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There is high demand for online, real-time and high-quality pollen data. To the moment pollen monitoring has 
been done manually by highly specialized experts. 

Here we evaluate the electronic Pollen Information Network (ePIN) comprising 8 automatic BAA500 pollen 
monitors in Bavaria, Germany. Automatic BAA500 and manual Hirst-type pollen traps were run simultaneously 
at the same locations for one pollen season. Classifications by BAA500 were checked by experts in pollen 
identification, which is traditionally considered to be the “gold standard” for pollen monitoring. 

BAA500 had a multiclass accuracy of over 90%. Correct identification of any individual pollen taxa was always 
>85%, except for Populus (73%) and Alnus (64%). The BAA500 was more precise than the manual method, with 

less discrepancies between determinations by pairs of automatic pollen monitors than between pairs of humans. 
The BAA500 was online for 97% of the time. There was a significant correlation of 0.84 between airborne pollen 
concentrations from the BAA500 and Hirst-type pollen traps. Due to the lack of calibration samples it is unknown 
which instrument gives the true concentration. 

The automatic BAA500 network delivered pollen data rapidly (3 h delay with real-time), reliably and online. 
We consider the ability to retrospectively check the accuracy of the reported classification essential for any 
automatic system. 

 
 

 

1. Introduction 

 
We evaluated the performance of the electronic Pollen Information 

Network (ePIN) in Bavaria, Germany. The ePIN network was built in 
2017/2018 to deliver reliable pollen information. The network is based 
on the automatic BAA500 system that can determine airborne pollen 
concentrations by using image recognition. The device automatically 
extracts pollen grains from the atmosphere with a virtual impactor, 
prepares microscopic slides and analyses and counts the extracted pollen 
grains with an automated light microscope with an image processing 
system. The sampling system works with a flow of 1000 l/min, sub- 
sampling the collected air on average at 100 l/min. The airflow entering 

the sampler is from 360◦ in BAA500 while it is only from the dominant 

wind direction in Hirst (Oteros et al., 2015), ten-fold higher than the 
traditional Hirst-type pollen trap that is used around the world (Buters 
et al., 2018). 

Hirst-type pollen traps and manual counting are considered the “gold 
standard” in pollen monitoring (Gala´n et al., 2014; Hirst, 1952). How- 
ever, this manual system has some limitations: 

 
1. Time delayed information - The manual Hirst method provides pol- 

len data with a delay of at least 1-day, but this is often extended to 7- 
days due to organisational and budgetary considerations. On the 
other hand, the BAA500 can send online pollen data with a resolu- 
tion of currently 3 h (Oteros et al., 2015). 
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2. Variability of results - The main source of variability in the manual 
collection of pollen data is the proficiency of pollen experts (Gal´an 
et al., 2014; Smith et al., 2019). However, other sources of variation 
include differences in the counting method, the subsampling of the 
environment and technical factors like differences in flow rate be- 
tween devices and the different mounting media (Oteros et al., 2013, 
2017). Many of these can be reduced or eliminated although random 
human error will always remain (Oteros et al., 2019). 

 
Some of these problems were resolved by the 3rd generation (3G) 

pollen systems currently available on the market: e.g. KH-3000 (Kawa- 
shima et al., 2017), Wibs-4 (O’Connor et al., 2014), BAA500 (Oteros 
et al., 2015), Plair PA-300/RapidE (Crouzy et al., 2016; Sˇauliene˙ et al., 
2019), PollenSense (pollensense.com), or SwisensePoleno (Chappuis 
et al., 2019; Huffman et al., 2019). All these systems promise to deliver 
fast and reproducible pollen information but, to date, no instrument has 
been evaluated when working within a network (Huffman et al., 2019). 

Several of the above-mentioned systems already report an accuracy 

>80% for numerous pollen types (Huffman et al., 2019), which is the 
accepted accuracy for the manual system (Gala´n et al., 2014). Further- 
more, it is expected that Artificial Intelligence will outperform humans 
in many activities in coming years, especially in fields related to visual 
identification (Grace et al., 2018; He et al., 2015; Silver et al., 2017). For 
the time being, pollen experts are more accurate than automatic pollen 
monitors and need to be involved before network pollen data can be 
reliably reported. 

The main aim of this work was to evaluate the performance of the 
automatic pollen monitor BAA500, used at different locations of the 
ePIN Network in Bavaria. We evaluated: (A) The accuracy and precision 
of the automatic classifications delivered by the BAA500 checked by 
human experts in pollen dentification; (B) The performance of the same 
instrument at different locations; (C) The results of BAA500 versus 
manual Hirst-type pollen traps. 

 
2. Material and methods 

 
2.1. Study area 

 
Bavaria is the largest state of the Federal Republic of Germany with a 

surface of 70,553 km2. It has a population of nearly 13 million in- 
habitants. Bavaria has a humid continental climate, classified as Dfb by 
the Ko¨ppen-Geiger system described by Belda et al. (2014) (Belda et al., 
2014). This climate is characterized by large seasonal temperature dif- 
ferences, with warm summers and cold winters. Precipitation is 
distributed throughout the year. By definition, a climate is classified as 
humid continental when the temperature of the coldest month is below 
—3 ◦C and when at least four months have mean temperatures above 10 
◦  C (Belda et al., 2014). The yearly average temperature in Munich, the 
capital, is 8.7 ◦C and the annual mean precipitation is 834 mm 
(1981–2010). More extreme climatic conditions are observed in the 
southern parts of Bavaria, in the Alps. Thirty-seven percent of the area is 
covered by forests (bwi.info, accessed 01-08-2019). The vegetation of 
this climate region includes temperate woodlands, temperate grass- 
lands, temperate deciduous forests, temperate evergreen forests, and 
coniferous forests. 

 
2.2. Pollen monitoring and data flow 

 
Two pollen monitoring methods were compared in this study: the 

manual method using Hirst-type pollen traps (Hirst, 1952) and the 
automatic pollen monitor BAA500 (Oteros et al., 2015). The manual 
samples where managed and analysed following the VDI norms 
(VDI4252-4, 2016), fulfilling the EAS minimum requirements as 
described by Oteros et al. (2019) (Oteros et al., 2019). Pollen experts 
were selected from an already established European pollen network. The 
quality control of all pollen experts was carried out during a previous 

project in Bavaria during 2015 (Smith et al., 2019). Furthermore, a 
quality control program testing the performance of each pollen expert 
was implemented during the current experiment. Experts identified 
pollen on images produced by the BAA500 (eCounters) or slides pre- 
pared from samples collected by Hirst-type traps (Hirst counters). Most 
pollen experts worked on both tasks. 

The operation of the BAA500 was described previously (Oteros et al., 
2015). All 8 automatic BAA500 traps in the ePIN network were included 
in the current study. Four Hirst-type pollen traps ran in parallel for one 
year (Munich, Garmisch-Partenkirchen, Marktheidenfeld and Viech- 
tach), see Fig. 1. 

Images of multiple focal planes taken by the BAA500 delivered a 
stack of 210 pictures of every particle captured in the ePIN network. Out 
of this stack, a synthetic 2D-picture per particle was built containing all 
the captured information (the optimized sum of all images taken from a 
specific particle). All the synthetic images of all captured particles, 
including pollen, were centrally stored in the Leibnitz-Rechenzentrum 
(LRZ) supercomputer. A subset (randomly selected) of these images 
was re-analysed online for evaluating the performance of the BAA500. 
Software was developed to rapidly access these images, enabling 

easy manual classification by pollen experts. A randomly selected 
portion of the particles automatically classified by BAA500 were 
manually labelled. This validation software can be accessed by stake- 

holders at https://validation.epin.bayern/using the expert name “Gast” 
and the password “ePIN-ZAUM”. 

The BAA500 is currently trained to recognize 40 pollen and spore 
taxa: Abies, Acer, Aesculus, Alnus, Ambrosia, Artemisia, Other Asteraceae, 
Betula, Carpinus, Castanea, Chenopodium (Amaranthaceae), Corylus, 
Cruciferae, Cyperaceae, Erica, Fagus, Fraxinus, Fungus, Galium, Humulus, 
Impatiens, Juglans, Larix, Picea, Other Pinaceae, Pinus, Plantago, Platanus, 
Poaceae, Populus, Quercus, Quercus ilex, Rumex, Salix, Sambucus, Secale, 
Taxus, Tilia, Ulmus, Urticaceae. Furthermore, a category termed “Varia” 
is selected when the particle is recognized as a pollen but of an unknown 
taxa. A category termed “–” (“dash-dash”) is reported when the particle 
is recognized as not being pollen (a non-pollen particle). 

The pollen experts working with the digital pictures (eCounters) 
reported the same pollen categories as the BAA500 including “NoPollen” 
(when the pollen expert recognizes the particle as not being a pollen 
grain), and in addition “Unknown Particle” (when the expert cannot 

 

Fig. 1. The 8 pollen monitoring locations of ePIN Network in the state of 
Bavaria. The insert shows the location of Bavaria within Germany. 



 

 

 

classify the particle at all, i.e. it could be a part of a pollen grain), 
“Unknown Pollen” (when the pollen expert recognizes the particle as a 
pollen, but she/he does not know which pollen it is) and “Other Pollen” 
(when the pollen expert recognizes the pollen, but it is not one of the 
categories trained by BAA500). 

In the current study the labelling of each particle by a pollen expert 
was considered the “true value”. The performance of pollen recognition 
by BAA500 was based on the statistical measures of the performance of a 
binary classification test. Thus, for each particle four possible categories 
can be attributed: True Positive (TP), True Negative (TN), False Positive 
(FP) or False Negative (FN). In the case of a Poaceae pollen, for example, 
a reanalysed particle can be labelled by the expert as: (1) “True Positive” 
if it was recognized as Poaceae by both, automatic pollen monitor and 
human; (2) “False Positive” if it was recognized as Poaceae by the 
automatic pollen monitor but as a different type by the expert; (3) “True 
Negative” if it was recognized as a different pollen by the automatic 
pollen monitor and by the human; (4) “False Negative” if it was not 
recognized as a Poaceae pollen by the automatic pollen monitor but was 
by the human (human pollen experts were considered 100% correct). 

 
2.3. Data analysis 

 
Data analyses were performed to ensure: (1) Accuracy; (2) Precision; 

(3) Reliability. 

 
2.3.1. Accuracy 

According to ISO 5725–1 (ISO-5725, 1994), the general term “ac- 
curacy” (trueness) is used to describe the closeness of a measurement to 
the true value. In the current study, the term “accuracy” is taken widely 
and is approached by calculating two parameters for each particle: 
Specificity (recall) and positive predictive value, as described by Oteros 
et al. (2015). 

For each pollen type we determined the False Positives (FP), False 
Negatives (FN), True Positives (TP) and True Negatives (TN). The 
calculated accuracy was the fraction of the total sample that is correctly 
identified: (TP + TN)/(TP + TN + FP + FN). Thus, for pollen recogni- 

tion, calculating accuracy by taking “non-pollen particles” into account 
did not make much sense because the amount of TN would be almost as 
large as the number of sampled particles (as the majority of all collected 
particles were not pollen but other particles e.g. dust particles, pollution 
…). 

Instead of including TN in the calculations we analysed accuracy by 
two different parameters: sensitivity (recall) and the positive predictive 
value. Sensitivity measures the proportion of positives that are correctly 
identified and presented in this study as coinciding manual 
classifications: 

TP/(TP + FN). 
The positive predictive value is the fraction of the classifications that 

are positive and described as correct automatic classifications: 

TP/(TP + FP). 
Both, sensitivity (humans check BAA500 classifications) and the 

positive predictive value (BAA500 agrees with humans) are shown as a 
percentage (%). 

Another accuracy parameter calculated was specificity, i.e. the 
ability of discerning NoPollen from Pollen, which is the proportion of 
NoPollen properly identified: 

TN/FP + TN. 
 

2.3.2. Precision 
Precision is the ability of the method to repeat and reproduce the 

same results under similar conditions. The repeatability (r) of a 
measuring method is the variation in measurements taken by a single 
instrument under the same conditions. Reproducibility (R) is the ability 
of the method to provide the same measurement, but under different 
conditions (i.e. using a different instrument at a different location). 
Following the standard ISO 5725, r is calculated by several repetitions of 

the measure at the same laboratory under the same conditions and R is 
calculated by an interlaboratory proficiency testing (ISO-5725, 1994). 
Both, r and R are a measurement of the precision of the method under 
different conditions: r at the same trap and location; R between different 
traps and locations. Currently, the real concentration of pollen in not 
known because there are no calibration samples of concentrations 
available. 

Due to the fact that it is not currently possible to produce known 
pollen concentrations, and then repeat the same exposure several times, 
we calculated an approximation of the precision by the discrepancies in 
accuracy values at each location. In this case, we assumed perfect 
reproducibility when all the locations showed the same accuracy (pos- 
itive predictive value), and we quantified precision by the differences in 
positive predictive value between pairs of stations (Delta error) 
(ISO-5725, 1994). 

 
2.3.3. Reliability and comparison of BAA500 to hirst-type pollen traps 

Reliability of the method was defined as the proportion of the 
operational time that monitoring was effective. We differentiated be- 

tween reliability in delivering daily data (pollen/m3 measured per day) 
and reliability of diurnal data (pollen/m3 measured per 3hr periods). 

Days with at least one data point per day are counted as daily reliable. 
We also compared the daily pollen concentrations provided by 

BAA500 and Hirst-type pollen traps in four locations during one year. 
Traps were located with the height inlet of a BAA500 at 250 cm and the 
Hirst-type inlet at 185 cm, both within 5 m of each other. To compare 

BAA500 and Hirst we calculated the daily ratio between concentrations 
BAA500/Hirst. We also calculated Spearman’s correlations between 

daily concentrations in both systems. 

 
3. Results 

 
3.1. General performance 

 
The total number of particles registered by BAA500 system and re- 

analysed by the human pollen analysts was 580,705 from which 
484,953 were pollen grains (or the identified spores). Of the particles 
classified by BAA500 as “–” (or non-pollen particles) humans agreed in 

98.7% of the cases (n = 95,752), see Fig. 2A. Thus, the BAA500 per- 
formed well in separating particles from pollen. 

For further analysis, we focused on the identification by pollen ex- 
perts of the particles classified by BAA500 as “pollen” (or the identified 
spores). Fig. 2B shows the distribution of automatically classified pollen 
in relation to human identification. The BAA500 category “Varia” 
(similar to the human category “Unknown Pollen”, see Fig. 2A) is the 
most abundant reported pollen category. All the particles in this cate- 
gory were classified by the BAA500 as pollen, but not which pollen types 
they were. Of these, humans agreed in most cases and classified “Varia” 
as “Unknown Pollen” (Fig. 2B). Others were classified as “Unknown 
Particle” or “NoPollen”. Carpinus is the most abundant pollen hidden in 
“Varia”. 

Fig. 3A shows the relative abundance of the most common pollen 
particles (>1%) registered in the network, with “Varia” being a notable 
proportion. Figure 3B shows the distribution of the automatic pollen 
classifications by BAA500 which were also manually labelled by pollen 
experts, i.e. particles of which both automatic and manual classification 
were known. Fig. 3B shows only the most abundant pollen types (>50 

manual classifications and >50 automatic classifications). 
 

3.2. Accuracy of the network 

 
The positive predictive value (% of correct automatic classifications) 

and sensitivity (% of coinciding manual classifications) of the BAA500 in 
the ePIN network are shown in Fig. 4. The graph can be read as follows: 
on the y-axis 100% of the cases are automatically reported (also the bars 
plot in the right), and the percentage of the cases to which humans 



 

 

 

 
 

Fig. 2. Interpretation by pollen experts (y-axis) of the automatic classifications by BAA500: (A) ’- -’ meaning a non-pollen particle and (B) ‘Varia - Unknown’. 

 

 
Fig. 3. Fig. 3 (A) Percentage distribution of pollen taxa automatically recognized by BAA500. ‘Varia’ is used for pollen grains not identified. (B) Comparison of the 
percentages of automatically and manually recognized pollen taxa. Glomerorum is the category used for Fungal spores. 

 

agreed with the automatic pollen monitors are given (i.e. percent of true 
positives). In the x-axis, and the bars plot at the top, the cases reported 
by pollen experts were 100%, and the percentage of those which the 
automatic pollen monitor was also able to recognize is indicated. If a 
single mistake was >10% it was labelled with its own colour (e.g. in the 
automatic category Populus >10% of the pollen were identified by 
humans as Corylus). Most mistakes are coloured grey, in other words 
they included all kind of errors but never more than 10% of the same 
pollen. 

The most prominent error was the confusion between Alnus and 
Corylus. For Alnus, the x-axis value (63%) shows that the automatic 
BAA500 system has recognized only 63% of the Alnus pollen classified 
by the experts and the bars inform that in 37% of the cases BAA500 was 
wrongly assigned the pollen to Corylus and to other categories each of 
which under 10%. Y-axis (90%) shows that the experts agreed in 90% of 

the BAA500 automatic classifications and the column inform that none 
of the pollen types confused with Alnus was >10%. 

The most important pollen types regarding allergy in the area are 
Betula (birch) and Poaceae (grasses). It is important to note that the 
BAA500 classified the majority of these correctly (i.e. True Positives) 
and less than 10% of the cases were False Positives (TP + FP) (Fig. 4 – y- 
axis). When examining the manual classifications (Fig. 4 - x-axis), 
approximately 80% of the Betula pollen grains were correctly identified 
by the BAA500 (True Positives), but about 20% were missed. 

In the case of Salix (Fig. 4 -y-axis) it can be seen that the BAA500 
often wrongly classified Betula pollen as Salix. This is because Betula is 
the most abundant pollen in the network (Fig. 3B) and an error in 
classifying Betula as Salix will give rise to a large error in Salix. In en- 
vironments where Salix is plentiful its positive predictive value is likely 
to increase. 



 

 

 
Fig. 4. Combined plot of predictive value (% of cor- 
rect automatic classifications) and sensitivity (% of 
correct manual classifications). Vertical (y-axis) 
human corrected BAA500 classifications (predictive 
value: % of correct automatic classifications or True 
Positives) and horizontal (x axis) the BAA500’s per- 
formance on manually identified pollen (sensitivity: 
the percent of manual classifications reported correct 
by the automatic pollen monitor). Only pollen types 
that were manually classified more than 5000 times 
are shown. The y-axis contains, for each pollen type, 

the 100% of the TP + FP. The x-axis contains, for each 
pollen type, 100% of the TP + FN. In the legend, False 
pollen (in grey) means other pollen representing 
<10% of a bar. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 shows the accuracy of the system under real monitoring con- 
ditions. However, other automatic pollen monitoring systems, not based 
on image recognition, do not allow the calculation of True/False- 
Positives/Negative as the instruments are tested with resuspended 
pure pollen samples. To compare our results with other published 
automatic systems, we simplified Fig. 4 to a confusion matrix of the 
recognition skills limiting the classes to the tested ones, also allowing the 
calculation of the “Multiclass accuracy”, see Table 1. Multiclass accuracy 
under real-life (not laboratory) circumstances was calculated as the 
mean percentage of success in the identification of the tested pollen 
types, which was >90% for BAA500. 

3.3. Precision of the network 

 
Fig. 5 shows the differences in positive predictive value between 

pairs of experts (A) and between pairs of automatic monitors (robots) 
(B), termed “Delta Error”. The boxplots in Fig. 5A are made with data 
points that are the difference in predictive value between each pair of 
experts for each pollen taxa. The boxplots in Fig. 5B shows these dis- 
crepancies in predictive value between robots. 

Because all automatic monitors work using the same classification 
algorithm, a lower variability in discrepancies between robots than 
between humans was expected. As can be observed in the figure, this is 
the case for most of the pollen types. 

 
 

 
Table 1 
Real-life confusion matrix of the BAA500 under environmental monitoring conditions (no feeding of known pollen). Each row is the 100% of actual manual pollen (TP 
+ FN). Multiclass accuracy was >90%. For instance, of 100% manually recognized Betula pollen 86% is classified by BAA500 as such. Aln = Alnus; Bet = Betula; Car = 
Carpinus; Cor = Corylus; Cup = Cupressaceae; Fag = Fagus; Fra = Fraxinus; Pin = Pinus; Poa = Poaceae; Pop = Populus; Que = Quercus; Til = Tilia; Urt = Urticaceae. In 
bold the main diagonal. 

Pollen Aln Bet Car Cor Cup Fag Fra Pin Poa Pop Que Til Urt. 

Aln 64 0 0 35 1 0 0 0 0 0 0 0 0 

Bet 1 86 0 4 6 0 2 0 0 1 0 0 0 

Car 0 1 90 2 0 0 0 2 0 4 1 0 0 

Cor 1 0 0 96 3 0 0 0 0 0 0 0 0 

Cup 0 0 0 2 96 0 1 0 0 1 0 0 0 

Fag 0 0 3 0 0 93 0 1 0 2 1 0 0 

Fra 2 3 0 3 2 0 87 0 0 1 2 0 0 

Pin 0 0 0 0 0 0 0 100 0 0 0 0 0 

Poa 0 0 0 0 1 0 0 4 88 0 7 0 0 

Pop 2 1 1 15 4 0 1 0 0 73 3 0 0 

Que 0 0 0 0 3 0 1 0 0 4 92 0 0 

Til 0 0 0 0 0 0 0 0 0 0 1 99 0 

Urt 0 0 0 0 0 0 0 0 0 0 0 0 100 



 

 

 

 
 

Fig. 5. Discrepancies (Delta Error) between identifications: (A) Differences in the reported accuracy in identifying each pollen type by each pair of human experts (n 
= 6); (B) Differences in the reported accuracy in identifying each pollen type by each pair of robots (n = 8). Only pollen analysed >500 times for each expert or robot 
are included. 

 

3.4. Reliability of the network 

 
When automatic pollen monitoring first commenced using the 

BAA500, reliability (time online) was problematic (Oteros et al., 2015). 
We therefore checked the reliability in the current network of BAA500. 
As can be observed in Table 2, the daily reliability of the network was 
97% (days with at least 3 h of data). From all the possible 3-h data 
points, 94% where recorded. Remarkably, the oldest station (DEBIED: 
Munich) with the most experience had the least amount of down time. 

 
 

3.5. BAA500 vs. hirst-type pollen trap 

 
We compared the pollen data obtained by BAA500 with pollen data 

concomitantly measured by Hirst-type pollen traps at the same location. 
Fig. 6A shows the comparison of the pollen concentrations obtained by 
both methods at four parallel stations. Here we observed a bias in the 
pollen amount: Some pollen types like Alnus are more abundant in the 
BAA500, whilst some others like Urticaceae are more abundant in Hirst- 
type pollen traps. Fig. 6B shows the comparison between BAA500 and 
Hirst-type pollen traps per pollen type and location. The rate is constant 
among locations but differs by pollen type. 

Table 3 shows the results of statistical analysis between the BAA500 
and Hirst-type traps for each pollen type. Pollen types showing 
Spearman correlation coefficients close to 1 and with low standard de- 
viations suggest that the data are comparable. This is the case, for 
example, for Betula or Plantago. This shows the weakness of correlation 
coefficients for comparing pollen time series with low concentrations, 
reflecting the inaccuracy of pollen monitoring when concentrations are 
low. In the case of Plantago, the correlation is almost 0 and not 

 
Table 2 
Daily and hourly reliability of BAA500 (%). 

significant. However, the values given by both BAA500 and Hirst-type 
traps are almost the same (Fig. 3B), and the daily ratios “dance” 
around 1, changing every day depending on the pollen concentrations, 
resulting in a correlation of 0. 

Pollen types showing notable differences in the quantity of both 
methods are Carpinus (with a ratio close to 2, meaning concentrations in 
the BAA500 were double that recorded in the Hirst-type pollen trap), 
Picea (with a ratio of 0.2, meaning 80% more pollen was recorded in the 
Hirst-type trap than in the BAA500), Poaceae (ratio of 0.8, 20% more 
pollen in the Hirst-type trap compared to the BAA500) and Urticaceae 
(ratio of 0.6, 40% more pollen in the Hirst-type trap). Artemisia and 
Ambrosia are not included in the table or in the plots because both have 
low concentrations in Bavaria. 

 
4. Discussion 

 
We have validated a network of automatic pollen monitors. The 

BAA500 automatic monitors basically work like manual Hirst-type 
pollen traps as they use an impactor to catch pollen on an adhesive 
surface and microscopic image recognition for classification of the pol- 
len type. The main difference between Hirst-type and these automatic 
pollen monitors is the higher sampling rate, the adhesive mountant, 
automation and online availability. 

The results on the accuracy of a whole network of automatic pollen 
monitors are similar to the results shown for a single monitor (Oteros 
et al., 2015). This means that the system is stable temporally and 
spatially, i.e. the production process of the automatic pollen monitors is 
reproducible over time and space. Sensitivity and Positive Predictive 
Value were previously tested for the BAA500 system by Oteros et al. 
(2015), and agree with the current results showing an average sensi- 
tivity of around 75% and a positive predictive value of around 85% for 
13 pollen types. The manufacturer has also tested both parameters for 12 
pollen types and showed a sensitivity of 95% and a positive predictive 
value of 93% (Wetzlar, 2009). The difference in results is explained by 
the manufacturer testing with pure pollen samples (feeding experi- 
ments) whereas we used real-life samples (Oteros et al., 2015). This 
influences at least two factors: 

 
1. Under laboratory conditions, a fixed collection of pollen types is used 

for building the confusion matrix. As usually this is done with lower 

location Daily Reliability 3-Hourly Reliability 

DEALTO 93 89 

DEBIED 100 99 

DEGARM 95 91 

DEHOF 95 89 

DEMARK 100 98 

DEMIND 100 100 

DEVIEC 93 90 



 

 

 

 
 

Fig. 6. Comparison of pollen concentrations measured by Hirst-type pollen traps vs BAA500 automatic monitors. (A) Daily pollen concentrations measured by 
BAA500 versus concentrations measured by Hirst-type pollen trap at the same location per pollen type. The dashed line indicates y = x. Only stations with a complete 

pollen season of particular pollen with both Hirst-type traps and BAA500 monitors were included. (B) Ratios of Hirst-type versus BAA50 monitors sorted by stations 
(DEBIED: Munich; DEGARM: Garmisch; DEMARK: Marktheidenfeld; DEVI. 

 

 
Table 3 
BAA500 versus Hirst concentrations with standard deviation, Spearman’s cor- 
relations between Hirst-type pollen trap and BAA500. Although both in- 
struments correlate well for most pollen, the exact number vary with a fixed 
coefficient, probably due to the different impaction principles of the 
instruments. 

Pollen type Ratio (mean) Ratio (sd) Correlation p-value 

correlation 

Alnus 1.680 0.841 0.814 0.000 

Betula 1.074 0.667 0.858 0.000 

Carpinus 1.929 1.179 0.944 0.000 

Fraxinus 1.500 1.217 0.984 0.000 

Picea 0.224 0.187 0.318 0.071 

Pinus 1.303 0.568 0.857 0.000 

Plantago 0.953 0.293 —0.138 0.501 

Poaceae 0.769 0.359 0.794 0.000 

Populus 1.629 1.399 0.722 0.001 

Taxus 1.365 1.310 0.793 0.000 

Tilia 1.598 1.541 0.528 0.012 

Urticaceae 0.622 0.312 0.743 0.000 

 
 

diversity of samples than in real-life conditions, meaning that fewer 
categories can be labelled from a lower diversity of samples. This 
dramatically decreases the probability of having False Negatives. 
This means that the more pollen types are allowed in the confusion 
matrix, the lower the accuracy will be. An extreme example would be 
a confusion matrix built with only two very easy to differentiate 
pollen types, there the accuracy and the sensitivity/recall would be 
100%. 

2. Under real-life conditions, the proportion of Positives/Negatives of 
each particle is reduced due to the greater diversity of any particles 
in the environment, which dramatically increases the probability of 
having False Positives. The more biodiverse the environment, the 
more chances to producing FPs by the automatic pollen monitor. This 
phenomenon allowed us to observe an interesting statistical artefact 
in our evaluation. The more prevalent a pollen type is for one day, 
the higher the automatic classifications are True Positives (during 
the peak days, the automatic pollen monitor tends to work perfectly). 
The most extreme example of this phenomenon would be if we 

evaluate a system only under lab conditions, by “feeding” mono- 
specific pollen doses. Under these conditions, the probability of 
getting False Positives is 0 and the Positive Predictive Value should 
be 100%. 

 
If we compare our results with a previous publication on the same 

monitor, we also observed an increase in the reliability of the BAA500 
(Oteros et al., 2015). The main problems in the past were software and 
hardware related problems with the camera, which were subsequently 
solved. The main reason for automatic monitors not reporting data in the 
current evaluation were human errors while changing the sample 
holders. The holders contain about 180 sampling substrates, i.e. 23 days 
of continuous sampling. Changing the holders, in this case by inexpe- 
rience personnel, lead to initial problems. In Munich (DEBIED) 
personnel have been changing holders for several years and the reli- 
ability was close to 100%. 

Another problem we faced was the measurement of the repeatability 
in the network. In the case of Hirst-type pollen trap, repeatability was 
tested under laboratory conditions in the first paper describing the trap 
(Hirst, 1952). Unfortunately, at that time, the technology was not 
available for measuring the true value of pollen concentration in the air. 
This is probably a reason for the dramatic effect of wind speed on cap- 
ture efficiency. The trap was located in a wind tunnel and a known 
concentration of spores was dispersed and trapped (concentration 
measured with two different methods). The repeatability of the 
Hirst-type pollen trap was very high (maximum 20% of difference be- 
tween measurements taken under the same wind conditions). Later ex- 
periments showed an even better capture efficiency for pollen (Mullins 
and Emberlin, 1997), stating that the trapping efficiency (efficiency for 
catching the pollen) is increased by increasing the trapping surface by 
emulating the stigma of an anemophilous flower. The authors therefore 
suggested that using a cylinder in the Hirst-type trap increases the 
chance of trapping airborne particles. Due to the fact that we do not 
know the true pollen concentrations of the environment, we approxi- 
mated the measurement of precision by calculating the difference in 
accuracy between each pair of automatic pollen monitors. The precision 
of pollen experts was assessed in the same way. As expected, the pre- 
cision of an automatic pollen monitor for image identification is higher 



 

 

 

than between pollen experts. However, this could not be calculated for 
accuracy, as we assumed that pollen experts had an accuracy of 100%. It 
is known that identification by pollen experts can differ, and differences 
of about 20% are considered acceptable for most of networks and sci- 
entific investigation (Gala´n et al., 2014; Smith et al., 2019). 

We compared BAA500 automatic pollen monitors with Hirst-type 
pollen traps and observed an overall correlation in reported pollen 
concentrations of 0.84. However, the pollen concentrations differed 
between the methods depending on pollen type. The reason for this bias 
could be that the capture efficiency of theBAA500 and Hirst-type pollen 
traps are dependent on particle size (Mullins and Emberlin, 1997), and 
the way that particle size impacts upon capture efficiency is different for 
each system. The lack of a known calibration concentration (“gold 
standard”) currently means that it is not possible to determine which 
system is closer to the true concentration. 

If we want to follow historical time series with a different device the 
only solution is to calibrate the data of both instruments by running 
them simultaneously under real-life sampling conditions. Most 3rd 
generation pollen monitoring systems are designed for 360◦ monitoring 

meaning that the data is perhaps not congruent with traditional Hirst- 
type pollen traps, which capture efficacy is dependent on wind speed 
and direction (Frenz, 2000). 

We consider that having the possibility for pollen experts to retro- 
spectively check each reported pollen event is a key capability of our 
pollen monitoring network. Long-range transport or Climate Change 
may result in unexpected pollen events outside the projected pollen 
calendars. Current automatic pollen monitors are not yet 100% accu- 
rate, and so unexpected pollen events could easily be deleted from su- 
pervised quality assured pollen reports. Only re-analysis of the raw 
information can prevent incorrect data auditing. Also, for quality control 
we found it extremely re-assuring to be able to visually inspect each 
captured pollen, as all pollen monitoring experts currently do. This 
enabled us to evaluate the instrument under real-life conditions. In 
ambient air, most particles (>90%) are NOT pollen. Having unknown 
particles present while evaluating correct pollen classifications greatly 
influences the results. 

 
5. Conclusions 

 
- The multiclass accuracy (correct identification of pollen taxa) of the 

BAA500 was >90%. Human classification of the same pollen was 
taken as 100%. For the main allergenic pollen from Betula and 
Poaceae, in the area, the accuracy for Betula pollen was 86% and for 
Poaceae 88%. The largest error of the automatic pollen monitors was 
not wrong classification but “missing” some classifications, i.e. 
classifying as unknown. The recognition of Alnus pollen could be 
improved, as they are sometimes recognized as Corylus pollen. 

- In the case of Salix, we observed a high accuracy of BAA500 iden- 
tifying this pollen type (>90%). However, BAA500 misclassified 1% 
of Betula as Salix. Given the low amount of Salix, the percent of au- 
tomatics correct decreased below 50%. 

- We believe that no pollen monitoring system currently has an ac- 
curacy of 100%. Thus, an essential feature of each system should be 
the possibility of checking whether a classification is correct (rean- 
alysis of past samples). 

- When comparing the BAA500 with Hirst-type pollen traps, we found 
that the precision of the automatic pollen monitors is higher. The 
discrepancies in identification between automatic pollen monitors 
are smaller than the discrepancies between humans (i.e. the differ- 
ences on predictive value between BAA500 were smaller than the 
differences in predictive value between pollen experts). 

- The reliability of the monitor (time on-line) was 97%. 
- The ePIN network is currently trained to identify 40 pollen types. 

Evaluation was only done with pollen taxa that were sufficiently 
sampled. 

- Pollen concentrations obtained from BAA500 and Hirst-type pollen 
traps show a significant correlation of 0.84. 

- The correlations between daily concentrations recorded by the 
BAA500 and Hirst varies depending on pollen type. 
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