
*Corresponding Author. Tel: +34 957212079; fax: +34 957218630 
Address: Edif. Leonardo Da Vinci. 
 Campus Universitario de Rabanales. 
 Ctra. Madrid (a) Km. 396. 
 Postal Code: 14071 – Cordoba (Spain). 
Email: jjimenez@uco.es 

OPTIMIZATION OF BIOTECHNOLOGICAL PROCESSES. THE 

ACETIC ACID FERMENTATION. PART III: DYNAMIC 

OPTIMIZATION 

 

Jorge E. Jiménez-Hornero,(a)* Inés M. Santos-Dueñas,(b) Isidoro García-García(b) 

(a) Computing and Numerical Analysis Department, University of Cordoba, Spain 

(b) Chemical Engineering Department, University of Cordoba, Spain 

 

Abstract 

Wine vinegar is obtained in a biotechnological process one of the crucial steps in which 

is the biological oxidation of the starting wine. Such a step is usually performed in a 

semi-continuous operation mode where a preset fraction of the culture medium is 

unloaded from the fermenter as product and the remainder left in it as inoculum to 

facilitate expeditious fermentation of the wine subsequently added to replenish the 

amount withdrawn. The overall performance of the fermenter can vary markedly 

depending on the particular operating conditions, and so can the quality of the product 

and the economy of the process as a result. Identifying the most suitable operating 

conditions therefore poses a typical optimization problem named as dynamic 

optimization or open-loop optimal control, which is solved by determining the time 

profiles for the control variables of the system in order to optimize a given cost 

function. Such a function represents the goal to be achieved as regards the specific 

needs of the problem. In part III of this series the previously proposed model in parts I 

and II has been used for addressing the dynamic optimization of the acetic fermentation 

process in terms of various objective functions, with special emphasis on productivity.  
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1. Introduction 

Mathematically, dynamic optimization problems are generally solved by maximizing or 

minimizing the following cost function [1–4]: 
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where  x t  is the state vector,  u t  denotes control variables,   is a penalty function 

for the final state [  fx t ] and L  a function intended to weight the state path travelled 

and control sequence used. 

The previous objective function is essentially subject to the following equality 

constraint: 

    , , 0x t u t t     (2) 

which constitutes the system of differential–algebraic equations (DAEs) of the model 

representing the dynamics of the system to be optimized. The differential equations 

result from the mass and energy balances governing the behaviour of the process; by 

contrast, the algebraic equations can vary in nature (e.g., kinetic equations describing 

cell growth and death in some bioprocesses). Obviously, one must also know the initial 

conditions for the state variables,  0x t . 

Moreover, the solution to the problem may be subject to additional restrictions of 

widely variable nature. For example, it may be necessary not to exceed specific 

temperature or pressure limits so as to avoid specific hazards or the end-product may 
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need to meet certain specifications. All this requires including a variable number of 

additional equality and inequality constraints on some variables affecting development 

of the process. Such restrictions can be of the (a) point, (b) path or (c) terminal time 

types, which are to be met at specific points in time, throughout the process or at its end, 

respectively, and can be formulated via the following equations and inequations: 

    , 0h x t u t     (3) 

    , 0g x t u t     (4) 

Finally, constraints may include operational bounds or validity ranges for both control 

and state variables: 

  I Sx x t x   (5) 

  I Su u t u   (6) 

A number of methods have been developed over the past few decades for the numerical 

resolution of open-loop optimal control problems. Despite their apparent variety, such 

methods can be classified into three broad categories, namely: dynamic programming, 

indirect methods and direct methods. 

Dynamic programming methods rely on Bellman’s optimality conditions [5]; these were 

originally established to solve steady-state problems and later adapted to dynamic 

problems via the Hamilton–Jacobi–Bellman equation —which usually has no analytical 

solution. The greatest shortcoming of this procedure is that it involves rather long 

computational times in practice [6]; in the beginning, however, it gained widespread 

popularity by virtue of its ability to address this type of problem. Later on, De Tremblay 

et al. [7] and Luus [8] developed Iterative Dynamic Programming (IDP), which, as it 

implied by its name, applies Bellman’s principle in an iterative manner. In fact, IDP 

performs a backward search (from end to beginning) in order to find the optimum 
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control profile for the process. Once the search is finished, the procedure is repeated a 

preset number of times. This methodology has been successfully used with some 

problems [9–12]. However, its high computational cost [13] for systems involving a 

large number of DAEs has restricted its use to problems on a smaller scale. In addition, 

IDP requires fitting some search parameters in order to ensure appropriate convergence. 

In order to reduce the exponential increase in computational cost with increasing 

number of decision variables, Valencia et al. [14] used dynamic programming in 

combination with neural networks to obtain slightly better computational efficiency. A 

comprehensive review of the development and uses of various dynamic programming 

approaches can be found elsewhere [15,16]. 

With indirect methods, dynamic optimization problems are solved by using 

Pontryagin’s maximum principle [17,18], which is based on Euler’s calculus of 

variations. The procedure involves constructing the Hamiltonian of the system, which 

will depend on the particular objective function and on the restrictions associated to it 

via so-called adjoint variables, and imposing the optimality constraints to be met. This 

converts the original problem into one governed by the initial conditions for state 

variables and the final conditions for adjoint variables (i.e., into a Two-Point Boundary 

Value Problem, TPBVP, which rarely has an analytical solution and requires using a 

numerical alternative such as the Shooting Method [19,20]). The difficulty involved in 

numerically solving a TPBVP has led some authors [13,21,22] to devise various 

transformations. Interested readers can find a description of the use of indirect methods 

on various chemical and biochemical processes (particularly in reactors operating in a 

semi-continuous mode) elsewhere [23–25]. Also, Skolpap et al. [26], and Roubos et al. 

[27], compared a method of Rocha and Ferreira [28] and several others with Bellman’s 

dynamic programming. The problem was always extremely difficult to solve, especially 
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in the presence of point or path constraints on state variables. Therefore, indirect 

methods are extremely complicated to apply in practice. 

On the other hand, direct methods use a discretization procedure to convert the original 

problem, of infinite dimension, into a non-linear optimization problem of finite 

dimension subject to the constraints imposed by the dynamics of the particular system 

and several other restrictions which can be solved with a standard optimization 

algorithm. Some studies [29] have shown that direct methods to be more efficient for 

solving dynamic optimization problems than are indirect methods and dynamic 

programming owing to the high practical complexity and computational cost of the 

latter two. In addition, these procedures find it especially difficult to manage constraints 

—particularly on state variables. Direct methods afford two different types of 

parameterization, namely: 

(a) Complete Parameterization (CP), also known as the “simultaneous 

approximation strategy”, which discretizes both state and control variables. 

(b) Control Vector Parameterization (CVP), also referred to as the “sequential 

approximation strategy”, which discretizes control variables alone. 

In its earliest incarnation, the CP method discretized control variables and approximated 

the differential equations of the model via finite differences. Subsequently, it 

parameterized the time paths for control and state variables, thereby leading to an Non-

linear Programming (NLP) problem under algebraic constraints where decision 

variables constituted the parameters for each path. The first useful, efficient results 

provided by this procedure [30,31] were subsequently improved by using various 

alternative approaches where differential equations in the model where discretized with 

procedures other than those based on finite differences. Worth special note among such 

procedures are those of Biegler [32], who uses Lagrange polynomials to define the time 
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path —which ensured continuity at discretization points—; Renfro et al. [33], who 

employs orthogonal collocation; and Cuthrell and Biegler [34], who uses a finite 

element approach that improved on previous results. The ensuing NLP problem is 

frequently solved with the Sequential Quadratic Programming (SQP) algorithm or some 

variant thereof [32,35]. Additionally, parameterizing state paths substantially increases 

the dimension of the optimization problem relative to the control parameterization 

method; the stiffer the system is, the greater is the increase by effect of the growing 

number of points required to accurately describe all paths involved. This additional 

requirement further increases computational costs. Interested readers can find 

applications of this optimization strategy to various processes (particularly of chemical 

engineering interest) elsewhere [33,35–40]. Also, an excellent review of the state of the 

art in complete parameterization methods has been published [41]. 

The foundation of control parameterization methods is also described in detail 

elsewhere [42–44]. These procedures only discretize and parameterize control variables, 

which produces an NLP problem that entails solving the system model in each iteration 

in order to assess the objective function. Therefore, this strategy leads to an external 

NLP problem combined with an internal Initial Value Problem (IVP) [45–47]. Control 

paths are parameterized with polynomials —usually Lagrange polynomials— of 

variable order. However, the problem can usually be solved more efficiently by using a 

low-order approximation, namely: 0 for constant segments in each discretization 

interval or 1 for linearly variable segments in the intervals. In addition, to reduce the 

number of decision variables, these approximations allow one to easily confirm the 

bounds for the control variables. However, the quality of the resulting solution is 

extremely dependent on that of the parameterization of the control profile [48]. This 

strategy has been used in the dynamic optimization of a number of processes. Worth 
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special note in the chemical engineering domain is the work in this respect of Bojkov et 

al. [49], Vassiliadis et al. [46,47], Banga  et al. [4,50,51], Pushpavanam et al. [52], 

Sorensen et al. [53], Ishikawa et al. [54] and Mujtaba and Macchieto [55], among many 

others. 

Control Vector Parameterization is the easiest to implement and apply among all direct 

methods; also, its efficiency and robustness increase with increasing dimension of the 

target problem. However, if the numerical integrator used to solve the internal IVP is 

inadequately precise, convergence on the solution for the optimizer employed to solve 

the outermost problem can be troublesome. At present, this problem is avoided by using 

numerical integrators based on BDF algorithms such as DASSL [56]. 

On the other hand, complete parameterization methods have their greatest advantage in 

the way they handle path constraints on state variables; in fact their paths can be directly 

subjected to the constraints as the parameters used to describe them constitute decision 

variables in the optimization problem. However, some authors have developed effective 

strategies for applying these constraints in CVP methods [57,58]; also, currently 

available modelling and simulation environments for dynamic systems, which afford 

handling of such constraints, dispense with the use of CP methods under these 

conditions. Moreover, the dimension of the NLP problem is greater in a CP method than 

in a CVP method and so is the computational cost of using the former; this justifies the 

more frequent use of CVP methods in process engineering problems. 

In any case, the NLP problem is subject to the following shortcomings in any type of 

direct method: 

(a) The objective function is usually non-convex or multi-modal (i.e., it 

exhibits a number of local minima) by effect of its non-linear nature and the 

potential presence of discontinuities. 
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(b) Many optimization algorithms require that the objective function and 

constraints meet specific conditions fulfilment of which may be impossible 

or simple unverifiable. 

Based on the foregoing, efficiently solving a dynamic optimization problem with a 

direct method entails using a global procedure rather than a classical local optimization 

algorithm. A description of the application of a deterministic global model (viz., BB) 

to this type of problem can be found elsewhere [59,60]. However, stochastic global 

algorithms are the only ones that afford dealing with an NLP problem as if it were a 

black-box problem —unlike most deterministic global strategies, it requires no special 

condition to be met [61]. Banga et al. [4] used a hybrid method involving a stochastic 

global procedure followed by a deterministic local procedure —thereby combining the 

greatest advantages of both— in order to facilitate convergence on the global solution. 

So, the direct control parameterization method CVP constitutes one of the most 

effective choices for solving dynamic optimization problems and was thus adopted for 

subsequent work here. 

In summary, the main objective of this part is to identify the most suitable operating 

conditions in order to optimize a given cost function as could be either the productivity 

or then mean acetification rate. For this purpose, the specific mathematical model used 

and the experimental data employed in its development, are described in parts I and II of 

this paper series. 

 

2. Results and discussion 

Based on the industrial interest of the target process (acetic acid fermentation) and on 

our aim to focus on its economic side, the primary goal of our dynamic optimization 

procedure was to maximize two cost-related functions by using the raw material feed 
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rate as control variable. Such functions represented production (viz., the mass of acetic 

acid present in the unloaded volume that was formed per unit time) and the mean 

fermentation rate (viz., the mass of acetic acid formed per unit volume per unit time), 

namely: 

 cycle unloaded

cycle

HAc V
P

t


  (7) 

 ave
mean

P
r

V
  (8) 

where cycleHAc  is the acetic acid concentration at the end of the fermentation cycle (gꞏL–

1), unloadedV  the unloaded fermenter volume (L), cyclet  the total cycle duration (h), P  

production (g acetic acidꞏh–1), aver  the average fermentation rate (g acetic acidꞏL-1 

mediumꞏh-1) and meanV  the mean volume during the cycle (L). 

Because the bioreactor was operated in the semi-continuous mode and no effluent was 

released until the end of the cycle, maximizing the previous two functions need not lead 

to the same results as the dynamic optimization procedure. In fact, the mean volume of 

medium present in the reactor would vary with the way the fermenter was loaded (i.e., 

on the resulting control profile) and also with the unloaded volume; therefore, the peak 

production level need not coincide with the peak fermentation rate. In any case, the two 

objective functions were examined in isolation and with provision for no other 

considerations. On an industrial scale, additional factors must be taken into account 

depending on the particular needs, goals and policy of each producer. This led us to 

optimize the fermentation process in accordance with criteria typically shared by 

vinegar procedures as the core of optimization work on a larger scale. 

As noted earlier, the Control Vector Parameterization (CVP) method was chosen to 

solve the dynamic optimization problem and addressed the ensuing external NLP 
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problem with a global optimization algorithm (specifically, the Augmented Lagrangian 

Genetic Algorithm, ALGA, [62,63], which was subsequently combined with a 

sequential quadratic programming, SQP, algorithm). Therefore, a hybrid strategy which 

facilitated approximation to the global optimum was used. 

The results initially obtained by applying CVP methodology with discretization of the 

time axis into a preset number of intervals with zero-order polynomials (steps) revealed 

that all fermenter loading modes could be reasonably accurately approximated with a 

strategy involving two steps. In the first step, the fermenter was loaded at a constant 

flow-rate and the volume of medium increased linearly as a result; the model parameters 

for this step were the flow-rate and duration of the loading process. In the second step, 

the volume varied in a roughly exponential manner and the sole model parameter 

involved was the exponent of the function. The choice of an exponential variation for 

the second step was largely dictated by the discussion and conclusions in a previous 

paper [64] which emphasized the simplicity of exponential functions for this purpose —

a number of other choices, however, could have been made. As shown later on, using 

this particular strategy reduced the number of decision variables in the target problem. 

The following specific mathematical expressions for the feed rate and volume of 

medium were used: 

- First step (continuous loading): 

 1iF q  (9) 

 1V q t   (10) 

- Second step (exponential loading): 

    1

0 1 1
b t t

iF V q t b e       (11) 

    1

0 1 1
b t tV V q t e      (12) 



 11

where t  is the time elapsed from the beginning of the cycle (h); 1q  (Lꞏh–1) and 1t  (h) are 

the flow-rate and duration of the continuous loading step, respectively; 0V  is the cycle 

initial volume (L); and b  is the exponent reflecting the increase in volume during the 

exponential loading step. Therefore, the volume at the end of the continuous loading 

step was ( 0 1 1V q t  ) and the starting flow-rate to be used in the exponential loading step 

[64] was  0 1 1V q t b   . 

Parameterizing the loading profile provided 1q , 1t  and b  as decision variables for the 

optimization algorithm. Such variables were expanded with 0V  and —initially— 0E  

(ethanol concentration at unload (gꞏL-1)) since, as shown later on, they strongly affect 

the behaviour of the process and its outcome. The duration of the exponential loading 

step, t2, was dictated by the difference between the time needed to reach the working 

volume —which was dependent on exponent b— and also by t1. Therefore, the initial 

number of decision variables was five. Such a small number was a result of using the 

chosen strategy, and allowed the computational time and identifiability problems with 

the parameters of the input time profile to be substantially reduced. 

The total duration of each cycle was unconstrained and the sole constraint imposed was 

that the maximum working volume should be about 8 L. 

2.1. Optimization of the acetic acid production 

Once the loading profile was parameterized, maximization of the acetic acid production 

[eq. (7)] was addressed. The maximum and minimum values adopted for the respective 

decision variables were as follows: 
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The operational bounds for 1q  afforded flow-rates within the range typically spanned by 

industrial production processes (note that referred range is for a 8 L fermenter). Based 

on such bounds, 1t  should vary from 0 in the absence of continuous loading to 14 —

which would allow a volume of 7 L to be loaded at the minimum set flow-rate (i.e., the 

maximum volume to be fed at the lower bound for 0V ). Tests involving feeding the 

fermenter at a controlled ethanol concentration in the medium during the loading step 

showed that the maximum possible value for b was that in eq. (13). Based on the type of 

reactor usually employed in this process, 0V  cannot fell below 10–15% the total 

working volume. This led us to adopt 1 L as its minimum value. Also, based on the 

semi-continuous operational mode used, at least 10–15% of the fermenter volume at the 

end of each cycle was chosen to be unloaded. Finally, 0E  could obviously never exceed 

the concentration in the raw material [viz., 93 gꞏL–1, equivalent to 12 % (v/v)].  

Table 1 shows the most salient results obtained after 200 algorithm iterations, in 

increasing sequence of production. It should be noted that these data were all obtained 

with a pilot fermenter having a working volume of 8 L. 

Case 
t1 

(h) 
q1 

(Lꞏh–1) 
t2 

(h) 
b 

V0 
(L) 

E0 
(gꞏL–1) 

P 
(g acetic acidꞏh–1) 

1 2.0 3.50 0.0 0 1.0 15.4 12.9 
2 2.0 2.94 0.2 0.0622 2.0 21.6 14.6 
3 2.0 2.20 0.0 0 3.6 23.6 15.9 
4 1.6 2.47 0.9 0.0117 4.0 23.6 16.2 
5 1.1 0.93 3.0 0.1 5.0 25.0 16.5 
6 1.0 2.04 2.4 0.0099 5.8 25.2 16.9 
7 1.5 1.32 0.0 0 6.0 26.1 17.0 
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8 1.5 1.00 0.0 0.0963 6.5 29.6 17.2 
9 1.4 0.95 0.0 0 6.7 29.7 17.3 
10 1.0 0.98 0.0 0 7.0 29.4 17.5 
11 0.2 3.09 0.5 0.0622 7.0 29.2 17.5 
12 0.3 3.60 0.2 0.0896 7.0 29.3 17.5 
13 0.3 3.71 0.0 0 7.0 29.8 17.5 

Table 1: Most salient results obtained in optimizing production 
 

The ethanol concentration for each case listed in Table 1 is shown graphically in Figure 

1. As can clearly be seen, the first few cases exhibited a temporal variation of the 

ethanol concentration differing substantially from one another —as can be seen from 

Table 1, the presence of differences between ethanol profiles coincided with that 

between production figures. Also, however, production increased as the ethanol 

concentration converged on a specific variation pattern. From Table 1 it follows that 

convergence coincided with the initial increase in volume of each cycle —so much so 

that the volume reached in cases 10–13 equalled the upper bound for this decision 

variable— and with an ethanol concentration at unload close to 29.5 gꞏL–1. 

< Figure 1 > 

The variation pattern for the ethanol concentration in cases 8–13 was very similar, even 

though the loading process was conducted somewhat differently; thus, cases 11 and 12 

included an exponential loading step (notice that t2 in Table 1 is different to zero), 

whereas case 13 did not. This suggests that the influence of the loading mode on the 

evolution of the system weakens as the volume of medium unloaded between cycles is 

reduced. This effect can be explained as follows: if little medium is unloaded, then the 

residual mass will contain a substantial concentration of highly active biomass; also, 

whatever the loading procedure, the maximum possible ethanol concentration and 

acidity of the medium can cause no substantial cell growth inhibition or death during 

the cycle under these conditions. Therefore, whatever the loading mode, the system will 

evolve roughly identically. Worth additional note is the fact that the ethanol 
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concentration at unload was virtually the same (ca. 29–30 gꞏL–1) in cases 8-13 and that 

the initial volume in each cycle was 7 L (i.e., close to the upper bound set for this 

decision variable). 

The previous results suggest that production increases as changes in the conditions of 

the culture medium become slighter; this situation mimics steady-state operating 

conditions (i.e., the typical conditions under continuous operation). This led us to 

examine the behaviour of the system in the continuous operation mode by converting 

the problem into one of static optimization —the constraints were now the algebraic 

equations of the model for steady-state conditions— where the sole decision variable 

was the raw material feed rate (  i steady
F ). The new objective function to be maximized 

was 

      o osteady steady steady
P HAc F   (14) 

where  steady
P  denotes production (g acetic acidꞏh–1);  o steady

HAc the acetic acid 

concentration in the effluent (gꞏL–1); and  o steady
F  the effluent flow-rate (Lꞏh–1), which 

coincided with  i steady
F  in practice. The results obtained for these parameters are: 

 steady
P = 17.9 g acetic acidꞏh–1,  0 steady

E = 35.2 gꞏL–1,  o steady
HAc = 74.7 gꞏL–1 and 

 i steady
F = 0.24 Lꞏh–1. As can be seen, production under these conditions was better than 

in any of the cases shown in Table 1, at the expense of a low acidity and a relatively 

high concentration of ethanol in the effluent. Therefore, aiming at a high production 

leaves a high proportion of fed ethanol unreacted in the fermenter, which is 

uneconomical as regards substrate use. In addition, the industrial process must meet 

some legal requirements concerning the maximum ethanol content allowed in the 

product. Consequently, the use of a single fermenter to obtain high acetic acid 
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concentrations while maximizing ethanol use is incompatible with the obtainment of 

high production figures. Meeting both requirements at once therefore entails using some 

alternative such as introducing a second fermenter in order to deplete unreacted 

substrate from the first. 

2.2. Optimization of the fermentation rate 

On the other side, the maximization of the mean fermentation rate [eq. (8)] was 

addressed. To this end, the same loading profile parameterization and optimization 

algorithm as in maximizing production as well as the same lower and upper bounds for 

the decision variables were used. 

Table 2 shows the most salient results obtained after 200 algorithm iterations, in 

increasing sequence of mean fermentation rate. 

Case 
t1 

(h) 
q1 

(Lꞏh–1) 
t2 

(h) 
b 

V0 
(L) 

E0 
(gꞏL–1) 

rave 

(g acetic acidꞏL–1ꞏh–1) 
1 2.7 2.16 0.0 0 2.2 24.6 1.90 
2 1.2 1.87 9.1 0.0108 5.1 34.2 2.10 
3 1.5 1.68 18.4 0.0154 3.5 25.6 2.16 
4 0.1 0.36 15.0 0.0912 2.0 34.2 2.25 
5 0.4 0.32 15.3 0.062 3.0 36.3 2.36 
6 0.1 0.65 20.2 0.068 2.0 36.3 2.40 
7 0.1 0.78 20.1 0.0547 2.6 37.8 2.45 
8 0.4 0.24 20.2 0.0547 2.6 36.6 2.46 
9 1.8 0.41 23.2 0.0358 2.7 34.4 2.46 
10 0.1 0.48 20.4 0.0409 3.4 38.7 2.47 
11 0.2 0.3 22.1 0.0469 2.8 37.4 2.51 
12 0.2 0.3 23.9 0.0459 2.6 37.7 2.54 

Table 2: Most salient results obtained in optimizing the fermentation rate 
 

Figures 2 and 3 show the variation of the ethanol concentration in cases 1–6 and 7–12, 

respectively. As can be seen from Figure 2 and, especially, Figure 3, and also from 

Table 2, the highest fermentation rates (cases 10–12) were obtained when the ethanol 

concentration varied within a relatively narrow range (see scale on Figure 3). This may 

be why the ethanol concentration is kept constant during the industrial loading step 



 16

based on the results of much trial-and-error testing. Also, the minimal differences in 

fermentation rate between cases 7 to 12 were a result of the small differences in their 

operating conditions (viz., mean volume of medium present in the fermenter – see table 

3 –, ethanol concentration at unload, unloaded volume and loading profile – see table 2 

–). 

< Figure 2 > 

< Figure 3 > 

Table 3 shows the mean fermentation rates and volumes obtained in each case. As can 

be seen, the fermentation rate increases with decrease in the mean volume. 

Case 
Vmean 

(L) 
rave 

(g acetic acidꞏL–1ꞏh–1) 
1 7.7 1.90 
2 7.5 2.10 
3 6.9 2.16 
4 6.2 2.25 
5 6.1 2.36 
6 5.7 2.40 
7 5.6 2.45 
8 5.6 2.46 
9 5.5 2.46 
10 5.6 2.47 
11 5.4 2.51 
12 5.3 2.54 

Table 3: Mean volumes and fermentation rates obtained in each selected case 
 

Based on the data of Table 2, the operating modes that maximize the mean fermentation 

rate also involve leaving unreasonably high residual ethanol concentrations for the 

substrate to be efficiently used. 

Irrespective of the previous results, a comparison of the production figures for cases 7–

12 (Table 4) with those obtained in the continuous mode or the best cases shown in 

Table 1 exposes significant differences. The primary origin of the differences was the 

mean volume during the fermentation cycle in each case. 
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Case 
(Fermentation rate) 

P 
(g acetic acidꞏL–1) 

7 14.0 
8 14.0 
9 14.1 
10 14.3 
11 13.9 
12 13.6 

Table 4: Production obtained in cases 7–12 (optimization of the fermentation rate) 
 

2.3. Optimization of acetic acid production with maximal substrate use. 

The conclusions drawn as regards the loading modes that maximized both production 

and the mean fermentation rate raised the question as to the most suitable mode for 

industrial purposes (i.e., that affording maximal production and substrate use) what 

would be. In order to answer it, the system was subjected to dynamic optimization by 

imposing an ethanol concentration at unload, 0E , of 3.9 gꞏL–1 in order to ensure that the 

substrate concentration in the output effluent would be minimal. 

Identical procedures were used to perform 200 iterations of the optimization algorithm. 

The most salient results are summarized in Table 5, in increasing order of production. 

Case 
t1 

(h) 
q1 

(Lꞏh–1) 
t2 

(h) 
b 

V0 
(L) 

P 
(g acetic acidꞏh–1) 

1 0.6 2.97 3.1 0.1 4.0 13.6 
2 2.9 1.58 0.7 0.1 3.0 13.9 
3 2.2 2.27 0.2 0.0844 3.0 13.9 
4 2.0 2.36 0.7 0.0525 2.9 13.9 
5 1.8 2.80 0.9 0.0195 2.8 13.9 
6 0.8 3.71 2.1 0.0975 3.5 13.9 
7 2.0 2.54 0.0 0.0509 3.1 14.0 
Table 5: Selected results obtained with E0 = 3.9 gꞏL–1 (optimization of production) 

 

The ethanol concentration for each case is shown in Figure 4. 

< Figure 4 > 

Based on eq. (7), production under these conditions is exclusively influenced by the 

ratio of the unloaded volume to the cycle duration; in fact, the acid concentration in the 
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effluent, as well as the rest of the operating conditions, were quite similar in all cases –

see table 5 –, leading to the same optimum (viz., a production of ca. 14 g acetic acidꞏh–1, 

which is lower than under continuous operation but uses the substrate much more 

efficiently). 

The need to unload the fermenter to such a low ethanol concentration resulted in high 

unloaded volumes relative to those of Table 1. Otherwise, the process would always 

operate under conditions of ethanol deficiency and excessive acidity, which would 

severely restrict microbial growth. 

So, depending on the goal, the initial volume used in each cycle as well as the way the 

reactor is loaded must be different because the resulting ethanol concentration and 

acidity may exert a strong negative influence on the bacterial activity. 

 

4. Conclusions 

In part III of this series, dynamic optimization strategies to the acetic acid fermentation 

process were applied and the ensuing results were analysed. Thus, the optimum input 

profile (specifically, the raw material feed rate) was used to maximize two objective 

functions of interest as regards process economy, namely: acetic acid production and 

fermentation rate. For this purpose, because of its ease of implementation and 

compatibility with standard optimization algorithms, the direct method known as 

Control Vector Parameterization (CVP) was used. In fact, the procedure followed was a 

combination of a global evolutionary strategy and a local deterministic algorithm 

(SQP). 

Production was maximal with continuous or steady-state operation. In fact, this result 

could be expected after the conclusions obtained working on a semi-continuous 

operation mode: an increasing production with decreasing volume of unloaded medium 
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in each cycle; this ensured retention of a substantial volume of highly active biomass 

between cycles and lead to convergence at a specific ethanol concentration. Also, the 

loading profile had virtually no influence on the performance on the process by virtue of 

the large residual volume remaining after unloading. The optimum production value 

obtained in the continuous operation mode was about 18 g acetic acidꞏh–1, all with a 

constant ethanol and acetic acid concentration of ca. 35 gꞏL–1 and 75 gꞏL–1, respectively. 

Despite the good production obtained, the excessive ethanol concentration present in the 

product makes the process industrially unproductive. Therefore, the continuous 

operation mode appears to be unsuitable for industrial purposes except in isolated, 

specific cases. 

In the absence of other restrictions, the maximum fermentation rate was found to be 

obtained by unloading the fermenter to an ethanol concentration in the region of 35 gꞏL–

1; this entailed unloading ca. 60% of the total volume and re-loading it in such a way as 

to keep the ethanol concentration within the approximate range 38–46 gꞏL–1. For the 

above-stated reasons, however, this ethanol concentration level at unload is too high by 

industrial standards. Therefore, the optimum operating mode adopted in terms of 

fermentation rate is industrially impractical in theory if the substrate has to be 

efficiently used. 

Based on the foregoing, the operating conditions that would maximize production at a 

given substrate uptake efficiency (viz., by unloading the fermenter to a concentration of 

3.9 g ethanolꞏL–1 each time) were sought. The study conducted to this end revealed that 

it is necessary unloading around ca. 60% of total volume, being recommended a quick 

loading step. The highest production level achieved in this way was in the region of 14 

g acetic acidꞏh–1, which is less than the typical values for continuous operation.  
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Figure captions 

 

 

Figure 1: Comparison of ethanol concentrations for the most salient cases (optimization 

of production). 

 

 

Figure 2: Comparison of ethanol concentrations for cases 1–6 (optimization of the mean 

fermentation rate). 



 28

 

Figure 3: Comparison of ethanol concentrations for cases 7–12 (optimization of the 

mean fermentation rate). 

 

Figure 4: Comparison of ethanol concentrations for the most salient cases (optimization 

of production when unloading at 3.9 gꞏL–1 ethanol). 


