
Citation: Garrido-Jurado, S.;

Garrido, J.; Jurado-Rodríguez, D.;

Vázquez, F.; Muñoz-Salinas, R.

Reflection-Aware Generation and

Identification of Square Marker

Dictionaries. Sensors 2022, 22, 8548.

https://doi.org/10.3390/s22218548

Academic Editor: Hyun Myung

Received: 30 August 2022

Accepted: 3 November 2022

Published: 6 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Reflection-Aware Generation and Identification of Square
Marker Dictionaries
Sergio Garrido-Jurado 1,* , Juan Garrido 2 , David Jurado-Rodríguez 1,3 , Francisco Vázquez 2

and Rafael Muñoz-Salinas 3

1 Seabery R&D, Aldebarán Building, Córdoba Science and Technology Park, 14014 Córdoba, Spain
2 Department of Electrical Engineering and Automation, Rabanales Campus, University of Córdoba,

14071 Córdoba, Spain
3 Department of Computer Science and Numerical Analysis, Rabanales Campus, University of Córdoba,

14071 Córdoba, Spain
* Correspondence: sgj@seaberyat.com

Abstract: Square markers are a widespread tool to find correspondences for camera localization
because of their robustness, accuracy, and detection speed. Their identification is usually based on a
binary encoding that accounts for the different rotations of the marker; however, most systems do
not consider the possibility of observing reflected markers. This case is possible in environments
containing mirrors or reflective surfaces, and its lack of consideration is a source of detection errors,
which is contrary to the robustness expected from square markers. This is the first work in the
literature that focuses on reflection-aware square marker dictionaries. We present the derivation of
the inter-marker distance of a reflection-aware dictionary and propose new algorithms for generating
and identifying such dictionaries. Additionally, part of the proposed method can be used to optimize
preexisting dictionaries to take reflection into account. The experimentation carried out demonstrates
how our proposal greatly outperforms the most popular predefined dictionaries in terms of inter-
marker distance and how the optimization process significantly improves them.

Keywords: square markers; fiducial markers; camera localization; object tracking; augmented reality

1. Introduction

Camera localization is a fundamental process in many computer vision applications,
such as augmented reality [1,2], autonomous driving [3,4], or robotics [5,6]. This problem
is usually tackled by finding correspondences between the real environment and their
projections on the camera image, followed by a Perspective-n-Point (PnP) optimization [7]
to estimate the 3D rotation and translation of the camera. The correspondences search
can be performed using natural features, such as keypoints or textures [8–10], or using
artificial markers that facilitate their detection and guarantee higher robustness, such as
retroreflective spheres, VLC transmitters, LEDs, or planar markers [11–14].

Among the different types of flat markers, square ones are among the most widely
used [15–17]. Square markers are composed of a black outline, which simplifies their
detection in the image, and a central area for identification, usually a binary grid code that
allows the application of error detection and correction techniques (see Figure 1).

Marker detection can be complex and error-prone due to different causes, such as
inadequate illumination, occlusions, motion blur, or reflected observations. Some of these
scenarios have been addressed in previous contributions [18,19]; however, the detection of
reflected markers, i.e., seen through a mirror or reflective surface, has not received adequate
attention despite being a potential source of errors. This work focuses on the detection of
binary square markers in the presence of reflections.

Detection of square markers involves two steps [20,21]. The first one looks for candi-
dates in the image, i.e., square shapes that resemble a marker, while the second one checks

Sensors 2022, 22, 8548. https://doi.org/10.3390/s22218548 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22218548
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6872-7458
https://orcid.org/0000-0001-5122-4803
https://orcid.org/0000-0003-2408-4926
https://orcid.org/0000-0003-4544-6084
https://orcid.org/0000-0002-8773-8571
https://doi.org/10.3390/s22218548
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22218548?type=check_update&version=2

Sensors 2022, 22, 8548 2 of 18

whether candidates are markers or something else. To perform this identification, it is
necessary to verify whether the code is part of the set of valid codes in the system. This set
is known as the dictionary.

A key characteristic of a dictionary is its inter-marker distance [22], which is equivalent
to the minimum Hamming distance between all its markers. This value is directly related
to the error correction capability and, therefore, to the false negative rate and to the inter-
marker confusion rate, i.e., rate of confusing one marker into another.

m25 m146 m35

(a) (b) (c)

Unknown
marker

m277R1(m277)

Ref(R2(m35))

Figure 1. Examples of marker detection when observed through a reflective surface in a robot
tracking system. In (a,b), a non-reflection-aware dictionary is used, in particular ArUco OpenCV
4 × 4 (see Table 1). Panel (a) shows a false negative since the reflected marker code (top) is not
recognized within the dictionary. In (b) an inter-marker confusion error occurs because the reflected
code of marker m146 is identical to the code of marker m277 after a rotation. Panel (c) employs one of
the reflection-aware dictionaries generated by our proposal and the reflection-aware identification
process. Thanks to that, it is possible to detect the marker even when it is reflected and also determine
the kind of detection, i.e., direct or reflected.

The literature contains several proposals for square marker detection, usually includ-
ing a public implementation. Almost all of these systems provide predefined dictionaries
that cover most of the common situations. However, in some applications the predefined
dictionaries are not appropriate and it is necessary to generate a custom one. Some reasons
for the use of custom dictionaries include requiring a higher number of markers to cover a

Sensors 2022, 22, 8548 3 of 18

large area [23], using a minimum dictionary size to maximize the inter-marker distance [24],
using an unusual number of bits [25], or requiring custom binary patterns, for example, to
maximize the number of bit transitions [26]. Therefore, some of the available systems also
propose methods to generate custom dictionaries.

Table 1. Summary of the public dictionaries evaluated in the experimentation.

Name Library Generation
Method

Marker
Size (n × n)

Dictionary
Size (p)

Reflection-
Aware

ARTag ARTag Fixed 6× 6 1023 Yes
ARToolKitPlus Simple ARToolKitPlus Fixed 6× 6 512 No
ARToolKitPlus BCH ARToolKitPlus Fixed 6× 6 4096 No

AprilTag 16h5 AprilTag [20] 4× 4 30 No
AprilTag 25h7 AprilTag [20] 5× 5 242 No
AprilTag 25h9 AprilTag [20] 5× 5 35 No

AprilTag 36h10 AprilTag [20] 6× 6 2320 No
AprilTag 36h11 AprilTag [20] 6× 6 587 No
ArUco Original ArUco Fixed 5× 5 1024 No

ArUco OpenCV 4× 4 ArUco (OpenCV) [21] 4× 4 1000 No
ArUco OpenCV 5× 5 ArUco (OpenCV) [21] 5× 5 1000 No
ArUco OpenCV 6× 6 ArUco (OpenCV) [21] 6× 6 1000 No
ArUco OpenCV 7× 7 ArUco (OpenCV) [21] 7× 7 1000 No

ArUco MIP 16h3 ArUco [22] 4× 4 250 No
ArUco MIP 25h7 ArUco [22] 5× 5 100 No

ArUco MIP 36h12 ArUco [22] 6× 6 250 No

ARTag [27] is one of the first libraries to propose binary-coded markers and the only
one, to our knowledge, whose dictionary contemplates marker reflection, although it does
not elaborate on this aspect. ARTag’s dictionary uses a predefined CRC code [28] to encode
the marker identifiers and does not allow the use of other custom dictionaries, i.e., with a
user-defined number of markers or number of bits. A feature introduced by ARTag, which
has been adopted in some later proposals, is to provide the dictionary in a specific order so
that a smaller number of markers can be picked to maximize the inter-marker distance.

ARToolKitPlus library [29] is based on its predecessor, the well-known ARToolKit [15],
but introduces some improvements, including the usage of binary encoding. In its early
versions, it included a predefined dictionary, known as Simple, based on repeating a 9-bit
code four times. In later versions, it provides a new, more robust dictionary that uses a
BCH encoding [30].

Most modern libraries, besides providing some pregenerated dictionaries, also propose
dictionary generation algorithms based on some heuristics with the objective of maximizing
the inter-marker distance. AprilTag [20] proposes an iterative method in which each new
marker is generated by searching for a code that satisfies a minimum inter-marker distance
as well as a minimum geometric complexity to increase the number of bit transitions. One
of the main drawbacks is that the generation time is significantly long. AprilTag’s library
contains several predefined dictionaries generated with this method.

The first versions of the ArUco library [31] included a predefined dictionary whose
encoding was based on using five words of 5 bits, with 2 bits being for information and
3 bits being for redundancy. Its main drawback was that it did not account for marker
rotation, resulting in a low inter-marker distance. In spite of this, this dictionary has been
maintained as its use is still widespread.

In [21], ArUco authors propose a new heuristic method for generating customized
dictionaries that considers the inter-marker distance. This method consists of an iterative
process in which each new marker is generated based on a probability distribution that
tries to maximize the inter-marker distance and the number of bit transitions. Its main dis-
advantage is that generation times and memory requirements are too high. The predefined
dictionaries of the ArUco fork included in OpenCV [32] were generated using this method.

Finally, in [22], two methods are proposed to generate customized dictionaries using
mixed integer programming (MIP) [33]. The former is the first proposal in the literature

Sensors 2022, 22, 8548 4 of 18

that guarantees optimal dictionaries in terms of inter-marker distance; however, it suffers
from high time and space complexity, making it impractical for generating dictionaries
with marker sizes larger than 3 × 3 bits. The second proposal is a suboptimal method in
which a new marker is generated in each iteration, maximizing the inter-marker distance
relative to the previously generated markers. This proposal achieves the best inter-marker
distances to date considering only rotation, although the generation times are high for
large marker sizes. The main ArUco library [31] includes several predefined dictionaries
generated with this method.

Most of the above methods and dictionaries attempt to maximize the inter-marker
distance, which is an NP-complete problem [34]. This complexity is partly because a marker
can be observed in any of its four rotations (see Figure 2a) and those rotations must be
considered when calculating the marker distances.

Besides being rotated, a marker could also be reflected, which would modify the
disposition of its internal code, as shown in Figure 2b. This situation occurs when a marker
is seen through a mirror or reflective surface, as in Figure 1, creating a source of potential
errors in the pose estimation if neglected. Although previous contributions have overlooked
this possibility, it can arise depending on the type of environment and the control we have
over it, i.e., absence of reflective surfaces cannot always be guaranteed. Considering that
artificial markers are chosen mainly for their robustness, the reflected marker scenario
should also be addressed to avoid errors.

mi = R0(mi) R1(mi) R2(mi) R3(mi)

q7 q4 q1

q8 q5 q2

q9 q6 q3

q9 q8 q7

q6 q5 q4

q3 q2 q1

q3 q6 q9

q2 q5 q8

q1 q4 q7

q1 q2 q3

q4 q5 q6

q7 q8 q9

q1 q4 q7

q2 q5 q8

q3 q6 q9

q7 q8 q9

q4 q5 q6

q1 q2 q3

q9 q6 q3

q8 q5 q2

q7 q4 q1

q3 q2 q1

q6 q5 q4

q9 q8 q7

Ref(R0(mi)) Ref(R1(mi)) Ref(R2(mi)) Ref(R3(mi))

(a)

(b)

Figure 2. Bit permutations when applying the rotation and reflection transformations on a marker
mi of 3× 3 bits. (a) Original marker mi and its other three rotations after rotating 90, 180, and 270
degrees, respectively. (b) Resulting markers after applying reflection to each of the markers in (a).
Note that reflection is applied with respect to the vertical axis but it could be performed with respect
to the vertical or horizontal axis indifferently since it is applied to all 4 rotations and the result would
be equivalent. The complete set of 8 markers corresponds to A(mi), the first row corresponds to
Arot(m)i, the second row corresponds to Are f (mi), and the set of all markers except the original one,
mi, represents As(mi) (see Equations (4) and (7)).

None of the previous systems, except ARTag’s predefined dictionary, contemplate the
possibility of marker reflection. Because of this, in this work, we present a new method for
generating and detecting reflection-aware dictionaries, with this being the first work in the
literature that delves into this topic.

The rest of this paper is structured as follows. Section 2 presents a mathematical
formalization of the problem. Section 3 details the proposed generation and identification
methods for reflection-aware dictionaries. Finally, Section 4 presents the experimentation
carried out, and Section 5 draws some conclusions.

Sensors 2022, 22, 8548 5 of 18

2. Problem Formulation

A dictionary is the set of valid markers that can be detected in an application. In the
case of binary markers, the dictionaries vary depending on the number of bits and the
encoding of each marker.

An advantage of using binary markers is that error detection and correction techniques
can be applied to avoid false negatives. However, if the encoding of two or more markers
in the dictionary is too similar, the system could become confused in the correction and
misidentify one marker as another; this is known as inter-marker confusion error [27]. To
avoid this, during dictionary generation we try to maximize the inter-marker distance,
which is the minimum distance within a dictionary and is directly related to the maximum
number of bits that can be corrected during the identification. In the following, we derive
the calculation of the inter-marker distance using a similar approach to that of [21] but
adding the condition of reflected markers.

First, we define a marker, mi, of size n× n as a vector of bits (see Figure 2):

mi = (q1, q2, q3 . . . , qn×n) | qk ∈ {0, 1}. (1)

where i is the marker identifier. Note that to simplify the notation we treat a marker as a
binary vector rather than as a matrix.

We define D as the set of all possible binary markers with size n× n. A dictionary of
markers, D, consisting of p markers is an element of the set Dp:

D = (m1, m2, m3 . . . , mp) ∈ Dp. (2)

The goal, therefore, is to find a dictionary, D, that maximizes its inter-marker distance, τ(D):

D∗ = argmax
D∈Dp

{τ(D)}. (3)

Note that, when detecting a marker in an image, a marker may be rotated with respect
to its original position and, hence, the extracted bits will also be rotated (see Figure 2a).
Similarly, when a marker is reflected, the bits are also mirrored (see Figure 2b). When
comparing the distance between two markers, we must consider all these possible transfor-
mations. We define the analogous set of a marker, A(mi), as the set of markers obtained by
applying the rotation and reflection transformations:

A(mi) = Arot(mi) ∪Are f (mi),

Arot(mi) =
3⋃

l=0

Rl(mi),

Are f (mi) =
3⋃

l=0

Re f (Rl(mi)),

(4)

where Arot(mi) and Are f (mi) correspond to the marker sets obtained from rotation and
reflection transformations, respectively, Rl applies a rotation of l × 90 degrees clockwise to
a marker, and Re f reflects a marker. Both transformations consist of a permutation in the
bit positions of the marker, as shown in Figure 2. A marker is considered equivalent to all
markers in its analogous set, since it can be observed in any of its forms.

Hence, the distance between two markers considering all possible transformation is
the minimum Hamming distance between any markers in each other’s analogous sets:

d(mi, mj) = min
mk∈A(mj)

{ ham(mi, mk) }, (5)

ham() being the function that computes the Hamming distance between two markers.

Sensors 2022, 22, 8548 6 of 18

Besides distinguishing between different markers, we often want to identify each of
the marker corners unambiguously in order to perform a correct pose estimation. In other
words, it is necessary to identify the specific rotation or reflection at which a marker has
been detected. To achieve this, we must consider the distance between a marker and the
rest of the elements of its own analogous set. We call this measure the marker self-distance:

ds(mi) = min
mk∈As(mi)

{ ham(mi, mk) }, (6)

where As(mi) is the analogous set of mi without considering the marker itself:

As(mi) = A(mi)− {mi} (7)

Finally, we can define the inter-marker distance of a dictionary, τ(D), as the minimum
distance between all self-distances and distances between pairs of markers in the dictionary:

τ(D) = min

 min
mi ,mj∈D

mi 6=mj

{
d(mi, mj)

}
, min

mi∈D
{ds(mi)},

. (8)

As defined in Equation (3), this is the measure we want to maximize when generating
a dictionary since it is directly related to the error correction capability. The longer the
distance, the further apart the markers are and the lower the probability of confusing
one marker with another one when correcting bits. Specifically, the maximum number of
bits that can be corrected in a dictionary without the danger of causing an inter-marker
confusion error is b(τ(D)− 1)/2c.

3. Proposed Solution

This section presents the proposed method for generating reflection-aware dictionaries.
The method is divided into two parts. In the first part, an initial dictionary is generated
(Section 3.1), while in the second part, the previous dictionary is optimized by selecting a
subset of markers to maximize the inter-marker distance (Section 3.2). Finally, we present
the reflection-aware identification process for detecting markers in an image (Section 3.3).

3.1. Initial Dictionary Generation

Our proposal starts generating an initial dictionary whose marker codes are as far
from each other as possible. The generation of optimal dictionaries is an NP-complete
problem [22]; hence, a heuristic approach is necessary. We propose an iterative algorithm
that adds a new marker at each iteration until the desired dictionary size is reached.

In each iteration, the new marker is compared with the dictionary generated up to that
moment. Therefore, it is necessary to define some concepts related to the distance between
a marker and a dictionary. We call H(mi,D) to the multiset composed by all Hamming
distances of a marker mi with respect to all markers in a dictionary D:

H(mi,D) =
⋃

mj∈D
mk∈A(mj)

ham(mi, mk). (9)

We further define dH(mi,D) as the minimum distance withinH(mi,D) and fH(mi,D)
to the multiplicity of this minimum distance, i.e., the number of times it is repeated in the
multiset:

dH(mi,D) = min(H(mi,D)),

fH(mi,D) = ∑
h∈H(mi ,D)

h=dH(mi ,D)

1. (10)

Sensors 2022, 22, 8548 7 of 18

At each iteration t, a new marker, mt, is randomly initialized by assigning a 0 or a 1 to
each bit qk with the same probability:

P(qk=0) = 0.5
P(qk=1) = 0.5

}
∀qk ∈ mt. (11)

Then, a greedy algorithm is used to increase the distances of mt to the current dic-
tionary, Dt. A greedy algorithm consists of taking small steps that improve the result
until no step is found that produces a better solution. In our approach, each of these steps
corresponds to a modification of a single bit of mt. We call mb

t to the resulting marker after
modifying the bit in position b of mt:

qk =

{
¬rk i f k = b
rk otherwise

∀qk ∈ mb
t and ∀rk ∈ mt (12)

where qk represents the bits in mb
t and rk the bits in mt. Among all the bits that can be

modified at each step, we choose the one that maximizes the sum of distances inH(mt,Dt):

b∗ = argmax
b∈n×n

{ ∑
h∈H(mb

t ,Dt)

h }, (13)

provided that, after the bit modification, the marker meets the following constraints that
guarantee a minimum quality:

ds(mb
t) ≥ dH(mb

t , Dt), (14)

dH(mb
t , Dt) ≥ dH(mt, Dt), (15)

dH(mb
t , Dt) > dH(mt, Dt) ∨ fH(mb

t , Dt) < fH(mt, Dt). (16)

The first condition guarantees that the self-distance of the new marker is not less than
the distance to any other marker in the dictionary. The second condition ensures that the
minimum distance to the dictionary does not decrease after the bit change. Finally, the
third condition guarantees that, if the minimum distance has not increased, at least the
number of its occurrences has decreased.

The bit modification process is repeated until there are no modifications that meet the
above constraints. In that case, the marker cannot be improved any further, so it is added
to the dictionary and the next iteration, t + 1, is started. The dictionary generation process
continues until the desired number of markers has been reached. The proposed method
pseudocode is shown in Algorithm 1.

Sensors 2022, 22, 8548 8 of 18

Algorithm 1 Initial dictionary generation.

Input: int n, int p . Marker size and dictionary size
Output: Dictionary Dout

1: D1 ← ∅
2: for t← 1 to p do
3: mt ← generate_random_marker(n) . See Equation (11)
4: bool improvement_found← false
5: do
6: improvement_found← false
7: int best_b← 0
8: int best_sum_hamming← 0
9: for b← 1 to n× n do

10: mb
t ← apply_bit_change(mt, b) . See Equation (12)

11: if ds(mb
t) < dH(mb

t ,Dt) then continue . See Equation (14)
12: if dH(mb

t ,Dt) < dH(mt,Dt) then continue . See Equation (15)
13: if dH(mb

t ,Dt) = dH(mt,Dt) and
fH(mb

t ,Dt) ≥ fH(mt,Dt) then continue . See Equation (16)
14: int sum_hamming← 0;
15: for each h ∈ H(mb

t ,Dt) do . See Equation (9)
16: sum_hamming← sum_hamming + h
17: end for
18: if sum_hamming > best_sum_hamming then
19: best_sum_hamming← sum_hamming
20: best_b← b
21: improvement_found← true
22: end if
23: end for
24: if improvement_found then mt ← mbest_b

t
25: while improvement_found
26: Dt+1 ← Dt

⋃
mt

27: end for

3.2. Dictionary Optimization

Although Algorithm 1 allows to generate a dictionary maximizing the distances
between markers, it is not optimal and can produce low-quality markers that penalize the
inter-marker distance. It is therefore advisable to generate more markers than required and
apply a second step to select a subset of markers that maximize the inter-marker distance.
This section explains the proposed method for marker selection.

The algorithm consists of an iterative process in which, in each iteration, we look for
the optimal subset of markers for a specific value of inter-marker distance.

It starts with a large value of inter-marker distance, which is relaxed, i.e., decremented,
on each iteration. In this manner, we begin by looking for small sets with large inter-marker
distance, and as we progress we seek larger sets with smaller inter-marker distance. The
process finishes when a subset with sufficient markers has been found or when all the
markers in the dictionary have been selected. For the initial inter-marker distance, we use
the largest self-distance of any marker in the dictionary since, by definition, it is always
greater than or equal to the maximum theoretical inter-marker distance (see Equation (8)).

More precisely, for each iteration we have to solve the problem of, given an input
dictionary D, obtaining the largest subset of markers, Du ⊆ D, such that τ(Du) ≥ u, where
u is the target inter-marker distance for that iteration.

To solve this problem we represent the dictionary as an undirected graph, Gu = (Vu, Eu).
The graph will contain a vertex vi ∈ Vu for each marker mi ∈ D whose self-distance, ds(mi),
is greater than or equal to u. Furthermore, two vertices, vi and vj, will be connected by an
edge, ei,j ∈ Eu, if the distance between their corresponding markers, mi and mj, is greater
than or equal to u:

Sensors 2022, 22, 8548 9 of 18

Vu = {vi : mi ∈ D ∧ ds(mi) ≥ u},
Eu = {ei,j : mi, mj ∈ D ∧ d(mi, mj) ≥ u}.

(17)

The solution to our problem is obtained by finding the maximum clique of the graph.
A clique is a subset of vertices that are all connected to each other, which in our problem
means that the distances between all markers in the clique are greater than or equal to u; in
other words, τ(Du) ≥ u. The maximum clique is the largest clique within a graph and thus
the largest subset of markers with inter-marker distance greater than or equal to u.

Estimating the maximum clique is a classical problem in graph theory and there are
numerous algorithms to solve it [35–37]. In our case, we have opted for the approximate
coloring algorithm proposed in [38] due to its availability, simplicity, and efficiency.

The pseudocode of the dictionary optimization is shown in Algorithm 2.

Algorithm 2 Dictionary optimization.

Input: Dictionary Din, int target_dictionary_size
Output: Dictionary Dout . Optimized dictionary

1: u← max
{⋃

mi∈Din
ds(mi)

}
. Maximum self-distance

2: while u ≥ 0 do
3: Gu ← generate_graph(Din, u)
4: Du ← find_maximum_clique(Gu)
5: if |Du| ≥ target_dictionary_size then
6: Dout ← Du
7: return
8: end if
9: u← u− 1

10: end while

Additionally, the optimization algorithm can also be applied to any predefined dictionary
from public libraries. In this manner, they can be optimized by taking the subset of markers
that maximizes the inter-marker distance when considering reflection. This is especially
interesting for those applications that are already using a marker system and do not want to
switch to a new dictionary. The results of these optimizations are shown in Section 4.3.

Finally, although this work focuses on marker reflection, it must be noted that the
proposed algorithms, Algorithms 1 and 2, can be easily adapted to only consider rotation
and ignore reflection. This only requires removing the reflection term, Are f (mi), from
Equation (4).

3.3. Identification of Reflected Markers

While each marker system proposes its own pipeline for analyzing an image and
detecting markers, they typically share two fundamental steps. First, the image is processed
to find candidates, i.e., square shapes with a black border that resemble a marker, and then
each candidate is examined to verify whether it is a marker or not. As part of this second
step, it is necessary to extract the bits of the marker from the image and determine if they
belong to a valid dictionary code or not.

In libraries such as ArUco or AprilTag, the extracted code, mi, is compared with all the
markers in the dictionary, D, and it is identified as a valid marker if there is any marker
in the dictionary, mj, whose distance, d(mi, mj), is less than or equal to b(τ(D)− 1)/2c,
which is the maximum number of bits that can be corrected without risking an inter-marker
confusion error.

The novelty of our proposal is that it also accounts for reflection in the identification
process. In particular, the algorithm finds the closest marker in the dictionary when estimating
the distances d(mi, mj) by considering the reflection analogous set, Are f (mj), in Equation (4).

Sensors 2022, 22, 8548 10 of 18

Furthermore, not only can we identify a marker, but we can also distinguish whether
it has been detected directly or reflected. To achieve this, it is sufficient to check whether
the minimum Hamming distance between mi and mj is obtained with respect to the set
Are f (mj), indicating reflected detection, or to the set Arot(mj), indicating direct detection.
This information is necessary to identify each of the marker corners uniquely, but it can also
be useful for other purposes. For example, an augmented reality application could display
the virtual objects inverted in accordance with the reflected marker, or a robotic navigation
application could ignore the reflected markers to avoid introducing potential errors in the
trajectory estimation. Algorithm 3 summarizes the reflection-aware identification process.

Algorithm 3 Reflection-aware marker identification.

Input: Dictionary D, Marker Candidate mi
Output: bool is_marker, Identifier marker_id, bool is_reflected

1: for each mj ∈ D do
2: if d(mi, mj) ≤ b(τ(D)− 1)/2c then . See Equation (5)
3: is_marker← true
4: marker_id← j
5: if dH(mi,Are f (mj)) < dH(mi,Arot(mj)) then . See Equation (10)
6: is_reflected← true
7: else
8: is_reflected← false
9: end if

10: return
11: end if
12: end for
13: is_marker← false

Figure 1 shows several cases of reflected marker detection. In the first two, Figure 1a,b,
a non-reflection-aware dictionary is used, namely, the ArUco OpenCV 4 × 4 dictionary (see
Table 1). In the first scenario, Figure 1a, a false negative is produced as the detection process
does not consider reflection and the code of the reflected marker does not correspond to
any marker in the dictionary. The second case, Figure 1b, is more critical as the code of
the original marker (m146), when reflected, is identical to that of another marker in the
dictionary after being rotated (m277), confusing the system and causing an inter-marker
confusion error.

On the other hand, in Figure 1c, the same situation is presented with a dictionary
generated by our proposal, which does consider reflection, and the identification process of
Algorithm 3. In this case, the marker is correctly identified and, in addition, it is possible to
distinguish whether it is reflected or not.

4. Experimentation and Results

This section details the experimentation carried out to validate our proposed dictionary
generation compared to the public dictionaries of the most popular libraries for marker
detection. Table 1 lists the dictionaries of other libraries against which we compared and
some of their most relevant features. Note that the ArUco OpenCV dictionaries refer to
those available in the OpenCV fork of ArUco [32] while ArUco MIP dictionaries refer to
those available in the main ArUco library [31]. ArUco Original refers to the first ArUco
dictionary, which is included in both implementations. Figure 3 shows the first marker of
each of the dictionaries listed in Table 1.

Sensors 2022, 22, 8548 11 of 18

ARTag ARToolKitPlus
Simple

ARToolKitPlus
BCH

AprilTag
16h5

AprilTag
25h7

AprilTag
25h9

AprilTag
36h10

AprilTag
36h11

ArUco
Original

ArUco
OpenCV 4x4

ArUco
OpenCV 5x5

ArUco
OpenCV 6x6

ArUco
OpenCV 7x7

ArUco
MIP 16h3

ArUco
MIP 25h7

ArUco
MIP 36h12

Figure 3. First marker of each of the dictionaries listed in Table 1.

Section 4.1 compares the inter-marker distance of the dictionaries generated by our
proposal with those in Table 1. In Section 4.2, we study the generation times of our proposal.
Finally, in Section 4.3, the dictionary optimization algorithm is applied to the dictionaries
in Table 1 and the results are presented.

4.1. Inter-Marker Distance

This section analyzes the inter-marker distance of the dictionaries generated by our
proposal and the public dictionaries listed in Table 1.

To evaluate our proposal, we generated dictionaries with markers of the most common
sizes, namely 4 × 4, 5 × 5, and 6 × 6 bits. Regarding the dictionary size, we consider that
250 markers are enough to cover most of the use cases and to compare with the rest of the
dictionaries in the literature. In our experience, it is sufficient to generate six to eight times
the desired number of markers with Algorithm 1. Therefore, for each size, a total of 2000
(250 × 8) markers were generated using Algorithm 1, and a subset of 250 markers was
selected using Algorithm 2. For each size, 30 different dictionaries were generated and the
results were averaged. We chose 30 samples, as this is the minimum number to assure a
normal distribution according to the central limit theorem [39]. To limit the search time of the
maximum clique algorithm, a timeout of 150 s was configured. After the timeout, the largest
clique found up to that moment is returned.

The inter-marker distance was estimated for each dictionary size from 1 to 250 markers.
For the public dictionaries in Table 1, subsets of markers up to size 250 were taken in
increasing order. This is appropriate since some dictionaries provide a specific order that
maximizes their inter-marker distance.

The inter-marker distance was calculated considering the formulation in Section 2,
which introduces the reflection term in order to evaluate the error correction capability in
the presence of reflection. Figure 4 shows the results.

It can be observed that the inter-marker distance of the dictionaries generated by our
approach outperforms the other dictionaries in virtually all cases. This is expected, as
the rest of the dictionaries are not reflection-aware; however, it is worth noting that the
advantage is highly significant since the results are doubled in most cases. For example, if
we take a dictionary of 50 markers of size 5 × 5 bits, we can observe that the maximum
distance achieved by the rest of the dictionaries is two; this means that erroneous bits cannot
be corrected (b(τ(D)− 1)/2c = 0) and it would only take two incorrect bits to produce an
inter-marker confusion error. On the other hand, in that same case, our proposal achieves
an inter-marker distance of seven, which means that it can correct up to three erroneous
bits and it would need four incorrect bits for an inter-marker confusion error to occur.

The only dictionary that comes close to the results of our proposal is that of ARTag,
as it is the only one that considers the possibility of reflection. Even so, our proposal
outperforms ARTag in nearly all cases. Although it is difficult to appreciate, the only
exception is for dictionary sizes between 52 and 57, where ARTag reaches an inter-marker
distance of 12 and some executions of our proposal drop to 11. In any case, this only
represents 0.0013% of the total number of executions, so we can state that our method
clearly outperforms ARTag’s dictionary. Apart from ARTag and our proposal, the best

Sensors 2022, 22, 8548 12 of 18

performing dictionary families are AprilTag and ArUco MIP. The other ArUco dictionaries
and, in particular, the ARToolKitPlus dictionaries show worse results.

0

2

4

6

8

10

0 50 100 150 200 250

τ
(D

)

p

Our proposal

AprilTag 16h5

ArUco OpenCV 4×4

ArUco MIP 16h3

(a)

0

2

4

6

8

10

12

14

16

18

0 50 100 150 200 250

τ
(D

)

p

Our proposal

AprilTag 25h7

AprilTag 25h9

ArUco Original

ArUco OpenCV 5×5

ArUco MIP 25h7

(b)

0

5

10

15

20

0 50 100 150 200 250

τ
(D

)

p

Our proposal

ARToolKitPlus Simple

ARToolKitPlus BCH

ARTag

(c)

0

5

10

15

20

0 50 100 150 200 250

τ
(D

)

p

Our proposal

AprilTag 36h10

AprilTag 36h11

ArUco OpenCV 6×6

ArUco MIP 36h12

(d)

Figure 4. Inter-marker distance as a function of dictionary size for the proposed generation method
compared to public dictionaries (see Table 1). The results are shown considering reflection and are
broken down for different marker sizes. The 6 × 6 bit dictionaries are divided into two plots for
easier visualization. Higher values indicate a larger inter-marker distance and, therefore, a higher
error correction capability. Our proposal clearly outperforms all methods, including ARTag, which is
the only one that considers reflection. (a) 4 × 4 bits, (b) 5 × 5 bits, (c) 6 × 6 (1/2), (d) 6 × 6 (2/2).

It is worth noting that some dictionaries have an inter-marker distance of 0. This is
especially critical as it means that one marker could be confused with another simply by
being reflected, even if there is no error in the extracted bits. Some examples are the ArUco
Original, ARToolKitPlus BCH, or some of the ArUco OpenCV dictionaries. An example of
this error can be seen in Figure 1b.

Most of the plots have a staircase shape in which each step down represents the
decrease of the inter-marker distance as the dictionary size increases. In general, these
steps are larger as we reduce the inter-marker distance requirement since it is easier to find
more markers that meet that requirement. In addition, these steps are more frequent in our
method and in ARTag since they are the only ones that consider reflection. In the rest of the
dictionaries, the decrease of the inter-marker distance is faster and less progressive since
they are not designed for reflection.

Finally, regarding marker size, we observe that, as expected, the inter-marker distance
increases when using larger markers. In general, a large marker size allows for larger dic-
tionaries and larger inter-marker distances. For example, using our proposal, a dictionary
of 150 markers of 4× 4 bits reaches an inter-marker distance of 3 while a dictionary of
the same size and markers of 6× 6 bits reaches a value of 10. On the other hand, a small
marker size permits markers to be more easily detected in the image since the bits occupy
more pixels. In the end, the choice of marker size will depend on the specific application

Sensors 2022, 22, 8548 13 of 18

and aspects such as the working distance, the physical size of the marker, or the number of
markers needed.

4.2. Generation Time

In this section, we study the dictionary generation times of our proposal and compare
them with the most popular dictionary generation algorithms in the literature. In particular,
we compare against the AprilTag generation method [20], the ArUco generation method
based on mixed-integer programming (ArUco MIP) [22], and the ArUco iterative generation
method [21], which we refer to as ArUco OpenCV since the dictionaries of the ArUco fork
in OpenCV were created using this approach. Note that these methods are the ones used
to generate the custom dictionaries of Table 1. It is also noteworthy that ARTag, whose
dictionary is the only one that considers reflection, just provides a predefined dictionary
and not a method to generate custom dictionaries.

The generation was configured in a similar way to that proposed in [22]. All tests were
performed using a system equipped with an Intel Core i7-3930K 3.20 GHz processor and
16 GB of RAM. The results of our proposal correspond to the dictionaries generated for the
experimentation of Section 4.1. Figure 5 shows the generation times for two typical marker
sizes of 4 × 4 and 6 × 6 bits.

0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250

G
en

er
at

io
n

ti
m

e
(s

)

p

Our proposal

AprilTag

ArUco OpenCV

ArUco MIP

(a)

0

500

1000

1500

2000

2500

3000

3500

4000

0 50 100 150 200 250

G
en

er
at

io
n

ti
m

e
(s

)

p

Our proposal

AprilTag

ArUco OpenCV

ArUco MIP

(b)

Figure 5. Generation times as a function of dictionary size for the proposed generation method
compared to AprilTag, ArUco OpenCV, and ArUco MIP counterparts. Results are shown for marker
sizes of (a) 4 × 4 and (b) 6 × 6 bits.

The methods with the shortest generation times are our proposal and ArUco MIP. For
small marker sizes, i.e., 4 × 4 bits, ArUco MIP achieves the best results with generation
times of a few seconds, while our method requires more than 8 min to generate a dictionary
of 250 markers. On the other hand, for larger marker sizes, namely, 6 × 6 bits, our proposal
has the shortest generation times, taking about 10 min, while the second best option, ArUco
MIP, takes slightly more than 24 min. The slopes in the plots where the times increase
sharply correspond to those cases where the timeout has been reached. It can be seen that
the steps in the plots are larger as the dictionary size increases. This is because at each slope
the inter-marker distance requirement is reduced, and it is easier and faster to find new
markers that meet that constraint.

In any case, the dictionary generation is normally performed offline and only once;
thus, the generation times are not critical as long as they are not prohibitive.

4.3. Optimizing Public Dictionaries

This section evaluates the effect of the optimization algorithm from Section 3.2 when
applied to the public dictionaries in Table 1. The goal is to check whether we can reuse ex-
isting dictionaries that a priori do not consider reflection by taking a subset of markers that
maximizes the inter-marker distance. This is especially interesting for those applications

Sensors 2022, 22, 8548 14 of 18

that intend to use a preexisting dictionary from a public library but still want to consider
the possibility of reflection.

In addition to applying the optimization for reflection, we also evaluated the improve-
ment considering only the possibility of rotation by eliminating the term Are f (m) from
Equation (4). This analysis is interesting since almost all the predefined dictionaries were
generated considering only rotation, and we can verify if our optimization process is able
to improve the dictionary even in this case.

Figures 6 and 7 show the inter-marker distance results for each dictionary and as a
function of the dictionary size. For each case, the results are shown before and after applying
the optimization process and considering reflection or only rotation. Optimization was
applied to the full size of each dictionary. Figure 6 shows the results for all the dictionaries
of the ArUco family, while Figure 7 shows the same for the rest of the dictionaries in Table 1.

It can be seen that, when considering reflection, we obtain better results in nearly all
cases and in the rest we equal them, but we never obtain worse results. The improvement
is almost always highly significant. For instance, the ArUco OpenCV 6 × 6 dictionary of
size 800 achieves an inter-marker distance of 0 before optimizing, which makes it unusable
since one marker can be confused with another simply by being reflected even if the bit
extraction is perfect. After applying the optimization, an inter-marker distance of seven is
achieved, which allows correcting up to three incorrect bits.

The only dictionary where the improvement is not as remarkable is the case of ARTag,
since it already considers reflection. Still, we achieve equal or better results in all cases.
Some improvements can be observed, for example, for dictionaries sizes close to 300.

Note that some dictionaries, such as ARToolKitPlus BCH and several dictionaries of
the ArUco family, achieve an inter-marker distance of zero before optimization, which
makes them unusable if we want to take reflection into account. After applying the
optimization, almost none of the dictionaries reach a minimum distance of zero. The only
exceptions are ArUco Original, ArUco OpenCV 4 × 4, and ArUco MIP 16h3; hence, it is not
recommended to use these dictionaries when the input images might contain reflections,
even after applying the optimization process.

When we only take rotation into account, the optimization results also improve
or equal the inter-marker distance in most cases, although the improvement is not as
significant as when reflection is considered. It only obtains worse results for some dictionary
sizes in ArUco OpenCV, namely, 5 × 5, 6 × 6, and 7 × 7 bits. The reason for the worsening
is that the maximum clique search has reached the timeout more frequently, resulting in
a suboptimal result. In several cases, the shapes of the plots are similar before and after
optimization. This occurs because those dictionaries are close to the optimum and have
little room for improvement when considering only rotation, such as in ArUco OpenCV or
ArUco MIP families.

0

2

4

6

8

10

12

14

16

0 200 400 600 800 1000

τ
(D

)

p

Reflection

Only Rotation

Reflection Optimized

Only Rotation Optimized

(a)

0

2

4

6

8

10

12

0 200 400 600 800 1000

τ
(D

)

p

Reflection

Only Rotation

Reflection Optimized

Only Rotation Optimized

(b)

Figure 6. Cont.

Sensors 2022, 22, 8548 15 of 18

0

2

4

6

8

10

12

14

16

18

0 200 400 600 800 1000

τ
(D

)

p

Reflection

Only Rotation

Reflection Optimized

Only Rotation Optimized

(c)

0

5

10

15

20

25

0 200 400 600 800 1000

τ
(D

)

p

Reflection

Only Rotation

Reflection Optimized

Only Rotation Optimized

(d)

0

5

10

15

20

25

30

0 200 400 600 800 1000

τ
(D

)

p

Reflection

Only Rotation

Reflection Optimized

Only Rotation Optimized

(e)

0

2

4

6

8

10

12

0 50 100 150 200 250

τ
(D

)

p

Reflection

Only Rotation

Reflection Optimized

Only Rotation Optimized

(f)

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100

τ
(D

)

p

Reflection

Only Rotation

Reflection Optimized

Only Rotation Optimized

(g)

0

5

10

15

20

25

0 50 100 150 200 250

τ
(D

)

p

Reflection

Only Rotation

Reflection Optimized

Only Rotation Optimized

(h)

Figure 6. Inter-marker distance as a function of dictionary size for the ArUco family dictionaries
(see Table 1) before and after applying the proposed optimization (Algorithm 2). Results are shown
considering reflection as well as considering only rotation. When considering reflection, the optimized
dictionaries obtain equal or better results in all cases. See Figure 7 for the rest of the dictionaries.
(a) ArUco Original, (b) ArUco OpenCV 4 × 4, (c) ArUco OpenCV 5 × 5, (d) ArUco OpenCV 6 × 6, (e)
ArUco OpenCV 7 × 7, (f) ArUco MIP 16h3, (g) ArUco MIP 25h7, (h) ArUco MIP 36h12.

Sensors 2022, 22, 8548 16 of 18

0

5

10

15

20

0 100 200 300 400 500

τ
(D

)

p

Reflection

Only Rotation

Reflection Optimized

Only Rotation Optimized

(a)

0

5

10

15

20

0 500 1000 1500 2000 2500 3000 3500 4000

τ
(D

)

p

Reflection

Only Rotation

Reflection Optimized

Only Rotation Optimized

(b)

0

5

10

15

20

0 200 400 600 800 1000

τ
(D

)

p

Reflection

Only Rotation

Reflection Optimized

Only Rotation Optimized

(c)

0

2

4

6

8

10

12

0 5 10 15 20 25 30

τ
(D

)

p

Reflection

Only Rotation

Reflection Optimized

Only Rotation Optimized

(d)

0

2

4

6

8

10

12

14

16

0 50 100 150 200

τ
(D

)

p

Reflection

Only Rotation

Reflection Optimized

Only Rotation Optimized

(e)

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30 35

τ
(D

)

p

Reflection

Only Rotation

Reflection Optimized

Only Rotation Optimized

(f)

0

5

10

15

20

25

0 500 1000 1500 2000

τ
(D

)

p

Reflection

Only Rotation

Reflection Optimized

Only Rotation Optimized

(g)

0

5

10

15

20

0 100 200 300 400 500

τ
(D

)

p

Reflection

Only Rotation

Reflection Optimized

Only Rotation Optimized

(h)

Figure 7. Inter-marker distance as a function of dictionary size for several of the public dictionaries
in Table 1 before and after applying the proposed optimization (Algorithm 2). Results are shown
considering reflection as well as considering only rotation. When considering reflection, the optimized
dictionaries obtain equal or better results in all cases, even when comparing with the reflection-
aware dictionary of ARTag. See Figure 6 for the rest of the dictionaries. (a) ARToolKit+ Simple,
(b) ARToolKit+ BCH, (c) ARTag, (d) AprilTag 16h5, (e) AprilTag 25h7, (f) AprilTag 25h9, (g) AprilTag
36h10, (h) AprilTag 36h11.

Sensors 2022, 22, 8548 17 of 18

5. Conclusions

This paper presents the first study specifically focused on the generation and detection
of reflection-aware dictionaries of square markers.

First, we presented a new formulation for the inter-marker distance which considers
the possibility of marker reflection. Secondly, a new method for generating reflection-aware
dictionaries maximizing the inter-marker distance was proposed. As proved in the experi-
mentation section, our proposal clearly outperforms all other tested dictionaries, doubling
the minimum distance in almost all cases and, therefore, doubling the bit-correction capac-
ity. Moreover, part of the proposed method consists of a dictionary optimization that can
also be applied to preexisting dictionaries. Applying this method to the public dictionaries
yields a significant improvement of the inter-marker distances. The optimization can also
be applied considering only rotation and still improves most of the preexisting dictionar-
ies. Furthermore, in conjunction with the dictionary generation process, we proposed an
algorithm to identify reflection-aware markers that allows, in addition to identifying the
marker, to report whether it has been detected as reflected or not.

Finally, the source code of the proposed algorithms has been made publicly available
as Supplementary Material to this paper.

Supplementary Materials: An implementation of the proposed methods based on the OpenCV
ArUco module is available at: https://github.com/sergarrido/opencv_contrib/tree/aruco_reflection
(accessed on 30 August 2022).

Author Contributions: Conceptualization, S.G.-J., J.G., and F.V.; methodology, R.M.-S. and S.G.-J.;
software, D.J.-R. and S.G.-J.; validation, R.M.-S. and J.G.; formal analysis, J.G. and F.V.; investiga-
tion, S.G.-J. and D.J.-R.; writing—original draft preparation, S.G.-J., J.G., and F.V.; writing—review
and editing, R.M.-S., J.G., and F.V.; visualization, D.J.-R. and S.G.-J.; supervision, S.G.-J.; funding
acquisition, S.G.-J. and R.M.-S. All authors have read and agreed to the published version of the
manuscript.

Funding: This project was funded under the Industrial PhD Program of Córdoba University with
Seabery R&D.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Marchand, E.; Uchiyama, H.; Spindler, F. Pose estimation for augmented reality: A hands-on survey. IEEE Trans. Vis. Comput.

Graph. 2015, 22, 2633–2651. [CrossRef] [PubMed]
2. Frikha, R.; Ejbali, R.; Zaied, M. Camera pose estimation for augmented reality in a small indoor dynamic scene. J. Electron.

Imaging 2017, 26, 053029. [CrossRef]
3. Fu, J.; Pertuz, S.; Matas, J.; Kämäräinen, J.K. Performance analysis of single-query 6-DoF camera pose estimation in self-driving

setups. Comput. Vis. Image Underst. 2019, 186, 58–73. [CrossRef]
4. Venator, M.; Bruns, E.; Maier, A. Robust camera pose estimation for unordered road scene images in varying viewing conditions.

IEEE Trans. Intell. Veh. 2019, 5, 165–174. [CrossRef]
5. Ali, I.; Suominen, O.J.; Morales, E.R.; Gotchev, A. Multi-view camera pose estimation for robotic arm manipulation. IEEE Access

2020, 8, 174305–174316. [CrossRef]
6. Lee, T.E.; Tremblay, J.; To, T.; Cheng, J.; Mosier, T.; Kroemer, O.; Fox, D.; Birchfield, S. Camera-to-robot pose estimation from a

single image. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31
May–31 August 2020; pp. 9426–9432.

7. Lu, X.X. A review of solutions for perspective-n-point problem in camera pose estimation. Proc. J. Phys. Conf. Ser. IOP Pub. 2018,
1087, 052009. [CrossRef]

8. Klein, G.; Murray, D. Parallel Tracking and Mapping for Small AR Workspaces. In Proceedings of the 2007 6th IEEE and
ACM International Symposium on Mixed and Augmented Reality, Nara, Japan, 13–16 November 2007; IEEE Computer Society:
Washington, DC, USA, 2007; pp. 1–10.

https://github.com/sergarrido/opencv_contrib/tree/aruco_reflection
http://doi.org/10.1109/TVCG.2015.2513408
http://www.ncbi.nlm.nih.gov/pubmed/26731768
http://dx.doi.org/10.1117/1.JEI.26.5.053029
http://dx.doi.org/10.1016/j.cviu.2019.04.009
http://dx.doi.org/10.1109/TIV.2019.2955375
http://dx.doi.org/10.1109/ACCESS.2020.3026108
http://dx.doi.org/10.1088/1742-6596/1087/5/052009

Sensors 2022, 22, 8548 18 of 18

9. Buch, A.G.; Kraft, D.; Kamarainen, J.K.; Petersen, H.G.; Krüger, N. Pose estimation using local structure-specific shape and
appearance context. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany,
6–10 May 2013; pp. 2080–2087.

10. Cheng, M.L.; Matsuoka, M. An Efficient and Precise Remote Sensing Optical Image Matching Technique Using Binary-Based
Feature Points. Sensors 2021, 21, 6035. [CrossRef]

11. Ribeiro, L.G.; Suominen, O.J.; Durmush, A.; Peltonen, S.; Ruiz Morales, E.; Gotchev, A. Retro-reflective-marker-aided target pose
estimation in a safety-critical environment. Appl. Sci. 2020, 11, 3. [CrossRef]

12. Zhang, W.; Kavehrad, M. Comparison of VLC-based indoor positioning techniques. Proc. SPIE 2013, 8645, 152–157.
13. Zhuang, Y.; Hua, L.; Qi, L.; Yang, J.; Cao, P.; Cao, Y.; Wu, Y.; Thompson, J.; Haas, H. A survey of positioning systems using visible

LED lights. IEEE Commun. Surv. Tutor. 2018, 20, 1963–1988. [CrossRef]
14. Benligiray, B.; Topal, C.; Akinlar, C. STag: A stable fiducial marker system. Image Vis. Comput. 2019, 89, 158–169. [CrossRef]
15. Kato, H.; Billinghurst, M. Marker Tracking and HMD Calibration for a Video-Based Augmented Reality Conferencing System. In

Proceedings of the 2nd IEEE and ACM International Workshop on Augmented Reality, San Francisco, CA, USA, 20–21 October
1999; IEEE Computer Society: Washington, DC, USA, 1999; pp. 85–94.

16. Wang, J.; Olson, E. AprilTag 2: Efficient and robust fiducial detection. In Proceedings of the 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 4193–4198.

17. Romero-Ramirez, F.J.; Muñoz-Salinas, R.; Medina-Carnicer, R. Speeded up detection of squared fiducial markers. Image Vis.
Comput. 2018, 76, 38–47. [CrossRef]

18. Mondéjar-Guerra, V.; Garrido-Jurado, S.; Muñoz-Salinas, R.; Marín-Jiménez, M.J.; Medina-Carnicer, R. Robust identification of
fiducial markers in challenging conditions. Expert Syst. Appl. 2018, 93, 336–345. [CrossRef]

19. Li, B.; Wang, B.; Tan, X.; Wu, J.; Wei, L. Corner location and recognition of single ArUco marker under occlusion based on YOLO
algorithm. J. Electron. Imaging 2021, 30, 033012. [CrossRef]

20. Olson, E. AprilTag: A robust and flexible visual fiducial system. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), Shanghai, China, 9–13 May 2011; pp. 3400–3407.

21. Garrido-Jurado, S.; Muñoz-Salinas, R.; Madrid-Cuevas, F.; Marín-Jiménez, M. Automatic generation and detection of highly
reliable fiducial markers under occlusion. Pattern Recognit. 2014, 47, 2280–2292. [CrossRef]

22. Garrido-Jurado, S.; Muñoz-Salinas, R.; Madrid-Cuevas, F.J.; Medina-Carnicer, R. Generation of fiducial marker dictionaries using
mixed integer linear programming. Pattern Recognit. 2016, 51, 481–491. [CrossRef]

23. Dujany, M. Localization of an Underwater Swimming Robot. 2018. Available online: https://www.epfl.ch/labs/biorob/wp-
content/uploads/2019/02/final_report_semester_project_MatthieuDujany.pdf (accessed on 22 October 2022).

24. Mostashiri, N.; Dhupia, J.S.; Verl, A.W.; Xu, W. A Novel Spatial Mandibular Motion-Capture System Based on Planar Fiducial
Markers. IEEE Sens. J. 2018, 18, 10096–10104. [CrossRef]

25. Wang, C.; Komninos, C.; Andersen, S.; D’Ettorre, C.; Dwyer, G.; Maneas, E.; Edwards, P.; Desjardins, A.; Stilli, A.; Stoyanov,
D. Ultrasound 3D reconstruction of malignant masses in robotic-assisted partial nephrectomy using the PAF rail system: A
comparison study. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 1147–1155. [CrossRef]

26. Schoun, B.; Oagaz, H.; Choi, M.H. Corner-based Square Fiducial Marker Detection for Hand-manipulated AR Objects. In Proceedings
of the 2021 IEEE International Conference on Intelligent Reality (ICIR), Piscataway, NJ, USA, 12–13 May 2021; pp. 31–38.

27. Fiala, M. Designing highly reliable fiducial markers. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 32, 1317–1324. [CrossRef]
28. Peterson, W.; Brown, D. Cyclic Codes for Error Detection. Proc. IRE 1961, 49, 228–235. [CrossRef]
29. Wagner, D.; Schmalstieg, D. ARToolKitPlus for Pose Tracking on Mobile Devices. In Proceedings of the Computer Vision Winter

Workshop, St. Lambrecht, Austria, 6–8 February 2007; pp. 139–146.
30. Lin, S.; Costello, D. Error Control Coding: Fundamentals and Applications; Prentice Hall: Hoboken, NJ, USA, 1983.
31. Munoz-Salinas, R.; Garrido-Jurado, S.; Romero-Ramirez, F.J. ArUco: A Minimal Library for Augmented Reality Applications.

Available online: https://www.uco.es/investiga/grupos/ava/portfolio/aruco/ (accessed on 15 August 2022).
32. ArUco Contrib Module in OpenCV. Available online: https://github.com/opencv/opencv_contrib/tree/4.x/modules/aruco

(accessed on 15 August 2022).
33. Schrijver, A. Theory of Linear and Integer Programming; John Wiley & Sons, Inc.: New York, NY, USA, 1986.
34. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness; Freeman: San Francisco, CA,

USA, 1979.
35. Wu, Q.; Hao, J.K. A review on algorithms for maximum clique problems. Eur. J. Oper. Res. 2015, 242, 693–709. [CrossRef]
36. Guo, P.; Wang, X.; Zeng, Y.; Chen, H. MEAMCP: A membrane evolutionary algorithm for solving maximum clique problem.

IEEE Access 2019, 7, 108360–108370. [CrossRef]
37. Rossi, R.A.; Gleich, D.F.; Gebremedhin, A.H. Parallel maximum clique algorithms with applications to network analysis. SIAM J.

Sci. Comput. 2015, 37, C589–C616. [CrossRef]
38. Konc, J.; Janezic, D. An improved branch and bound algorithm for the maximum clique problem. Proteins 2007, 4, 590–596.
39. Kwak, S.G.; Kim, J.H. Central limit theorem: The cornerstone of modern statistics. Korean J. Anesthesiol. 2017, 70, 144–156.

[CrossRef]

http://dx.doi.org/10.3390/s21186035
http://dx.doi.org/10.3390/app11010003
http://dx.doi.org/10.1109/COMST.2018.2806558
http://dx.doi.org/10.1016/j.imavis.2019.06.007
http://dx.doi.org/10.1016/j.imavis.2018.05.004
http://dx.doi.org/10.1016/j.eswa.2017.10.032
http://dx.doi.org/10.1117/1.JEI.30.3.033012
http://dx.doi.org/10.1016/j.patcog.2014.01.005
http://dx.doi.org/10.1016/j.patcog.2015.09.023
https://www.epfl.ch/labs/biorob/wp-content/uploads/2019/02/final_report_semester_project_MatthieuDujany.pdf
https://www.epfl.ch/labs/biorob/wp-content/uploads/2019/02/final_report_semester_project_MatthieuDujany.pdf
http://dx.doi.org/10.1109/JSEN.2018.2873349
http://dx.doi.org/10.1007/s11548-020-02149-4
http://dx.doi.org/10.1109/TPAMI.2009.146
http://dx.doi.org/10.1109/JRPROC.1961.287814
https://www.uco.es/investiga/grupos/ava/portfolio/aruco/
https://github.com/opencv/opencv_contrib/tree/4.x/modules/aruco
http://dx.doi.org/10.1016/j.ejor.2014.09.064
http://dx.doi.org/10.1109/ACCESS.2019.2933383
http://dx.doi.org/10.1137/14100018X
http://dx.doi.org/10.4097/kjae.2017.70.2.144

	Introduction
	Problem Formulation
	Proposed Solution
	Initial Dictionary Generation
	Dictionary Optimization
	Identification of Reflected Markers

	Experimentation and Results
	Inter-Marker Distance
	Generation Time
	Optimizing Public Dictionaries

	Conclusions
	References

