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Abstract 

Modelling has proved an essential tool for addressing research into biotechnological 

processes, particularly with a view to their optimization and control. Parameter estimation via 

optimization approaches is among the major steps in the development of biotechnology 

models. In fact, one of the first tasks in the development process is to determine whether the 

parameters concerned can be unambiguously determined and provide meaningful physical 

conclusions as a result. The analysis process is known as “identifiability" and presents two 

different aspects: structural or theoretical identifiability and practical identifiability. While 

structural identifiability is concerned with model structure alone, practical identifiability 

takes into account both the quantity and quality of experimental data. In this work, we discuss 

the theoretical identifiability of a new model for the acetic acid fermentation process and 

review existing methods for this purpose. 
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1. Introduction 

Parameter identification —or parameter estimation from experimental data— is one of the 

critical steps in developing models [1–3]. Some biotechnological models are especially 

difficult to solve because of the high-order non-linear multi-parametric equation systems and 

some experimental data being subject to considerable errors. This entails conducting a 

preliminary analysis in order to ascertain whether the specific parameters to be estimated can 

be uniquely determined by using a given optimization algorithm. Such an analysis must 

include the model structure, and also the quality and quantity of experimental data available. 

This study is known as identifiability and presents two different aspects: 

a) Structural or theoretical identifiability, which is exclusively concerned with the 

complexity of the model structure for a given input–output behaviour [4]. 

b) Practical identifiability, which considers the quality and quantity of experimental data 

in addition to model structure. 

This paper discusses the structural identifiability of a new model for the acetic acid 

fermentation process. Identifiability in biotechnological processes has been the subject of 

much literature. Such processes include wastewater treatments [5–8] and denitrification [9], 

which have been examined for structural identifiability. Some authors have also examined the 

theoretical identifiability of yield coefficients in generic wastewater treatment models [10] 

and the structural identifiability of a model for an activated sludge bioreactor [11]. Others 

have analysed a known model for endogenous respiration of sludge in a batch reactor under 

no dissolved oxygen constraints [12]. Still others have examined several models for aerobic 

and anaerobic processes used in wastewater treatment [13]. Structural identifiability in a 

microbial growth model has also been studied [14]. Also, a reparametrization technique 

proposed elsewhere [15] was applied to two models of a high biological and pharmacokinetic 

interest; the models were also dealt with in another study [16], but using differential algebra, 
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and the same approach was used for immunological and epidemiological models elsewhere 

[17]. Some authors have conducted theoretical identifiability studies on robotic models for 

movement control [18], as well as on mechanical systems in general [19]. A method for 

transforming chromatographic columns models intended to avoid overparametrization was 

proposed in [20] and the generating series method, which is described below, used to check 

for structural identifiability in the resulting model. Finally, key issues regarding the use of 

various statistical tools in modelling procedures were discussed in [21] and a new approach to 

verifying model structural identifiability involving semi-infinite programming and max–min 

problems was reported. 

 

1.1. Structural identifiability 

The concept of structural identifiability has been under investigation ever since it was first 

defined [22]. Formally, structural identifiability relies on the following definitions [23]: 

– Definition 1: parameter i  of a model is structurally globally identifiable for an input 

class U  if, and only if, for almost all P   ( P  being the parametric space), 

    
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 (1) 

– Definition 2: parameter i  of a model is structurally locally identifiable for an input 

class U  if, and only if, for almost all P   a neighbourhood  V   exists such that 
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 (2) 

– Definition 3: model  M   is structurally globally identifiable if, and only if, all 

parameters i  are structurally globally identifiable. Therefore, this definition also 

holds with local analyses. 



 4

While conceptually relevant, these definitions are scarcely useful for studying structural 

identifiability in practice. Also, identifiability can be examined in various ways. Thus, 

theoretical identifiability in linear models can be checked with several reliable tests including 

Laplace transforms, Taylor series expansion of observations, the Markov parameter matrix 

approach and methods determining the ranks of matrices A and B from the state–space 

representation of the model [23–25]. Confirming identifiability in non-linear models is much 

more complex and relatively few methods exist for verifying their theoretical identifiability. 

Also, such methods usually require software tools affording symbolic computation [26] and 

substantial computational resources. 

 

1.2. Review of existing methods 

1.2.1. Analytical methods 

One of the earliest methods for structural identifiability analysis was based on series 

expansions of the input–output map of the model. For a specific input function or a zero-input 

experiment, this involves Taylor series expansion [27]. This approach assumes a state–space 

model for the process of the following form: 

 
     

   
0, , ,   0

, ,

dx
f x u x x

dt
y t h x

 

 

 


 (3) 

where nx�  is the state vector,    ( being an open subset of q� ) a constant parameter 

vector, u U  the input vector and ry�  the output vector. This formulation assumes that, 

for each   , a connected open subset of n�  [denoted by  M  ) and containing  0x  ] 

exists such that  , ,f u   and  ,h   are analytical functions on  M   and  x M   for 

any 0t  . 
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Outputs  y t  are expanded as power series and derivatives are evaluated at a specific time 

(usually 0t  ) in order to obtain mathematical expressions as simple as possible: 

        
2 2

2
0 0 0 ...

2!

dy t d y
y t y t

dt dt
     (4) 

The derivatives in equation (4) can be calculated as model parameter functions from 

equations (3): 
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If one assumes all derivatives in (5) to be known, then the next step involves solving the 

model parameters as functions of the derivatives and inputs: 
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 (6) 

Analysing the solutions of (6) allows one to draw revealing conclusions as regards structural 

identifiability. Thus, if a single solution exists, then the model is theoretically globally 

identifiable. On the other hand, if a countable set of solutions exists, then the model is locally 

identifiable. Finally, with an uncountable set of solutions the model is structurally 

unidentifiable [23,27–29]. 

Despite its apparent simplicity, this method is subject to two major problems, namely: 

(a) Initially, the number of derivatives used for computation should be at least equal to 

that of parameters of the model so that equation system (6) can be solved. However, 

if some equations are not independent, the number of derivatives must be even 
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greater; therefore, no upper limit for the number of power series expansion 

coefficients of the outputs necessarily exists [30]. Also, finding no solution does not 

necessarily mean that the model is truly unidentifiable since additional independent 

equations may exist in the system. An upper limit has indeed been shown to exist for 

linear [29], bilinear [31] and polynomial systems [32,33]. 

(b) Provided equation system (6) can be solved, working out every parameter value can 

be excessively labour-intensive, even with the aid of dedicated software for 

symbolic computation [8,13,23,28] such as Matlab (Mathworks, Inc.), Maple 

(Maplesoft, Inc.) or Mathematica (Wolfram Research, Inc.) 

Alternatively, one can test for local identifiability by using derivatives calculated in (5) [34]. 

The test is based on the jacobian matrix of the derivatives with respect to the parameters. If 

the rank of this matrix is less than the number of parameters, then the model is unidentifiable. 

The generating series approach is one other way of solving the problem that shares a number 

of characteristics with the previous one. This approach is based on non-linear control theory 

and uses the relationship between Lie derivatives and non-linear observability [5]. The 

method requires the model to be linear regarding the inputs  u t  and allows one to extend the 

analysis to the entire class of bounded and measurable input functions (e.g. the set of 

piecewise continuous functions [35]): 

 
         
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

  




 (7) 

where x  is the state vector,  1 2, ,..., mu u u u  the input vector,   the parameter vector and y  

the output vector. The analysis relies on the model output functions  ,h x   and their 

successive Lie derivatives,  
0
... ,

j jkf fL L h x  , as evaluated at a specific time where simple 
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enough mathematical expressions can obtained (usually 0t  ). The Lie derivative along a 

vector field if  is equivalent to 

  ,
1

,
i

n

f j i
j j

L f x
x







  (8) 

where ,j if  is the j-th component of if . 

As in the power series expansion method, all Lie derivatives at a given time are assumed to 

be known to calculate the solution set for the parameters. Again, any conclusions about 

structural identifiability will rely on the number of solutions obtained [29,36]. The 

mathematical expressions obtained with the generating series method are usually simpler than 

those provided by previous method [37]. 

Like the generating series method, the method based on the local state isomorphism theorem, 

also known as the “similarity transformation” method, assumes that the entire class of 

bounded and measurable functions are available [30,38]. Also, the model should be locally 

reduced at  0x   for almost any  . This implies that the system must fulfil the 

Controllability Rank Condition (CRC) and Observability Rank Condition (ORC) [39,40] at 

 0x  . These conditions determine controllability and observability in non-linear systems 

and can be considered an extension of those for linear systems, which were established by 

Kalman [41]. If these conditions are verified, the local state isomorphism theorem establishes 

that, if two states x  and x  corresponding to two different parameter sets   and  , 

respectively, are considered, then the corresponding models will have the same input/output 

behaviour for any input  u t  and 0t   if and only if local state isomorphism 

 : ,  nV R x x x     [where V  is a neighbourhood of  0x ] exists which fulfils the 

following conditions: 
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
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     , ,h x h x    (13) 

If all solutions of the system (9) to (13) for   and   are obtained and, for almost any  , the 

only possible solution is    ,  x x   , then the model is structurally globally identifiable 

[30,42]. 

Overall, this method is only applicable to models of low complexity. Otherwise, the 

mathematical expressions required to verify conditions (9) to (13) are rather complex. 

Differential algebra has also been used in this context. This method reformulates model 

equations as linear regressions regarding parameters by using traditional algebraic operations 

jointly with differentiation [32,43,44]. The method is based on the Ritt-Wu algorithm [45,46], 

which is only applicable to polynomial or rational models. Despite these restrictions, many 

models in biotechnology and other areas fulfil this condition. Additional restrictions require 

that the models have non-zero, differentiable inputs. The application of this method to 

structural identifiability analysis is described elsewhere [44]; also, a software implementation 

was developed in [47] and an improved version can be found in [48]. 

Notwithstanding its elegant formulation, experience has shown that differential algebra 

methods not only converge on the solution very slowly, but also fail with fairly complex 

models [49]. Also, they share some difficulties with the previous methods as regards 

mathematical handling of even low-order models [44]. 
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Finally, some methods use a combination of differential algebra and either generating series 

or power series expansion methodology [16]. 

A different set of approaches uses reparametrization methods [15,23,29,50–53] to transform 

the original models into structurally identifiable forms. However, these methods are not 

systematic and the physical meaning of the ensuing parameters can be lost through 

reparametrization. Although some authors have tried to reduce heuristics at some stages of 

the process, some intuition and experience are still needed for proper implementation. 

Some reported methods are only applicable under special circumstances. Thus, some 

necessary and sufficient conditions for verifying structural identifiability of uncontrolled 

systems with or without restrictions have been reported in [14] and [48,54–56], respectively. 

Finally, two methods for solving structural identifiability of high-order linear systems 

regarding states and non-linear regarding parameters are described in [57]. 

 

1.2.2. Numerical methods 

In general, applying analytical methods to practical problems is not easy. This has fostered 

the development of numerical methods to assess theoretical local identifiability and, in some 

cases, global identifiability. Thus, a method for parameter estimation by use of a global 

optimization algorithm based on interval analysis was proposed in [58]. The method works 

on data previously generated by a known model around a specific point or region of the 

parametric space. This procedure allows checking whether the system has only one possible 

solution and is therefore globally identifiable. Its greatest drawback is the long computing 

time needed, which is only acceptable for models with up to three dimensions. This severely 

restricts its use with the models frequently encountered in practice. An improved alternative 

was developed in [59], which uses a forward–backward contractor to reduce the number of 
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bisections on interval analysis. This allows the global algorithm to be more efficient and to 

deal with more complex problems. 

One other numerical approach [60] uses DAE (Differential-Algebraic Equations) solvers to 

analyse structural local identifiability. Models are solved in two different ways; one involves 

the use of preset values for the parameters and the other considers them as unknowns. 

Because the number of equations will usually differ from that of parameters, the system is 

expanded adding as many equations as necessary taking successive derivatives with respect 

to time. If the system has a unique, constant solution, then it can be deemed structurally 

locally identifiable; otherwise (e.g. if it has a non-constant solution or more than one 

solution), then either the model is unidentifiable or unsuitable derivatives were chosen. 

Finally, one other numerical method for structural identifiability analysis, which relies on 

similarities between this concept and observability, is described in detail [61]. It considers 

parameters as constant state variables with null derivatives and examines their local 

observability together with the remainder “real” state variables. A probabilistic semi-

numerical algorithm is used for computing, within a reasonable time, locally observable 

variables and the number of non-observable variables. The algorithm certifies that any 

variables deemed observable actually are. A method for transforming non-observable models 

into observable models with an identical input/output behaviour was also developed; the 

raised models are known as symmetric models. 

 

2. Proposed model 

Basically, acetic acid fermentation is an aerobic biological reaction effected by acetic acid 

bacteria; these cause partial oxidation of the medium, mainly by converting ethanol into 

acetic acid: 

 2 5 2 3 2           493 C H OH O CH COOH H O H kJ       (14) 
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Vinegar production relies heavily on this stage, bacterial activity on which is markedly 

dependent on the particular environmental conditions. 

The proposed model is based on previously reported models [62–73], and also on extensive 

research work on process optimization. 

If one assumes a thoroughly mixed liquid phase and isothermal conditions in a semi-

continuous operation mode, then the following mass balances can be written: 

  
c d

v
v X X

dX dV
V X V r r

dt dt
    (15) 

  
d

d
d X lisis
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dt dt
    (16) 
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dE dV
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dt dt
      (17) 
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dA dV
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dt dt
    (18) 

  0 0
i O

dO dV
V O F O V O O r

dt dt
         (19) 

 i

dV
F

dt
  (20) 

where: 

vX : viable cell concentration (gꞏL–1). 

dX : non-viable cell concentration (gꞏL–1). 

E : ethanol concentration (gꞏL–1). 

A : acetic acid concentration (gꞏL–1). 

O : dissolved oxygen concentration (gꞏL–1). 

V : volume (L). 

iF : volumetric feed flow rate (Lꞏh–1). 

0E : ethanol concentration in raw material (gꞏL–1). 
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0O : dissolved oxygen concentration in equilibrium with air (gꞏL–1). 

 : constant including KLa factor, aeration flow and volume (h–1). 

cXr : cell growth rate (g viable cellsꞏL–1ꞏh–1). 

dXr : cell death rate (g non-viable cellsꞏL–1ꞏh–1). 

lisisr : cell lysis rate (g lysed cellsꞏL–1ꞏh–1). 

Er : ethanol uptake rate (g. ethanolꞏL–1ꞏh–1). 

Ar : acetic acid formation rate (g. acetic acidꞏL–1ꞏh–1). 

Or : dissolved oxygen uptake rate (g. oxygenꞏL–1ꞏh–1). 

and the following kinetic expressions can be put forward for the growth rate: 

 
cX c vr X   (21) 

 max ꞏ ꞏ ꞏc e a of f f   (22) 

where: 

c : specific cell growth rate (h–1). 

max : maximum specific cell growth rate (h–1). 

ef , af  and of : terms representing the influence of ethanol, acetic acid and dissolved oxygen 

on cell growth. 

Also, the following expressions can be used to weight the maximum specific cell growth, 

which ultimately represent its kinetics: 
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SO

O
f

O K



 (25) 

where: 

SEK : ethanol saturation constant (g ethanolꞏL–1). 

IEK : ethanol inhibition constant (g ethanolꞏL–1). 

IAK : acetic acid inhibition constant (g acetic acidꞏL–1). 

SOK : dissolved oxygen saturation constant (g oxygenꞏL–1). 

The previous ethanol limitation and cell growth inhibition expression for ef  was proposed by 

Andrews [74]. af  only considers growth inhibition by acetic acid. Finally, of  uses a simple 

Monod structure to represent the influence of dissolved oxygen on cell growth. 

In addition, the following expressions are proposed to represent the cell death rate: 

 
dX d vr X   (26) 

 0
d d dE dAf f     (27) 
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1dE
mE

E
f

K

 
   

 
 (28) 

 
4

1dA
mA

A
f

K

 
   

 
 (29) 

where: 

d : specific cell death rate (h–1). 

0
d : minimum specific cell death rate (h–1). 

mEK : ethanol cell death constant (g ethanolꞏL–1) 

mAK : acetic acid cell death constant (g acetic acidꞏL–1). 
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The kinetic expression for d  assumes a minimum specific cell death rate ( 0
d ) due mainly 

to cell ageing. Such a rate is weighted by dEf  and dAf  terms, which consider the influence of 

the substrate and product. 

A first-order kinetic law exclusively dependent on the non-viable cell concentration is used to 

represent the cell lysis rate: 

 0
lisis lisis dr X   (30) 

where: 

0
lisis : specific lysis rate (h–1). 

The expression for the ethanol uptake rate, Er , obtained from equation (17) is as follows: 

 / cE E X Xr a r   (31) 

where: 

/E Xa : a yield factor accounting for the amount of ethanol to be consumed in order to produce 

the amount of energy required for biomass growth (g ethanolꞏg–1 biomass). /E Xa  is 

approximately 116.96 g ethanolꞏg–1 cell. 

The expression for the acetic acid formation rate is 

 
/

E
A

E A

r
r

Y
  (32) 

where: 

/E AY : stoichiometric coefficient of ethanol consumption for acetic acid formation (0.767 g 

ethanolꞏg–1 acetic acid). 

As regards the oxygen mass balance (19), coefficient   [75] allows one to use ( 0O ), which 

is constant and roughly equal to 7.5ꞏ10–3 g O2 L–1. 

 
1

L

L

m

K a
K a RT

V V H

 
 



 (33) 
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 m

Q
V V

V
   (34) 

where: 

LK a : global volumetric mass transfer coefficient for the liquid phase (h–1). 

mV V : relation between the input air flow and volume (h–1). 

R : gas constant (0.082 atmꞏLꞏK–1ꞏmol–1). 

T : temperature (K). 

H : Henry constant. 

Q : input air flow rate (Lꞏh–1). 

V : volume (L). 

The dissolved oxygen uptake rate can be represented by 

 
/

E
O

E O

r
r

Y
  (35) 

where: 

/E OY : ethanol/oxygen stoichiometric coefficient (1.44 g ethanolꞏg–1 oxygen). 

In summary, if all previous expressions for the proposed model are considered, the final 

state–space form used for structural identifiability analysis is as follows: 
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 (36) 
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O O O O

K a V RTdt V
Q H

E O
a X

EY O KAE K
K K



     


 

 
 
                

 (40) 

 i

dV
F

dt
  (41) 

 1 vy X  (42) 

 2 v dy X X   (43) 

 3y E  (44) 

The parameters introduced in the model are max , SEK , IEK , IAK , SOK , 0
d , mEK , mAK  and 

0
lisis . 

 

3. Structural identifiability analysis of the proposed model 

3.1. Analytical methods 

The proposed model is non-linear, with 6 state variables and 9 parameters, and has the 

volumetric feed flow ( iF ) as its sole input. Also, it only uses the viable cell concentration, 

total cell concentration and ethanol concentration as outputs (measured variables); neither the 

acetic acid concentration —which is related, though variably, to the ethanol concentration—, 

nor the volume —which represents the balance between the feed and product flows— are 

employed. Also, it was impossible to obtain reliable dissolved oxygen concentration 
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measures owing to the characteristics of the culture and reactor; therefore, this variable was 

excluded as a measured output. 

The mathematical structure of the proposed model is amenable to analysis with any type of 

method for verifying structural identifiability (Taylor series expansion, generating series, 

local state isomorphism and differential algebra). However, in order to preserve the physical 

meaning of the parameters —if any—, we chose to exclude analytical methods involving any 

model transformation. 

The Taylor series expansion approach was implemented in several trial-and-error cycles that 

provided mathematical expressions for the initial coefficients of the outputs of the power 

series expansions until a system of 9 independent equations in 9 unknowns (parameters) was 

obtained. The aim was to find a solvable system. However, we encountered several problems 

in the process, namely: 

– Possible combinations of the output power series expansion coefficients for the 

systems can grow exponentially; therefore, if no solvable system is found, it is 

impossible to ascertain whether the model is unidentifiable or a different combination 

of coefficients should be tested. 

– The computation time needed to obtain each set of power series expansion 

coefficients —which sometimes entails calculating high-order derivatives— is 

substantial, even if specific software tools for symbolic computation are used. As a 

result, the computation time required to solve each equation system is very long. 

We can therefore conclude that verifying structural identifiability in the proposed model with 

the Taylor series expansion method is very difficult. Indeed, we reached no reliable 

conclusion from its application to several equation systems. By way of example, let us 

illustrate the process for one of the many systems studied —an unsolvable system, obviously. 

The nine parameters involved would require at least nine independent equations established 
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by computing the power series expansion coefficients. Based on the above-described 

measured outputs, 

 
1

2

3

v

v d

y X

y X X

y E


 


 (45) 

where iy  are the outputs. At 0t  , 

 

   
     

   

1

2

3

0 0

0 0 0

0 0

v

v d

y X

y X X

y E



 



 (46) 

where  0vX ,  0dX  and  0E  are initial conditions of these three state variables, 

corresponding to the viable cell concentration, total cell concentration and ethanol 

concentration, respectively. For simplicity, state variables can be renamed ix  and parameters 

ip : 

 1 2 3 4 5 6;  ;  ;   ;   ;   v dx X x X x E x A x O x V       (47) 

 
1 max 2 3 4 5

0 0
6 7 8 9

;   ;   ;   ;   ;

;   ;   ;   

SE IE IA SO

d ME MA lisis

p p K p K p K p K

p p K p K p



 

    

   
 (48) 

Because the initial conditions are known and constant, they are independent of the model 

parameters. Therefore, they cannot be used to solve for the parameters in equations (5) and 

(6). To simplify the notation in the equations, the following can be done: 

            1 1 2 2 3 3 4 4 5 5 6 60 ;  0 ;  0 ;  0 ;  0 ;  0c x c x c x c x c x c x       (49) 

Therefore, appropriate expressions for  0idy

dt
 are needed which can be obtained by using 

Maple: 

  
 

 4 4
11 1 3 5 31 4

6 14 42 4
7 8 63 4

3 2 5 54
3 4

0
0 1 1

1

ic Fp c c c cdy c
p c

dt p p cc c
c p c p

p p

  
                

  

 (50) 
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      4 4
232 1 4

6 1 9 24 4
7 8 6

0
0 0 1 1 ic Fcdy dy c

p c p c
dt dt p p c

  
       

  
 (51) 

  
 

 0 33 / 1 1 3 5
2 4

63 4
3 2 5 54

3 4

0
0

1

i iE X
F E c Fdy a p c c c

dt cc c
c p c p

p p

 
  

  
     

  

 (52) 

Equations(50), (51) and (52) are only three of at least nine independent equations required to 

build a solvable system. Therefore, additional output power series expansion coefficients 

must be obtained. We computed  
2

2
0id y

dt
 and  

3

3
0id y

dt
 to this end, but their mathematical 

expressions were too complex to be shown here. Also, the ensuing system provided no 

solution with Maple software. The Maple code used is shown in Appendix A. These results 

led us to try an alternative method. 

Such a method was the generating series method, which is very similar to the previous one 

but was expected to be less computationally demanding based on the ability to isolate output 

terms. The proposed model for the acetic acid fermentation process can be rewritten as 

follows in terms of equations (7):  

  

0

0
0

1

1

1

v v
Xc Xd i

d d
Xd lisis i

EX i

A i

OE i

i

v

v d

dX X
r r F

dt V
dX X

r r F
dt V

E EdE
r F

dt V
dA A

r F
dt V

dO O O
O O r F

dt V
dV

F
dt
y X

y X X

y E



  

  


  

 


   




 



 (53) 

Therefore, 
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 

 
 

 

0

0 1

0

0

,       ,

0

1

,

v

dXc Xd

Xd lisis

EX

A

OE

v

v d

X

V
Xr r
Vr r

E Er
f x f x Vr

A
O O r V

O O

V

X

h x X X

E

 





  
 

            
    
   
       
      

 
  

 
   
  

 (54) 

This method exhibited the same problems as the power series expansion. Although Lie 

derivatives gave simpler mathematical expressions, the equation system was unsolvable, so 

no reliable conclusions about structural identifiability in the model could be drawn. By way 

of example, below is described one of many systems studied here. Because solving for the 

parameters required using at least nine equations, we chose to use the following Lie 

derivatives: (evaluated at 0t  ):  
0 1 0fL h ,  

0 2 0fL h ,  
0 3 0fL h ,  

1 0 1 0f fL L h ,  
1 0 2 0f fL L h , 

 
1 0 3 0f fL L h ,  

1 1 0 1 0f f fL L L h ,  
1 1 0 2 0f f fL L L h  and  

1 1 0 3 0f f fL L L h . We used the nomenclature 

introduced in equations (47), (48) and (49), and computed the first three derivatives with 

Maple: 

    
 

0

4 4
1 1 3 5 31 4

1 0 6 14 42 4
7 83 4

3 2 5 54
3 4

0 0 1 1

1
f

p c c c ch c
L h f p c

x p pc c
c p c p

p p

                       
  

(55) 

    
 

0

1 1 3 52
2 0 9 22 4

3 4
3 2 5 54

3 4

0 0

1
f

p c c ch
L h f p c

x c c
c p c p

p p

               
  

 (56) 
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    
 

0

3 / 1 1 3 5
3 0 2 4

3 4
3 2 5 54

3 4

0 0

1

E X
f

h a p c c c
L h f

x c c
c p c p

p p

              
  

 (57) 

The mathematical expressions for the other derivatives were exceedingly complex and are 

thus not shown here. Using Maple code provided no unique solution for the nine Lie 

derivative system. 

Applying the local state isomorphism theorem method required initially verifying the 

controllability and observability rank conditions in the initial state. This entailed analysing 

the ranks of matrices built from Lie brackets and Lie derivatives, respectively. 

Lie brackets were computed in this way: 

     01
0 1 0 1, , ,

ff
f x f x f f

x x
  

     
 (58) 

where  0 ,f x   and  1 ,f x   are vector fields. 

Verifying the controllability rank condition required building an n n  matrix ( n being the 

model order) by computing as many Lie brackets as needed to fill its columns. If the rank of 

the matrix in the initial state and for any value of each model parameter is n , then the 

controllability condition will be fulfilled. Otherwise, either the model does not satisfy this 

condition or a different matrix needs to be built from other Lie brackets. 

Similarly, verifying the observability rank condition required building an n n  matrix, the 

rows of which would be filled with gradients of the Lie derivatives with respect to the state 

vector. Likewise, if the rank of the matrix in the initial state and for any value of each model 

parameter is n , then the observability condition will be fulfilled. 

The difficulty involved in computing the Lie brackets and Lie derivatives for the proposed 

model, and their infinite potential combinations, made the problem unsolvable in practice.  
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In any case, we tested some controllability and observability matrices for the proposed 

model, but no solid evidence of their ranks being 6 ( n  from equation (53)) could be 

obtained.  

By way of example of the verification of the controllability rank condition, we built the 

following controllability matrix from the model equations (54) 

        0 1 0 1 0 1 0 0 1 1 0 1 1 1, , , , , , , ,f f f f f f f f f f f f f f                (59) 

The mathematical expressions for these Lie brackets are too complex to be shown here. Their 

complexity precluded confirming whether the matrix rank for any parameter vector would be 

6. 

We used the following matrix, among others, to verify the observability rank condition: 

  
 
 

0

0

0

1

2

3

1

2

3

x

x

x

x f

x f

x f

h

h

h

L h

L h

L h

 
  
 
 
 
 
 
 
  

 (60) 

The only simple expressions in this case were those for 1xh , 2xh  and 3xh : 

 

 
 
 

1

2

3

1 0 0 0 0 0

1 1 0 0 0 0

0 0 1 0 0 0

x

x

x

h

h

h

 

 

 

 (61) 

Other gradients were mathematically more complex and are thus not shown. As with the 

controllability rank condition, we could not ascertain whether the rank of the observability 

matrix was 6. Therefore, this method also failed to afford clear-cut conclusions about 

structural identifiability in the proposed model. 

Although the differential algebra method was applicable in theory, the complexity of the 

model required extremely elaborate algebraic and differentiation operations involving a vast 
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number of potential choices. Also, although several alternatives were used to obtain a set of 

linear equations for the parameters, no definite conclusions could be reached. 

 

3.2. Numerical methods 

Based on the results of the analytical methods, only numerical methods could provide an 

effective way of solving the problem. Although they only afford conclusions about structural 

local identifiability, numerical methods can be applied to much more complex models and 

with a higher computing efficiency. 

The first method studied here is described in detail elsewhere [60]. We used Ecosimpro 

software (Empresarios Agrupados, S.A., Madrid, Spain) as the numerical solver for 

application to the proposed model. Although the computational cost was virtually negligible, 

non-linear algebraic loops and/or structural singularities often caused convergence problems. 

In any case, the main problem was to make an appropriate choice of equations in order to 

obtain a solvable system. If the system concerned has no solution, then alternative equations 

(e.g. expressions containing additional derivatives) must be tested. If no solution is eventually 

found, this does not necessarily mean that the model is structurally unidentifiable. 

Application of this method to the proposed model provided no solvable system. The initial 

system was of the following form [see nomenclature in equations (38) and (39)]: 

 

 

4 4
1 1 3 5 3 14

1 6 14 42 4
7 8 63 4

3 2 5 54
3 4

1 1

1

ip x x x x x Fx
x p x

p p xx x
x p x p

p p

  
                

  

  (62) 

 
4 4
3 24

2 6 1 9 24 4
7 8 6

1 1 ix x Fx
x p x p x

p p x

  
      

  
  (63) 

 

 

 0 3/ 1 1 3 5
3 2 4

63 4
3 2 5 54

3 4

1

iE X
F E xa p x x x

x
xx x

x p x p
p p


  

  
     

  

  (64) 
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 
/ 1 1 3 5 4

4 2 4
63 4

3 2 5 5 /4
3 4

1

E X i

E A

a p x x x x F
x

xx x
x p x p Y

p p

 
  

     
  

  (65) 

 
 

 
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5 5/ 1 1 3 5

5 2 4
6 63 4

3 2 5 5 /4
3 4

1 1

L iE X
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E O

K a O x F O xa p x x x
x

K a x RT xx x
x p x p YQ H p p

 
  

          
  

  (66) 

 6 ix F  (67) 

 1 1y x  (68) 

 2 1 2y x x   (69) 

 3 3y x  (70) 

 

 

4 4
1 1 3 5 3 14

1 6 14 42 4
7 8 63 4

3 2 5 54
3 4

1 1

1

ip x x x x x Fx
x p x

p p xx x
x p x p

p p

  
                

  

     
 

 

 (71) 

 
4 4
3 24

2 6 1 9 24 4
7 8 6

1 1 ix x Fx
x p x p x

p p x

  
      

  
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

 (72) 
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xx x

x p x p
p p


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 (73) 
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3 4
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E X i
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x p x p Y
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 (74) 
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 
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5 5/ 1 1 3 5

5 2 4
6 63 4

3 2 5 5 /4
3 4

1 1

L iE X

L

E A

K a O x F O xa p x x x
x

K a x RT xx x
x p x p YQ H p p

 
  

          
  

   
  

 

 (75) 

 6 ix F  (76) 

 1 1y x   (77) 

 2 1 2y x x    (78) 
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 3 3y x   (79) 

where x  and x  are state vectors, p  is the known parameter vector, p  the unknown 

parameter vector and y  the output vector. Equations (62) to (79) contain 21 unknowns. 

Nevertheless, they can be reduced to 18 since, from equations (68) to (70) and (77) to (79), it 

is clear that 1 1x x , 2 2x x  and 3 3x x . It is therefore necessary to add six equations in order 

to obtain a solvable system. Such equations must be obtained by differentiating with respect 

to time some of the equations (71) to (75) on the assumption of constancy in the parameters. 

According to the proponent of this method [60], the equations to be differentiated should be 

chosen in accordance with two essential criteria: the equations should contain as many 

parameters as possible and excessively complex, high-order derivatives —numerical 

integration of which can be rather difficult— should be avoided. By way of example, we 

chose to derive equations (72) to (75) once and equation (71) twice —using Maple in both 

cases. The ensuing mathematical expressions were too complex to be shown here. We used 

the following initial conditions for integration: 

            3
1 2 3 4 5 60 0.15;   0 0.02;    0 11.6;    0 105;    0 3 10 ;    0 4x x x x x x       (80) 

and the following parameter values (falling in the preset range): 

 4 5
1 2 3 4 5 6 7 8 90.6;  3.5;  3;  90;  3 10 ;  2.5 10 ;  12.5;  35;  0.5p p p p p p p p p            (81) 

The solver exhibited convergence problems from the first integration step and provided no 

solution. Alternative equation systems, different initial conditions and trial parameter values 

were tested, but no unique solution for ip  could be found. Therefore, despite its simplicity 

and low computational cost, the method failed as a means for verifying structural 

identifiability in our model. 

Finally, we used a software tool developed as a Maple package by its proponent 

(http://www2.lifl.fr/~sedoglav/Software/) to implement the method introduced in [61]. This 
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method, which features virtually negligible computation times, provided a positive answer as 

regards theoretical local identifiability in the proposed model. The software tool certified that 

all model parameters were observable. 

 

4. Conclusions 

The model proposed for the acetic acid fermentation process has been examined for structural 

identifiability by using various analytical and numerical methods. The former included 

Taylor series expansion, generating series, local state isomorphism and differential algebra, 

all of which exhibited problems such as difficult implementation and substantial 

computational costs for models of small-medium dimension and complexity frequently found 

in practice. 

Numerical methods were easier to implement than the analytical methods, but only afforded 

verification of local structural identifiability. 

The results of our study of structural identifiability in the proposed model for the acetic acid 

fermentation process allow us to draw the following conclusions: 

– No clear-cut criteria exist for choosing the best potential method for structural 

identifiability verification of a dynamic model. This is consistent with the variety of 

methods used for this purpose to date. 

– The substantial computational cost involved entails the use of symbolic software to 

analyse models for theoretical identifiability. In some cases, computational 

complexity is so high that the problem is intractable, even with powerful software. 

Only one of the studied methods provided positive results affording the conclusion that the 

proposed model is structurally locally identifiable. 

While theoretical identifiability analysis is important, model parameters can only be 

estimated uniquely after practical identifiability has been verified. If a model is practically 
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identifiable, then it should be structurally identifiable as well; on the other hand, a model may 

not be practically identifiable either because of the lack of appropriate available experimental 

data or the model structure itself. In this situation, it is important to also have information 

about the theoretical identifiability of the model.  

 

Acknowledgements 

The authors wish to acknowledge funding of this research (AGL2002-01712, 

PET2006_0827) by Spain's Ministry of Science and Technology (MCyT) and Ministry of 

Education and Science. Also, they wish to thank the firm Vinagres y Salsas, S.A., Grupo SOS 

(Córdoba, Spain), for valuable help and advice. 



 28

Appendix A 

x1:=f1(t): x2:=f2(t): x3:=f3(t): x4:=f4(t): x5:=f5(t): x6:=f6(t): 

fe:=x3/(x3+p2+x3^2/p3): 

fa:=1/(1+(x4/p4)^4): 

fo:=x5/(x5+p5): 

rxc:=p1*fe*fa*fo*x1: 

rxd:=p6*(1+(x3/p7)^4)* (1+(x4/p8)^4)*x1: 

rlysis:=p9*x2: 

re:=aex*rxc: 

ra:=re/Yea: 

ro:=re/Yeo: 

bt:=Kla/(1+RTH*x6*Kla/Q): 

x6p:=Fi: 

x1p:=rxc-rxd-x1*x6p/x6: 

x2p:=rxd-rlysis-x2*x6p/x6: 

x3p:=-re+(Fi*E0-x3*x6p)/x6: 

x4p:=ra-x4*x6p/x6: 

x5p:=bt*(O0-x5)-ro+(Fi*O0-x5*x6p)/x6: 

x1pp:=diff(x1p,t): 

x2pp:=diff(x2p,t): 

x3pp:=diff(x3p,t): 

x1ppp:=diff(x1pp,t): 

x2ppp:=diff(x2pp,t): 

x3ppp:=diff(x3pp,t): 

solve({x1p=c1, x2p=c2, x3p=c3, x1pp=c4, x2pp=c5, x3pp=c6, x1ppp=c7, 

x2ppp=c8, x3ppp=c9}, [p1,p2,p3,p4,p5,p6,p7,p8,p9]) 
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