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Abstract: The quadruple-tank system (QTS) is a popular educational resource in universities for
studying multivariable control systems. It enables the analysis of the interaction between variables
and the limitations imposed by multivariable non-minimum phase zeros, as well as the evaluation
of new multivariable control methodologies. The works utilizing this system present a theoretical
model that may be too idealistic and based on erroneous assumptions in real-world implementations,
such as the linear behavior of the actuators. In other cases, an identified linear model is directly
provided. This study outlines the practical grey-box modeling procedure conducted for the QTS at the
University of Cordoba and provides guidance for its implementation. A configurable nonlinear model
was developed and controlled in a closed loop using different controllers. Specifically, decentralized
control, static decoupling control, and simplified decoupling control were compared. The simulation
designs were experimentally validated with high accuracy, demonstrating that the conclusions
reached with the developed model can be extrapolated to the real system. The comparison of these
three control designs illustrates the advantages and disadvantages of decoupling in certain situations,
especially in the presence of non-minimum phase zeros.

Keywords: quadruple-tank system; grey-box modeling; identification; multivariable control;
decoupling control

1. Introduction

Industrial processes are often multivariable and exhibit nonlinear behavior [1]. The
interactions between components, variables to be controlled, and manipulated variables
can increase the complexity of a nonlinear system. Due to the characteristics of nonlinearity,
time variation, and cross-coupling between variables, classical control methods developed
for single-variable systems may lead to inefficient results when they are applied to multi-
variable processes [2]. Additionally, the design of a multivariable process control system
must consider the possible presence, location, and direction of multivariable zeros, as they
can affect system stability. The design of control systems is generally based on a process
model in an iterative procedure to save time and money. It is important to maintain a clear
and logical flow of information with causal connections between statements. Although
closed-loop control systems are less sensitive to process modeling errors, obtaining a proper
model is crucial for designing a good controller. This is especially true for multivariable
processes, which present greater control difficulties that the model should reflect.

Industrial process modeling has traditionally been based on white-box modeling or
black-box identification. White-box modeling involves building a model using scientific
relationships that fully describe the process. On the other hand, black-box identification
employs a parametric model that fits the measured process data obtained experimentally.
For many industrial processes, there is some knowledge available, although incomplete,
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about the system. Between white-box and black-box models, there exists a grey area that
offers a third way to create engineering system models. This grey-box approach utilizes a
priori knowledge about the process and estimates the unknown parts of the model from
experimentally measured data [3]. When there is good prior knowledge of the mechanisms
underlying the behavior of a process, the relevant equilibrium equations can be expressed
as a set of differential equations. In the simplest case, the system may have some unknown
parameters that need to be estimated from measured data. In the general case, the model’s
initial structure is formulated on the basis of physical knowledge and then refined to fit the
experimental data [4]. The process of developing a mechanistic grey-box model is typically
oriented toward objects or sub-models and involves a series of steps that require solving
less-demanding subproblems, such as basic modeling, experiments, estimation, data fitting,
and model validation. Thus, grey-box models are simplified representations of the different
components that facilitate system integration [5].

After obtaining the process model, and given the control specifications, it is necessary
to decide which control structure to use. For multivariable processes, there are typically
two approaches: decentralized control and centralized control [6]. The interaction of a
multiple-input multiple-output (MIMO) process occurs when one input variable affects
several output variables to a greater or lesser degree, making it challenging to operate
the process and design its control system. Therefore, any multivariable control design
methodology should consider interaction. When the interaction is insignificant, control can
be approached using a decentralized (also known as multi-loop) scheme. This scheme uses
independent controllers as if the process were composed of monovariable processes [7], as
shown in Figure 1a. The references signals are represented by ri, the controlled variables
by yi, and the control signals by ui. These controllers may require slight retuning of their
gains. In other cases where there is more interaction, and this is taken into account, the
decentralized structure is still used. However, each controller is designed to incorporate the
effects of the other loops on the corresponding process [8]. Before designing a decentralized
control, it is important to choose a suitable pairing between input and output variables that
presents as little interaction as possible. The relative gain array (RGA) [9] is a commonly
used measure to solve pairing problems. When the interaction is significant, centralized
control is necessary, as shown in Figure 1b. This involves designing a single control block
that takes into account all the information from the measured variables to generate all the
control signals. However, a common intermediate solution in the industry is to incorporate
a decoupling network (or decoupler) in series with the process [6]. The intention is to
eliminate or reduce interaction and indirectly facilitate the design of a decentralized control
system (see Figure 1c).
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The decoupling of variables, or the absence of interaction, is a desirable feature in
many industrial applications. This makes it easier for technicians to determine the reference
values needed to achieve specific objectives in a multivariable control system. Additionally,
it allows for independent improvement of system responses. Leading manufacturers of
distributed control systems [10] consider interaction one of the main problems in industrial
processes. Historically, they have supported decoupling techniques as a means of combat-
ing it. In [11], decoupling is considered an advanced regulatory control element that can be
used to improve control in cases where a simple control loop is not sufficient.

Traditionally, control formulations for decoupling have focused on 2 × 2 processes,
which have two inputs and two outputs. This is because these processes are either the
most common or because more complex processes are often decomposed into 2 × 2 blocks
with important interactions between their inputs and outputs. Decoupling control assumes
that the process model is represented by a nonsingular square matrix of transfer functions
G(s), with no poles in the right half-plane (RHP). The decoupler is represented by a square
transfer matrix D(s), and the decentralized controller is represented by a diagonal matrix
C(s). Figure 2 illustrates the general scheme of a 2 × 2 control system that combines
a decoupler and a diagonal controller. The decoupling network is placed between the
diagonal controller and the process to form the new apparent process, Q(s) = G(s)D(s).
The diagonal controller, C(s), manipulates the variables vi instead of the real manipulated
variables ui. The compensating block D(s), also known as the decoupler, is designed to
eliminate or reduce the interaction between the variables of the apparent process. This
allows the controller C(s) to perceive it as a set of totally independent processes or with
significantly less interaction. Monovariable controllers ci(s) would be designed for each of
these new apparent processes to form the diagonal control C(s) [6,10,12].
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The decoupler design can be approached as a straightforward mathematical problem.
For the 2 × 2 case, perfect direct decoupling can be achieved by formulating it as shown in
(1), where the apparent process Q(s) should only have elements on the main diagonal; the
Laplace variable s has been omitted.(

g11 g12
g21 g22

)(
d11 d12
d21 d22

)
=

(
g11d11 + g12d21 g11d12 + g12d22
g21d11 + g22d21 g21d12 + g22d22

)
=

(
q1 0
0 q2

)
(1)

When designing a decoupling network, there are certain degrees of freedom for
choosing the decoupling elements, resulting in different decouplers, some simpler and
others more complex to implement [13]. One of the most common decouplers is the
simplified decoupling [14], which involves fixing two elements of D(s) to unity, usually
the diagonal ones. The resulting decoupler is shown in (2), along with the expressions
of the resulting apparent processes Q(s). In any case, the decoupling elements must be
realizable; therefore, they must be proper, causal, and stable. Decoupling control design
approaches are based on a process model and may have robustness issues in certain
nonlinear systems. This may require a redesign of the control system if the operating point
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changes. Recent works propose model-free robust U-control approaches for decoupling [15]
and decentralized control [16] in nonlinear systems, improving robustness compared to
traditional model-based decoupling control methods.

D =

(
1 −g12

g11−g21
g22

1

)
Q =

(
g11 − g12g21

g22
0

0 g22 − g12g21
g11

)
(2)

The quadruple-tank system (QTS) is a popular choice for teaching multivariable system
concepts and testing different multivariable control methodologies, including decoupling.
It was proposed by [17–19] and is widely used in university laboratories. The system
involves controlling the water level in tanks that are coupled together. Controlling liquid
levels in systems with interconnected tanks can be a challenging multivariable control
problem. This issue is relevant in various industries, including water treatment, chemical,
and biochemical plants, food processing, metallurgy, filtration devices, etc. [2,20]. The QTS
is a nonlinear system that illustrates several phenomena of multivariable systems, such
as the interaction and effects of multivariable zeros [21]. Therefore, it presents itself as
an excellent tool for teaching multivariable control techniques and understanding their
advantages and disadvantages. The QTS has been used to implement multiple control
methods, both classical and advanced, for teaching and research purposes. In one of the
first studies on QTS [19], a decentralized PI control was designed for the QTS configured
with a multivariable RHP zero. Other authors have applied internal model control [22],
multivariable H∝ control [3], quantitative feedback control [23], LQG optimal control [24],
predictive control [25,26], and distributed model predictive control [27]. More recent works
have applied nonlinear techniques to the QTS such as sliding mode control [28,29], feedback
linearization [20], fuzzy control [30,31], and neural networks [32], among others.

In all of these studies, the presented theoretical model of the QTS is simple and
intuitive. However, experience has shown that it is based on certain assumptions that
may be incorrect in real implementations of this process. In most cases, the nonlinear
model presented is very idealistic, assuming a linear behavior of the system actuators,
such as three-way valves or pumps. In addition, little information is provided on how
the model parameters are obtained. In some cases, the QTS is presented directly as a
linear model obtained through identification at an operating point. This work presents
a detailed description of the practical grey-box modeling procedure for the QTS at the
University of Cordoba, including practical aspects that have not been previously described
in other works. This procedure can also be applied to other systems with liquid tanks.
Additionally, suggestions are provided for constructing the QTS. A configurable nonlinear
model with good accuracy is obtained, allowing for the adjustment of the system to show
little or large interactions or the position of a multivariable zero. The model is validated
in a closed loop with different controllers. Specifically, decentralized PI control, static
decoupling control, and simplified decoupling control are compared. The simulation
designs were experimentally validated with high accuracy. Furthermore, the comparison
of the three control designs demonstrates the benefits and drawbacks of decoupling under
specific circumstances.

The rest of the paper is structured as follows: In Section 2, the experimental quadruple-
tank system located in the Process Control Laboratory of the University of Cordoba is
described. The system was implemented to evaluate different multivariable control method-
ologies in a real process. This section covers the operation of the system, as well as the
components and instrumentation used in its construction. Section 3 determines the nonlin-
ear model of the plant through grey-box modeling. The resulting expressions of the linear
model, linearized around a generic operating point, are derived. Section 4 illustrates key
aspects of multivariable control through the presentation of the three proposed control
strategies applied to QTS. Section 5 discusses the simulation and experimental results of
the three control systems. Finally, Section 6 summarizes the main conclusions.
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2. Laboratory Setup of the Quadruple-Tank System

The quadruple-tank system implemented in the Process Control laboratories of the
University of Cordoba follows the scheme depicted in Figure 3a. The system consists of
a reservoir tank at the bottom, and four tanks located on two levels: tanks 1 and 2 on the
lower level, and tanks 3 and 4 on the upper level. The pump on the left (pL) delivers a flow
of water fL from the reservoir tank, which is then split into two flows through the three-way
valve (VL): f 1 to tank 1 and f 4 to tank 4. The pump on the right (pR) drives a flow rate fR,
which is then split by the VR valve into f 2, which goes to tank 2, and f 3, which goes to
tank 3. The tanks drain through manual valves that can be multiturn (v1, v2, v3, and v4) or
on/off (v1B, v2B, v3B, and v4B). Tanks 1 and 2 divert water to the reservoir tank, whereas
tanks 3 and 4 divert water to tanks 1 and 2, respectively. The tanks are coupled, meaning
that, for example, when the pump on the right is used to fill tank 2, a portion of the total
flow fR goes to tank 3 and eventually reaches tank 1. The variables measured by the sensors
are the water levels in the tanks (h1, h2, h3, and h4) and the total flow rates of each branch (fL
and fR). The plant actuators are the frequency inverters that drive the pumps; therefore, the
variables that can be manipulated are the frequency setpoints of these inverters, expressed
as a percentage from 0 to 100%. However, as explained below, a secondary flow control
loop is closed in each branch (left and right), so that the new manipulated signals are the
flow references of each branch fL_ref and fR_ref.

Actuators 2024, 13, x FOR PEER REVIEW 5 of 22 
 

 

control strategies applied to QTS. Section 5 discusses the simulation and experimental 
results of the three control systems. Finally, Section 6 summarizes the main conclusions. 

2. Laboratory Setup of the Quadruple-Tank System 
The quadruple-tank system implemented in the Process Control laboratories of the 

University of Cordoba follows the scheme depicted in Figure 3a. The system consists of a 
reservoir tank at the bottom, and four tanks located on two levels: tanks 1 and 2 on the 
lower level, and tanks 3 and 4 on the upper level. The pump on the left (pL) delivers a flow 
of water fL from the reservoir tank, which is then split into two flows through the three-
way valve (VL): f1 to tank 1 and f4 to tank 4. The pump on the right (pR) drives a flow rate 
fR, which is then split by the VR valve into f2, which goes to tank 2, and f3, which goes to 
tank 3. The tanks drain through manual valves that can be multiturn (v1, v2, v3, and v4) or 
on/off (v1B, v2B, v3B, and v4B). Tanks 1 and 2 divert water to the reservoir tank, whereas tanks 
3 and 4 divert water to tanks 1 and 2, respectively. The tanks are coupled, meaning that, 
for example, when the pump on the right is used to fill tank 2, a portion of the total flow 
fR goes to tank 3 and eventually reaches tank 1. The variables measured by the sensors are 
the water levels in the tanks (h1, h2, h3, and h4) and the total flow rates of each branch (fL 
and fR). The plant actuators are the frequency inverters that drive the pumps; therefore, 
the variables that can be manipulated are the frequency setpoints of these inverters, ex-
pressed as a percentage from 0 to 100%. However, as explained below, a secondary flow 
control loop is closed in each branch (left and right), so that the new manipulated signals 
are the flow references of each branch fL_ref and fR_ref. 

 

(a) (b) 

Figure 3. (a) Schematic of the quadruple-tank system in the laboratory; (b) real quadruple-tank pro-
cess in the laboratory. 

Figure 3b shows a photograph of the real system. Its construction, unlike other simi-
lar plants, prioritized the use of industrial components over esthetics, resulting in larger 
dimensions. The elements that comprise it can be grouped into two categories: the 

Figure 3. (a) Schematic of the quadruple-tank system in the laboratory; (b) real quadruple-tank
process in the laboratory.

Figure 3b shows a photograph of the real system. Its construction, unlike other
similar plants, prioritized the use of industrial components over esthetics, resulting in
larger dimensions. The elements that comprise it can be grouped into two categories: the
hydraulic circuit and control system [33]. The hydraulic circuit is supported by a metallic
structure and is composed of the following:

• Two 0.30 kW three-phase centrifugal pumps.
• Five methacrylate tanks. The reservoir tank measures 60 × 50 × 40 cm. The other

four tanks have a square internal section of 19 × 19 cm2 and a height of 35 cm for the
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lower tanks and 70 cm for the upper tanks. To improve the response time of the tanks,
cylindrical tubes of constant section were introduced, as shown in Figure 3b. The
cross-sectional area of the lower tanks, where only one tube is present, is 316.82 cm2.
The cross-sectional area of the upper tanks, where four tubes are present, is 184.29 cm2.

• Two manual three-way diverter valves (VL and VR) are used to adjust the proportion
of flow going to the lower tank in each branch. When in the 0% position, all the flow
goes to the corresponding upper tank, so no water reaches the lower tank of that
branch. Conversely, when in the 100% position, all the flow goes to the lower tank.

• Eight manual two-way valves are used to adjust the outflows of the four tanks. The
multi-turn valves v1, v2, v3, and v4 can vary their opening degree with a total of up to
six and a half or seven turns, depending on the valve. In contrast, valves v1B, v2B, v3B,
and v4B have only two positions: fully closed or fully open.

• We use 10/8 mm polyurethane pipes and pipe fittings for connecting the different
elements of the hydraulic circuit. In addition, two 40/32 mm PVC hoses are used
to drain the inlet flows from the three-way valves to the lower tanks. Unlike the
schematic shown in Figure 3a, the two outlets from each three-way valve are brought
to the same height through 10/8 mm pipes. One branch goes to the corresponding
upper tank, whereas the other branch goes to the 44/38 mm pipe so that from the
upper height it drains without head loss. This design ensures that the two outlet
branches of the three-way valves have similar head loss and that the flow distribution,
depending on the position of the valve, is independent of the total inlet flow to the
three-way valve.

The control system comprises measurement sensors, actuation devices, and control
elements. These are as follows:

• Four upwelling diaphragm pressure transmitters for general applications. A measur-
ing range of [0–0.1] bar, which is approximately a [0–100] cm water column. These
transmitters were used to measure the water level in the four tanks.

• Two electromagnetic flow meters for measuring the total flow rates of the branches fL
and fR. The measurement range is set to [0–200] cm3/s.

• Two frequency inverters to control the flow rate delivered by the pumps through a
secondary control loop.

• An NI-DAQ 6035E data acquisition card to connect the process signals to a computer.
• A personal computer contains the acquisition card and the control software, which in

this case is MATLAB 7.4 and its Real Time Windows Target toolbox. The configured
sampling time is 1 s.

3. Modeling of the Quadruple-Tank System

This section explains the practical procedure proposed for obtaining a nonlinear model
of the experimental plant from the modeling of its components using a grey-box approach.
Two parts are considered:

1. Pump dynamics and flow control: they determine the total flow rates of each branch
(left and right) that the pumps drive from the reservoir tank to the other tanks.

2. Dynamics of the four tanks: They determine the water level of each tank as a function
of its corresponding inlet and outlet flow rates. The inlet flow rates depend on the
total flow rate of each branch, the position of the three-way valves, and in the case
of the lower tanks, the outlet flow rates of the upper tanks. The outflow of each tank
depends on its water level and the degree of opening of its outlet valves.

Once the complete nonlinear model of the system is obtained and a configuration with
the valves is set, it is linearized around an operating point to obtain a linear model. This
linear model is represented as a matrix of transfer functions relating the water levels in
tanks 1 and 2 to the total flows delivered by the pumps.
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3.1. Dynamics of the Pumps and Secondary Flow Control Loops

The flow rates fL and fR sent to each branch (left and right) by the pumps are deter-
mined using this dynamic as a function of the percentage of operation of the frequency
inverter of the corresponding pump, pL or pR. The transfer function in (3) models the rela-
tionship between the flow rate (cm3/s) of a branch, F(s), and the percentage of operation
(%) of the corresponding pump drive, P(s), at approximately 50% operation.

F(s) =
2.5e−0.74s

2.13s + 1
P(s) (3)

This transfer function may not be entirely accurate because of its nonlinear flow-pump
characteristic, which varies depending on the operating point. However, its dynamics
are fast enough compared to those of the tanks. Therefore, a secondary flow control loop
was implemented in each branch using a proportional-integral (PI) controller to track flow
references and reject disturbances. In addition, this approach prevents issues with pump
performance fluctuation caused by changes in the reservoir tank level or pump heating.
The implemented PI controller has a proportional gain KP of 0.24%/(cm3/s) and an integral
time constant TI of 2.4 s. These values enable achieving responses with zero position
error and a settling time of approximately 15 s, which is sufficiently fast to disregard
these dynamics in comparison to those of the tanks. The controller was implemented in
MATLAB/Simulink. The new process control signals are the flow references of each branch
(fL_ref and fR_ref) in the range of [0–200] cm3/s. These signals are provided from a higher
control level.

3.2. Tank Dynamics

Tank dynamics determine the inlet and outlet flow rates and the level of each tank. The
dynamics are based on Bernoulli’s law and the laws of mass balance. The basic dynamics
of tank k are given using the differential Equation (4). To determine the evolution of the
water level hk, it is only necessary to calculate the inflow fk_in and outflow fk_out, given the
area Ak of the tank, which in this case is constant.

.
hk = ( fk_in − fk_out)/Ak (4)

The inlet flow rates entering each tank are dependent on the total flow rate and the
position of the three-way valve of the corresponding branch. The proportion of flow re-
ceived by each of the two tanks associated with that branch was experimentally determined
for different flow rates and positions of the three-way valve. For this purpose, several
experiments were conducted, which consisted of filling the tanks with fixed values of both
the reference flow rate and the position of the three-way valve. After the initial transient,
the slope of the filling curve was determined to be linear. Multiplying the slope by the
known area of the tanks gave the inlet flow rate for each tank. Because the total flow per
branch is also known, the fraction going to the lower tanks can be determined. Table 1
displays the ratio γL (in %) of the flow rate fL directed to tank 1 for varying values of fL and
different positions of the left three-way valve VL. Similarly, Table 2 presents the ratio γR
of the flow rate fR directed to tank 2 for different values of fR and various positions of the
right three-way valve VR. Figure 4 displays the percentages of these tables in graph form,
exhibiting an almost linear trend.

From these tables, the surfaces in Figure 4 are fitted by planes whose equations are
given in (5). These equations can be used to determine the fraction of flow that will enter
the lower tank for any opening of the three-way valves (ranging from 0 to 100%) and any
value of total flow of a branch (in the range 0 to 200 cm3/s); the remaining flow will enter
the upper cross tank. Thus, using Equation (6) and the flow rates of each branch, we can
calculate the inlet flow rate for each tank.
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γL = (1.813 + 1.013VL − 0.01066 fL)/100
γR = (1.123 + 0.9942VR − 0.001473 fR)/100

(5)

f1 = γL fL f4 = (1 − γL) fL
f2 = γR fR f3 = (1 − γR) fR

(6)

Table 1. Proportion γL (%) of the flow rate fL leading to tank 1 for different values of fL and different
positions of VL.

VL (%)
fL (cm3/s)

0 25 50 75 100 125 150 175 200

0 0 0 0 0 0 0 0 0 0
30 27 27.66 32.45 31.47 29.99 29.47 29.32 29.27 29.22
50 59 59.51 53.73 53.25 52.81 52.34 52.12 52.23 52.34
70 77 77.50 72.38 70.97 72.22 72.13 72.26 72.35 72.44

100 100 100 100 100 100 100 100 100 100

Table 2. Proportion γR (%) of the flow rate fR leading to tank 1 for different values of fR and different
positions of VR.

VR (%)
fR (cm3/s)

0 25 50 75 100 125 150 175 200

0 0 0 0 0 0 0 0 0 0
30 32 28.35 32.74 33.25 31.28 31.17 31 30.94 30.88
50 56 56 54.35 53.36 53.33 53.12 53.28 53.39 53.31
70 67 67.42 68.05 69.31 70.66 70.89 70.96 71.03 71.09

100 100 100 100 100 100 100 100 100 100
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rate fvk of each valve vk was modeled according to Equation (7), where parameters αk and 

Figure 4. Experimental measurements of the flow fraction to the lower tanks as a function of the total
flow rate of each branch and the position of the three-way valve: (a) right branch and (b) left branch.

The outflow rate of tank k is dependent on the degree of opening of its multiturn valve
vk, whether its valve vkB is open or closed, and the water level in the tank. The outflow rate
fvk of each valve vk was modeled according to Equation (7), where parameters αk and βk
vary as a function of the manual opening of the valves, i.e., the number of opening turns.
The water level in the tanks is measured from their base. However, because of the position
of the tank outlet ports and the pressure sensor, not all of the measurement range is useful.
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If the level falls below the minimum value of 2 cm (hmin), the outflow becomes zero or
negligible. Additionally, the equation becomes invalid if the tank overflows.

fVk(hk) =
√

αk(vk)hk + βk(vk) hmin < hk < hk_max (7)

To obtain the coefficients αk and βk for each valve, a series of experiments were
performed. The experiments consisted of emptying each tank from its maximum height
hk_max for different opening turns of the valve to be modeled. Once the level data in the tank
were recorded, the emptying curve h(t) was fitted to a second-degree equation using least
squares, as shown in (8). As shown in (9), this equation is derived with respect to time, and
the time variable is then solved and substituted into (8). Next, the derivative of h is solved,
resulting in an expression that relates the derivative of the tank level to the water level in
the tank. Figure 5 shows the real emptying curves (in solid line) and their adjustments (in
dashed line) for valves v1, v2, v3, and v4 when three turns have been opened.

h(t) = at2 + bt + c (8)

.
h = 2at + b → t =

.
h−b
2a

h = a
( .

h − b
2a

)2
+ b
( .

h − b
2a

)
+ c

.
h =

√
4ah + (b2 − 4ac)

(9)
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Figure 5. Real emptying curves and their adjustment for valves v1, v2, v3, and v4 when the degree of
opening is 3 turns.

As there is no inflow, the outflow of the valve is equal in the absolute value to the
derivative of the water volume in the tank. Since the cross-sectional area (A) of each tank is
constant, the derivative of the volume and the derivative of the water level are proportional.
Therefore, given the derivative of the tank level, the outflow rate can be determined based
on the water height. Thus, the outflow fV can be determined using the expression in (10),
which is similar to Equation (7). The parameters α and β are identified as a function of the
parameters a, b, and c of the least squares optimization and the tank section A.

fV =
∣∣∣ .
V
∣∣∣ = A

∣∣∣ .
h
∣∣∣ = √A24ah + A2(b2 − 4ac) =

√
αh + β (10)
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Figure 6 displays the estimated values of α and β for the different multiturn valves in
the form of circular dots. These values were obtained by conducting the same experiment
for various valve openings. For each parameter αk and βk, a polynomial equation was fitted
to determine the value as a function of the degree of valve opening. The fitting curves
resulting from this analysis are also presented in Figure 6. The polynomial equations are
provided in (11), and the fixed coefficients of the on/off valves v1B, v2B, v3B, and v4B when
they are open are given in (12). There is significant symmetry between the valves on the
left branch and their corresponding valves on the right side of the system. Most fitting
polynomials in (11) are of order 3, but some have a different order to achieve a better fit.
For certain parameters, the fitting polynomial of order 3 showed a downward trend at the
end points, which does not correspond to reality. As the valve is opened further, both α
and β should grow or at least not decrease.

α1 = −1.546v2
1 + 23.56v1 − 10.887

β1 = −5.44v3
1 + 25.586v2

1 + 435.568v1 − 200.21
α2 = −0.062v3

2 − 0.666v2
2 + 19.88v2 − 6.847

β2 = −42.955v2
2 + 655.43v2 − 332.69

α3 = 0.044v3
3 − 1.64v2

3 + 16.66v3 − 3.86
β3 = 2.781v3

3 − 96.075v2
3 + 920.31v3 − 312.86

α4 = 0.0942v3
4 − 2.467v2

4 + 20.55v4 − 6.478
β4 = 1.193v4

4 − 13.276v3
4 − 40.516v2

4 + 905v4 − 354.7

(11)

α1B = 171.33, β1B = 2587.5, α2B = 176.39, β2B = 2412.3
α3B = 75.365, β3B = 3544.7, α4B = 83.705, β4B = 3883.6

(12)
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Figure 6. Values of α and β of the valves v1, v2, v3, and v4 for different opening turns and their
polynomial fitting.

3.3. Complete Nonlinear Model

The water level dynamics in each of the four tanks are calculated based on the differ-
ential equation of the tank given in (4), using the inlet and outlet flow rates. The upper
tanks receive input only from the pumps, whereas the lower tanks receive input from both
the pumps and outflow from their corresponding upper tanks. According to the plant
schematic, the set of differential equations is as follows:

.
h1 = (γL fL + fV3 + fV3B − fV1 − fV1B)/A1.
h2 = (γR fR + fV4 + fV4B − fV2 − fV2B)/A2.
h3 = ((1 − γR) fR − fV3 − fV3B)/A3.
h4 = ((1 − γL) fL − fV4 − fV4B)/A4

(13)
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3.4. Linearization of the Nonlinear Model

This section derives the linear model in transfer functions by linearizing the nonlinear
model around an operating point, based on the modular decomposition of the plant. The
general equation in relative variables in the Laplace domain is obtained by linearizing (4)
for each tank k around an operating point.

shk(s) = ( fk_in(s)− fk_out(s))/Ak (14)

The equation above requires determination of the inlet and outlet flow rates for each
tank. These flow rates are the sum of different components, as expressed in (13), depending
on the tank. The outlet flow rates for each valve can be linearized using Taylor series
expansion and truncated after the first-order term, as expressed in (15). The stationary
values of the working point around which the model is obtained are fk_out,0 and hk,0. After
transitioning to the Laplace domain, we obtain Equation (16), where fk_out(s) and hk(s)
are incremental variables with respect to the operating point. The transfer function is
represented by a constant Kk_out.

fk_out − fk_out,0 =
αk

2
√

αkhk,0 + βk
(hk − hk,0) (15)

fk_out(s) =
αk

2
√

αkhk,0 + βk
hk(s) = Kk_outhk(s) (16)

As previously stated, the pump flow rates are determined by secondary control loops
that use their flow references as new inputs to the process. The response of these loops
is very fast, and they have zero position error due to their integral action; therefore, their
dynamics can be ignored. The ratio of flow from each branch to the corresponding lower
tank, i.e., the fraction γL and γR, is of interest. These ratios depend on the position of
the corresponding three-way valve and the total flow rate of its branch according to (5).
For example, the partial derivative of γL with respect to the total flow rate fL_ref of the left
branch can be obtained using the expression in (5) for a fixed position of the three-way
valve VL. The linearization process is expressed in (17). The transfer function is given by
K1_in, which is another constant.

f1 = γL( fL_re f ) fL_re f

f1 − f1,0 =
∂(γL( fL_re f ) fL_re f )

∂ fL_re f

∣∣∣∣
fL_re f ,0

(
fL_re f − fL_re f ,0

)
f1(s) =

(
∂γL( fL_re f )

∂ fL_re f

∣∣∣
fL_re f ,0

fL_re f ,0 + γL( fL_re f ,0)

)
fL_re f (s) = K1_in fL_re f (s)

(17)

In the complementary part of that branch, specifically tank 4, the gain would be
complementary to one, as shown in (18). Similar models can be obtained in the right-
hand branch.

f4(s) = (1 − K1_in) fL_re f (s) (18)

To conclude, by linearizing the system in (13), using transfer functions similar to those
in (14), (16)–(18), and solving for h1(s) and h2(s), we obtain the final expressions of the linear
system, given using

h1(s) =
K1_in

(K1_out+K1B_out)(
A1

(K1_out+K1B_out)
·s+1

) fL_re f (s) +
(1−K2_in)

(K1_out+K1B_out)(
A3

(K3_out+K3B_out)
s+1

)(
A1

(K1_out+K1B_out)
s+1

) fR_re f (s)

h2(s) =
(1−K1_in)

(K2_out+K2B_out)(
A4

(K4_out+K4B_out)
s+1

)(
A2

(K2_out+K2B_out)
s+1

) fL_re f (s) +
K2_in

(K1_out+K1B_out)(
A2

(K2_out+K2B_out)
s+1

) fR_re f (s)

. (19)
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The transfer matrix of the linearized model can be expressed more concisely as follows:

G(s) =


T1
A1

K1_in

(T1s+1)

T1
A1

(1−K2_in)

(T3s+1)(T1s+1)
T2
A2

(1−K1_in)

(T4s+1)(T2s+1)

T2
A2

K2_in

(T2s+1)

, (20)

where the outputs are h1 and h2 (in cm), and the inputs are fL_ref and fR_ref (in cm3/s). The
time constants are given using

T1 = A1
(K1_out+K1B_out)

T3 = A3
(K3_out+K3B_out)

T2 = A2
(K2_out+K2B_out)

T4 = A4
(K4_out+K4B_out)

, (21)

where the general expression of Kk_out is given in (16). The steady-state gain matrix and the
relative gain matrix (RGA) of the system can be determined using Equations (22) and (23),
respectively.

G(0) =

(
T1
A1

K1_in
T1
A1
(1 − K2_in)

T2
A2
(1 − K1_in)

T2
A2

K2_in

)
=

(
K11 K12
K21 K22

)
(22)

RGA =

(
K1_inK2_in (1 − K1_in)(1 − K2_in)

(1 − K1_in)(1 − K2_in) K1_inK2_in

)
1

(K1_in + K2_in − 1)
(23)

The zeros of the multivariable process in (20) can be determined by finding the zeros
of its determinant. According to [16], at least one of these zeros is always located in the left
half-plane of the s-plane. If the condition in (24) is met, the other zero will be located in the
right half-plane (RHP), which can lead to additional control challenges.

K1_in + K2_in < 1 (24)

3.5. Validation of the Model

The experimental plant was configured to have a multivariable RHP zero by adjusting
the different valves. Valves v1 and v2 are set to be six-turns open, while valves v3 and v4 are
set to be one-turn open. All on–off valves are open. The three-way valves are set to be in
the 30% position to provide more flow to the upper tanks. The reference flow rates selected
as inputs were 135 cm3/s in both branches. The approximate stationary point is h1 = 18
cm, and h2 = 19 cm. The 2 × 2 matrix below represents the linear model obtained from the
linearization of the nonlinear model, as described in (20):

Glin(s) =

( 0.166
179.7s+1

0.394
(179.7s+1)(238.1s+1)

0.393
(176.3s+1)(218s+1)

0.17
176.3s+1

)
. (25)

The non-principal diagonal elements of its RGA have a value of 1.22, and its stationary
condition number is 2.5. Additionally, there is a non-minimum phase multivariable zero
with a time constant of 169.78 s. The presence of the multivariable RHP zero imposes
control limitations on the achievable bandwidth. To qualitatively validate the model
accuracy, an open-loop experiment was conducted around the operating point using the
experimental plant. To achieve this, pulses with an amplitude of 10 cm3/s are applied to
the system inputs, starting from the operating point. Figure 7 compares the real data with
the simulation performed using both linear and nonlinear models. Qualitatively, a good fit
is observed. To quantitatively measure the fit, the root mean square error (RMSE) value
of h1 and h2 is used, as defined in (26). These values are presented in Table 3. The results
validate both the nonlinear and linear models.
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RMSE(hi) =

√√√√ 1
N

N

∑
k=1

(hi_model(k)− hi_real(k))
2 (26)Actuators 2024, 13, x FOR PEER REVIEW 14 of 22 
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Table 3. RMSE values for the system level variables in the open-loop comparison.

Model RMSE (h1) (cm) RMSE (h2) (cm)

Nonlinear 0.062 0.093
Linear 0.071 0.066

The expressions obtained in (17) and (21) from linearizing the nonlinear model devel-
oped for a manual valve configuration can be used to directly obtain the parameters of the
linear models around other operating points without the need to perform any experiments
as would be the case with the black-box approach based on identification. Table 4 lists the
linear model parameters in (20) for different operating points.

Table 4. Parameters of the linearized model for different operation points.

Operation Point Model Parameters

fL_ref,0

(cm3/s)
fR_ref,0

(cm3/s)
h1,0 (cm) h2,0 (cm) K1_in K2_in T1 (s) T2 (s) T3 (s) T4 (s)

135 135 18.3 19 0.293 0.306 179.7 176.3 238.1 218
150 150 27.1 28 0.290 0.305 199.9 196.7 264.7 242.8
125 125 12.9 13.6 0.295 0.306 166.2 162.7 220.5 201.5
125 165 29.1 20.2 0.295 0.304 204.1 179.1 291.3 201.6
170 130 22.2 33.2 0.286 0.306 188.8 207.5 229.3 276.0

4. Proposed Control Systems Using Decoupling

This section presents three multivariable control strategies for water levels in the lower
tanks, starting from the linear model in (25). The strategies highlight the interaction and
multivariable zero RHP problems. The proposed controllers are a multiloop PI control,
a scheme that combines a multiloop PI control and a static decoupling network, and
a centralized control that combines a multiloop PI control with simplified decoupling.
Section 5 will present the results of each design, both in simulation and experimentally.
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4.1. Multi-Loop PI Controller

The proposed control system in this section follows the decentralized control scheme
depicted in Figure 1a. Since the non-diagonal elements of the process RGA are equal to
1.2, the water levels h1 and h2, which are controlled variables, are cross-paired with the
flow rates fR and fL, respectively, which are the manipulated variables. The PI controllers in
both loops are then tuned using a phase margin of 60◦ as the specification. PI controllers
with the parallel structure given in (27) are used, where KP is the proportional gain (cm2/s),
KI is the integral gain (cm2/s2), and hk_ref are level references. When designing, it is
important to consider that loop controllers may interact with each other. In this work,
we used the iterative methodology proposed in [8], which adjusts the PI controllers in
each iteration using single-input, single-output (SISO) methodologies for the equivalent
open-loop process (EOP). This methodology considers the interaction with the other loop
and the controller calculated in the previous step. The PI parameters for the h2-fL loop are
KP2 = 3.96 and KI2 = 9.426 × 10−3. For the h1-fR loop, the PI parameters are KP1 = 4.92 and
KI1 = 11.39 × 10−3.

fR_re f (t) = KP1

(
h1_re f (t)− h1(t)

)
+ KI1

∫ t
0

(
h1_re f (t)− h1(t)

)
dt

fL_re f (t) = KP2

(
h2_re f (t)− h2(t)

)
+ KI2

∫ t
0

(
h2_re f (t)− h2(t)

)
dt

(27)

4.2. Static Decoupling

This control approach follows the control scheme shown in Figure 1c and involves
designing a static decoupling network from the process’ stationary state gain matrix Glin(0)
to reduce interaction at low frequencies [34]. The decoupling network is given using
(28), which is the inverse of Glin(0). Two PI controllers are then designed using the same
methodology as above for the resulting apparent processes from the process and the static
decoupler, i.e., the matrix Q(s) = Glin(s)D0. The multi-loop PI control employs diagonal
pairing and a phase margin of 60◦ as specifications for both loops. The resulting PI
parameters are KP1 = 1.02 and KI1 = 2.88 × 10−3 in the first loop, and KP2 = 0.99 and
KI2 = 2.73 × 10−3 in the second loop.

D0 =

(
−1.343 3.112
3.104 −1.311

)
(28)

4.3. Simplified Decoupling

This decoupling control approach uses a dynamic decoupler to minimize interaction
across all frequencies. The simplified decoupling method is employed, as described in (2),
and is represented by the transfer matrix DS(s) in (29). The resulting apparent process Q(s) is
a diagonal matrix, as shown in (30), and does not exhibit any interaction. Two PI controllers
are independently tuned for the corresponding elements of the resulting diagonal apparent
process Q(s) = Glin(s)·DS(s), where the multivariable RHP zero of the process appears. The
SISO methodology described in [35] is used with a phase margin of 60◦ as a specification in
both loops. The resulting PI parameters are KP1 = −1.09 and KI1 = −1.873 × 10−3 in the
first loop, and KP2 = −1.23 and KI2 = −2.15 × 10−3 in the second loop.

DS(s) =

(
1 −2.373

(238.1s+1)
−2.312
(218s+1) 1

)
(29)

Q(s) =

−0.7448(−169.78s+1)(68.13s+1)
(179.7s+1)(238.1s+1)(218s+1) 0

0 −0.7628(−169.78s+1)(68.13s+1)
(176.3s+1)(218s+1)(238.1s+1)

 (30)
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5. Results

This section applies the three designed control systems for both the nonlinear model
and the real system. The simulated results are compared with the experimental results for
each design and among the three designs. The test carried out in all three cases involves
starting from levels of 18 and 19 cm in h1 and h2, respectively, and performing a step change
of 4 cm at 80 s in the h1 reference and at 4600 s in the h2 reference. The test ends at 8000 s.

Figures 8–10 display the simulation and experimental results for the designed control
systems: decentralized, static decoupling, and simplified decoupling, respectively. Each
figure presents the main variables of the control system on the left, including the levels of
h1 and h2, and the total flow rates supplied by each pump, fL and fR, from top to bottom.
On the right, secondary variables such as the tank levels h3 and h4, and the operation
percentage of the pumps, pL and pR, are shown. Qualitatively, a good fit between the
simulated and experimental data is observed in all three cases, particularly in the primary
variables on the left. However, an offset between the simulated and experimental data is
observed in the secondary variables on the right. The imprecise adjustment of the multiturn
outlet valves may be the cause of the issues with the levels h3 and h4, whereas nonlinearities
in the pumps may be responsible for the offset in the pump signals. To address this issue in
the pumps, secondary loops were implemented in the QTS to regulate the flow rate of each
pump based on the control signals of the proposed control systems. Thus, the absolute
values of the percentage of pump usage are not crucial in the proposed model. Table 5
displays the RMSE values of the system variables between the simulation and experimental
results. These values quantitatively assess the degree of fit achieved with the proposed
nonlinear model. The values are low enough to validate the proposed nonlinear model.
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Table 5. RMSE values for the variables of the system in the different closed-loop systems.

Control
System

RMSE

h1 (cm) h2 (cm) fL (cm3/s) fR (cm3/s) h3 (cm) h4 (cm) pL (%) pR (%)

Decentralized 0.06 0.09 0.5 0.65 0.92 0.7 0.68 0.81
Static

decoupling 0.10 0.10 0.71 0.66 0.47 0.51 0.65 0.66

Simplified
decoupling 0.06 0.11 0.44 0.46 0.41 0.30 0.45 0.53

The experimental results were used to compare the three proposed control schemes.
Table 6 displays the integrated absolute error (IAE) of tank levels 1 and 2 in relation to their
references. The total value is calculated using all experimental data, while the tracking
value is calculated using only the values corresponding to reference changes in that water
level, providing information on the IAE of reference tracking. The decoupling value is
calculated using data corresponding to changes in the reference of the other loop, providing
information on the decoupling performance. Table 6 displays the total rate of variation
(TV) values of the control signals, which are related to the control effort. The expressions
for IAE and TV are presented in (31).

ITAE(hk) =
∫ t

0

∣∣∣hk_re f (t)− hk(t)
∣∣∣dt TV( fK) =

∫ t

0

∣∣∣∣d( fK(t))
dt

∣∣∣∣dt (31)

Table 6. Performance indices for the different proposed control systems.

Control
System

IAE (h1) (cms) IAE (h2) (cms) TV (fL)
(cm3/s)

TV (fR)
(cm3/s)Total Tracking Decoupling Total Tracking Decoupling

Decentralized 2322 1444 878 2421 1566 855 535 715

Static
decoupling 2682 1762 920 2380 1795 585 500 514

Simplified
decoupling 3003 2882 121 3023 2818 205 163 168

Decentralized control achieves a fast response to changes in the reference with a
settling time of approximately 2000 s. However, it exhibits a significant interaction in the
opposite loop when such changes occur. Therefore, testing the use of decoupled control
schemes was justified. Static decoupling control shows a similar reference tracking response,
albeit slightly slower, as reflected by the higher IAE values for tracking. However, the
decentralized control fails to achieve the same level of decoupling as loop 2, which has an
IAE value that is 35% lower. Furthermore, loop 2 has lower TV values, particularly in fR,
which is 28% lower. Static decoupling cannot eliminate all interactions because it is not a
dynamic decoupler. The simplified decoupling control achieves nearly perfect decoupling
by eliminating interaction in both loops. Its small IAE values for decoupling are 86%
lower than those of the other control schemes in loop 1, and 76% and 65% lower in loop 2
compared to decentralized control and static decoupling, respectively. The decoupling
process results in a slower response time, with a settling time of approximately 3000 s.
This is evidenced by the higher IAE values for tracking, which are approximately twice
as high as those of decentralized control and 60% higher than those of control with static
decoupling. The inferior response to reference tracking is a result of the constraint imposed
by the multivariable RHP zero, which appears in the apparent process elements Q(s) when
simplified decoupling is applied. This RHP zero is responsible for the inverse response
to changes in the reference. In this QTS configuration, there is a trade-off between the
peak of the inverse response and the interaction in the other loop due to the RHP zero.
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Regarding TV values, the simplified decoupling method has the lowest values, which are
approximately 70% lower than those of the decentralized control.

6. Conclusions

This paper presents a practical grey-box modeling procedure for the quadruple-tank
system used at the University of Cordoba. The proposed method overcomes the unrealistic
assumptions made in other models, such as assuming linear behavior of the actuators and
three-way valves. This results in a more realistic, configurable, and reproducible model.
The proposed grey-box approach highlights the following points, which can also be useful
for modeling other systems with liquid tanks:

• Secondary control loops are suggested to regulate the flow rate delivered by each
pump, making the new control variables the references for those flow rates. The
controllers have integral action, resulting in zero stationary error. In addition, the
response of these loops is much faster than the dynamics of the tanks, allowing for the
requested changes to the flow rate to be almost instantaneous. This approach helps to
avoid pump nonlinearities.

• The proposed method for modeling the outflows of the tanks is based on level data
measured during the experience of emptying the tank and is expressed using the
Bernoulli equation.

• The percentage of flow diverted to the lower tanks from the three-way valves is
modeled using planes as a function of inlet flow and valve position, based on tank
filling experiences. To facilitate modeling of these valves, it is useful for the outlet
pipes of the three-way valve to have the same length in the construction of the real
plant in order to equalize the head losses of both outlet sections. Thus, the distribution
of flow is less affected by the total inlet flow, depending on the valve position.

The proposed grey-box approach has resulted in the development of a nonlinear
model and has been developed so that it can be adjusted based on valve positions to
exhibit little or large interactions, or RHP zero. This model has allowed for the derivation
of general expressions of the linearized process model around a generic operating point.
These expressions provide an accurate linear model for designing controls at different
operating points without the need for new experiments. In contrast, the black-box approach
requires experiments at each operating point to obtain a linear model. In addition, the
generic expressions of the linear model of the process allow easy implementation of more
advanced control strategies such as adaptive control using gain scheduling. For this study,
a configuration with a large interaction and RHP zero was selected. Different control
strategies were designed based on the linearized model at one operating point and applied
to both the nonlinear model and the real process. The validity of the nonlinear model
is demonstrated by comparing the simulations and experimental results. The results
and conclusions obtained from applying different control designs in the simulation are
extrapolated to the real system.

Therefore, it can be concluded that both the real system and the nonlinear model
are valuable tools for research and teaching. They offer the opportunity to simulate
and experiment with highly interacting processes, including their control systems. The
system interactions provide opportunities to test new control theories for robustness and
performance with reasonable time and effort. This study presents three control schemes: a
decentralized PI control, a static decoupled control, and a simplified decoupled control. We
investigated the bandwidth limitation of the control system caused by a multivariable RHP
zero when applying perfect decoupling, such as the simplified decoupled control, in both
loops. The reference tracking response of the decentralized control is faster, but it comes at
the cost of showing large interaction in the opposite loop. It is worth noting that this plant
has been successfully used for practical work by students of control courses, as well as by
our research group.
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