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A  B  S  T  R  A  C  T  
 

Background: Pollen is naturally emitted and is relevant for health, crop sciences and monitoring climate change, 
among others. Despite their relevance, pollen is often insufficiently monitored resulting in a lack of data. Thus, 
spatial modelling of pollen concentrations for unmonitored areas is necessary. The aim of this study was to 
develop an automatic system for calculating daily pollen concentrations at sites without regular pollen mon- 
itoring. 
Method: We used data from 14 pollen taxa collected during 2015 at 26 stations distributed across Bavaria, 
Germany. The proposed system was based on the Kriging interpolation method to spatially model pollen con- 
centrations for unmonitored areas, in combination with regression of environmental parameters. The method 
also took into account weather effects on daily pollen concentrations. 
Results: An automatic system was developed for calculating current pollen concentrations at any location of the 
county. The results were displayed as daily pollen concentrations per m3 in maps of 1 km2 resolution. The models 
are trained automatically for every day by using the pollen and weather inputs. Automatic inputs will increase 
the usability of the model. In 50% of the cases, Gaussian Kriging was selected as the optimal model. An R2 of 0.5 
is reached in external validation without considering the effect of the weather. An R2 of 0.7 is reached after 
considering the effect of daily weather parameters. 
Conclusions: A fully automatic pollen network (ePIN) was built in Bavaria during 2018 that delivers data on-line 
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without delay. The proposed method allows for a comparably small number of automatic devices per study area, 
but still providing information on pollen on any location in the study area. 

 

 

1. Introduction 

 
Many environmental parameters are routinely monitored world- 

wide (Casazza et al., 2018; Li et al., 2017). Pollen monitoring is espe- 
cially important for society due to the critical impact on public health 
but also in other sectors such as agronomy, forestry or ecology. Climate 
change has potential effects on vegetation and this is also increasing the 
impacts of pollen on human societies (Bisbis et al., 2018). Although 
pollen is a natural pollutant, it can also be considered as anthropogenic 
due to human influence on pollen emission (Crenna et al., 2017). Fur- 
thermore, anthropogenic sources of pollen, such ornamental plants or 
crop fields, impact the biological content of the air (Cariñanos et al., 
2017). A recent discovery point out to pollen as the main vector for 
airborne endotoxins (Oteros et al., 2018). 

Modelling of pollen data is necessary because global comprehensive 
spatio-temporal monitoring is not possible. Scientific modelling tries to 
explain most of the variability by using the simplest mathematical 
complexity. For modelling, the dependent variable is related to a 
mathematical function often including other parameters easier to 
measure (independent variables). The variability of some phenomena 
shows well defined patterns through time or space, in those cases time 
or spatial position are valuable independent variables too. Modelling let 
us understand the dependent variables and enables the estimation of 
pollen concentrations at unmonitored locations or time intervals. 

Spatially, a high resolution monitoring of regionalized parameters 
has only recently been possible by using remote instrumentation (e.g. 
satellites or unmanned drones). However, just a few environmental 
parameters can be accurately monitored by using this technology 
(Fishman et al., 2003; Running et al., 2004; Yang et al., 2017). Ad- 
ditionally, the resolution of monitoring can still be improved. Thus, 
most of regionalized variables are being monitored at local stations by 
using ground-based technologies. The interpolation of values between 
measuring stations is a historical issue in environmental monitoring 

(Bargaoui and Chebbi, 2009; Hengl et al., 2009). 
Although some environmental parameters such as temperature have 

been historically spatially interpolated with high precision, this is not 
the case for most other parameters. The main reasons are the lack of 
monitoring stations or the complexity of the modelling process. In the 
case of airborne pollen, stations are few due to the laborious, manual 
and, hence, highly resources demanding methods: https://www.zaum- 
online.de/pollen/pollen-monitoring-map-of-the-world.html  (Buters 
et al., 2018). For pollen monitoring, a special scientific device is needed 
to collect airborne pollen grains, followed by manual and microscopic 
analysis. (CEN/TS-16868, 2015). The process is laborious and time 
consuming, and requires experienced personnel (Galán et al., 2014). 
Because of this, global monitoring of pollen is unlikely and geostatis- 
tical models are necessary for determining pollen concentrations at 
unmonitored areas. Up to date, different versions of spatial interpola- 
tion and regressions were used for flowering or pollen spatial analyses 
(Aguilera et al., 2015; Garcia-Mozo et al., 2006; Rojo et al., 2016; Rojo 
and Perez-Badia, 2015). Very often, the density of actual pollen mon- 
itoring stations is not enough to perform accurate interpolations. In 
Europe, automation in airborne pollen monitoring has recently been 
established (Crouzy et al., 2016; Oteros et al., 2015). Automation in- 
creases the amount of available information with minimal cost and 
effort, allowing for application of more complex interpolation. 

It is often necessary to obtain the data with a time resolution bigger 
than that monitored. Downscaling of independent variables is necessary 
in areas like field phenology (Oteros et al., 2013), meteorology (Young 
et al., 1998) or even for pollen data (Orlandi et al., 2014). Modelling is 
also necessary when we need to perform projections of conditions 
during unmonitored periods in the both directions: past and future 
(Graumlich, 1987; Radic et al., 2014). In the case of airborne pollen, 
long term modelling has been previously conducted (Laaidi et al., 2003; 
Orlandi et al., 2006; Ribeiro et al., 2006; Rojo et al., 2017; Sikoparija 
et al., 2017). Pollen long term modelling is used for agronomy or 

 

 



 

 

Fig. 1. Bavaria (Germany). Pollen monitoring locations in Bavaria only. 



 

 

 

climate change studies (Damialis et al., 2007; De Linares et al., 2017; 
Oteros et al., 2014). Pollen short term modelling is used to forecast 
pollen/spores concentrations (Norris-Hill, 1995; Sadyś and West, 2017; 
Sánchez-Mesa et al., 2002). Ultimately, pollen data are widely used by 
physicians and allergy patients for allergy prophylaxis (de Weger et al., 
2013; Traidl-Hoffmann et al., 2003). 

Many methods have been applied for modelling daily and hourly 
pollen concentrations, e.g. different kind of regression, artificial neural 
networks (Kasprzyk, 2006; Rodriguez et al., 2010). For short-term 
modelling, the autocorrelation function information of the pollen time 
series has been reported as the most valuable parameter for forecasting 
(Fernández-Rodríguez et al., 2018; Matyasovszky and Makra, 2011; 
Rodriguez-Rajo et al., 2006). In addition, other automated systems 
based on the input of pollen measurements have been developed 
(Hidalgo et al., 2002; Turner et al., 2006). However, the difficulty for 
displaying pollen measurements with a short delay make the models 
difficult to apply. This is an important reason why most of pollen 
models are not assimilation based systems. Usually, forecasting systems 
are based on modelling the parameters involved in pollination without 
assimilation (Sofiev et al., 2006, 2015; Vogel et al., 2008; Zink et al., 
2012). 

Pollen information can be displayed with three levels of uncertainty: 
a. Real pollen concentrations measurement at static locations. 
b. Pollen concentrations at locations without real pollen measure- 

ments but estimated from known actual concentration from sur- 
rounding stations. This second level of uncertainty is only estimating 
pollen concentration in the space but not predicting in the future. 

c. Pollen forecast for future conditions. This forecast contains the 
highest uncertainty because the displayed information is based on un- 
known future conditions. 

The aim of this study is to develop a system for the estimation of 
airborne pollen at unmonitored sites (displaying the second level of 
uncertainty), trained for the state of Bavaria (Germany). The system is 
based on a model that uses real pollen data and environmental condi- 
tions and extrapolates these data to unmonitored sites. The system 
aimed an automatic, on-line and accurate estimation of daily pollen 
concentrations in unmonitored areas, by applying a geospatial model 
based on spatial interpolation and influence of the weather. 

 
2. Material and Methods 

 
2.1. Study area and data 

 
Bavaria is the biggest state of Germany, in the south of the country, 

near the Alps. The surface of Bavaria comprises 70.553 km2 and the 
most distant locations are more than 400 km apart (Fig. 1). Bavaria is 
heterogeneous in terms of emission sources of pollen, climatic condi- 
tions and of topography, and this heterogeneity makes pollen fore- 
casting complex. There is significant rainfall throughout the year, being 
maximum in the Alpine region (Zugspitze 2656 m a.s.l. with an annual 
total precipitation of 2071 mm, on average; DWD, reference period 
1981–2010) and minimal in the northwest (Würzburg 177 m a.s.l. with 
an annual total precipitation of 601 mm, on average; DWD, reference 
period 1981–2010) and minimal in the northwest (Würzburg 177 a.s.l. 
with an annual mean precipitation of 601 mm; DWD, reference period 
1981–2010). Bavaria has a temperature gradient from northwest to 
south (Würzburg annual mean temperature of 9.6 °C; Munich annual 
mean temperature of 8.7 °C; Zugspitze in the Alps has one of the most 
extreme conditions: annual mean temperature of −4.3 °C, DWD, re- 
ference period 1981–2010). For a better understanding of climatic 
conditions see Supplementary Fig. S1 (Hijmans et al., 2005). 

We describe a system for performing automatic and on-line pollen 
forecast based on input data about pollen concentrations at different 
monitoring stations (using the same time frame, the forecast is not done 

Table 1 
Pollen monitoring locations included in the study. Monitoring stations were set- 
up using fixed criteria (homogeneous conditions, see methods). 

City Longitude º Latitude º Altitude (m a.s.l.) 

Altötting 48.23 12.68 398 
Augsburg 48.33 10.9 497 
Bamberg 49.9 10.89 238 
Bayreuth 49.94 11.53 419 
Berchtesgaden 47.64 13.01 573 
Munich 48.16 11.59 510 
Donaustauf 49.04 12.21 425 
Erlangen 49.60 11.01 284 
Feucht 49.38 11.2 365 
Gaissach 47.75 11.58 717 
Garmisch-Partenkirchen 47.49 11.1 821 
Hof 50.32 11.9 531 
Kitzingen 49.74 10.14 246 
Kösching 48.82 11.51 391 
Landshut 48.54 12.14 397 
Marktheidenfeld 49.85 9.624 216 
Mindelheim 48.04 10.49 610 
Munich 48.13 11.56 538 
Münnerstadt 50.2 10.2 347 
Oberjoch 47.52 10.4 870 
Oettingen 48.96 10.6 431 
Passau 48.56 13.44 318 
Trostberg 48.03 12.56 483 
Viechtach 49.08 12.87 459 
Weiden 49.68 12.17 403 

Zusmarshausen 48.4 10.61 483 

 
in time but in space) and rainfall data. The training of the system was 
performed using data from the year 2015 and altitude. For the training, 
gridded daily rainfall data from the study period in Bavaria were ob- 
tained from E-OBS dataset (Haylock et al., 2008). 

Airborne pollen was collected at 26 monitoring stations distributed 
over the area (Fig. 1). These stations ran during 2015 in frame of the 
building of the electronic Pollen Information Network (ePIN) in Ba- 
varia, Germany (Buters and Oteros, 2015; Oteros et al., Under review). 
Monitoring stations were located under homogeneous conditions, 
meaning: 1) on a flat and horizontal surface, 2) at a height of 9–15 m 
from the ground (on a roof or an elevation tower), 3) with no roofs and 
other wind walls that are higher than the station within a proximity of 
200 m, 4) at least 2 m away from the edge of a building, and 5) pollen 
monitoring device elevated 150 cm above ground on the rooftop, fol- 
lowing the minimum recommendations for Aerobiology (Galán et al., 
2014). For detailed information about the monitoring network, see 
Oteros et al. (Oteros et al., Under review). The exact location of each 
monitoring site is shown in Table 1. 

For each location and pollen type, pollen data were expressed as 
daily concentrations: pollen grains/m3 of air during a 24 h period (from 
0:00 h to 23:59 h). Samples of airborne pollen (microscope slides) were 
all prepared at a central laboratory thus evading heterogeneity. The 
whole process followed the minimum recommendations for 
Aerobiology (Galán et al., 2014). Pollen analysis was decentral and 
performed following CEN norms (CEN/TS-16868, 2015). Pollen data 
collection was subjected to an external independent quality control 
process (Smith et al., Under review). 

In the proposed model we estimate daily pollen concentrations at 
unmonitored sites by cokriging. The daily effect of weather was taken 
into account for forecasting pollen concentrations over the whole sur- 
face by the development of a three-steps method: 1. Subtracting the 
effect of weather to each delivered data, trying to produce an inter- 
posable database with homogeneous conditions (the expected pollen 
without rainfall). 2. Applying a cokriging method to the homogenized 
database. And 3. Subtracting the rainfall effect, from the interpolated 
values. 



 

 

 

2.2. Cokriging model 
 

Geographical interpolation was based on cokriging method, using 
elevation above sea level (alt) over the whole study area as co-pre- 
dictor. Kriging is a probabilistic method for modelling a variable in 
space, in which the values for a variable at sites with unknown values 
are estimated from a model constructed using data from sites with 

studied area. At this step, we get expected pollen (EH) for all sites from 
the whole Bavaria under homogeneous non-rainy days. 

c. Finally, we include the effect of rainfall by applying equation (4). 
At this step we are calculating expected real pollen concentrations (E) 
by applying a penalization to the expected pollen (EH) depending on 
precipitation. 

E 
  EHk,l,n  

known values and their relationship related with space. 
An automatic fixing method for daily Kriging of each pollen type 

k,l,n = 
1 + ( Rfl,n ) (4) 

was applied, in order to create an automatic system able to perform 
outputs from automatic continuous inputs. Elevation was taken into 
account as the only covariable. 

The parameters automatically fixed in the cokriging were: model 
method, sill, range, kappa and nugget effect. Tested model methods are: 
Exponential, Gaussian, Linear, Mathematical and Spherical. The auto- 
matic fixing method is based on finding the best fitting function in the 
experimental variogram being the one with the smallest residual sum of 
squares (RSS). The model fixing and grid processing in the system is 
performed by using a combination of different R packages: “gstat” “sp”, 
“raster”, and “geoR” (Hijmans and van Etten, 2014; Pebesma, 2004; 
Pebesma and Bivand, 2005; Ribeiro Jr and Diggle, 2015). 

 
2.3. Rainfall effect 

 
After performing cokriging, the cross validation error was calcu- 

lated. The residual in full cross validation is the observed minus the 

where E is expected pollen concentration and EH is the predicted by 
cokriging of homogenized concentration. Note that, under conditions of 
no rainfall (Rfl,m = 0), homogenized expected pollen (EHk,l,n) is equal 
to expected pollen (Ek,l,n). 

 
2.4. Validation 

 
The validation of the geostatistical model were performed in three 

ways: 1) Internal validation of the cokriging before the application of 
rainfall effect, calculating R2 and RMSE of the model. 2) A full cross 
validation of residuals before the application of rainfall effect, calcu- 
lating Q2. 3) A full cross validation of residuals after applying rainfall 
effect (Rfe) corrections, calculating Q2 Rfe and RMSE Rfe. The Root 
Mean Square Error (RMSE) is calculated by following equation (5). The 
method for full cross validation is the leave-one-out cross-validation 
(LOOCV) method. 

expected value at that position, in full cross validation that position is 
excluded for training the model. 

RMSE = 
(5) 

The rainfall effect was calculated by linear regression between the 
cokriging full cross validation residuals and daily precipitation. Most of 
the negative residuals were related with rainy days (rainfall was related 
with lower pollen). A model for each pollen type was developed for 
calculating the rainfall effect. The residuals of the cokriging (r) can be 
decomposed in two components: observed pollen (P) and expected 
pollen from cokriging cross validation (EC), equation (1). 

ri = Pi  ECi (1) 

To explain r, we introduced in the model the effect of the daily 
rainfall. The linear model explaining observed pollen from expected 
pollen and amount of rainfall (Rf) follows equation (2). 

All the analyses were performed by using R statistical software (R- 
Team, 2013). 

 
3. Results 

 
The kriging of daily pollen concentrations in combination with a 

regression of environmental parameters (rainfall and altitude) was ap- 
plied for performing an interpolation of pollen concentrations across 
Bavaria. In order to produce automatic outputs from automatically 
measured pollen data, an algorithm was applied for automatically 
fixing the parameters of the model by weighted least-squares. Table 2 
shows the kind of interpolation model selected by the system. Of all 

Pk,l,n = ECk,l,n k  Rfl,n ECk,l,n (2) models, the Gaussian model showed the best correlations. Exponential 
and Mathematical models interpolated pollen with a lower correla- 

Where “B” is the rainfall effect which is a constant for each pollen type 
found with the solution of the linear equation (2) by least squares 
method between P and EC, “k” is the pollen type, “l” is the location, “n” 
is the day. is the daily rainfall (mm) of the location “l” and during the 
day “n”. 

In order to include the effect of rainfall on our predictions, we de- 
signed a three-steps method. This three-steps method is based on the 
penalization of predicted values based on the rainfall effect and the 
amount of rainfall: 

tion.In Table 3 we show the summary statistics of the co-kriging (in- 
cluding altitude as co-variable) for each pollen type. First, the training 
of the co-kriging models was performed, including altitude as predictor. 

 
Table 2 
Frequencies of interpolation models (covariance functions) used for universal 
Kriging. Number of days during 2015 pollen season included in the analysis (N). 
From 20 to 26 pollen stations are used for each day, depending on missing data. 

 

Pollen Kriging model (%) N 
a. Artificial increasing pollen loads in situations of precipitation by   

adding the rainfall effect (summation of observed pollen value plus the 
result of multiplying the amount of rainfall and the rainfall effect and 
observed pollen value). With this step we emulate pollen concentrations 
under homogeneous weather conditions in all locations (no rainfall 
conditions). This emulated variable is termed homogenized pollen 
concentrations (H). This step is performed by applying equation (3) to 
observed pollen (P). 

Hk,l,n = Pk,l,n + k Rfl,n Pk,l,n (3) 

where “B” is a constant calculated at equation (2). Note that, under 
conditions of no rainfall (Rfl,m = 0), homogenized pollen (Hk,l,n) is 
equal to observed pollen (Pk,l,n). 

b. then we perform the cokriging of homogenized concentrations, 
with the aim of obtaining a prediction of pollen in the whole surface of 

(Observed Expected)2  

n 

k 

 Exponential Gaussian Linear Mathematical Spherical  

Alnus 2.4 68.3 7.3 7.3 14.6 41 
Ambrosia 8.7 73.9 8.7 4.3 4.3 23 
Artemisia 6.5 58.1 12.9 9.7 12.9 31 
Betula 14.1 64.1 6.4 3.8 11.5 78 
Carpinus 9.7 54.8 16.1 6.5 12.9 31 
Cupressaceae 9.7 47.2 16.7 9.7 16.7 72 
Fraxinus 4.4 48.9 20.0 6.7 20.0 45 
Picea 10.6 46.8 10.6 10.6 21.3 94 
Pinus 13.2 62.0 8.3 8.3 8.3 121 
Plantago 2.8 33.9 43.1 1.8 18.3 109 
Poacea 16.1 46.6 8.5 17.8 11.0 118 
Populus 5.4 48.6 18.9 13.5 13.5 37 
Tilia 3.9 9.8 66.7 2.0 17.6 51 

Urticaceae 16.5 37.6 11.0 10.1 24.8 109 



 

 

 

Table 3 
Summary statistics of interpolation model for each pollen type: Universal 
Kriging using altitude as co-variable. Determination coefficient (R2); Root Mean 
Squared Error of internal validation (RMSE); Determination coefficient of ex- 
ternal full cross validation (Q2); Rainfall effect by lineal correction of errors (in 
equation (2)); Q2 after rainfall effect (Rfe) correction (Q2 Rfe) and RMSE after 
rainfall effect correction (RMSE Rfe). 

 

Pollen Models without Rainfall Models with Rainfall effect 

and the rainfall effect. The highest RMSE values were observed for the 
most abundant pollen taxa, Betula and Pinus. 

As can be seen in Fig. 2, the sampled conditions of the network are 
balanced. The variability of environmental parameters over the inter- 
polated surface is similar to the conditions at the sampling sites, i.e. the 
Gaussian distribution of the parameters altitude, rainfall and tempera- 
ture of the pollen sampling sites was similar to the Gaussian distribution 
for the whole of Bavaria. This means that the monitoring stations are 

 
R2 RMSE Q2 Rainfall 

 
Q2 Rfe  RMSE Rfe 

properly distributed over the area and all the climatic situations are 
properly covered, allowing the extension of the model to unmonitored 
areas. 

Our calculations resulted in the interpolation of daily pollen con- 
centrations over the whole surface of Bavaria. Fig. 3 shows an example 
of a time series of the outputs of the system during nine continuous days 
within the grass pollen season. For a dynamic visualization please visit: 

https://oteros.shinyapps.io/Pollen_season_Bayern/ 
 
 

4. Discussion 
 

 
 
 
 

 
The frequency of each fitting function is shown in Table 2 and the result 
of internal validation, where most of the pollen types showed high R2, is 
presentedin Table 3. Tilia pollen shows a low determination coefficient, 
which means that it cannot be interpolated by this method. Then, in 
Table 3, Q2 is the determination coefficient of external full cross vali- 
dation (training the system with all monitoring locations excluding the 
one to be validated, and with the same process being repeated for each 
pollen type). To increase the precision and robustness of the system, the 
effect of rainfall was taken into account. The rainfall effect in Table 3 
(Rainfall effect) stands for the capacity of rainfall to reduce airborne 
pollen concentrations, and it was calculated by the regression between 
the co-kriging residuals and daily rainfall (as explained in Material and 
Methods). We observed a negative effect for all pollen types, with in- 
creased rainfall always associated with a reduction of daily pollen 
concentration. The highest effect was observed for arboreal taxa 
(Fraxinus, Tilia, Cupressaceae and Populus). Finally, in Table 3, columns 
“Q2 Rfe” and “RMSE Rfe” show the performance of the external vali- 
dation of the combined model of co-kriging with altitude as predictor 

There are numerous methods for spatial interpolation of environ- 
mental parameters (Li and Heap, 2008). They can be classified in three 
categories: Non-geostatistical methods, geostatistical methods and 
combined methods. Non-geostatistical methods are based on numerical 
interpolation of values or in the relationship between variables, but 
they are not based on the spatial autocorrelation of the interpolated 
variable. Statistical methods are based on the autocorrelation over the 
space of the modelled variable, these methods come from the work of 
Krige (1951), and they termed “Kriging” methods. We can find nu- 
merous versions of both, univariate Kriging and multivariate Kriging 
(when other variables are used as predictors). The combined methods 
are a combination of statistical and non-statistical methods. In the 
current work, we have developed a new version of the combined 
method by joining a multivariate Kriging (Cokriging of pollen con- 
centrations, using altitude as co-variable) by adding the effect of rain- 
fall calculated by least squares method. 

We selected Cokriging as interpolation method due to the need to 
combine spatial autocorrelation of pollen with another covariable 
identifying areas with similar emission states. Altitude has been se- 
lected as an environmental covariable in view of its considerable in- 
fluence on flowering phenology of the modelled area; being highly 
correlated with the temperature, the main driver of phenology (Ziello 
et al., 2009) and as the best predictor of species distributions for 

 

 
Fig. 2. Studied range of environmental conditions over the 26 monitoring stations (MS) and over the study area (SA), Bavaria (Germany). Variables: Altitude 
(m.a.s.l.), Annual rainfall (mm) and Annual Mean Temperature (ºC*10). 

 effect  

Alnus 1.00 3 0.38 0.06 0.50 44 
Ambrosia 0.66 1 0.03 0.07 0.53 2 
Artemisia 0.90 1 0.23 0.10 0.48 2 
Betula 0.98 36 0.47 0.03 0.60 197 
Carpinus 0.53 18 0.39 0.06 0.52 20 
Cupressaceae 0.56 93 0.10 0.12 0.59 101 
Fraxinus 0.91 36 0.49 0.36 0.66 82 
Picea 0.97 8 0.52 0.03 0.66 31 
Pinus 0.99 23 0.37 0.05 0.58 169 
Plantago 0.53 3 0.18 0.06 0.55 4 
Poacea 0.93 11 0.53 0.05 0.69 29 
Populus 0.93 10 0.10 0.12 0.38 36 
Tilia 0.07 16 0.00 0.18 0.33 15 

Urticaceae 0.95 10 0.38 0.05 0.62 37 



 

 

 

 
Fig. 3. Sequence of Poaceae pollen concentrations at Bavaria during 9 consecutive days of the beginning of the 2015 pollen season (21/5–29/5). The sequence has 
been calculated by applying the automatic system. 

 

homogeneous longitudinal distributed areas (Austin, 2002), in this 
sense also influencing pollen emission sources. 

We have further improved the quality of Cokriging by including the 
effect of rain. Rainfall is the main weather factor affecting daily var- 
iations in airborne pollen during the flowering season (Makra et al., 
2014; Sadys et al., 2016). Bavaria is a region with significant rainfall, 
even during the driest season. Here we developed a new way to include 
the effect of rainfall by applying a penalty to the amount of pollen 
depending on the amount of rainfall and the effect of rainfall per pollen 
type (i.e. each pollen type reacts differently to rainfall). 

Other weather parameters such as wind or temperature were not 
taken into account. Temperature is a very important parameter for the 
emission process and it is closely related with pollen concentrations 
(Fernández-Rodríguez et al., 2016). In the long term, temperature de- 
termines the timing of the year of flowering season and in the short 
time, temperature determines the moment of the day when pollen is 
emitted. However, we are using actual measured pollen concentrations 

from the surroundings as the main predictor in our model with a time 
resolution of one day. Actual pollen concentrations are already repla- 
cing the information that temperature gives about phenological state. In 
the case of wind, this is an essential parameter for understanding pollen 
concentrations (Maya-Manzano et al., 2017; Rios et al., 2016). We are 
working with daily pollen concentrations; this parameter should be 
interpreted as the averaged concentration of airborne pollen at a site 
during 24 h. A pollen plume can move hundreds of kilometers during 
one day and it could pass the whole Bavaria just in hours (Sofiev et al., 
2013). In this sense, wind is essential for understanding airborne pollen 
at hourly resolution but less relevant at daily resolution, once we know 
pollen concentrations at the surrounding measuring stations. Further- 
more, the effect of wind on transport and emission is also supplied from 
the knowledge of actual pollen from surroundings locations. 

Our results show that the Gaussian model interpolates the measured 
values bests. This means that the daily pollen concentrations do not 
have abrupt variations over the whole region between close locations. 



 

 

 

On the other hand, Exponential and Mathematical models were the less 
suited, meaning the same: seldom abrupt changes in daily concentra- 
tions between close sites. By analyzing the determination coefficient, 
Tilia pollen had the lowest coefficient and cannot be properly inter- 
polated by our model. Tilia pollen belongs to ornamental trees, whose 
concentrations depend on isolated local sources and probably with high 
human intervention when in urban green areas. Hence, a spatial in- 
terpolation of such a pollen type is somewhat expected to be highly 
varying and unpredictable. 

We observed the biggest rainfall effect in arboreal species 
(Cupressaceae, Fraxinus, Populus). Rainfall reduced the concentrations in 
all pollen kinds, in agreement with other authors (Dahl et al., 2013). 

From the 27 stations distributed over Bavaria we worked with only 
26. The one station excluded was special because of its extreme con- 
ditions as it is the highest scientific observatory of Europe (UFS, http:// 
www.schneefernerhaus.de/startseite.html) located at the top of the 
mountain Zugspitze in the Alps at 2656 m a.s.l. (Jochner et al., 2012). 
Being an ecological cutting site, this station was not included in the 
study. We observed that the environmental conditions at the used 26 
monitoring sites were similar to the general conditions of Bavaria (see 
Fig. 2). 

The current work provided an accurate system for the interpolation 
of daily pollen concentrations at unmonitored sites. Daily pollen con- 
centrations were calculated by the average of a wide range of condi- 
tions during 24 h. Daily concentrations have a high spatial auto- 
correlation allowing the application of geostatistical methods like 
Kriging. When we would increase the time resolution, environmental 
conditions are more heterogeneous and this reduces the autocorrelation 
over the space. During a common day, hourly pollen concentrations can 
range from dramatic levels to nothing (Grewling et al., 2016). However, 
the time restraint of the classical pollen monitoring method would not 
allow us to disseminate current pollen information with less than one 
day of delay (Galán et al., 2014). Due to this, under the current mon- 
itoring framework, to display information with a more detailed time 
resolution than 24 h makes no sense. Nevertheless, we are now able to 
perform automatic and high resolution pollen monitoring (Crouzy 
et al., 2016; Oteros et al., 2015). The interpolation of pollen data is 
probably not the optimal approach for a smaller time resolution. In the 
case of predicting hourly concentrations at unmonitored areas, further 
parameters should be added to the model like species distribution, 
phenological information and wind dispersion simulations, preferably 
by models assimilating real pollen data. 

Automation of pollen measurements opens new opportunities for 
knowing and predicting local pollen concentrations. With this method 
we hope to provide allergy sufferers with accurate pollen information 
about extensive areas and at a minimum of cost i.e. few stations. 
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