI, but more moderately than in the Precordillera
region. The Cordillera region has NDVI values in the same range as the two previous
regions, although with more accentuated fluctuations over time.
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Figure 7 represents the trends of phenological markers: SOS (Figure 7a), EOS (Figure 7b),
the peak of the season (Figure 7c) and NDVI (Figure 7d) over time during the 2001–2020
period. In general, the trend changes in grassland phenology at the peak of maximum
NDVI and its value in the period 2001–2020 are more pronounced than SOS and EOS. In
the Secano Costero region, the temporal relationships between SOS (Figure 7(a.1)) and EOS
(Figure 7(b.1)) slope negatively, which means both growth periods occur earlier, although
the duration of the cycle stays the same. This same behavior appears in the Depresión Inter-
media (Figure 7(a.3,b.3) and Precordillera (Figure 7(a.5,b.5)) regions. On the other hand, the
Secano Interior and Cordillera region present with positive slopes in SOS (Figure 7(a.2,a.6))
and a negative slope in EOS (Figure 7(b.2,b.6)). This means a reduction in the phenological
cycle of the grasslands in these regions due to the delay of SOS and the advancement of
EOS. Finally, the Cordon Isla region has a positive slope in both SOS (Figure 7(a.4)) and EOS
(Figure 7(b.4)) so that there is a delay in the entire grassland cycle in this region without
major changes in the duration of the cycle. Based on the low values obtained in the slopes
of the SOS and EOS trends, there appear to be no important changes in the start or end of
the phenological cycle of the grasslands.

When analyzing the results obtained in the trend at the moment of reaching the
maximum NDVI (Figure 7c), as well as its value (Figure 7d), there is a general trend to reach
maximum NDVI earlier (negative slope) and with a higher value in the index (positive
slope). It is in the regions of Secano Costero (Figure 7(c.1)) and Depresión Intermedia
(Figure 7(c.3)) where there is a more evident advance in reaching maximum vigor, with
a higher negative slope. Secano Interior (Figure 7(c.2)), Precordillera (Figure 7(c.5)) and
Cordillera (Figure 7(c.6)) show this advance as well but in a less accentuated manner.
Cordón Isla (Figure 7(c.4)) is the only region that shows a delay in this marker. Finally,
all regions show an upward trend in NDVI, with Cordon Isla (Figure 7(d.4)) showing
the greatest increment over time, while the Secano Costero (Figure 7(d.1)) and Cordillera
(Figure 7(d.6)) regions show the smallest.



Remote Sens. 2022, 14, 475 13 of 22
Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 23 
 

 

 
Figure 7. Evolution of phenological metrics: (a) start of season, (b) end of season, (c) peak value of 
season and (d) NDVI at the peak, as a function of year from 2001 to 2020 in the six agro-climatics 
regions of Biobio: (1) Secano Costero, (2) Secano interior, (3) Depresión Intermedia, (4) Cordón Isla, 
(5) Precordillera and, (6) Cordillera. 

Figure 7. Evolution of phenological metrics: (a) start of season, (b) end of season, (c) peak value of
season and (d) NDVI at the peak, as a function of year from 2001 to 2020 in the six agro-climatics
regions of Biobio: (1) Secano Costero, (2) Secano interior, (3) Depresión Intermedia, (4) Cordón Isla,
(5) Precordillera and, (6) Cordillera.



Remote Sens. 2022, 14, 475 14 of 22

4. Discussion

Phenological observations provide localized information with high temporal resolu-
tions in different biological phases. Phenology varies over geographic gradients according
to climate zone and vegetation type. Phenology also varies within communities, and
the phenology of individual plants plays a key role in determining how ecosystems are
structured and how they function [70]. Temperate forest trends are attributed to warming
temperatures [23,71]. In addition, boreal and subalpine forests show similar trends to
those observed in temperate forests, which are attributed to a warming climate [72,73];
moreover, there is little evidence that rainfall has a significant influence on boreal forest
phenology [74]. In Subalpine meadows and the Arctic and alpine tundras, in high latitudes
and high altitude ecosystems, there are two main factors that regulate SOS, the timing of
snowmelt and the temperatures that follow [75] while warm might delay EOS [76]; how-
ever, it has not been extensively studied. On the other hand, the impacts of climate change
on tropical forests vary across regional-to-continental scales. Decreasing precipitation
and reduced cloudiness in Amazonia may result in different phenological shifts than, for
example, in central Africa, where precipitation is projected to increase [77]. Mediterranean
areas include a diverse range of plant types, and phenological responses to environmental
cues vary accordingly. Temperature is a key factor for most species, but rainfall, through its
influence on soil moisture, is also important [78,79]. Finally, in subtropical desert ecosys-
tems, phenological variations resulting from climate change may occur due to changes in
the timing and quantity of rainfall and increases in temperature [80]. Therefore, phenology
varies over geographic gradients according to climate zone and vegetation type.

In contrast to direct phenological observations, satellite data have the advantage of
high spatial coverage. It allows global, regional, and local studies. NDVI and climatic
time series provide key information in the study of vegetation. The analysis of vegetation
requires a spatial and temporal approach to explain changes and dynamics in vegetation.
Temporal, seasonal and phenological metrics obtained by vegetation index series from
remote sensing scenes provide useful information to understand vegetation conditions at
regional scales. Taking into account previous research, the climatic response of grasslands
varies geographically. Previous studies have shown that a warming climate has a positive
impact on greening in the northern hemisphere, relying on the continuously warming air
and spatially uneven trends of precipitation [81,82]. However, increased temperatures
could not be the primary control of grassland. Rainfall is a factor that plays a relevant role
in grassland. In the Biobio region, temperature increase from 2001 to 2020 has extended
the period where conditions are favorable to plant growth; however, the grasslands have
not benefitted from these conditions. Instead, grasslands in Biobio have shown little
change at SOS and EOS. However, photosynthetic capacity, measured by NDVI, has
increased significantly in all the agro-climatic regions of Biobio. These trends show how
grasslands grow faster and more vigorously as temperatures increase. On the other hand,
the incapacity of grasslands to exploit thermal resources can be potentially explained by a
mismatch between current vegetation and climate conditions, which could be explained
by the novel conditions caused by climate change, such as the reduction in rainfall. These
results presented here align with other research, such as those in the Tibetan Plateau [83].

Grasslands are very sensitive to rainfall, so more arid conditions would lead to lower
productivity. However, a decrease in winter frosts through higher minimum temperatures,
higher temperatures in general and higher solar radiation would compensate for the neg-
ative effect of lower rainfall and may even result in a slight increase in productivity [84].
This contradictory situation could also be explained by the beneficial effect of high CO2
concentrations in the atmosphere, which stimulates net plant photosynthesis [85], improv-
ing their growth and productivity [86,87], and water use efficiency [88]. CO2 concentration
can be measured through the use of onboard sensors on satellite platforms such as Sentinel
5P, GOSAT or OCO-2. These platforms have only recently been launched, however, and
there are not enough data to create robust time-series data to analyze; thus, future work
should evaluate climate and atmospheric variables together.
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Therefore, recent warming trends have been associated with earlier vegetation activity
in spring and an overall extension in the length of the growing season [89]. On the
other hand, there is less of a consensus on how climate change is affecting end-of-season
phenology, although many biological events are observed to be occurring later [90].

While no comparisons have been made in this study between ground observations and
the remote sensing-based results, this type of activity is needed to more fully understand
and validate remote sensing-based observations of large-scale phenology in terrestrial
vegetation.

On the other hand, variations in climate conditions have an important impact on water
balance and material circulation in watersheds. Thus, the influence of climate change on
water quality has been previously documented [91,92]. It is assumed that climate change
can influence water environments by affecting water flow, pollutant transformation and
migration, as well as toxicity [93,94]. Moreover, transformation and migration patterns
of toxic pollutants in the water environment are complex processes, and the influencing
mechanism of climate change on heavy metals is still unknown. Recently, a few studies
demonstrated the impact of meteorological factors on heavy metals using model simulation
methods or short-term water quality data [95,96]. High heavy metal concentrations in soils
were cited as one of the factors limiting vegetation establishment and growth in areas suffer-
ing high anthropogenic impact [97–99]. Thus, heavy metal toxicity first affects the growth
of vegetation roots because they are more sensitive to heavy metal stress. In addition, heavy
metal pollution limits root growth and results in decreased root weight [100,101]. Based on
previous research in the study area [102–105], future projects should analyze the influence
of heavy metal and contaminant concentrations in soil, together with climatic variables and
vegetation indices, to study changes in the phenology of vegetation, including grasslands.

Based on article 4.8 of the United Nations Framework Convention on Climate
Change [106], Chile meets 7 of the 9 vulnerability characteristics to be identified as a
region in the world affected by the alteration of the current global climate pattern. The
map of grassland phenology in the Biobio region can support decision-making in monitor-
ing vulnerability to climate variations and therefore serves as a useful tool for assessing
measures taken against climate change.

5. Conclusions

In a scenario where climatic conditions are changing, monitoring tools are required
to understand impacts on vegetation better. Therefore, an understanding of the drivers
involved in phenology is needed even when detailed field observations are lacking, and
meteorological stations are scarce. This result makes remote sensing datasets for vegetation
monitoring a particularly useful tool under these scenarios. In this study, we evaluated the
timing of phenology markers and their response to climate conditions in six agro-climatic
regions in Biobio. Our results suggest that climatic conditions in Biobio have become more
conducive to grassland growth over the 2001–2020 period. During this period, rainfall
has decreased; however, favorable thermal conditions have extended. In this context, the
grasslands have shown more intensive photosynthetic activity but without extending the
period of activity. The six areas analyzed show that between 2001 and 2010, the evolution
of NDVI values was stable. However, between 2010 and 2020, there was an increase in
NDVI values to a greater or lesser extent depending on the area analyzed. The Precordillera
region shows the greatest increase, while Secano Costero is the most stable.

In general, the results from this study highlight the relationship between grassland
phenology and their response to the climatic variables of accumulated rainfall and tem-
perature, both maximum and minimum, which has implications for developing policy
frameworks for grassland management and protection and its relationship with future
climate change.
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