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Considering the impact of photovoltaic installations and the fact that their performance depends on the type of 
day, this paper presents a classifier that makes use of fuzzy logic to classify daily irradiance profiles as a human 
would do. To do this, the system must be linguistically interpretable, so the classifier must be simple enough, 
but without losing accuracy. This is why the article combines the use of data mining and supervised learning 
algorithms to obtain an initial system and then exploits simplification techniques such as the concept of fuzzy 
classifiers with incomplete rule bases, as well as fuzzy tabular simplification of rules to obtain a compact and 
simple final system. The classifier obtained handles the ambiguity presented by the daily irradiance profiles with 
precision. Once the system has been obtained, a large number of days in southern Spain are classified, analysing 
the performances of a photovoltaic plant obtained in each of the classes. Then, a neuro-fuzzy system is designed 
to predict the performance of the photovoltaic installation, considering the type of day, the maximum ambient 
temperature reached during the day, and the degradation of the installation over time, proving its usefulness in 
alerting about anomalous behaviour of the system.
1. Introduction

The demand for electricity is increasing due to the growth of indus-

trialization. Much of the electricity generated for lighting, heating, and 
cooling comes from fossil fuels, particularly coal and oil. The big dis-

advantage of using fossil fuels is that this has an environmental impact 
due to the carbon dioxide and mercury emissions produced by them, 
which is damaging to global warming of the planet.

In order to reduce this environmental impact one solution is to make 
use of renewable energies. Within renewable energies, solar energy is 
one of the cleanest and most abundant renewable resources available. 
In particular, solar photovoltaic (PV) energy uses solar radiation to pro-

duce electricity through the photoelectric effect using a PV cell. One of 
its advantages is that, as it is modular, it can be built from huge PV 
plants to small roof panels, and it represents the best economical and 
technological choice to electrify remote areas where the installation of 
electricity is expensive or difficult to reach. Solar PV energy is silent, 
easy to maintain and handle, and does not generate residues or pollut-
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ing emissions. However, it is a variable energy, because it depends on 
meteorological factors that cannot be controlled (including the climate 
itself and air pollution) [1]. The solar plant output is generally propor-

tional to solar irradiance so variations in irradiance cause fluctuations in 
plant output. Thus, it is very important to know exactly the solar irradi-

ation resource that will be available at a location in order to design the 
appropriate PV system sizing (PV power, storage capacity). Therefore, 
given the increasing popularity of solar power generation worldwide, 
it is very interesting to develop a classifier that makes it possible to 
catalogue the solar irradiance profiles of an area collected by a PV in-

stallation. The classification of days allows to know the frequency at 
which each type of day occurs.

Classification of solar irradiance data to forecast the power output 
of a solar plant has been investigated in the literature [2]. Many studies 
have discussed the problem of typical day classification. These works 
differ by the parameters used as the criterion for the classification, the 
number of groups classified, and irradiance data were used with differ-

ent temporal resolutions.
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In [3] sky conditions are categorized into three groups (overcast, 
partly cloudy, and clear) using climatic data including cloud cover, sun-

shine hour, and solar radiation. [4] uses hourly horizontal and inclined 
solar irradiation collected every minute. The study allows showing that 
the four years of daily data can be clustered into three “typical” day 
classes (clear sky, overcast sky, cloudy sky). The method for classifica-

tion followed by them uses Ward’s classification process and discrimi-

nant analyses to establish the clustering procedure. In order to evaluate 
the performance of the PV system, [5] proposes a classification of days 
of three groups (clear sky, partially clouded, and opaque) using as pa-

rameters the monthly average of the global horizontal irradiation, the 
temperature, and the wind speed. [6] performs an analysis of daylight 
and solar radiation data classifying three sky conditions: clear sky, in-

termediate sky, and overcast sky. In order to develop this classification, 
two methods are used: cloud ratio method and sunshine duration where 
cloud ratio is defined as the proportion of the diffuse irradiance to 
the global irradiance. In this same line, the analysis proposed by [7]

classified daylight data in Hong Kong into three sky conditions (clear, 
intermediate, and overcast) using two methods, that is, sunshine dura-

tion and cloud ratio methods.

There are works that use variability index as a parameter for their 
classification [8–11]. [8] describes a new and novel metric for quantify-

ing variability in irradiance at solar PV sites. This metric measures the 
amount of variability in irradiance relative to the variability of a clear 
sky reference. Using this metric along with a daily clearness index (ratio 
of solar energy measured on a given surface to the theoretical maximum 
energy on that same surface during a clear sky day) a classification 
scheme that distinguishes four types of irradiance days, clear, overcast, 
mixed (clear/overcast) and highly variable, is presented. [9] uses com-

binations of the daily clearness index and the variability index in order 
to classify days with five categories: high variability, moderate variabil-

ity, mild variability, clear, and overcast days. Following the same line, 
[10] uses the variability index to quantify the daily variability of solar 
irradiance using collected data from four stations in Australia. Variabil-

ity is also used as a representative signal of daily behaviour in [11].

Other works perform an estimation of the fractal dimension of daily 
solar irradiance [12–15]. The fractal dimension is an important pa-

rameter that, for solar radiation, measures signal shape irregularity, 
describing the fluctuations of the phenomenon resulting from weather 
conditions. In this line [12] presents a model based on the Minkowski-

Bouligand dimension. This work uses the fractal index and the clearness 
index to classify daily irradiances resulting in three classes: clear sky, 
partly cloudy sky, and completely cloudy sky. Another similar paper 
that also uses the fractal and clearness indexes as classification crite-

ria is [13] where three classes are proposed: clear sky, partially covered 
sky, and overcast sky. [14] also proposes a classification method of daily 
solar irradiances based on fractals. Finally, [15] presents a method for 
the classification of daily irradiations by using four parameters: direct 
normal irradiation fraction, fractal dimension, and a variation coeffi-

cient of the time passed between two consecutive decreases of irradi-

ation under two given thresholds. With this method four classes have 
been obtained: high daily energy (no irregularities on the daily curve), 
moderate daily energy (sky smoothly perturbed), moderate daily energy 
(sky very perturbed), and low daily energy (sky cloudy, all day).

On the other hand, [16] uses a spectral analysis of the wavelet trans-

form by using 10 seconds of solar irradiation data and identifying three 
different classes (overcast, partly cloudy, and sunny). Another method 
that uses the transformation of temporal datasets is proposed in [17]. 
This paper classifies solar radiation daily patterns into four classes: 
clear sky, intermittent clear sky, completely cloud sky, and intermit-

tent cloud sky. In order to perform this classification, a pair of indices 
are used: area ratio (𝐴𝑟) and intermittency (𝐼), which is calculated us-

ing the spectral power of clear sky irradiance. Finally, [18] proposes the 
use of wavelet transform to extract clear observation days from solar ir-
radiance measurements collected in four years of data on global solar 
22

irradiance.
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On the other hand, the use of clustering algorithms has been em-

ployed by various works to obtain groups of irradiance data [19–21]. 
In this line, [19] proposes a new method of classification of solar ir-
radiance curves based on Mathematical Morphology techniques. This 
method focuses on the shape of the curves to form groups where cloud 
transitions and variability in direct radiation are taken into account. 
Another work with clusters is presented in [20]. This work shows a 
normalization of the solar irradiance data in order to make the time 
periods and solar irradiance comparable. In order to express all the 
patterns with the same number of points within the normalized time in-

terval, interpolation is also performed. The patterns are then grouped 
using clustering, identifying four day types. Following these ideas, [21]

presents a comparison of six clustering algorithms (K-means, hierar-

chical WMV, fuzzy c-means, self-organizing maps, ant-colony, and bat) 
from different clustering categories in order to investigate the appropri-

ate method for establishing the grouping process of power patterns.

In another line, [22] presents a classification of days in tropical cli-

mates where the variation of solar radiation fluctuates greatly, due to 
the large amount of clouds. In order to characterize this fluctuation, 
the variations of daily solar radiation are summarized by a histogram 
where the histogram is an estimation of the measured daily solar radia-

tion distributions. These histograms are classified by estimating a finite 
mixture of Dirichlet distribution obtaining four classes of distributions 
corresponding to four types of days. Another work that uses probabilis-

tic representations is [23] where the measured solar energy data are 
classified into three groups using Gaussian Mixture Models.

There are works with a high number of classes of days [24–32]. 
[24] applies a classical maximum-likelihood method for clustering 
global and diffuse solar radiation data classifying sky conditions in nine 
classes. [25] is another example of a work that classifies a high number 
of groups. Specifically, seven sky conditions were found. The method 
employed uses the values of insolation indices to classify sky condi-

tions from overcast to clear. In the same way, [26] presents a new 
methodology to classify ten types of days using clustering techniques 
according to the state of the sky based on three features: variability, 
energy, and time distribution of this energy. Clustering analysis is ap-

plied to thirteen years of 10-min measurements collected. Another work 
that uses ten classes corresponding to different sky conditions is pro-

posed in [27]. [28] uses the monthly average of the global horizontal 
irradiation, the temperature, and the wind speed combined with the 
partial vapor pressure, the wind direction, and the sky nebulosity to 
obtain ten classes of days. Global horizontal irradiation recorded with 
an acquisition time step of 10 minutes is used in [29] to obtain nine 
day periods by decomposing each studied day in three periods. [30]

presents four groups (nine sub-classes) for “day” periods and equally 
four groups (nine sub-classes) for “night” periods using horizontal irra-

diation, air temperature, wind speed, humidity, and nebulosity as main 
parameters to study the transitions between diurnal and nocturnal pe-

riods. Another related work is presented by [31] where a classification 
matrix for daily irradiance types is described. This matrix classifies the 
daily irradiance by the total amount of irradiance and irradiance fluc-

tuations, resulting in nine different daily irradiance types. Finally, in 
[32] a day-type classifier based on the k-means algorithm is presented, 
dividing the days into 9 different classes, using the total irradiation val-

ues as the dominant parameter and the sum of irradiance variations as 
the second parameter. The results obtained by this classifier are very 
interesting, but there is a problem since, at first sight, it is not pos-

sible to differentiate the profiles obtained by the different classes. In 
other words, a human would not be able to distinguish one class from 
another without the help of the classifier system.

In relation to this last point and in order to solve the problem of 
the uncertainty and ambiguity involved in distinguishing one type of 
day from another, a powerful tool that can be used is fuzzy logic [33]. 
Fuzzy logic provides a mathematical framework to deal with the im-

precision typical of the human reasoning system and has been applied 

in many disciplines, being one of them its use in renewable energies 
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Fig. 1. PV installation: (a) BP-3165 solar modules; (b) SMC-100 inverters.
[34]. Fuzzy logic allows structuring the knowledge of a system through 
a set of symbolic “if-then” rules that use natural language terms to rep-

resent information. One line that many researchers have followed is 
to integrate the fuzzy systems paradigm with neural networks in so-

called neuro-fuzzy systems in order to combine the advantages of both. 
A neuro-fuzzy system is basically a fuzzy system (hence with structured 
knowledge) that uses learning methods borrowed from neural systems 
to adjust its parameters [35].

In addition to the problem of typical day’s classification, another in-

teresting idea would be to forecast the performance of solar systems. 
Due to uncertainty involved in weather conditions, fuzzy logic has been 
proposed by researchers as a good tool for the performance prediction 
of solar PV systems. Numerous prediction models have been developed 
using artificial intelligence techniques [36,37]. Some works such as 
these proposed in [38,39] use neural networks in order to forecast solar 
power generation. In [38], in addition to a neural network-based model, 
an adaptive neuro-fuzzy interface-based model is also developed. [39]

includes a comparison between two methods proposed in the work (one 
based on fuzzy logic and the other on neural networks) for forecasting 
solar power generation. Other works use fuzzy logic for the design of 
their prediction models [40–43]. Specifically, a type 2 fuzzy prediction 
system is presented in [41] and [43]. In [43] a type-2 Takagi-Sugeno-

Kang fuzzy system is developed and root mean square errors (RMSE) of 
forecasts in the different seasons of the year (spring, summer, autumn, 
and winter) are presented. The previous prediction models proposed 
in the literature are limited because the degradation of solar systems 
through time, that affects the performance of the PV systems, is not 
considered.

Therefore, this paper proposes the development of a novel fuzzy 
classifier of days with a high number of classes using daily irradiance 
measurements to extract the rule base. The aim is to achieve a sim-

ple and linguistically interpretable system that can be understood by 
non-experts, but without sacrificing accurate and robust behaviour. In 
order to achieve a precise behaviour, data mining and supervised learn-

ing techniques will be used; in order to be linguistically interpretable, 
on the one hand as few parameters as necessary will be sought, and on 
the other hand the use of simplification techniques will be exploited to 
achieve the simplest possible system. In addition, with this classifier, 
a prediction fuzzy model which allows forecasting the performance of 
solar panels has been developed. This proposed prediction model pro-

vides the novelty of considering the degradation of the performance of 
solar systems in time.

The structure of the paper is as follows. Section 2 will focus on 
describing the climatic characteristics of the city in which the PV instal-

lation that is going to be studied is located, as well as the instruments 
that the plant possesses, and which have been used to record the data 
used in this work. Also, the parameters to determine the performance of 
PV plant components are described; Section 3 will specify the types of 
days that the classifier will take into account, as well as the parameters 
that determine them; Section 4 will show how the fuzzy classifier has 
been designed, as well as the results obtained from its behaviour and a 
23

discussion about them; Section 5 will focus on the design of the fore-
Table 1

Characteristics of the PV system.

Area of each panel 1.573*790 mm2

Current at maximum power (I𝑚𝑎𝑥) 4.7 A

NOCT 47 ◦C ±2 ◦C

Number of inverters 3

Number of panels per inverter 36 (12*3 modules)

Number of panels in plant 108

Number of cells/panel 72

Open-circuit voltage (V𝑜𝑐) 44.2 V

Power of panels per inverter 5.940 W (36 panels * 165 Wp)

Power temperature coefficient -(0.5 ±0.005)%K

PV cell surface 125*125 mm2

Short-circuit current (I𝑠𝑐 ) 5.2 A

Total power 17.920 W (3 inverters * P𝑖𝑛𝑣)

Useful panel area 1.125 m2

Voltage at maximum power (V𝑚𝑎𝑥) 35.2 V

casting system for the performance of the PV installation, showing the 
results obtained from it, as well as a comparison with other systems de-

veloped with other learning algorithms; finally, the paper finishes with 
Section 6, which is dedicated to the conclusions.

2. Characteristics of the local climate and measuring instruments

The climatological characteristics of the city of Córdoba, located in 
southern Spain, make it very suitable for obtaining solar energy, since it 
is a city with a Mediterranean climate, mostly arid and cloudless, with 
little rainfall. In particular, winters in Córdoba are soft, without reach-

ing extreme temperatures, except on rare occasions when frosts may 
occur, with January being the coldest month, where the average min-

imum temperature is 4 ◦C, rarely reaching -1 ◦C. On the other hand, 
rainfall is concentrated in the months of spring and autumn, reaching 
an average of 600 mm per year, so they are not abundant, with a lot 
of irregularity from one year to another. And finally, summers are ex-

tremely hot, being July the hottest month, reaching temperatures of 
40 ◦C during the day and 18 ◦C at night, making it one of the hottest 
cities in Europe, and occasionally appearing in the 50 hottest cities in 
the world ranking.

Concerning the characteristics of the rooftop PV installation, it has 
a peak power of 17.82 kW, is formed by BP solar modules (model BP-

3165), which are made by polycrystalline silicon and have a peak power 
of 165 Wp. These modules are mounted on a 30◦ open frame, 18◦ south 
offset (Fig. 1(a)). The modules are connected in strings of twelve units 
connected in series, and three strings of this type are connected in par-

allel directly to each of the three inverters in the system (Fig. 1(b)). 
The inverters are from SMA (model SMC-100). Tables 1 and 2 show the 
characteristics of the PV system and the inverters, respectively.

The data acquisition system is located in the inverters of the PV 
plant. The irradiance data are collected by a device called Sunny Sensor-

Box, from the SMA company, where the irradiance sensor is connected, 
together with two temperature sensors to register the values of the am-
bient and module temperatures, which are listed in Table 2.
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Table 2

Characteristics of the inverters of the plant.

European performance 95.20%

Max. AC power 5500 W

Max. DC power 5750 W

Max. DC voltage 600 V

Max. input current 26 A

Max. nominal AC power 5000 W

Max. output current 26 A

Max. performance 96.10%

Number of MPPT 1

PV voltage range, MPP 246-480 V

• Amorphous ASI PV cell, calibrated for irradiance acquisition, with 
a measurement range from 0 to 1500 W/m2, an accuracy of ±8%, 
and a resolution of 1 W/m2.

• PT-100M temperature sensor, with a range of -20 to +110 ◦C, an 
accuracy of ±0.5 ◦C, and a resolution of 0.1 ◦C, used to measure the 
temperature of the modules.

• PT-100M-NR sensor, same characteristics as the previous one, but 
with an accuracy of ±0.7 ◦C, used to measure the ambient temper-

ature.

The SensorBox and the inverter are connected via RS485 to a device 
called SunnyWebbox from SMA Company. It is a device with a central 
communications unit that continuously collects all the data from the 
inverter and the SensorBox and is a multifunctional, energy-saving data 
logger. The measurement data are transmitted through a GSM modem 
from remote locations where there is no telephone or ADSL connection, 
so they are read directly from a computer connected to the network, 
consuming between 4 and 12 W of power.

With these instruments, the measurements were taken every 5 min-

utes (i.e. 288 measurements per day) for 3322 days (slightly more than 
9 years) in the city of Córdoba. Specifically, these measures were car-

ried out between January 1, 2011, and February 4, 2020. Of all these 
days, only 3158 were finally taken into account after the correction of 
errors (for example, days when the system stopped measuring for sev-

eral hours).

It will be interesting to see what kind of performance is obtained 
depending on the type of day. For this purpose, the efficiency values to 
be taken into account in this work are those related to PV modules and 
inverters. In addition to these two values, the Performance Ratio (PR), 
which is a dimensionless parameter corresponding to the ratio of the 
energy generated and delivered to the grid, compared to the value of 
the energy generated by the same system without losses, will also be 
taken into account.

For the calculation of these parameters, the data provided by the 
inverter, corresponding to the inverter input current and voltage, and 
the inverter output power, have been used.

To calculate the efficiency of the PV modules, the following expres-

sion has been considered [44]:

𝜂𝐺 =
𝐼𝑑𝑐 ⋅ 𝑉𝑑𝑐 ⋅ 𝑡
𝐸𝐺 ⋅𝐴𝐺

⋅ 100 (1)

where 𝐼𝑑𝑐 is the direct current generated in the modules and supplied to 
the inverter; 𝑉𝑑𝑐 is the voltage at the inverter input from the modules; 
𝑡 is the time of the monitoring interval; 𝐸𝐺 is the in-plane irradiance of 
the PV panels; and 𝐴𝐺 is the area of the PV panels associated with each 
inverter.

Additionally, the following expression is considered for the calcula-

tion of the inverter efficiency:

𝜂𝑖𝑛𝑣 =
𝑃𝑎𝑐

𝐼𝑑𝑐 ⋅ 𝑉𝑑𝑐 ⋅ 𝑡
⋅ 100 (2)
24

where 𝑃𝑎𝑐 is the output power of the inverter.
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Finally, for the calculation of PR, the following applies:

𝑃𝑅 =
𝑃𝑎𝑐 ⋅ 𝑡 ⋅𝐺

∗

𝑃0 ⋅𝐸𝐺

(3)

where 𝐺∗ = 1000 W∕m2 is the irradiance at standard STC conditions 
(AM1.5, 1 kW/m2, 25 ◦C); and 𝑃0 is the nominal power at standard STC 
conditions.

3. Types of days according to their daily irradiance shape

One of the objectives of this work is to develop a fuzzy system that is 
able to classify days into different types of profiles depending on their 
daily irradiance values in the same way as a human would do it. In 
this work the days will be classified into four macroclasses, which are 
Sunny, Partly Sunny, Partly Cloudy and Cloudy. Sunny days are those days 
with no clouds and their irradiance profiles have a gaussian bell shape. 
Partly Sunny days are those with small distortions in the bell due to 
some cloud passage. Partly Cloudy days are those with much more pro-

nounced distortions than Partly Sunny days, caused by increased cloud 
passage. Finally, Cloudy days are those in which the sky is completely 
covered with clouds, and therefore no bell shape is visible. Each of these 
four macroclasses will be further divided into three subclasses, High, 
Medium and Low, according to the level of total irradiation received 
on the day. This is because a sunny summer day is not the same as a 
sunny winter day, as the hours of daylight received vary from one to the 
other. Thus, the twelve total classes will be: Sunny High, Sunny Medium, 
Sunny Low, Partly Sunny High, Partly Sunny Medium, Partly Sunny Low, 
Partly Cloudy High, Partly Cloudy Medium, Partly Cloudy Low, Cloudy 
High, Cloudy Medium and Cloudy Low. Examples of each of these 12 
classes are shown in Fig. 2.

Once the daily irradiance profile classes have been selected, the next 
step is to specify which values determine that a day belongs to one class 
or another. In this sense, as the aim is to achieve a simple system, the 
number of parameters should be as small as possible and, taking into 
account the large amount of data to be processed, those with the lowest 
computational cost should also be chosen.

The irradiance values used in this work are global tilted irradiance 
(GTI), which are measured in the plane of the PV modules. After nu-

merous studies, it was concluded that the value that determines which 
macroclass a profile belongs to is the sum of the variations of the instan-

taneous irradiance values (called VAR in this work). Specifically, taking 
into account that 288 measurements are taken each day, the VAR cal-

culation expression would be:

𝑉 𝐴𝑅 =
287∑
𝑖=1

|𝐺𝑇𝐼𝑖 −𝐺𝑇𝐼𝑖−1| (4)

where 𝐺𝑇𝐼𝑖 is the i-th measure of the GTI value for the day under 
analysis.

The initial idea was to use the total length of the curve as a param-

eter (which, in reality, is a piecewise-linear function), instead of VAR, 
but, taking into account that the length of the segment of the piece 𝑖, 𝑙𝑖
would be:

𝑙𝑖 =
√

(𝐺𝑇𝐼𝑖 −𝐺𝑇𝐼𝑖−1)2 + (𝑡𝑖 − 𝑡𝑖−1)2 (5)

and also, that the space of time between measurements is constant, the 
previous expression becomes:

𝑙𝑖 =
√

(𝐺𝑇𝐼𝑖 −𝐺𝑇𝐼𝑖−1)2 + 𝑐𝑜𝑛𝑠𝑡 (6)

Therefore, the information that VAR gives us in this respect is equiv-

alent to the length of the curve in this case, but with a much smaller 
computational weight.

Several profiles were taken that clearly belonged to each macroclass 
and it was found that the VAR values presented by each macroclass 
belonged to non-overlapping intervals, hence the VAR value was taken 

to determine to which macroclass a given profile belongs.
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Fig. 2. Examples of profiles of the different types of days: (a) Sunny type days; (b) Partly Sunny type days; (c) Partly Cloudy type days; (d) Cloudy type days.
In addition, it was found that the different profiles grouped in each 
macroclass differed considerably in their total irradiance values, hence 
it was necessary to make a distinction between these types of days, gen-

erating the different subclasses. To calculate a value equivalent to the 
value of the total irradiance received on the day, but with a low cal-

culation weight, it was decided to sum all the instantaneous irradiance 
values of that day (called SUM in this work). Specifically, the expression 
of SUM would be:

𝑆𝑈𝑀 =
287∑
𝑖=0

𝐺𝑇𝐼𝑖 (7)

Specifically, the interval of values of SUM for each macroclass can 
be determined, and each of these intervals can be divided into three 
subintervals: High, Medium and Low.

Finally, and with these assumptions, the fuzzy classifier can be de-

veloped.

4. Neuro-fuzzy classifier design

The reasons for choosing a fuzzy classifier are diverse. Firstly, one 
of the intrinsic characteristics of fuzzy systems is the use of concepts 
with linguistic interpretability. This factor means that non-experts can 
understand how the classifier works. That is, anyone can understand 
what a sunny or partly cloudy day is, then knowing what kind of day it 
is going to be, it is possible to determine what efficiency can be achieved 
with the PV installation.

On the other hand, Fig. 2 shows day profiles that clearly belong to 
one class or the other. However, there are day profiles that are halfway 
between one class and other and it is not entirely clear, at a first glance, 
to which class they may belong. This makes the use of fuzzy systems 
more than appropriate, due to the facility they have to handle uncer-

tainty and ambiguity.

Among the different conditions reported in the literature for a sys-

tem to be linguistically interpretable, the number of rules must be 
25

moderate and the membership functions must be distinguishable and 
cover the entire universe of discourse of the variables [45]. In turn, 
when designing the system, fuzzy grid-type systems will be chosen, be-

cause they facilitate its linguistic interpretability, as long as the number 
of rules is reduced.

However, as explained in [46] and [47], if a fuzzy grid-type clas-

sifier is chosen and the rule base is complete, then the system has too 
much information to allow ambiguity. That is why the rule base of the 
classifier must be incomplete, leaving gaps between the rules defining 
the 4 macroclasses (Sunny, Partly Sunny, Partly Cloudy and Cloudy) so 
that the transition between them is gradual and the behaviour of the 
system is truly fuzzy. In a non-fuzzy system with an incomplete rule 
base, the system may find itself in a situation where it does not know 
what output value to give. However, in a fuzzy system, the empty areas 
of the rule base are occupied by neighbouring rules, since their degree 
of activation is non-zero, as explained in [48], [46] and [47].

Therefore, the constraints imposed on the system are that it should 
be a fuzzy grid-type classifier, with a moderate number of rules and 
distinguishable membership functions covering the entire universe of 
discourse, to ensure that it is linguistically interpretable; and, on the 
other hand, that the rule base should be incomplete to ensure that the 
transition between macroclasses is gradual and fuzzy, to deal better 
with uncertain cases.

For the development of the classifier, days that clearly belonged 
to a particular macroclass were found to have VAR values in non-

overlapping intervals with the other macroclasses. Therefore, the VAR

values of these four intervals were separated and the SUM values in 
each of them were analysed. Knowing the minimum and maximum val-

ues of SUM in each interval, it was divided into three equal ranges to 
establish the subclasses of Low, Medium and High for each macroclass.

Once a training file has been created for which, to certain input 
values of VAR and SUM, an output day class is assigned, an identifi-

cation algorithm is used to create the system. The algorithm chosen 
for this task is the Wang-Mendel algorithm [49] and, to tune the be-

haviour of the system obtained, the Levenberg-Marquardt algorithm (a 

second-order training algorithm that does not compute the Hessian ma-
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Fig. 3. (a) Design methodology flow followed by Xfuzzy; (b) Xfuzzy set of CAD tools, grouped according to the stage of design they relate to.
trix [50]) is used. For this purpose, the Xfuzzy environment [51] has 
been used.

The Xfuzzy environment, developed at the Instituto de Microelec-

trónica de Sevilla, allows the design of complex fuzzy systems charac-

terised by being extensive, expressive and modular. The design flow 
that can be followed with Xfuzzy is shown in Fig. 3(a). Fig. 3(b) illus-

trates the set of CAD tools in the environment, grouped according to 
the design stage to which they relate. These tools cover all stages of 
the fuzzy system design process, from its initial description to its final 
implementation. The link between them is the use of a common speci-

fication language, XFL3.

The first step in the design is to use the Xfuzzy identification tool, 
xfdm, choosing the Wang-Mendel algorithm. The chosen defuzzification 
method is the one that outputs the consequent of the most activated 
rule (which we will call MaxLabel in this paper). Taking into account 
that the resulting rule base will have sufficiently large empty areas, the 
membership functions for the inputs must be Gaussian, as explained in 
[47]. This ensures that there are no undefined zones, since even if the 
degree of activation of a rule is very small, it is sufficient to dominate 
over smaller values and provide its category as output value.

Once the fuzzy classifier is obtained, the Levenberg-Marquardt algo-

rithm has been applied with the help of the Xfuzzy supervised learning 
tool, xfsl, to tune the behaviour of the system. Finally, rules were man-

ually deleted to ensure that there were empty areas between the sets of 
rules belonging to the different macroclasses.

After several tests, from 12 membership functions to describe the in-

puts (thus forming a 12x12 grid partition), no significant improvement 
in the behaviour of the system is achieved, and a higher number of func-

tions starts to negatively affect the linguistic interpretability. The final 
Neuro-Fuzzy Classifier System (NFCS) obtained with 68 rules is shown 
in Fig. 4 and 5.

Although the number of rules is not too high, linguistic interpretabil-

ity may be lost due to their number. Therefore, one option to improve 
the linguistic interpretability of the system is to simplify its rule base. 
Specifically, if the Fuzzy Tabular Simplification algorithm explained in 
[52] is used, being an extension of the Quine-McCluskey algorithm from 
Boolean logic to fuzzy logic, and integrated into the Xfuzzy simplifi-

cation tool xfsp, the rules for each consequent can be automatically 
grouped, obtaining the following rule base composed of only 12 rules:

1. If ((VAR is ≥ Low_VL and VAR is ≤ Low_L) and (SUM is Low_VL)), 
then DayClass is Cloudy_L;

2. If ((VAR is ≥ Low_VL and VAR is ≤ Low_L) and (SUM is Low_L)), then 
DayClass is Cloudy_M;

3. If ((VAR is ≥ Low_VL and VAR is ≤ Low_L) and (SUM is ≥ Low_H and 
SUM is ≤ Low_VH)), then DayClass is Cloudy_H;

4. If ((VAR is Low_VL) and (SUM is ≥ Medium_H and SUM is ≤
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Medium_VH)), then DayClass is Sunny_L;
Fig. 4. (a) Membership functions for the VAR input; (b) Membership functions 
for the SUM input; (c) Membership functions for the DayClass output.

5. If ((VAR is Low_VL) and (SUM is ≥ High_VL and SUM is ≤ High_L)), 
then DayClass is Sunny_M;

6. If ((VAR is Low_VL) and (SUM is ≥ High_H and SUM is ≤ High_VH)), 
then DayClass is Sunny_H;

7. If ((VAR is Low_H) and (SUM is ≥ Medium_H and SUM is ≤
Medium_VH), then DayClass is ParSunny_L;

8. If ((VAR is Low_H) and (SUM is ≥ High_VL and SUM is ≤ High_L)), 

then DayClass is ParSunny_M;
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Fig. 5. Classifier system rule-base.

Fig. 6. Sample of daily irradiance profiles obtained by the NFCS for: (a) Sunny Low; (b) Sunny Medium; (c) Sunny High; (d) Partly Sunny Low; (e) Partly Sunny Medium; 
(f) Partly Sunny High; (g) Partly Cloudy Low; (h) Partly Cloudy Medium; (i) Partly Cloudy High; (j) Cloudy Low; (k) Cloudy Medium; (l) Cloudy High.
9. If ((VAR is Low_H) and (SUM is ≥ High_H and SUM is ≤ High_VH)), 
then DayClass is ParSunny_H;

10. If ((VAR is ≥ Medium_VL and VAR is ≤ High_VH) and (SUM is 
Medium_H), then DayClass is ParCloudy_L;

11. If ((VAR is ≥ Medium_VL and VAR is ≤ High_VH) and (SUM is ≥
Medium_VH and SUM is ≤ High_VL)), then DayClass is ParCloudy_M;

12. If ((VAR is ≥ Medium_VL and VAR is ≤ High_VH) and (SUM is ≥
High_L and SUM is ≤ High_VH)), then DayClass is ParCloudy_H;

As can be seen, the rule base is sufficiently compact and simple to 
maintain high linguistic interpretability.

4.1. Results and discussion of the classifier system

Once the system has been completed, its correct performance in clas-

sifying day profiles is tested. For this purpose, the Xfuzzy simulation 
tool, xfsim, is used to perform a closed-loop simulation. In this simu-

lation, a plant described in Java has been created with which a file 
with the VAR and SUM values of the 3158 days analysed has been run 
through and the system has returned the corresponding day class for 
each of these days. The number of days per class obtained is shown in 
Table 3.

The results shown in the table are consistent with the type of 
weather in the city, with sunny days being the most numerous (with 
the Sunny High subclass being by far the most dominant, which was to 
be expected), followed by partly sunny days, and cloudy days being by 
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far the least numerous.
Table 3

Number of days per class according to the NFCS.

Day class Number of days per 
subclass

Number of days per 
macroclass

Cloudy Low 17

Cloudy Medium 108 410

Cloudy High 285

Sunny Low 224

Sunny Medium 301 1171

Sunny High 646

Partly Sunny Low 260

Partly Sunny Medium 272 811

Partly Sunny High 279

Partly Cloudy Low 345

Partly Cloudy Medium 225 766

Partly Cloudy High 196

However, what is really interesting is to check that the daily profiles 
adjust to what is shown in Fig. 2. For this purpose, Fig. 6 shows samples 
of different daily profiles assigned according to the NFCS.

As can be seen, the results obtained are highly satisfactory. In the 
figure it can be seen how, indeed, sunny days show bells with no noise; 
partly sunny days show bells with some noise; partly cloudy days show 
bells with a lot of noise; and, finally, cloudy days show no bell shape.

To compare this system with other authors is difficult, since, as could 
be seen in Section 1, there is no common agreement on the number 

of classes into which the daily irradiance profiles should be divided. 
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Fig. 7. Cases of extreme confusion of the Table 4: a) Days classified by AEMET as Cloudy and by NFCS as Sunny; b) Days classified by AEMET as Sunny and by NFCS 
as Cloudy.
Moreover, the results are highly dependent on the climatology of the 
location, varying greatly from one country to another.

However, there is one work with which it can be compared, and that 
is the one presented in [32], because they use the same database that 
has been used in this work (with the same PV system in the same city).

In [32] they use as dominant parameter the sum of all the in-

stantaneous irradiance values, due to its importance in obtaining good 
performance values. However, not using VAR as the dominant parame-

ter means not determining whether the profile shows a clean, low-noise 
or high-noise Gaussian bell. That is, they sacrifice an important prop-

erty in this type of systems, which the NFCS largely achieves: that the 
profiles can be classified as a human would do it.

The profiles obtained by the classifier of [32] have interesting prop-

erties, but a human would be unable, given a profile, to determine 
which class it belongs to of those proposed by the authors. The clas-

sifier is completely necessary to determine to which class it belongs. 
However, given a profile, a human would be able to distinguish be-

tween the classes shown in Fig. 2 and 6, which is what the classifier 
described in this paper does.

This is important because the performances achieved are highly de-

pendent on the type of day. And, if the aim is to know in advance the 
performances that are going to be achieved according to the predicted 
day, weather forecasts are based on reporting how clear the day is going 
to be, as well as the temperatures that are going to be reached.

Another way to keep checking the good performance of the NFCS is 
to corroborate what kind of day, according to the sky conditions, were 
the days analysed. To do this, we have contacted the State Meteorolog-

ical Agency of the Spanish Government (AEMET), and we have asked 
them to provide us with data on the state of the sky in Cordoba on those 
days. The station where the agency takes measurements in Cordoba is 
7.2 km away from the PV installation analysed in this article. In addi-

tion, for the historical sky state data records, the method followed by 
the agency is that a technician observes the sky at 7 a.m., 1 p.m., and 
6 p.m., and notes the corresponding oktas, taking into account that the 
oktas values range from 0 to 8, with 0 being a sky completely clear, 
and 8 being a sky completely cloudy. To compare with the results of 
the developed NFCS, the mean value of the 3 oktas values for each day 
has been calculated and the interval between 0 and 8 has been divided 
into 4 sub-intervals, the first one being for Sunny days, the next one for 
Partly Sunny, the next one for Partly Cloudy and the last one for Cloudy

days.

Removing the days with incomplete data provided by AEMET, 2523 
days remain for comparison. Once the results of the NFCS have been 
compared with those of AEMET, the confusion matrix shown in Table 4

is obtained.

As can be seen in the Table 4, a typical good classification behaviour 
can be observed, having the highest values on the diagonal. As, in ad-

dition, the classes are ordered from one extreme case (completely clear 
sky) to another (completely cloudy sky), it can be seen that the values, 
as they move away from the diagonal, decrease. The reason for the dis-
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crepancies between the AEMET data and the NFCS results are not due to 
Table 4

Confusion matrix of the data provided by AEMET and the NFCS results.

AEMET

NFCS
Sunny Partly Sunny Partly Cloudy Cloudy

Sunny 743 145 27 3

Partly Sunny 157 309 155 16

Partly Cloudy 17 139 289 59

Cloudy 8 48 178 230

failures of the NFCS, but mostly due to differences in the way the data is 
collected and the location. On the one hand, the AEMET measurements 
are made by a human at three specific times of the day (and, between 
these times, there can be important variations that are not recorded and 
that can change the classification completely), while the measurements 
used by the NFCS are made by an automatic measurement system ev-

ery 5 minutes throughout the day. On the other hand, although 7.2 km 
(which is the distance between the AEMET station in Cordoba and the 
PV installation studied) is not a large distance, it may be enough to vary 
the state of the sky from one point to another. To reinforce this argu-

ment, Fig. 7 shows the most extreme cases of confusion, such as the 8 
days that AEMET classifies as Cloudy and the NFCS as Sunny, and the 3 
days that AEMET classifies as Sunny and the NFCS as Cloudy. As can be 
seen, the NFCS correctly assigns the classes for these days. Therefore, a 
system such as the one developed in this article could be used to debug 
errors in the methodology used by AEMET.

In addition to the confusion matrix, different metrics can be used to 
check the good performance of the NFCS, such as Precision and F1-Score

[53], which combines the values of Precision and Recall. Specifically, 
Precision details the percentage of patterns labelled as a class that ac-

tually correspond to that class, while Recall details the proportion of 
patterns of a class that the model has been able to correctly label:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛= 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
; 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(8)

where 𝑇𝑃 is the number of instances that the classifier has identified of 
a specific class correctly (true positives); 𝐹𝑃 the number of instances 
that the classifier has identified of that specific class incorrectly (false 
positives); and 𝐹𝑁 the number of instances that the classifier should 
have classified of that specific class and did not (false negatives).

Once the equations for calculating Precision and Recall have been 
defined, the F1-Score is calculated as:

𝐹1 − 𝑆𝑐𝑜𝑟𝑒= 2 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

(9)

The Precision and F1-Score results obtained for the Sunny, Partly 
Sunny, Partly Cloudy and Cloudy macroclasses of the NFCS are shown 
in the Table 5. To reinforce the good performance of our proposal, this 
table also shows the results obtained from two other systems based on 
the following algorithms: Adaptive Neuro-Fuzzy Inference System (AN-

FIS), which is a machine learning algorithm that uses a neural network 
together with fuzzy logic techniques to create a fuzzy inference system 

[54]; and C4.5, which is one of the most widely used machine learn-
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Fig. 8. (a) Panel efficiency according to day class; (b) Inverter efficiency according to day class; (c) PR according to day class.
Table 5

Comparison of performance assessment parameters for various approaches to 
the classification problem.

Class ANFIS C4.5 NFCS

Prec. F1-Sc. Prec. F1-Sc. Prec. F1-Sc.

Sunny 57.2% 67.3% 84.1% 77.8% 80.3% 80.6%

Partly Sunny 37.1% 37.5% 33.7% 47.4% 48.2% 48.4%

Partly Cloudy 37.6% 23.8% 45.3% 23.7% 44.5% 50.1%

Cloudy 30.1% 24.7% 83.3% 13.8% 74.7% 59.6%

Complete Syst. 46.7% 38.3% 51.1% 40.7% 62.7% 59.7%

ing algorithm in classification problems that uses relative information 
gain (entropy) to generate a decision tree [55]. The ANFIS system has 
been implemented using Matlab, while the C4.5 system has been im-

plemented using WEKA software [56] [57]. For both, the default values 
defined in the implementation of the algorithms have been used.

Analysing the results shown in the Table 5, it can be seen that, of 
all the systems, the one that shows the best performance is the NFCS, 
being the one that presents the best F1-Score values in all the fields, and 
also the one that shows the least differences between the Precision and 
F1-Score values.

Once the NFCS has been checked and a class has been assigned to 
each day, the days can be grouped by class, and the values of the pa-

rameters 𝜂𝐺 , 𝜂𝑖𝑛𝑣 and PR can be compared according to the day class, 
obtaining the results shown in Fig. 8. Also, the values obtained for max-

imum ambient temperature and maximum module temperature can be 
grouped according to the day classes, getting the results illustrated in 
Fig. 9.

By observing the different subclasses belonging to the same macro-

class, it can be seen that the best-combined performance of modules 
and inverters, set by the value of PR, happens at higher values of total 
irradiance (i.e. of each macroclass, the best-performing subclass is the 
one with the descriptor High).

From Fig. 9, it can be observed that the Cloudy macroclass, closely 
followed by the Sunny Low subclass, are the ones with the lowest tem-

perature values, corresponding to winter days (being especially logical 
in Sunny Low, where, even with clear skies and bell-shaped profiles, 
low irradiation values are obtained due to fewer hours of sunshine). 
At the other extreme, the subclasses with the highest number of hot 
days, from highest to lowest, are Sunny High, Partly Sunny High, Sunny 
Medium, Partly Sunny Medium, Partly Cloudy High. The latter is impor-

tant for analysing the performance behaviours achieved by the different 
classes (Fig. 8), as will be discussed below.

It might have been thought that the best PR values would be 
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achieved with those classes with the highest total irradiation and clear 
Fig. 9. (a) Daily maximum ambient temperature values according to day class; 
(b) Daily maximum temperature values of the panels according to day class.

skies (Sunny High and Sunny Medium), as clouds would deprive the pan-

els of some of the irradiation received. However, analysing the results 
obtained from PR, although the values obtained are close, the classes 
with the best performance, from highest to lowest, are Partly Cloudy 
High, Partly Sunny High and Sunny High (Fig. 8(c)). Although at first 
glance the result may seem surprising, these results have a double jus-

tification.

The first can be deduced from the results in Fig. 8(a) and Fig. 9. It 
can be seen that the panels perform better on Partly Cloudy High days 
than on Partly Sunny High and Sunny High days. Fig. 9 shows that the 
Partly Cloudy High days are colder days, a factor to be taken into ac-

count since the overheating of the panels implies energy losses [58]

(especially considering the extremely high temperatures reached in the 
city).

On the other hand, another phenomenon must be taken into ac-

count, and it is the so-called Cloud Enhancement or Irradiance Enhance-

ment, studied by many authors [59–61] [32]. This phenomenon can be 
observed simply in Fig. 2 and in a more dramatic way in Fig. 6. When 
following the bell shape of clear days, when there is a drop in the ir-
radiance value due to clouds, followed by a rise, the irradiance value 
does not return to the trajectory imposed by the bell but exceeds it. 
And these peaks rise more sharply if the variations are more drastic. 
These peaks in the irradiance values are due to reflection phenomena 

produced by the cloud edges surrounding the unobstructed solar disc. 
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Therefore, the irradiance lost by the clouds is then compensated by the 
over-irradiance produced by this phenomenon. It is also for this reason 
that, in the inverter performance results (Fig. 8(b)), the Partly Cloudy 
High and Medium class obtain similar results to Sunny High and Medium, 
since, due to over-irradiation, they obtain similar values of total irradi-

ation received in the end.

Therefore, the positive results obtained on Partly Cloudy High days 
are a combination of the reduction of losses due to the cooling of the 
panels, together with the reception of total irradiation values similar to 
those of a clear day, due to the over-irradiation obtained by the Cloud 
Enhancement phenomenon.

5. Neuro-fuzzy forecasting system design

The second objective of this work is to develop a system which is 
able to forecast the PR of the PV module using minimal and understand-

able variables. The main purpose of this system is not only to know in 
advance what the approximate performance will be in the coming days, 
but also, if over several days the performance achieved is lower than 
predicted (and getting worse), it may be a sign of a breakdown or other 
problems in the installation.

This is to be done by using variables that are easily accessible to the 
average citizen. In particular, the performance depends closely on the 
type of day it is going to be, as well as the ambient temperature, values 
that are easily obtainable through weather forecast websites, or with 
simple observation and a thermometer if the day has passed. Specif-

ically, the 12 classes of days used by the classifier described above 
(variable DayClass), and the maximum ambient temperature reached 
during the day (variable 𝑇𝑚𝑎𝑥) will be used.

For the database, out of the 9 years of measurements, the first 
seven years will be taken to train the system (from 1 January 2011 
to 31 December 2017) and then the measurements of the following two 
years (from 1 January 2018 to 4 February 2020) will be used to check 
whether the system would have predicted the PR values correctly.

When developing the system, as was done with the classifier, a grid-

type system is chosen, using the Wang-Mendel algorithm, and then 
tuned using the Levenberg-Marquardt algorithm, using the xfdm and 
xfsl tools of Xfuzzy, respectively. For the DayClass variable, 12 member-

ship functions are chosen (which cannot be reduced because they are 
the 12 classes used by the classifier) and, for the 𝑇𝑚𝑎𝑥 variable, from 10 
membership functions onwards the RMSE is not significantly improved, 
obtaining inappropriate results if fewer functions are chosen. The re-

sulting functions for 𝑇𝑚𝑎𝑥, after training, are shown in Fig. 10a.

The resulting matrix of the rule-base is 12x10. Although this re-

sults in 120 possible rules, in reality only 82 are generated, as there are 
cases within the matrix that never occur (such as, for example, that on 
a Cloudy_L type day, Hot_VH type temperatures are reached at 𝑇𝑚𝑎𝑥). 
The 82 singletons generated for the output of the system, 𝑃𝑅𝑖𝑛𝑖, can 
be simplified, without significantly worsening the behaviour of the sys-

tem. Concretely, by clustering, these 82 singletons are grouped into 15, 
obtaining the final result shown in Fig. 10b. In this way, the rule-base il-
lustrated in Fig. 11 is reached. Finally, this rule-base can be simplified, 
as was done with the classifier, by using the Fuzzy Tabular Simplifi-

cation algorithm, arriving at a final reduced system of 15 rules. The 
application of the clustering simplification of the 𝑃𝑅𝑖𝑛𝑖 singletons, as 
well as the tabular simplification of the rule-base, has been done by 
using the Xfuzzy tool xfsp.

This initial forecasting system (called Prediction), on its own, does 
not achieve satisfactory forecasting values. This is because there is an-

other factor, also easily accessible by an average citizen, which affects 
the performance and that is the time of use of the PV module, since, 
as time goes by, the PV installation degrades and the performance 
decreases. Therefore, the 𝑃𝑅𝑖𝑛𝑖 output of the Prediction module is con-

nected, in cascade, with a new module (called Correction), in which a 
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new input variable called 𝑡𝑢𝑠𝑒 also enters, which is the time of use of 
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Fig. 10. (a) Membership functions for the 𝑇𝑚𝑎𝑥 input; (b) Membership functions 
for the 𝑃𝑅𝑖𝑛𝑖 output; (c) Membership functions for the 𝑡𝑢𝑠𝑒 input.

the PV module in months, achieving the hierarchical structure shown 
in Fig. 12.

For the Correction module, the system that generates the best answer 
is of the first-order Takagi-Sugeno-Kang (TSK) type [62][63]. The whole 
system, consisting of Prediction (previously trained) and Correction, is 
trained using the Levenberg-Marquardt algorithm. From 3 membership 
functions onwards for the variable 𝑡𝑢𝑠𝑒, the RMSE of the total system 
does not improve, reaching, after training, the final functions shown in 
Fig. 10c. Therefore, to the 15 rules of the Prediction module, 3 rules of 
the Correction module are added, resulting in a total system of 18 fairly 
reduced rules.

5.1. Results and discussion of the forecasting system

Before checking the good performance of the Neuro-Fuzzy Fore-

casting System (NFFS), proposed in this paper, the RMSE achieved 
by this will first be compared with that achieved with other training 
algorithms. For this comparison, the Linear Regression, Multi Layer Per-

ceptron (MLP), Radial Basis Function (RBF) Network, M5P and M5Rules 
algorithms have been used. Linear regression (LR) works by estimating 
coefficients for a line or hyperplane that best fits the training data [64]; 
MLP is an artificial neural network (ANN) that uses backpropagation to 
learn a multi-layer perceptron to classify instances [65]; RBFNetwork 

implements a normalized Gaussian radial basis function network that 
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Fig. 11. Prediction module rule-base.
Fig. 12. Forecasting system structure.

Table 6

Comparison of performance assessment parameters for various approaches to 
the forecasting problem.

Approaches Training data set Testing data set

RMSE MAE RMSE MAE

LR 4.304% 3.115% 6.055% 4.246%

MLP 4.678% 3.874% 6.059% 4.307%

RBFNetwork 5.190% 3.661% 8.130% 5.723%

M5P 3.188% 2.236% 6.917% 4.969%

M5Rules 3.360% 2.383% 6.718% 4.740%

NFFS 3.021% 2.187% 5.961% 4.175%

uses the k-means clustering algorithm to provide the basis functions 
and learns a linear regression on top of that. Moreover, symmetric mul-

tivariate Gaussians are fit to the data from each cluster [65]; M5P is 
an algorithm in trees category which implements the original M5 algo-

rithm [66][67] for generating trees. In a similar way, M5Rules is the 
implementation of algorithm M5 for generating rules [68]. For the im-

plementation of these algorithms, the WEKA software has been used, 
using the default parameters.

After applying all the algorithms mentioned above, the performance 
assessment parameters achieved, both for the training data of the first 
7 years and for the test of the last 2 years, are shown in Table 6, where 
RMSE stands for Root-Mean-Square deviation, and MAE for Mean Ab-

solute Error.

As can be seen in the table, of all the methods used, the one that 
provides the best training and test results is the one proposed in this 
work.

To visualise more clearly the behaviour achieved, Fig. 13 illustrates 
the PR values predicted by the system together with the actual PR val-

ues achieved during the 7 years of training. Two things can be observed 
in this figure: firstly, that the performance of the installation is indeed 
gradually decreasing over the years; secondly, that the system has ac-

quired a quite satisfactory behaviour, including the degradation over 
time, mentioned above.

The next step to be checked is the behaviour of the system over the 
last two years, which are the data used as test data, shown in Fig. 14. 
In this case, it can be seen that the predicted behaviour fits reasonably 
well with the real one except in one area, which corresponds to the 𝑡𝑢𝑠𝑒
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values between 101 and 104 months, corresponding to the summer of 
Fig. 13. PR values provided by the neuro-fuzzy forecasting system, versus actual 
PR values achieved with the training data (from 1 January 2011 to 31 December 
2017).

Fig. 14. PR values provided by the neuro-fuzzy forecasting system, versus actual 
PR values achieved with the test data (from 1 January 2018 to 4 February 
2020).

2019. The reason for this difference is due to several motives. Firstly, 
there is more dust accumulation in summer than in other seasons, due 
to the almost total absence of rainfall, as well as the arrival of Saharan 
dust. Secondly, in the summer of 2019 there was an abnormal increase 
in air pollution in Cordoba [69], increasing the accumulation of dirt 
on the panels compared to other years. Finally, in previous years, the 
solar panels were cleaned more regularly during the summer, however, 
during the months of May, June, July, and August 2019 they were not 
cleaned at all. It was not until 1 September 2019 (just after the summer 
holidays) that the solar panels were cleaned. From that date onwards, 

the predicted and actual values converge again.
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Therefore, the system not only serves to predict the performance 
values, but, as in the case described above, it also serves to detect 
anomalous behaviour in the system, so that those responsible for the 
maintenance of the installation could be alerted to these cases and re-

act accordingly.

6. Conclusions

In this paper, two neuro-fuzzy systems have been presented: one is 
responsible for classifying daily irradiance profiles as a human would 
and the other is responsible for forecasting the performance of the PV 
installation according to the type of day expected, the maximum ambi-

ent temperature and the time of use of the installation.

In the case of the classifier, the classes provided are Cloudy, Partly 
Cloudy, Partly Sunny and Sunny, which, in turn, are divided into Low, 
Medium and High subclasses each one of them.

Once the parameters to be used have been determined and simplifi-

cation techniques have been applied, such as the use of incomplete rule 
bases or Fuzzy Tabular Simplification, a final system of only 12 rules 
is obtained, which in turn is linguistically interpretable. Although the 
system obtained is extremely simple, it responds adequately, classifying 
the different daily irradiance profiles as expected.

With the classifier completed and tested for correct operation, a 
large number of days recorded in the south of Spain are classified, 
studying the performances obtained for each of the classes, as well as 
the temperatures recorded in them. From this study, it is determined 
that the classes of days with the best PR are those with a high irradi-

ation value, with the classes with passing clouds prevailing over those 
with clear days. The latter is mainly due to the fact that there are less 
losses when the modules have a lower temperature and by the compen-

sation of instantaneous irradiance values due to the Cloud Enhancement

phenomenon.

With this large database of classified days, a neuro-fuzzy system 
has been designed that is capable of forecasting the PR of the PV sys-

tem with variables that are easily predictable by an average citizen, 
adding, to the day class, the variables of maximum ambient temperature 
reached during the day, as well as the time of use of the PV installation. 
Specifically, a hierarchical system is used in which a first system pre-

dicts the PR with the day class and the maximum temperature and this 
first value is corrected with a second module in which the time of use 
of the PV modules is also included.

From this large database, the first 7 years of measurements have 
been used to train the system and the last 2 years to test it. With the 
proposed technique, a reduced system of only 18 rules is reached, which 
achieves quite satisfactory predictive values, not only emulating the 
gradual drop in performance due to the degradation of the time of use, 
but it has also served to detect anomalous behaviour in the installation 
during the summer of 2019.
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