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Abstract 

In part I of this series a mathematical model for acetic acid fermentation was reported. 

However, no kinetic model can be complete until its equation parameters are estimated. 

This inevitably entails a practical identifiability analysis intended to ascertain whether 

the parameters can be estimated in an unambiguous manner based not only on the 

sensitivity of the model to them, but also on the amount and quality of available 

experimental data for this purpose. Also, estimating the model parameters entails 

optimizing a specific objective function subject to the model equations as major 

constraints and to additional, minor constraints on variables and parameters. This 

approach usually leads to the formulation of a non-linear programming problem 

involving differential and algebraic constraints where the decision variables constitute 

the parameter set to be estimated. In the scope of modelling biotechnological processes, 

this problem uses not be properly dealt with. This second paper reviews available 

models for practical identifiability assessment and parameter estimation with a view to 

their prospective application to the proposed model and its validation. 
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1. Introduction 

1.1. Practical identifiability 

Calibration or parameter estimation is one of the most critical steps in developing a 

grey-box model [1]. The procedure involves using experimental data for the target 

process the amount and quality of which strongly influence the quality of the resulting 

estimations [2]. Also, the model concerned may be poorly sensitive to changes in 

parameter values and considerably hinder their precise estimation as a result. Practical 

identifiability procedures are used to examine whether specific model parameters can be 

accurately determined with provision for all these factors [3]. 

1.1.1. The Fisher Information Matrix (FIM) 

The core of a practical identifiability study is the Fisher Information Matrix (FIM) [4–

6]. This is constructed from a weighted least-squares (WLS) objective function which is 

in turn obtained from the maximum likelihood estimator as determined under the 

assumption of normally distributed measurement noise of zero mean. The procedure 

typically used to construct the FIM is described in detail elsewhere [7–10]. This matrix, 

of p p  dimensions ( p  being the number of model parameters), essentially provides a 

compact representation of measurement uncertainty and the parameter sensitivity of the 

model. 

The sensitivity functions, included in the FIM, constitute the core of the sensitivity 

analysis [8,11–18], which is usually of local nature for biological processes by virtue of 

the models typically applied to them using non-linear parameters. A graphical 

sensitivity analysis allows one to identify the individual parameters most strongly 
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influencing the dynamics of the target system [11,19,20]. The greater a function is, the 

higher will be the sensitivity of the chosen output to changes in the function parameter 

concerned and the greater the information content of the output towards the 

identification of the parameter. Otherwise, the output will be poorly sensitive to the 

parameter and of little use for its estimation. When the graphs for two or more 

parameters are similarly shaped, one can expect output variations caused by a change in 

some parameter under the experimental conditions used to be virtually offset by a 

change in one or more of the others, and assume the parameters to be correlated 

[2,8,10].  

Sensitivity functions can be calculated with various procedures [10,22] including the 

finite difference approximation (also known as the “indirect method”), the direct 

method [28], the Green function method [29] (also referred to as the “variation 

method”), the polynomial approximation method [30,31], automatic differentiation 

techniques [32,33] and the complex-step derivative approximation method [34]. Some 

of these algorithms have the disadvantage that they require introducing some heuristics 

in their application or that the user must fix some parameters in order to adjust their 

behaviour. This alters convergence and precision in the output. Given the highly 

sophisticated computations afforded by available numerical integrators such as LSODE 

[35] and DASSL [36], the direct method constitutes the most easily implemented choice 

for state–space models and provides acceptably precise calculations at a low 

computational cost. In fact, the direct method requires no heuristics and its performance 

is uninfluenced by parameters other than those associated to the numerical integrators 

used.  

The FIM can be calculated at any point in time, but is usually computed throughout an 

experiment (homoscedastic measurement errors), whether because a simplified starting 
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hypothesis is adopted or because the instrumental measurements are all subject to a 

roughly constant error. Because starting hypotheses frequently assume output 

measurements to be independent, these elements will invariably be zero. 

1.1.2. Methods for evaluating practical identifiability 

Practical identifiability can be preliminarily assessed by calculating the FIM rank. If the 

rank is smaller than p, then the model will be practically unidentifiable and one or more 

FIM eigenvalues will be zero. However, one may have a full-rank FIM and the model 

parameters still be hard to identify. This has led some authors [8,10] to propose the use 

of the FIM condition number in order to assess whether model parameters will be 

practically identifiable. This criterion, however, has the disadvantage that it is parameter 

unit-dependent; because no reference critical value is available for comparison and 

discrimination [21,22], the results are not always accurate. Alternatively, one can use 

the so-called “collinearity index” [23], m , instead of the condition number; as 

conceded by its proponent, however, the two quantities result in only slight differences. 

There are additional criteria which are typically used as objective functions in optimal 

experimental design for parameter estimation [2,6,10,14,24–27]. The indices involved 

are used to assess parameter sensitivity or correlation, but cannot by themselves solve 

the problem of practical identifiability —in fact, the above-mentioned condition number 

constitutes one such criterion: the so-called “modified E-optimal criterion”. The most 

effective alternative with a view to the assessment of practical identifiability in a model 

is to calculate the correlation matrix for the estimated parameters, which can expose 

linear dependences between them. In summary, the most suitable procedure for 

assessing local practical identifiability should involve the direct, joint analysis of the 

sensitivity functions and that of the parameter estimation correlation matrix. 
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The correlation matrix arises from the parameter estimation error covariance matrix 

[37], which involves the calculation of the hessian matrix of the objective function with 

respect to the parameter values obtained at the optimum. There are several numerical 

choices for calculating this Hessian matrix: a quadratic approximation to the objective 

function around the optimum [38,39], Taylor series expansion, Richardson’s 

extrapolation as such [40] or combined with the complex-step derivative approximation 

technique [34,41], the method of Marsili-Libelli et al. [42] or quasi-Newton 

optimization algorithms [43]. However, the method based on the FIM approximation is 

the most widely used by far for this purpose [10,40,42]. The goodness of its results 

increases with increasing accuracy of the model and decreasing distance to the 

optimum; under such conditions, the hessian is, approximately, two times the FIM [22]. 

Parameter estimation error covariance matrix is the core of the asymptotic parameter 

confidence region at the optimum [2,8,10,22], which can be used to calculate the 

confidence interval for each parameter [22,44–48]. Also, this matrix can be used to 

determine the elements of the parameter estimation correlation matrix which, as noted 

earlier, when combined with sensitivity functions, is the essential tool for practical 

identifiability analysis. 

1.1.3. Determining the subset of most identifiable parameters 

Based on the foregoing, the typically high complexity of biotechnological process 

models frequently makes them practically unidentifiable. In any case, it is still 

interesting to identify the subset of parameters that can be unambiguously determined 

by using an appropriate optimization algorithm. This is important since, even though the 

results would largely lack physical meaning, they would still allow the model to be 

highly accurately calibrated from experimental data. The most widely used methods for 

determining the subset of identifiable parameters include the following [22]: model 
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reduction, Monte Carlo techniques [49–52], regression methods [53], visual inspection 

of local sensitivity functions [16,23,54–58], Principal Component Analysis (PCA) [59], 

methods based on specific FIM characteristics [14–16,55], parameter selection methods 

based on the collinearity index [23] and an improved method based on FIM 

characteristics [22]. The last procedure, which was adopted in this work, relies on the 

relationship between the Hessian of the objective function and FIM in order to calculate 

the parameter estimation correlation matrix, which is subsequently used to identify the 

most practically identifiable individual parameters. As shown later on, this technique 

was combined with parameter estimation methodology. 

 

1.2. Parameter estimation 

Estimating the parameters of a model entails optimizing an objective function 

dependent on a norm for the error made in measuring the process outputs [60]. The 

specific norm to be used depends on the statistical distribution of the measurement 

errors [61]. If the errors are normally distributed, have a zero mean and a known 

covariance matrix, then one can use the following weighted least-squares function, 

which constitutes a maximum likelihood estimator [10]. 

The minimization of this objective function is addressed as a non-linear programming 

(NLP) problem largely subject to the constraints imposed by the model equations —

which are also typically non-linear. Given the specific nature of the problem, the 

objective function is frequently multi-modal (non-convex), which makes identifying the 

overall minimum rather a difficult task [60]. 

1.2.1. Overview of optimization methods 

As a rule, the optimization problem has no trivial solution. This has fostered the 

development of a number of techniques of the local or global type. The latter are 
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especially attractive for the problem at hand as they aim to find the global optimum of 

the objective function —which usually exhibits many local optima. 

Optimization tools for this purpose can also be classified as deterministic (both local 

and global) and stochastic (largely global). The former aim to verify the necessary and 

sufficient optimality conditions by calculating search directions in a systematic manner. 

If the problem at hand is subject to no constraints, then the optimality conditions are 

 * 0J v   and  2 * 0J v  , *v  being the optimum found. In the presence of 

constraints, the optimality conditions are the Karush–Kuhn–Tucker first- and second-

order conditions [62,63]. Global deterministic algorithms have some disadvantages that 

restrict their scope or hinder application in practice. Thus, they usually require 

fulfilment of some conditions that cannot be met or checked (e.g., that the objective 

function and constraints be continuous and differentiable). Also, virtually no existing 

method affords detection of the global optimum for a problem within a finite length of 

time [64]. 

On the other hand, stochastic methods use no systematic procedure to determine search 

directions; rather, they use probabilistic methodology with a substantial heuristic slant 

and rarely consider structural information about the problem concerned. Their random 

nature usually precludes convergence on the optimum —many methods, however, 

provide asymptotic evidence of convergence. Usually, the likelihood of the optimum 

being reached approaches unity as the number of algorithm iterations grows. 

There are several excellent reviews of the different types of optimization problems 

addressed in process engineering and the methods typically used to solve them [65,66]. 

1.2.2. Deterministic optimization methods 

The local —largely deterministic— methods for this purpose can be of the direct type, 

which only require calculating the objective function, or indirect type, which require 
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using both the gradient and Hessian of this. Worth special note among the direct 

methods are the Simplex [44], the Complex [67], and those of Hooke et al. [48]. On the 

other hand, the most popular methods of the indirect type are quasi-Newton methods 

(particularly BFGS [62]), the conjugate gradient method [48], the Levenberg–

Marquardt algorithm [68,69], Sequential Quadratic Programming (SQP) methods 

[48,70–73] and Generalized Reduced Gradient (GRG) methods [74]. 

The deterministic global algorithms used in this context include enumerative, successive 

approximation and successive division methods. The most popular enumerative 

methods are extreme point ranking [75] and cutting plane methods [76,77]. Successive 

approximation methods can be of the outer approximation (OA) [78], inner 

approximation [79] or successive underestimation type [80], among others. Finally, 

successive division methods, which are also known as “branch and bound” methods, 

include interval methods [81–83] and, especially, the BB algorithm [84–91], which 

has successfully solved various chemical engineering design and control problems [92–

94]. 

1.2.3. Stochastic optimization methods 

Stochastic global algorithms can be classified as adaptive stochastic methods [95,96], 

the best-known among which is that based on Controlled Random Search (CRS) 

[97,98]; clustering methods [99,100]; evolutionary computation methods (also known as 

“bioinspired” methods) [101]; Simulated Annealing (SA) methods; and heuristic 

methods (particularly those based on Tabu Search, TS, and Ant Colonies, ACO) [102- 

106]. 

Bioinspired methods have so far been the most widely used stochastic global algorithms 

on account of their high efficiency and ease of application. Bioinspired methods rely on 

genetic algorithms (GA) [107–109], evolutionary programming (EP) [110] or 
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evolutionary strategies (ES) [111–114] depending on the particular type of variable 

(binary or real) used to represent individuals in implementing cross-over and mutation 

operators, and on the abstraction level used (genes with GA, individuals with ES and 

species with EP). As a rule, evolutionary computation methods are highly efficient and 

robust for solving a wide range of optimization problems (e.g., estimating the 

parameters of a dynamic model); also, they require imposing virtually no constraints on 

the objective function or additional restrictions and are very easy to implement. In 

addition, they allow available knowledge about the problem at hand to be easily 

incorporated and hyphenated techniques to be used in order to overcome some 

shortcoming of purely evolutionary techniques such as slow convergence in the vicinity 

of the global optimum [60]. 

In summary, estimating the parameters of a model is rather a complex problem 

depending on its particular structure, the structural identifiability [115], the quality of 

available experimental data and potential correlation between parameters, among other 

factors. As stated above, stochastic global methods in general, and those based on an 

evolutionary approach in particular, are seemingly the best suited to the problem 

addressed in this work. In any case, this assumption is justified in greater detail later on. 

 

2. Experimental section 

Although the materials and methods used are described in part I, a brief summary of the 

operating conditions employed in all tests is provided here for better understanding of 

the subsequent discussion. Such conditions were as follows: 

(a) Semi-continuous operation. 

(b) Wine containing 93 g ethanolꞏL-1 as raw material. 

(c) A constant temperature of 31 ºC. 



 10

(d) An air flow-rate of 7.5 L airꞏL–1 mediumꞏh–1 with the fermenter loaded to 

the full working volume (8 L). 

(e) A feed rate of 0.035 Lꞏmin–1. 

These conditions were used in two series of experiments, namely: 

(a) A1, A2 and A3, which involved unloading the fermenter to a variable 

extent (75 %, 50 % and 25 %, respectively, of the total working volume) 

between cycles. The ethanol concentration at unload, however, was 

identical [15.5 gꞏL-1] in all cases. 

(b) B1, B2 and B3, which involved variable concentrations of ethanol at unload 

[27.1, 15.5 and 3.9 gꞏL-1, respectively]. The unload volume was identical 

(50 %) in all cases.  

The most salient results of these tests, and the average acetification rate obtained in each 

[116], are described in detail in part I. 

In addition, the proposed model was validated in four tests under conditions other than 

those used for parameter estimation, namely: 

(a) In test C1, 75 % of the fermenter volume was unloaded [to an ethanol 

concentration of 3.9 gꞏL-1] and then continuously fed with 93 g ethanolꞏL-1 

wine at a flow-rate of 0.01 Lꞏmin–1. 

(b) Test C2 the fermenter was unloaded by 25 % [to an ethanol concentration 

of 27.1 gꞏL-1] and then continuously fed with 93 g ethanolꞏL-1 wine at a 

flow-rate of 0.06 Lꞏmin–1. 

(c) In test C3, the fermenter was unloaded by 50 % [to an ethanol 

concentration of 11.6 gꞏL-1] and fed with 93 g ethanolꞏL-1 wine at 0.02 

Lꞏmin–1 while keeping the ethanol concentration constant at ca. 38.8 gꞏL-1. 
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(d) Finally, in test C4, the fermenter was unloaded to 50 % [to an ethanol 

concentration of 3.9 gꞏL-1] and then fed with 93 g ethanolꞏL-1 wine at 0.02 

Lꞏmin–1 at a constant ethanol concentration in the region of 38.8 gꞏL-1. 

 

3. Results and discussion 

3.1. Ranges of variation of the model parameters 

Before practical identifiability and parameter estimation was addressed, the potential 

ranges of variation of the model parameters were assesed. To this end, the performance 

of the different kinetic equations proposed in part I was examined under the following 

constraints: 

(a) The parameters were only allowed to take positive values. 

(b) Those parameter values leading to outputs beyond the lower or upper 

bound for the respective kinetic functions were rejected. 

(c) Wherever possible, those parameter values lacking physical meaning as per 

the experimental concentration ranges spanned by the substrates and 

products were also be rejected. 

In the proposed model, the specific growth rate, c , depends on three factors ( ef , af  

and of ) ranging from 0 to 1, and on its maximum possible value ( max ). The latter has a 

zero lower bound but, initially, lacks an upper bound. Therefore, max  can in theory 

span the mathematical range  0,max   . However, the upper bound can be reasonably 

set at 2 h–1, which is the maximum typical value for a number of bacteria in the absence 

of growth limitation and inhibition. The expression for ef  depends on the ethanol 

concentration as well as on SEK  and IEK . By analogy with the well-known Monod 

equation, parameter SEK  is a measure of growth limitation caused by an ethanol 
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deficiency. A low SEK  value suggests that the microbes can continue to grow at their 

maximal rate even in the presence of a low substrate concentration in the medium. 

Based on the ethanol uptake rate during the production stage in each cycle, microbial 

activity remains unaffected unless the ethanol concentration falls to levels below about 

7.8 gꞏL–1. This suggests that the upper bound for SEK  is about 10 g ethanolꞏL–1. On the 

other hand, IEK  is a measure of bacterial sensitivity to the inhibitory effect of ethanol in 

the medium. Thus, a low value of IEK  must reflect strong inhibition by the substrate 

and a high value the opposite effect. While the lower bound for IEK  can easily be near-

zero, there is no unambiguous indication as to what its upper bound may be. In fact, the 

careful analysis of the ef  function and inspection of the simulation at a selected SEK  

value made by way of example in Figure 1 clearly reveal that the inhibitory effect of the 

substrate decreases with increase in IEK . Therefore, the convenience of using as clearly 

bound ranges as possible for each parameter in its estimation led us to choose a value 

coinciding with the highest concentration potentially obtained in the fermentation cycles 

(ca. 90 g ethanolꞏL–1). 

< Figure 1 > 

The proposed expression for af  depends on the acetic acid concentration and also on an 

inhibition constant ( IAK ). This parameter can be assumed to represent the sensitivity of 

the bacterial population to the acetic acid concentration in the medium. Since the 

dimensions of IAK  coincide with those of the acetic acid concentration, its variation 

range can reasonably be identified with that of acid concentrations potentially found in 

the medium. Figure 2 shows the variation of af  with the acetic acid concentration at 

different IAK  values. As with ef , no unambiguous information exists to set an upper 
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bound for af . We thus chose to identify it with the highest acetic acid concentration 

found in the experimental tests (ca. 120 gꞏL–1). As can be seen from Figure 2, relatively 

low values of IAK  result in excessively strong inhibition —even at acetic acid 

concentrations known to cause no such effect—; therefore, the potential range of 

variation for this parameter should exclude such low IAK values. In summary, based on 

the experimental results, the lower bound for IAK  could be in the region of 60 g acetic 

acidꞏL–1. 

< Figure 2 > 

The proposed expression for of  has the typical structure of a Monod equation. 

Therefore, soK  represents the dissolved oxygen concentration at which the function has 

one-half of its maximum possible value. Nieto [117] examined the sensitivity of 

bacterial growth to oxygen availability in the medium and found cell growth to drop at a 

dissolved oxygen concentration that was dependent on the acidity of the medium. Thus, 

dissolved oxygen levels in the range 0.5–1.5 mgꞏL–1 reduced the bacterial growth rate to 

roughly one-half the maximum possible levels in the presence of acid concentrations 

from 60 to 100 gꞏL–1. Based on these results, SOK  may adopt values within the previous 

oxygen concentration range. However, we chose to use 0 and 1.5 mg oxygenꞏL–1 as the 

lower and upper bound, respectively, and hence a broader range in order to increase 

freedom in the estimation algorithm to be subsequently applied in the determination of 

the optimum parameter value while checking that the fitting provided values no just at 

the range limits. 

The kinetic expressions for cell death include three parameters, namely: 0
d , mAK  and 

mEK . Functions dEf  and dAf , which contain parameters mEK  and mAK , were not limited 

to a unity value —in fact, they should always exceed 1 by virtue of their mathematical 
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structure— since some culture conditions can lead to additional cell death and to the cell 

death rate, 0
d , being exceeded. Therefore, no such constraint was imposed on the 

functions in determining the practical bounds for the corresponding parameters. 

As will cell growth, only the lower bound (zero) was known for 0
d  as it had no upper 

bound in theory. As with max , however, there are some practical limits for the specific 

cell death rate which, in the absence of additional information, can be identified with 

those for max , namely: 0 and 1.5–2 h–1. 

As far as mEK  is concerned, dEf  changes monotonically with the ethanol concentration, 

the variation profile depending on this parameter. Figure 3 illustrates the effect of 

various mEK  values on dEf . Similarly as before, no conclusive criterion for setting the 

upper bound for this parameter exists, which led us to initially identify it with the 

highest ethanol concentration obtained in the fermentation cycles (90 gꞏL–1). Likewise, 

the figure suggests a vast effect of too low a mEK  value on cell death, one that is hardly 

realistic as can be easily checked through testing. In any case, we chose to use a lower 

bound of 10 g ethanolꞏL–1 in order to avoid excessively restricting the variation range 

for this parameter. 

< Figure 3 > 

The reasoning for parameter mAK  is similar to that made for mEK . Its lower and upper 

bound were chosen to be 10 and 120 g acetic acidꞏL–1, respectively. Figure 4 shows a 

simulation of the dAf  function at different mAK  values. 

< Figure 4 > 

Finally, the proposed expression for the lysis kinetics contains a single parameter, lysis , 

the lower and upper bound for which can be identified with those for max  and 0
d  (viz., 

0 and 2 h–1, respectively). 
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By way of summary, Table 1 shows the model parameters and their respective lower 

and upper bounds. 

Parameter Bounds 

max  [0, 2] h–1 

SEK  [0, 10] g ethanolꞏL–1 

IEK  [0.25, 90] g ethanolꞏL–1 

IAK  [20, 120] g acetic acidꞏL–1 

SOK  [0, 1.5]ꞏ10–3 g oxygenꞏL–1 
0
d  [0, 2] h–1 

mEK  [10, 90] g ethanolꞏL–1 

mAK  [10, 120] g acetic acidꞏL–1 

lysis  [0, 2] h–1 

Table 1: Lower and upper bounds of the variation ranges for the model parameters 
 

3.2. Practical identifiability analysis and parameter estimation 

The practical identifiability of the model was assessed and its parameters estimated 

from the results of tests A1–A3 and B1–B3. The analysis was performed separately for 

each test and the results compared at a later stage in order to establish a unique 

parameter set. Then, the model was validated with the ensuing parameters, using the 

data from tests C1–C4. Validation involved comparing the simulated outputs of the 

model with such data and analysing the residuals. 

The former analysis was done by using an improved iterative procedure for selecting 

identifiable parameters based on FIM characteristics [22]. This procedure uses a starting 

value for each parameter that can be obtained from the literature or from past 

experience. In this work, we used a sub-optimal value estimated with a stochastic global 

algorithm (specifically, an evolutionary strategy, ES). Such an algorithm has been used 

for the following reasons: 

(a) No starting values for the parameters were available. In fact, the sole 

information on them was their approximate range of variation. 
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(b) The algorithm allowed a point near the potential optimum in the parameter 

space to be located, thereby facilitating convergence and reducing the 

number of iterations needed as a result. 

(c) The multi-modal, non-convex nature of the problem required using a global 

optimization method. 

(d) The chosen algorithm was subject to no special constraint as regards the 

objective function and restrictions, and allowed the problem to be 

addressed as a black-box one. 

(e) The algorithm provided a robust method featuring computation times 

usually much shorter than those of alternative procedures. 

The specific procedure used was an evolutionary strategy known as the “Augmented 

Lagrangian Genetic Algorithm” (ALGA) [118,119], which affords solving NLP 

problems with equality and inequality constraints, and subject to upper and lower 

bounds for the decision variables. Once a sub-optimum was found, a local deterministic 

optimization algorithm with constraints was applied to the parameters exhibiting the 

highest practical identifiability in each case as decision variables in order to improve the 

solution. The specific procedure used for this purpose was an SQP algorithm. 

The numerical integration of the model was done with the DASSL algorithm [36], using 

the EcosimPro modelling and simulation environment [120]. 

 

3.2.1. Detailed analysis for experiment A1 

A comprehensive description of the analysis for test A1 follows. The procedure used 

with the other estimation tests (A2, A3 and B1–B3) was identical, but only their final 

outputs are shown here for brevity.  
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The experimental data were obtained in 8 fermentation cycles. The data include the 

concentrations of viable cells, total cells, ethanol and acetic acid. Cell concentrations 

were determined as described elsewhere [121]. 

Based on the following arguments, the experimental data were assumed to be roughly 

normally distributed: 

(a) Means and medians were virtually identical at any point in time. Also, the 

symmetry or bias coefficient [122] tended to zero; therefore, the sample 

distribution was roughly symmetric. 

(b) As shown by the Kolmogorov–Smirnoff test at the 95 % confidence level, 

the sample was normally distributed. 

In addition, the measurement sequence was checked to be homoscedastic, i.e., the 

probability distribution of all measurements was subject to approximately the same 

standard deviation (about 0.8 gꞏL–1 for the ethanol concentration and ca. 0.02 gꞏL–1 for 

both the total and viable cell concentrations). All these findings were also applied to 

measurement errors, which were also assumed to be normally distributed —with a zero 

mean, however— and possess identical standard deviations. Also, we assumed output 

measurements to be independent from one another as their data collection fulfilled the 

sufficient condition of physical independence. 

Based on the foregoing, we obtained the following measurement error covariance 

matrix: 

 

4

4

4.1311 10 0 0

0 4.1311 10 0

0 0 0.6

Q





 
   
  

 (1) 

which was used as a weight for the weighted least-squares function in addition to 

another weight intended to offset differences in order of magnitude between 

measurements. Such a weight was 103 and applied to cell concentrations only. 
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The next step was to estimate the parameter models, focusing on minimizing this 

objective function, and including the model equations and the previously established 

lower and upper bounds for the parameter values (Table 1) as constraints for the 

problem. Optimization was done with the above-described ALGA method, which was 

set to operate as follows: 

(a) The population used in each generation consisted of 20 individuals. 

(b) The parent individuals for the next generation were selected by using a 

uniform stochastic mechanism. 

(c) Two elite individuals —the best parents— in each generation were directly 

transferred to the next. 

(d) Each generation was obtained by cross-over (80%) and mutation (20%) 

from the previous one. 

(e) The recombination mechanism started from a random binary vector of 

identical length as the genetic code of each individual. Then, the algorithm 

parsed the vector: when it met a 1 bit, it adopted the gene (viz., the value of 

the decision variable) from the first parent in that position; otherwise (i.e., 

if it met a 0 bit), then it adopted the gene from the second parent. This 

allowed the genetic code of each child to be assembled. 

(f) Mutation was done by using an appropriate algorithm to randomly generate 

mutation directions the step length of which was chosen in such a way as to 

ensure fulfilment of the previously established constraints. 

(g) The initial value of the quadratic penalty function was 10 and the penalty 

factor 100. The latter increased the parameter value when the problem was 

inadequately precisely solved as regards tolerance of the objective function 

and the constraints. 
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The stop criteria used with the evolutionary strategy included the following: 

(a) Tolerance of the function: the algorithm stopped when the ratio of the 

weighted mean change in the objective function to the maximum 

number of stall generations (viz., those resulting in no progress of the 

objective function) fell below 10–15. 

(b) Maximum number of generations: the algorithm stopped when the 

number of generations exceeded 5000. 

(c) Maximum stall time: the algorithm stopped if successive generations 

produced over a period of 300 s resulted in no progress of the objective 

function. 

Figure 5 provides a conceptual scheme for the overall parameter estimation strategy.  

< Figure 5 > 

The stochastic nature of the strategy led to perform a total of 100 estimations and 

choose the best output in terms of the objective function. The parameter values thus 

obtained are listed in Table 2. 

Parameter Value 

max  0.62 h–1 

SEK  3.8 g ethanolL–1 

IEK  10.63 g ethanolꞏL–1 

IAK  98.6 g acetic acidꞏL–1 

SOK  3.33ꞏ10–4 g oxygenꞏL–

1 
0
d  2.94ꞏ10–5 h–1 

mEK  36.81 g ethanolꞏL–1 

mAK  12.51 g acetic acidꞏL–1 

lysis  0.52 h–1 

Table 2: Parameter values obtained by applying ALGA to the results of test A1 
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A value of 1893.2 was thus obtained for the objective function. Figure 6 compares the 

experimental data (circle marker) with the outputs provided by the parameter set of 

Table 2 (dashed line). 

< Figure 6 > 

As can be seen, except for the oxygen, the fit was quite good the result must be very 

close to the actual optimum.  

The observed fitting for solved oxygen concentration might be explained taking into 

account that, in the used bioreactor the gas phase undergoes no thorough mixing, so 

nearby the input for air a higher gas volume fraction than in other parts can be found 

(the oxygen probe is placed in this zone); on the other hand, the low surface tension in 

the culture medium leads to complex interfacial phenomena such as (for instant) a 

decrease in coalescence of the bubbles formed in the device used to disrupt the 

incoming air stream affecting the interfacial area [123]. So, in our opinion, both facts 

affect the oxygen probe readings showing values higher than those existing in the liquid 

phase. 

Therefore, values for the parameter set constituted an effective starting point for a 

practical identifiability analysis. The core of such an analysis was calculating the 

sensitivity functions for the cell and ethanol concentrations by using the previously 

determined parameter values. In figures 7-9 the instantaneous percentages of variation 

of such functions are plotted. One immediate inference from the three is that parameters 

SEK  and IAK  had virtually no influence on any output (see scales on those figures), but 

especially on cell concentrations; also, lysis  had no effect on the variation of the 

concentrations of viable cells or ethanol, and only a minimal effect on the total cell 

concentration. On the other hand, SOK  and 0
d  exhibited a strong influence on all 

outputs (particularly 0
d ). 
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< Figure 7 > 

< Figure 8 > 

< Figure 9 > 

The mere visual inspection of these figures confirms some of our previous conclusions. 

Thus, all outputs were virtually insensitive to SEK  and IAK . Also, lysis  had no effect on 

vX  or E , and only a slight influence on X —the corresponding sensitivity functions 

amounting to ca. 20 % of the concentration at some points in time. Therefore, the total 

cell concentration can be informative enough to estimate this parameter. As can also be 

seen from the figures, mEK  had little influence on any output —about 5 % at most on 

vX  and X , and approximately 2 % at most on E—; therefore, the model is scarcely 

sensitive to this parameter —albeit slightly more so than to the others. 

In addition, the variation of the sensitivity functions for vX  and X  was similar for all 

parameters except lysis . This was a result of vX  being roughly a fraction of the total 

cell concentration, X , virtually throughout the cycle, and the two outputs being 

somewhat proportional as a result. However, cell lysis only influenced the latter 

concentration as it affected the concentration of non-viable cells, but not that of viable 

cells. In summary, both concentrations are needed to estimate the whole parameter set. 

As can be seen from Figures 7–9, the sensitivity functions for some parameter couples 

exhibited a roughly identical profile for all outputs, which suggests the presence of 

substantial correlation between parameters. Should this finding be confirmed, different 

combinations of parameter values might lead to virtually identical experimental results. 

The FIM rank was calculated to be 9; therefore, the model parameters were not 

completely unidentifiable. Based on some previous comments, however, the model was 

poorly identifiable around the point in the parameter space determined under the 
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experimental conditions used owing to the virtually non-existent influence of some 

parameters and the apparent correlations between others. 

In order to confirm this assumption, we applied the selection procedure to a set 

comprising the most practically identifiable parameters [22], using 0.5 as upper bound 

for the absolute correlation value for each parameter combination. However, the 

procedure was slightly modified by excluding the exceedingly uninfluential parameters 

detected through inspection of the sensitivity functions from the studied combinations. 

This modification was imposed by the fact that the D-optimal criterion used to identify 

parameter combinations meeting the maximum correlation criterion (viz., the product of 

the eigenvalues of the Fisher Information Matrix) had the disadvantage that multiplying 

very low values for poorly influential parameters and very high values ones for strongly 

influential ones yielded too high index values in some cases. This in turn might lead to 

deeming identifiable combinations including some uninfluential parameter by effect of 

the algorithm output being a combination containing one or more practically 

unidentifiable parameters. The modification used efficiently circumvented this 

shortcoming. 

In the first iteration, the algorithm constructed every possible combination containing 

between two parameters and their total number — SEK  and IAK  excluded on the 

grounds of their above-mentioned scant influence on the model outputs. This provided a 

range of combinations including 2–7 parameters. Table 3 shows the most identifiable 

among them at a preset maximum correlation level (first column) and the actual 

maximum correlations (fourth column). 

 

Correlation 
limit 

Parameter 
combination 

D-optimal 
criterion 

Maximum 
correlation for the 

combination 
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0.5 SOK , lysis  3.0212ꞏ1013 –0.171 

0.6 
0
d , lysis  1.3087ꞏ1016 –0.5073 

0.65 Same result as for the correlation limit: 0.6 
0.7 Same result as for the correlation limit: 0.6 
0.75 Same result as for the correlation limit: 0.6 

0.8 max , 0
d  1.8269ꞏ1019 0.7836 

0.85 SOK , 0
d  6.2301ꞏ1023 –0.8129 

0.9 SOK , 0
d , lysis  1.9432ꞏ1026 –0.8552 

Table 3: Combinations of the most identifiable parameters in the first iteration for test 
A1 

 

As can be seen from the table, only two binary parameter combinations (viz., SOK –

lysis  and 0
d – lysis , with a maximum correlation of –0.171 and –0.5073) were 

practically identifiable at a maximum correlation limit of 0.5. Therefore, the model, as 

formulated, not only contains rather uninfluential parameters ( SEK  and IAK ), but also, 

as previously inferred from the sensitivity functions, exhibits strong correlation between 

others. We chose the latter combination ( 0
d – lysis ) as the more identifiable as it 

exhibited an absolute correlation very close to 0.5 and a D-optimal criterion 1000 times 

greater than the former —this should result in more precise parameter estimation or, in 

other words, in more accurate determination of the biased optimum of the objective 

function. 

The next step involved improving the solution by estimating the previously selected 

most identifiable parameters. The solution in question would be biased by the other 

parameters, which were kept constant at the values determined with the evolutionary 

strategy. The estimation procedure used was a local deterministic optimization 

algorithm affording management of constraints. Therefore, the overall strategy was of 

the hybrid type (first global and then local). Its use provided the next results:  

0 –5 –12.6ꞏ10  hd   and –10.49 hlysis  . 
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The value of the objective function thus obtained was 1229.6, which is smaller than the 

earlier calculation. Obviously, the estimations were biased by the effect of excluded 

parameters. 

Repeating the whole process with the new parameter set led to the same results, i.e., the 

ensuing sensitivity functions were very similar to those of Figures 7–9 and the most 

identifiable parameters were again 0
d  and lysis . Therefore, no further iteration was 

required and the process was finished by adopting the parameter values shown in 

column A1 of Table 4 as optimal for this experiment. Practical identifiability, however, 

is rather difficult to estimate from available data obtained under these experimental 

conditions.  

Figure 6 also shows the model outputs obtained with the optimal parameter values 

(solid line) together with those provided by the initial values (dashed line) and the 

experimental data used (circle marker). As can be seen from the figure, these parameter 

values allowed the model to reproduce the experimental results quite closely. 

Figure 10 shows the residuals (viz., the differences between model outputs and 

experimental data) obtained with the optimal parameter vector; as can be seen, they 

were randomly distributed around zero (i.e., they had a zero mean). On the other hand, 

their standard deviations are very similar to the corresponding measurement errors (0.02 

gꞏL–1 in cell concentrations and 0.78 gꞏL–1 in the ethanol concentration). Consequently, 

the model can be assumed to provide accurate predictions, and the fitting to be roughly 

optimal, under these experimental conditions. However, the parameter values afford no 

reliable conclusion as regards physical meaning since the model provides a biased 

solution. 

< Figure 10 > 
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3.2.2. Analysis for experiments A2, A3, B1 and B3 

As with A1, application of the same procedure to the results of tests A2, A3 and B1–B3 

afforded no complete practical identifiability. The optimal parameter sets thus obtained 

are shown in Table 4. As in the case of the experiment A1, the experimental data were 

optimally fitted in all tests. 

In order to obtain a unique value for each parameter, these data were used to determine 

average parameter values which provide a parameter set shown in last column of Table 

4. Obviously, these mean parameter values resulted in highly accurate reproduction of 

all experimental results. 

 

 A1 A2 A3 B1 B3 Mean 

max  

(h–1) 
0.62 0.61 0.61 0.62 0.61 0.61 

SEK  

(g ethanolꞏL–1) 
3.8 3.64 3.55 3.59 4.06 3.73  

IEK  

(g ethanolꞏL–1) 
10.63 10.82 11.16 9.92 11.97 10.9  

IAK  

(g acetic acidꞏL–1) 
98.6 97.66 103.29 97.23 103.93 100.14  

SOK  

(g oxygenꞏL–1) 
3.33ꞏ10–4 3.18ꞏ10–4 3.31ꞏ10–4 3.2ꞏ10–4 3.39ꞏ10–4 3.28ꞏ10–4  

0
d  

(h–1) 
2.6ꞏ10–5 2.53ꞏ10–5 2.55ꞏ10–5 2.08ꞏ10–5 3.04ꞏ10–5 2.56ꞏ10–5  

mEK  

(g ethanolꞏL–1) 
36.81 38.01 37.54 38.26 37.53 37.63  

mAK  

(g acetic acidꞏL–1) 
12.51 12.13 13.02 12.98 12.81 12.69  

lysis  

(h–1) 
0.49 0.46 0.48 0.48 0.49 0.48 

Table 4: Optimum parameter values obtained in different tests  
 

3.3. Model validation 

The last step in the process involved validating the model by using experimental results 

obtained under conditions other than those employed in its construction (viz., tests C1–
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C4). Figures 11–14 compare the resulting simulated outputs in graphical form. Based on 

them, the proposed model is valid within the operational range established from the 

experimental tests conducted here. Therefore, it may be of use in other types of studies 

involving the use of models for predictive purposes. 

< Figure 11 > 

< Figure 12 > 

< Figure 13 > 

< Figure 14 > 

 

4. Conclusions 

In part II of this series we simultaneously addressed the practical identifiability and 

estimation of the parameters of the model for acetic acid fermentation proposed in part 

I. This type of study, though it should always be done, is unusual in Biochemical 

Engineering studies despite its high usefulness for accurate process modelling. 

The most salient conclusion of our analysis is that none of the tests conducted afforded 

a practical identifiability analysis allowing the model parameters to be accurately 

obtained with any particular estimation algorithm. Thus, process outputs were poorly 

sensitive to some parameters (for instance, SEK  and IAK  have a influence lesser than 

0.7 %) and strong correlations were detected between others (for instance, SOK , 0
d  and 

lysis , see table 3). Therefore, although the simulations reproduced the results of all tests 

—validation experiments included—, the outcome does not allow one to attach physical 

meaning to the parameters. In fact, the strong influence of the quality of the 

experimental data used on the outcome of the parameter identifiability analysis entails 

carefully designing the experimental testing for optimal results. 
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The practical identifiability analysis was approached with a strategy of local type based 

on inspection of the sensitivity functions and an iterative procedure which afforded pin-

pointing of the most identifiable parameters around a given point in the parameter space 

by determining the parameter estimation correlation matrix with exclusion of those 

parameters scarcely influencing the outputs. The local nature of this approach entailed 

estimating the model parameters; therefore, the point around which the analysis was 

conducted in each iteration was a sub-optimum provided by an optimization algorithm 

(an evolutionary strategy known as ALGA). This facilitated convergence in selecting 

the most identifiable parameters (those combinations with a correlation lower than 0.5) 

and simultaneously improving the solution. If one or more parameters are inadequately 

identifiable —as some in the studied model indeed were—, then the solution will be 

biased by effect of the parameters retaining fixed nominal values. 

Parameters were estimated by using a hybrid approach combining a stochastic global 

optimization algorithm (viz., an evolutionary strategy) and a deterministic local 

algorithm (SQP). This choice was dictated by the low convergence rate of the former 

near the optimum, which was no hindrance with the latter. Therefore, the evolutionary 

strategy was used to determine the starting point for the parameter space to be used in 

the practical identifiability analysis, and the local method to gradually approach the 

potential global optimum. The evolutionary strategy proved quite an effective choice in 

this context; thus: 

(a) it required no constraint to be imposed on the objective function or 

restrictions; and 

(b) the computation time needed to obtain the objective function was 

reasonably short —it never exceeded 20–25 minutes on a standard PC. 

Despite their stochastic nature, evolutionary strategies and related 
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algorithms are much more expeditious than alternative procedures in 

practice. 

So, the estimated parameter values were: max =0.61 h–1, SEK =3.73 g ethanolꞏL–1, 

IEK =10.9 g ethanolꞏL–1, IAK =100.14 g acetic acidꞏL–1, SOK =3.28ꞏ10–4 g oxygenꞏL–1, 

0
d =2.56ꞏ10–5 h–1, mEK =37.63 g ethanolꞏL–1, mAK =12.69 g acetic acidꞏL–1 and 

lysis =0.48 h–1. 

Finally, the model provides quite an accurate reproduction not only of the experimental 

results used to estimate its parameters, but also of a series of validation tests performed 

under alternative conditions. Therefore, the proposed model can also be useful for other 

problems falling within the scope of the body of tests used (e.g., dynamic optimization 

of the process). 
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Figure captions 

 

 

Figure 1: Variation of fe with ethanol concentration (E) at different KIE values using KSE 

= 0.5. 
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Figure 2: Variation of fa with acetic acid concentration (A) at different KIA values. 

 

Figure 3: Variation of fdE with the ethanol concentration (E) at different KmE values. 
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Figure 4: Variation of fdA with the acetic acid concentration (A) at different KmA values. 
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Figure 5: Flow-chart of the optimization procedure. 
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Figure 6: Comparison of the model outputs obtained by using the initial and optimal 

parameter sets with experimental data from test A1 following execution of ALGA. 
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Figure 7: Percent variations of the sensitivity functions with respect to the concentration 

of viable cells ( vX ) as a function of time (t, h) in test A1. 

 

 

Figure 8: Percent variations of the sensitivity functions with respect to the concentration 

of total cells ( X ) as a function of time (t, h) in test A1. 
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Figure 9: Percent variations of the sensitivity functions with respect to the concentration 

of ethanol ( E ) as a function of time (t, h) in test A1. 

 

 

Figure 10: Residuals obtained with the optimal parameter set for test A1. 
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Figure 11: Comparison of the model outputs obtained by using the optimal parameter 

set with experimental data from test C1. 

 

 

Figure 12: Comparison of model outputs obtained by using the optimal parameter set 

with experimental data for test C2. 
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Figure 13: Comparison of model outputs obtained by using the optimal parameter set 

with experimental data for test C3. 
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Figure 14: Comparison of model outputs obtained by using the optimal parameter set 

with experimental data for test C4. 

 

 


