
An Automated Design Flow from Linguistic Models to

Piecewise Polynomial Digital Circuits

 Iluminada Baturone Santiago Sánchez-Solano Andrés A. Gersnoviez, and María Brox

Dpto. Electrónica y Electromagnetismo – IMSE IMSE Dpto. Arq. Comput., Electrón. y Tecn. Electrónica
 Univ. of Seville – CNM (CSIC) CNM (CSIC) Univ. of Cordoba

 Seville, Spain Seville, Spain Cordoba, Spain

 lumi@imse-cnm.csic.es santiago@imse-cnm.csic.es andresgm@uco.es mbrox@uco.es

Abstract—This paper describes how the different CAD tools of

the environment Xfuzzy 3, developed in Microelectronics

Institute of Seville and University of Seville, allow to translate

expressive linguistic models into mathematical ones, in

particular, into a combination of piecewise polynomial systems

that can be implemented efficiently in hardware. The new

synthesis tool of Xfuzzy 3 automates communication with Xilinx

System Generator in Matlab, thus facilitating implementation of

the linguistic model into an FPGA from Xilinx. This is

illustrated with the design of a navigation controller for an

autonomous robot.

I. INTRODUCTION

Model-based approaches are currently gaining popularity
to tackle the growing complexity of embedded systems
development since they allow working with a high degree of
abstraction, enhance understanding and reduce the time to
market. Particularly linguistic models, that is, descriptions of
systems obtained from heuristic knowledge of human experts
expressed linguistically, facilitate understanding and rapid
development. In order to translate linguistic models into
mathematical ones, which can be implemented in hardware
and/or software, fuzzy logic-based systems have been
employed widely in the recent years [1]. However, while
expressive linguistic models have been employed in many
software applications, the models implemented in hardware
and embedded software only contain a single (plain) rule base
with simple antecedents and consequents, thus reducing the
applicability of hardware approaches. This is the case of many
design environments for fuzzy systems, such as FIDE,
rFLASH, and FuzzyTECH, when generating embedded
software for specific processors, and the case of many fuzzy
digital circuits.

This paper describes how the different CAD tools of the
environment Xfuzzy 3, developed in Microelectronics
Institute of Seville and University of Seville [2], ease to fill
the gap between the description of expressive linguistic
models and its efficient hardware implementation. The idea is
to transform successively an initial linguistic model into a

combination of plain fuzzy rule bases implemented efficiently
by piecewise polynomial digital circuits.

 The paper is organized as follows. Section II summaries
how plain fuzzy rule bases are equivalent to piecewise
polynomial systems (in particular to PWL ones) when
imposing certain constraints. Section III describes briefly the
different CAD tools of Xfuzzy 3 that facilitate transforming an
expressive linguistic model into the combination of piecewise
polynomial modules, particularly the new hardware synthesis
tool, xfsg, which automates the communication between
Xfuzzy 3 and the Xilinx System Generator (SysGen) Simulink
toolbox of Matlab. Section IV illustrates this automated design
flow with the design of a navigation controller of an
autonomous robot. Finally, Section V summarizes
conclusions.

II. RULE BASES AND PIECEWISE POLYNOMIAL SYSTEMS

A plain fuzzy rule base is a set of IF-THEN rules whose
antecedent parts contain fuzzy evaluations of the input
variables. Fuzzy sets are represented by membership functions
that define a partition of the input universes of discourse. The
sets are fuzzy because their membership functions overlap
among them and take values between 0 and 1 (null to full
membership). Hence, given an input data, there is a piece of
rules with an activation degree greater than zero that is
responsible of the output value. Depending on the antecedent
and consequent membership functions and the fuzzy operators
employed, a plain rule base can perform as a piecewise
polynomial system. This performance is a very good trade-off
between versatility of the rule base (it features universal
approximation capability) and efficiency of its hardware
implementation.

Let us consider B-spline families of order zero, one and
two to represent the input membership functions. Fig. 1 shows
how these functions are normalized, that is, the sum of the
membership degrees of any input to them is always the unity.
Let us consider that antecedent parts only involve
conjunctions that are represented by two operators: the
extension of the meet operator [3] and the product. Table I and

This work has been partially supported by European Community under

the MOBY-DIC Project FP7-IST-248858 (www.mobydic-project.eu), by

Ministerio de Ciencia y Tecnología under the Project TEC2008-04920 and

by Junta de Andalucía under the Project P08-TIC-03674.

mailto:santiago@imse-cnm.csic.es
mailto:andresgm@uco.es
http://www.mobydic-project.eu/

 (a) (b) (c)

Figure 1. B-spline families of order (a) zero, (b) one and (c) two, as defined with the tool xfedit in Xfuzzy 3.

II summarize the equivalences between piecewise polynomial
approximators and rule bases that employ, respectively, a
zero-order Takagi-Sugeno inference method (the rules’
consequents are singleton or non fuzzy values) and a first-
order inference method (the rules’ consequents are linear
functions in the inputs). B-splines of degree zero are not a
fuzzy solution because there is no overlapping, and B-splines
of degree two have low linguistic meaning since total
membership is not possible. Hence, B-splines of order one are
the most adequate for linguistic models. Using them,
piecewise linear, multilinear, quadratic, and multiquadratic
systems can be generated [3]-[4]. The plain rule bases
considered herein (depicted with bold fonts in Table I and II)
use the product as antecedent connective.

Several authors have reported efficient digital architectures
to implement such rule bases. In particular, the one considered
herein is the active-rule driven architecture reported in [5].
The constituent blocks of this architecture are membership
function circuits (MFCs), which can implement B-spline
families of order one with uniform or non uniform (Fig. 1b)
distribution; rule selection block, which selects the rules
activated by the inputs; antecedent connective, which can be
selected as the product; rule memory, which stores 1 value per
rule in the case of zero-order Takagi-Sugeno inference or n+1
values (being n the number of inputs) in the case of first-order
Takagi-Sugeno system; defuzzifier block, which in the case of
B-spline families and Takagi-Sugeno systems, can be selected
as a weighted sum (no divider is required); and a control
block, which generates the control and temporization signals
to process sequentially only the 2n active rules.

III. XFUZZY 3 AND EXPRESSIVE LINGUISTIC MODELS

Plain piecewise polynomial rule bases are adequate to
describe a simple linguistic model with 1, 2 or even 3 inputs
and with a few membership functions per input, due to the
curse of dimensionality. However, complex linguistic models
can involve many inputs and membership functions. The first
step to facilitate hardware implementation of complex
linguistic models should be to use hierarchical systems as
much as possible, which combine modules of 1 and 2 inputs,
preferably. An advantage of linguistic models is that hierarchy
is usually present in the model from the beginning or can be
pursued in subsequent refinements. The design environment
Xfuzzy 3 helps in this process because it allows describing
hierarchical systems consisting of several modules that can
interchange fuzzy or crisp information among them. Each
module can be a set of fuzzy IF-THEN rules or a non fuzzy
(crisp) module described by any mathematical description
connecting its inputs and outputs. The CAD tool xfedit in
Xfuzzy 3 facilitates describing this kind of systems. Fig. 2, for
example, shows the main window of the tool xfedit when
describing a system with three modules (one of them crisp).

The fuzzy modules included in the hierarchical system are
not usually piecewise polynomial rule bases if they are
obtained from IF-THEN rules expressed in natural language.
Such rules in natural language do not always follow a Takagi-
Sugeno inference scheme with antecedents represented by B-
splines of degree one and only connected by product. Xfuzzy
3 employs a formal specification language, named XFL3, that
facilitates translating IF-THEN rules expressed in natural
language because of its expressiveness. Not only input
variables can be evaluated as fuzzy (for example, ‘power is
medium’) but also the fuzzy concepts and the propositions
itself can be evaluated linguistically by using linguistic
hedges (for example, ‘power is greater than medium and more
or less speed is high or area is low’). The last example in

TABLE I. ZERO-ORDER TAKAGI-SUGENO RULE BASES

Antecedent

connective

Order of B-spline family in antecedents

0 1 2

Extension

of meet

Piecewise

constant

Piecewise

linear (PWL)
Piecewise quadratic

Product

Piecewise

constant

Piecewise

multilinear

Piecewise

multiquadratic

TABLE II. FIRST-ORDER TAKAGI-SUGENO RULE BASES

Antecedent

connective

Order of B-spline family in antecedents

0 1

Extension

of meet
Piecewise linear (PWL) Piecewise quadratic

Product Piecewise linear (PWL) Piecewise multiquadratic

Figure 2. Main window of the tool xfedit.

XFL3 would be:

power > medium & ~ (speed == high | area == low)

Another feature of XFL3 expressiveness is that confidence
weights can be assigned to the rules. The CAD tool xfedit in
Xfuzzy 3 contains many graphical user interfaces so as to
allow describing complex rules without a deep knowledge of
XFL3. The user of Xfuzzy 3 can even define new operators
(conjunctive, disjunctive, implication, aggregation, etc.) apart
from those already defined in the environment so as to better
translate the linguistic meaning of the rules. The CAD tool
xfpkg in Xfuzzy 3 has a graphical user interface to facilitate
the introduction of new operators and crisp modules.

Once the fuzzy modules have an initial mathematical
description, the following step is to transform them into
piecewise polynomial modules. Such transformation is always
possible because piecewise polynomial modules are universal
approximators. Several CAD tools of Xfuzzy 3 are very
helpful in this process. One of them is the tool xfplot that
allows representing graphically the output of the linguistic
module versus 1 or 2 of its inputs and save the input-output
numerical data into a file. These numerical data provided by
the linguistic knowledge (and any other numerical data
provided by another kind of knowledge) is employed by the
tool xfdm in Xfuzzy 3 to extract the initial structure of the
piecewise polynomial module. This tool contains several grid-
based algorithms so as to identify the number and initial
distribution of B-splines per input. Tuning of this initial
structure to minimize approximation error to numerical data is
done with the tool xfsl, which includes several supervised
learning algorithms [6]. Simplification of the tuned
membership functions and rules of each module is done with
the tool xfsp, which includes pruning, similarity-based,
clustering-based and tabulation simplification algorithms [7].
A final tuning is again performed with xfsl.

The following step after obtaining a hierarchical system
with piecewise polynomial modules is to verify its behavior.
Xfuzzy 3 contains several CAD tools to help in this process.
One of them is xfsim, which uses a model of the context where
the system is involved so as to simulate the system
dynamically. Another tool is xfmt, which allows monitoring
each of the constituent rule bases to understand how the output
values are inferred from the input ones. The tool xfplot is the
other verification tool that can be again used to compare the
input-output behavior (static behavior) of the transformed and
the initial systems.

Static and dynamic verifications in Xfuzzy 3 do not
consider hardware implementation aspects such as the
influence of parameter word sizes (the static behavior
analyzed in Xfuzzy does not consider quantization) and
technology details so as to evaluate if the design meet power,
area, and speed requirements (the dynamic behavior simulated
in Xfuzzy is at high level). Since these details depend on the
target platform, our approach has been to exploit the design
environments of the hardware platforms and develop a
synthesis tool in Xfuzzy whose objective is to automate
communication between both environments. In this sense, the
new synthesis tool developed for Xfuzzy, named xfsg, acts as
an interface between Xfuzzy and Xilinx System Generator

(SysGen) tool in Matlab. Using the Xilinx Blockset in
Simulink, a library of modules, named Xfuzzy Blockset or
XfuzzyLib, has been developed to implement piecewise
polynomial digital circuits accordingly to the previously
commented active rule-driven architecture. These modules
have masks that allow defining their parameters by Matlab
command window or a configuration file. The tool xfsg
generates automatically these configuration files. Some of the
required parameters are obtained from the XFL3 descriptions
(number of membership functions per input, knots of the B-
splines and consequents of the rules). The other parameters
related to bit size of the variables in the fuzzy and crisp
modules should be introduced by the user through a graphical
interface. Fig. 3 shows the window of xfsg corresponding to
the hierarchical system already shown in Fig. 2.

In addition, xfsg can generate the Simulink model of the
whole system. Hence, simulation performed in Xfuzzy can
now be done in Simulink considering hardware details. Even
the design can be synthesized and implemented in the FPGA
and a hardware-in-a-loop simulation can be realized.

IV. APPLICATION EXAMPLE

The design flow described above has been applied to
develop an embedded controller for a car-like autonomous
robot. The problem addressed has been to control the robot
speed, v, and the angle of the front wheels that are responsible

of the trajectory curvature, , so as to drive backward the robot

from any configuration (x, y, , v,) to an objective
configuration (0, 0, 0, 0, 0) in the reference system shown in
Fig. 4. The controller, therefore, has 2 outputs and up to 5
inputs. Instead of looking for a single rule base, which would
be difficult to design, heuristic knowledge can be exploited to
obtain a hierarchical system with 1- and 2-input modules. The

Figure 3. Main window of the tool xfsg.

x

y

x

y

Figure 4. Navigation problem addressed.

Figure 7. Hardware/software cosimulation in Matlab.

 (a) (b)

Figure 5. Simulation results in: (a) Xfuzzy 3, (b) Matlab.

first step is to separate speed and curvature control. Speed
control depends on vertical position, y, and previous curvature.
Curvature control depends on global position, x, y, and

orientation, . A second simplification is to further decompose
curvature control into two modules connected in cascade. The

first one evaluates, depending on x and y, which orientation, ,
should have the robot so as to drive backward with a zero
curvature. The second module evaluates the difference

between and to decide the curvature. The structure of the
curvature controller is that already shown in Fig. 2.

The 2-input module in charge of controlling speed is
designed by translating linguistically expressed rules. Using
the tools xfplot, xfdm, xfsl, and xfsp, this module is translated
into a piecewise multilinear system with 4 B-spline functions

covering y and 3 functions covering . Similarly, the 1-input
module of the curvature controller is designed from linguistic
rules and then translated into a piecewise linear system with 6
B-spline functions covering its input. The 2-input module of
the curvature controller is designed from combining heuristic
knowledge (expressed as linguistic IF-THEN rules) and
geometrical analysis of the problem (expressed as input-output
numerical data). Again using the tools xfplot, xfdm, xfsl, and
xfsp, this module is designed as a piecewise multiquadratic
system with 5 B-spline membership functions covering x, 3

functions covering y, and 15 consequents that depend linearly
on the inputs.

Behavior of the designed controller working in a closed-
loop with the robot model is verified with the tool xfsim. Fig.
5a shows one of these simulated trajectories.

Using the tool xfsg, configuration files are provided
automatically to generate a Simulink model that uses modules
of the Xfuzzy Blockset (which use, in turn, the modules in the
Xilinx Blockset). Fig. 6 shows the Simulink model
corresponding to the curvature controller. Hardware/software
cosimulation of SysGen can be employed to implement the
whole controller in a FPGA (in this case a Spartan3 xc3s700a
of a Spartan 3A Starter Kit) and analyze its behaviour when
working in a closed loop with a model of the robot (Fig. 7).
Visualization utilities of Matlab allow obtaining the
trajectories of the robot, like that in Fig. 5b. These results that
consider hardware details may not meet control requirements.
In those cases, the user can go back in the design flow and
iterate with, for instance, different bit sizes of particular
words. Since the whole design flow is automated, the user can
move easily bottom to up and up to bottom.

V. CONCLUSIONS

The different CAD tools of Xfuzzy 3 are very helpful to
pave the way between expressive linguistic models and
efficient hardware implementations. Heuristic knowledge
expressed linguistically and any other knowledge expressed
numerically can be exploited by Xfuzzy to describe a
hierarchical system made up of piecewise polynomial
modules. Automated communication between Xfuzzy and
Xilinx System Generator in Matlab allows the user to consider
hardware details within the whole design flow.

REFERENCES

[1] A. M. Ibrahim, “Fuzzy logic for embedded systems applications”,
Elsevier Science, 2004.

[2] Xfuzzy web site: http://www.imse-cnm.csic.es/Xfuzzy.

[3] R. Rovatti, “Fuzzy piecewise multilinear and piecewise linear systems
as universal approximators in Sobolev norms”, IEEE Trans. on Fuzzy
Systems, vol. 6 (2), pp. 235-249, 1998.

[4] R. Rovatti, “High speed implementation of piecewise-quadratic Takagi-
Sugeno systems”, Proc. IEEE International Fuzzy Systems Conf., pp.
292-297, 1999.

[5] S. Sánchez-Solano, A. Barriga, C. J. Jiménez, and J. L. Huertas,
“Design and applications of digital fuzzy controllers,” in Proc. IEEE
Int. Conf. Fuzzy Syst., vol. 2, pp. 869–874, Jul. 1997.

[6] F.J. Moreno-Velo, I. Baturone, A. Barriga, S. Sánchez-Solano,
“Automatic tuning of complex fuzzy systems with Xfuzzy”, Fuzzy Sets
and Systems, vol. 158, pp. 2026 – 2038, 2007.

[7] I. Baturone, F. J. Moreno-Velo, A. A. Gersnoviez, “A CAD approach
to simplify fuzzy system descriptions”, Proc. FUZZ-IEEE’2006, pp.
2392-2399, Vancouver (Canada), July 2006.

Figure 6. Simulink model of the curvature controller.

