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a b s t r a c t

The multifractal detrended fluctuation analysis (MF-DFA) is used to verify whether or not the returns of time series of prices paid to 
farmers in original markets can be described by the multifractal approach. By way of example, 5 weekly time series of prices of 
different breeds, slaughter weight and market differentiation from 2000 to 2012 are analyzed. Results obtained from the 
multifractal parameters and multifractal spectra show that the price series of livestock products are of a multifractal nature. The 
Hurst exponent shows that these time series are stationary signals, some of which exhibit long memory (Merino milk-fed in Seville 
and Segureña paschal in Jaen), short memory (Merino paschal in Cordoba and Segureña milk-fed in Jaen) or even are close to an 
uncorrelated signals (Merino paschal in Seville). MF-DFA is able to discern the different underlying dynamics that play an 
important role in different types of sheep livestock markets, such as degree and source of multifractality. In addition, the main 
source of multifractality of these time series is due to the broadness of the probability function, instead of the long-range correlation 
properties between small and large fluctuations, which play a clearly secondary role.

1. Introduction

The application of certain physical methods to economic and financial time series has been widely used in order to
detect characteristics that cannot be deduced from classical economic theories [1]. Multifractal Detrended Fluctuation
Analysis (MF-DFA) [2] has become a widely applied technique for analyzing price fluctuations. This method, which links
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the Detrended Fluctuation Analysis (DFA) [3] to the fractal theory [4], provides correct results for time series that are
affected by trends and yields a more in-depth knowledge of certain of their features. The DFA has been used to determine of
(mono-) fractal scaling behaviors in different non-stationary time series [5–7]. However, it is unable to capture complex
dynamics in a time series or to characterize their scaling properties when the processes are governed by more than
one (theoretically infinite) scaling exponent [8]. As seen in several studies, MF-DFA allows for a reliable multifractal
characterization of time series from different fields, such as seismic events [9,10], wind speed [11], vehicle traffic speed [12],
sunspot observations [13], streamflow rivers [14], magnetic fields [15], as well as applications in Medicine [16]. In recent
years, several authors have suggested that MF-DFA is also a useful tool for analyzing time series of prices [17], one of its
main advantages being its ability to accurately quantify correlation properties masked by polynomial trends. In addition, it
has been found that MF-DFA is able to discern the different underlying dynamics in different types of markets [18].

Fluctuations in certain speculative prices of goods and scaling properties through detrended fluctuation analysismethods
have been studied in detail. For example, the time scale property on the process of returns in the fluctuations of cotton
prices was observed in Ref. [19]. Economic indices [20], stock exchange prices [21] and stock markets [22–26] have also
been studied. Concerning agricultural markets, the use of MF-DFA has focused on world prices, commodities and future
markets (see e.g. Refs. [27–29]), although few studies concentrate on prices of agricultural products in national markets, as
with Korea [30]. Therefore, no attention has been paid to local markets and to prices received by farmers. It should be born
in mind that agricultural prices directly affect the income paid to farmers, this being one of the issues most relevant to the
European Union’s agricultural policy [31]. For this reason, sheep livestock regional markets have been selected, in which
price fluctuations are mainly due to the inherent characteristics of markets themselves.

Despite the fact that slaughter prices in livestock markets are determined by consumer preferences, slaughter age
and seasonality, farmers cannot usually forecast price developments. This is because the pricing of agricultural products
responds to different variables and interests that make prediction and change somewhat uncertain over themonths. Hence,
farmers face uncertainty about the economic consequences of their actions owing to difficulties in predicting prices [32].
The uncertainty of the agents is attributable to the excessive price fluctuations of agricultural and livestock products, which
are undesirable because they could affect inflation and social stability in the most extreme cases [33]. Therefore, the main
goal of this paper was to verify the existence of multifractal characteristics in time series of agricultural-livestock prices at a
regional level, using livestock sheep markets in Andalusia (southern region of Spain) as an example. Furthermore, because
two different types of multifractality in time series can be distinguished [2]: (i) Multifractality due to a broad probability
density function for the values of the time series and (ii) Multifractality due to different long-range (time-) correlations
of small and large fluctuations, this circumstance is also analyzed in this study. This work has been organized in different
sections where price time series, together with the multifractal detrended fluctuation analysis, are described. The relation
between MF-DFA and the standard multifractal analysis can also be found herein. The multifractal nature of the time series
prices is explored and the results of MF-DFA are provided, together with the calculation of the multifractal spectra.

2. Methods

2.1. Price data time series

Sheep farming is widespread around the world, and a wide range of products is obtained from it (wool, meat and milk).
Because of the adaptability of these animals to marginal sites and the possibility of making better use of natural resources,
sheep livestock have traditionally been located in less-favored areas [34]. In Andalusia, sheep farming is related to extensive
systems and is more meat production-oriented [35]. Data obtained from the database of annual reports of the Consejería de
Agricultura y Pesca (regional government of Andalusia, Spain) have been used. We analyzed 5 weekly price data time series
for nearly thirteen years, from January 2000 to April 2012. The sheep time series of prices paid on the farm were: Merino
milk-fed (Seville),Merino paschal (Cordoba),Merino paschal (Seville), Segureñamilk-fed (Jaen) and Segureña paschal (Jaen).
The market where the price was recorded is noted in brackets.

Merino is the most widespread breed around the world, which can be attributed to its traditional specialization in wool
production, although the selection of this breed is currently focused on meat production. Segureña is a rustic-type breed
from the Mediterranean region, quite hardy and well adapted to the specific conditions of low rainfall and scant pastures.
Segureña meat shows evident market differentiation, as it is more valued by consumers owing to its quality, while the
Merino breed lacks clear market differentiation and its meat can be considered as being more generic. In addition, Segureña
lamb possesses an official quality label linked to its geographical origin [36]. Moreover, the milk-fed lamb is breast-fed and
slaughtered at a very early age, between 20 and 40 days, with a weight of around 12 kg. Its meat is white to pink in color and
has a low fat content, while the paschal lamb is usually slaughtered at around 120 days of age, having reached a slaughter
weight of over 23 kg. The paschal meat is dark pink in color and is greasier than the milk-fed meat. Fig. 1 depicts these five
time series which, as with other commodities, show an oscillatory behavior, but this is not enough to establish the existence
of long-term correlations and the presence of scaling behavior. Thus, an in-depth study with a suitable tool, such as the
MF-DFA, can clarify and properly characterize the underlying features in these series. In Spain, lamb has traditionally been a
food with a strong familiar and festive character, this being the reason that meat consumption as well as its prices increases
in December [37], as can be seen in Fig. 2, in which weekly prices for the analyzed year are averaged. Sheep prices exhibit a
seasonal pattern, which is noted for every breed and slaughter weight.



Fig. 1. Time series of (a) Merino milk-fed, Seville; (b) Merino paschal, Seville; (c) Merino paschal, Cordoba; (d) Segureña milk-fed, Jaen; and (e) Segureña
paschal, Jaen; from 2000 to 2012.

Fig. 2. Weekly average time series for the five studied sheep prices, from 2010 to 2012.

In all five time series, the existence of a clear seasonal behavior is evinced, which is convenient to remove before the
multifractal procedure is applied. In order to confirm this periodicity, autocorrelation functions have been calculated for
each time series. Autocorrelation functions (Fig. 3a–e) show a sinusoidal trend which slowly declines. The existence of a
seasonal pattern is confirmed though the cyclic behavior of the latter, which is repeated at every time lag of around 50
data (weeks) that correspond to 1 year. This seasonal effect has been removed by subtracting a seasonal coefficient from
each price data. The seasonal coefficients represent the average deviation from the overall mean of all of the values for a
specific week of the year. When weekly prices are below the overall mean, a negative coefficient is obtained, while those



Fig. 3. Autocorrelation functions for the original and the seasonally adjusted time series.

months with higher prices have positive seasonal coefficients. This procedure was performed for each price time series. As
a consequence of the removal of the seasonal component in the five price time series, the autocorrelation functions do not
exhibit the typical shape of time series governed by a periodic component (see Fig. 3f–j). Thus, the seasonality was removed
in the residual time series defined above. Finally, the return time series, r(t), were calculated from the residual time series
as follows:

r(t) = ln P(t + 1) − ln P(t) (1)

P(t) is defined as the price at the week t .

2.2. Description of the MF-DFA

Westudied theMFDFA to characterize theMFproperties of the returns for sheep price time series. TheMF-DFAprocedure
was proposed by Kantelhardt et al. [2] for the study of non-stationary time series which are affected by trends or cannot be
normalized. This method, which aims to identify the scaling behavior of the fluctuations of the time series for different qth
order moments, is based on the detrended fluctuation analysis [3]. In fact, the three first steps are essentially identical to
the traditional DFA. The five steps run as follows [2]:

Step 1: Determine the ‘‘profile’’
Let us suppose that xk is a time series of length N , and that this series is of compact support (xk = 0 for an insignificant

fraction of the values only), it is feasible to determine the ‘‘trajectory’’ or ‘‘profile’’ Y (i), which is given by the accumulation
of the signal, as follows:

Y (i) =

i
k=1

[xk − x̄] , i = 1, . . . ,N. (2)

The profile is determined by subtracting for each record xk the average value x̄ of the time series. Subtraction of the mean is
not compulsory, since it would be eliminated by the later detrending in the third step.

Step 2: Divide the profile Y (i) into Ns = int(N/s) non-overlapping segments of equal length s. Since the length N of the
series is often not a multiple of the considered time scale s, a short part at the end of the profile may remain. In order to
retain this part of the series, the same procedure is carried out again starting from the opposite end. Thereby, 2Ns segments
are obtained for each s value.



Step 3: For each segment v the estimated values yv(i) are calculated by a polynomial fit by using the least-squaresmethod.
For estimating yv(i), several fits may be used such as linear, quadratic, cubic, or higher order polynomials (conventionally
called DFA1, DFA2, DFA3, etc.). Since the detrending of the time series is done by the subtraction of the polynomial fits from
the profile, different order DFAs differs in their capacity to eliminate trends in the series. InMF-DFAm (mth order (MF-) DFA)
trends of order m in the original series are eliminated. Later, considering the previous fits, the possible trends are removed
by subtracting yv(i) from y(i) for each segment v. Then the variance for each s value is calculated as the fluctuations of the
time series into each v segment as follows:

F 2(s, v) =
1
s

s
i=1

{Y [(v − 1)s + i] − yv(i)}2 (3)

for each segment v, v = 1, . . . , 2Ns and for v = Ns + 1, . . . , 2Ns in equation:

F 2(s, v) =
1
s

s
i=1

{Y [N − (v − Ns)s + i] − yv(i)}2 . (4)

Step 4: Generally, we are interested in how the generalized q dependent fluctuation functions Fq(s) depends on the time
scale s for different values of q. The fluctuation function of qth order is computed by averaging over all the fluctuations of
the segments, defined as:

Fq(s) =


1

2Ns

2Ns
v=1


F 2(s, v)

q/21/q

. (5)

In general, the index variable q can take any real value except zero due to the diverging exponent (see Eq. (7)). For q = 2, the
standard DFA procedure is retrieved. Hence, repeating steps 2–4 for several time scales s, Fq(s)will increase with increasing
s. For q = 0 the fluctuation function needs to be estimated by applying a logarithmic averaging procedure:

Fq=0(s) = e


1
4Ns

2Ns
v=1 ln[F2(v,s)]


. (6)

Step 5: Finally, the scaling behavior of the fluctuation functions is determined by analyzing log–log plots of Fq(s) versus s for
each value of q. If the series xk is long-range power-law correlated, Fq(s) increases for large values of s as a power-law, as
follows:

Fq(s) ∼ sh(q). (7)

As a consequence, the exponents h(q) can be estimated by determining the slopes of log–log plots Fq(s) versus s for each q
value. Only if small and large fluctuations scale differently, will there be a significant dependence of h(q) on q. When the
time series exhibits a multifractal nature, the exponent h(q) and q are related in a decreasing sense due to small and large
fluctuations scaling differently. Negative q values describe the scaling behavior of intervals with small fluctuations, whereas
those of positive q values characterize the scaling behaviors of intervals with large fluctuations. When the contribution
of the small fluctuations are comparable to the contribution of the large fluctuations, the time series is considered as a
monofractal signal, and thus h(q) is independent of q. This fact is due to the scaling behavior of the variance F 2(s, v) being
identical for all segments v, and the averaging procedure in Eq. (5) will just give this identical scaling behavior for all values
of q. To determine the range of s values that will be considered for calculating the fluctuation function it is necessary to
take account that systematic deviations from the scaling behavior in Eq. (7) occur for very small scales, usually for s values
smaller than 10. In addition, for very large scales, the fluctuation function becomes statistically unreliable because of the
amount of intervals considered is very scarce. In agreement with this fact, s values larger than N/4 have usually been ruled
out in previous works.

2.3. Relation to standard multifractal analysis

As was also demonstrated by Kantelhardt et al. [2], for stationary, normalized series defining a measure with compact
support, the multifractal scaling exponents h(q) defined in Eq. (7) are directly related, as shown below, to the scaling
exponents τ(q) defined by the standard partition function-based multifractal formalism.

Suppose that the series Xk of length N is a stationary, positive and normalized sequence. Then the detrending procedure
in step 3 of the MF-DFA method is not required, since no trend has to be eliminated. Thus, the DFA can be replaced by the
standard fluctuation analysis (FA), which is identical to the DFA except for a simplified definition of the variance for each
segment v, v = 1, . . . ,Ns, in step 3 (see Eq. (3)).

F 2
FA(v, s) = [Y (vs) − Y ((v − 1)s)]2. (8)



Table 1
Results obtained from the statistical analysis of sheep price time series, from 2000 to 2012.

Sheep Market Mean
(e100kg−1)

Minimum
(e 100 kg−1)

Maximum
(e 100 kg−1)

Standard deviation
(e 100 kg−1)

Skewness Kurtosis

Merino milk-fed Seville 345,02 210,35 500,00 60,684 0.330 −0.603
Merino paschal Seville 229,88 145,00 336,57 34,551 0.128 −0.386
Merino paschal Cordoba 240,41 144,24 385,00 43,666 0.370 −0.223
Segureña milk-fed Jaen 394,22 240,40 572,00 68,571 0.239 −0.725
Segureña paschal Jaen 291,20 189,32 450,00 49,492 0.497 0.032

Inserting this simplified definition into Eq. (5) and using Eq. (7), we obtain
1

2Ns

2Ns
v=1

|Y (vs) − Y ((v − 1)s)|q
 1

q

∼ sh(q). (9)

For simplicity, it can be assumed that the length N of the series is an integer multiple of the scale s, obtaining Ns = N/s and
therefore

N/s
v=1

|Y (vs) − Y ((v − 1)s)|q ∼ sqh(q)−1. (10)

This already corresponds to the multifractal formalism. In fact, a hierarchy of exponents Hq similar to our h(q) has been
introduced based on Eq. (10) in Ref. [38]. In order to also relate the MF-DFA to the standard textbook box counting formal-
ism [38], we have employed the definition of the profile in Eq. (2). It is obvious that the term Y (vs)− Y ((v − 1)s) in Eq. (10)
is identical to the sum of the numbers Xk within each segment v of size s. This sum is known as the box probability ps(v) in
the standard multifractal formalism for normalized series xk,

ps(v) =

vs
k=(v−1)s+1

xk = Y (vs) − Y ((v − 1)s). (11)

The scaling exponent τ(q) is usually defined via the partition function Zq(s),

zq(s) =

N/s
v=1

|ps(v)|q ∼ sτ(q) (12)

where q is a real parameter as in the MF-DFA above. Sometimes, τ(q) is defined with an opposite sign (see, e.g. Ref. [38]).
Using Eq. (11) it is seen that Eq. (12) is identical to Eq. (10), and, analytically, the relationship between the two sets of
multifractal scaling exponents is obtained,

τ(q) = qh(q) − 1. (13)

Thus, it is shown that h(q) defined in Eq. (7) for the MF-DFA is directly related to the classical multifractal scaling exponent
τ(q). Another way to characterize a multifractal series is the singularity spectrum f (α), that is related to τ(q) via a Legendre
transform [38].

α =
dτ(q)
dq

and f (α) = qα − τ(q). (14)

3. Results

Table 1 illustrates some of the main descriptive statistics. It is apparent from this table that regarding slaughter age, the
highest prices occur for milk-fed lambs, while those of Segureña-type breed reach higher prices than those of Merino. These
facts are due to the fact that Spanish consumers have traditionally preferredmilk-fed lambs over paschal lambs [39]. Further-
more, the Segureña breed has a differentiated quality feature. Moreover, price oscillations are more marked for milk-feds,
taking into account the above-mentioned increased demand. In general, frequency distributions are slightly displaced to the
left (Skewness), whereas the Kurtosis coefficient exhibits a shape that is similar to a slightly flattened normal distribution.

MF-DFA is carried out over the returns derived from the five time series of sheep prices. The log–log plots of the
fluctuation functions Fq(s) versus s for the time series of price records were obtained by employing linear fits to remove
trends in the series. For all the studied cases, the corresponding log–log plots of the fluctuation functions are plotted in Fig. 4
using q moments ranging from −5.5 to 5.5 with 0.5 intervals and the scale s ranging from 10 to N/4, N being the length of
the time series. In general, for smaller time scales, negative q moments add chaotic features in the fluctuation functions
and, consequently, these values might be removed. Moreover, several works have confirmed that the correlations of the



Fig. 4. Multifractal fluctuation function Fq(s) obtained fromMF-DFA1 for the time series (a)Merinomilk-fed, Seville; (b)Merino paschal, Seville; (c)Merino
paschal, Cordoba; (d) Segureña milk-fed, Jaen; and (e) Segureña paschal, Jaen. Dashed line represents the s value for the crossover.

time series do not often follow the same scaling law for all time scales s (see e.g. Refs. [12,13]). In these cases, one or more
crossovers (sx) between different scaling regimes are observed in the fluctuation functions Fq(s). As can be seen from Fig. 4,
there is at least one crossover time scale in each of the time series analyzed, which is represented with a dashed line. Thus,
in this study, the maximum values (smax) for the fits are determined by the crossover time scale. These crossovers do not
depend on the special values of q and are different for each time series considered. Despite the fact that seasonality had been
removed before applying the multifractal procedure, smax values range between 42 and 51 weeks, being close to the annual
periodicity. For each time series, h(q) is estimated by the slope of the linear fits between smin and smax = sx for each log–log
plot of Fq(s) versus s for each qmoment. Hence, smin and smax values have been established for each case for the log–log plots
of Fq(s) versus s, being fitted to an adequate straight line for each q moment. Coefficients of determination are higher than
0.90 for each studied case. These time scale intervals represent the range in which multifractal properties are maintained.

As can be noted from Fig. 5, h(q) are decreasing functions which exhibit a strong dependence on q, which suggest that
these time series of sheep prices are characterized by a multifractal behavior. The exponent h(q) describes the scaling
behavior of the qth order fluctuation function. For positive values of q, h(q) describes the scaling behavior of intervals with
large fluctuations, while for negative values of q, h(q) describes the scaling behavior of segments with small fluctuations. In
order to evaluate and compare the degree of multifractality of the studied time series, the range of the h(q) is calculated.
The larger the range, the greater the variability in the distribution of high and low fluctuations is. A greater degree of
multifractality is related tomore violent price fluctuations [40]. Table 2 shows that the lowest variability in price fluctuations
is found for milk-fed in Seville (0.353). Perhaps this coincides with better distribution channels existing in a large market as
Seville. By contrast, highest price fluctuations occur in paschal lamb markets in Cordoba, in which the highest ∆h(q) values
are reached (0.579), Cordoba being a minor local market with poor marketing possibilities. ∆h(q) shows similar values for
the other markets (ranging from 0.436 to 0.465).

Based on the known relationship between the Hurst exponent and h(q) for q = 2 for small scales, it is possible to
directly compute the Hurst exponents for the sheep prices time series. While for stationary time series, h(2) is identical to
the well-known Hurst exponent H [2], for non-stationary signals the relation between the exponent h(2) for small scales
and the Hurst exponent H is H = h(2) − 1 [14]. Thus, h(2) allows one to determine whether a time series is stationary
or non-stationary and detect its long-range correlations. We have found that the Hurst exponent for Merino milk-fed
(Seville), Merino paschal (Seville), Merino paschal (Cordoba), Segureña milk-fed (Jaen) and Segureña paschal (Jaen) are
0.587+/−0.012, 0.513+/−0.009, 0.404+/−0.011, 0.461+/−0.011, 0.604+/−0.014, respectively. Owing to the fact
that h(2) are all lower than 1, all of these five time series are stationary signals. Moreover, where the Hurst exponent ranges



Fig. 5. Generalized Hurst exponent h(q) as a function of q for the original time series of sheep prices.

Table 2
Parameters obtained from the log–log plots of the fluctuation functions Fq(s).

Sheep Market smax (weeks) ∆h(q) h(2)

Merino milk-fed Seville 47 0.353 0.587
Merino paschal Seville 45 0.436 0.513
Merino paschal Cordoba 42 0.579 0.404
Segureña milk-fed Jaen 51 0.465 0.461
Segureña paschal Jaen 45 0.448 0.604

between 0.5 and 1, the time series exhibits a long memory or persistence, whereas, if the Hurst exponent ranges between 0
and 0.5, the time series shows a short memory or anti-persistence. Where H is equal to 0.5, the time series is uncorrelated.
Merino milk-fed (Seville), Merino paschal (Seville) and Segureña paschal (Jaen) time series are governed by long memory
(persistence), which indicates that, generally, high prices fluctuations are followed by high fluctuations, and low prices
fluctuations are followed by low fluctuations. Since Merino paschal (Seville) time series has a H value amounting to around
0.5, thismight be considered a quasi-uncorrelated signal.Merino paschal (Cordoba) and Segureñamilk-fed (Jaen) time series
show short memory (anti-persistence), thus high price fluctuations are followed by low fluctuations, and vice versa.

Kantelhardt et al. [2]mentioned that there are two sources ofmultifractality in time series. It is due to a broad probability
density function, on the other hand, and on the other, to different long-range correlations of small and large fluctuations,
bearing inmind that both can coexist. Analyzing the corresponding shuffled time series is an easyway to clarifying the kindof
multifractality. Multifractality due to the broadness of the probability density function cannot be removed with a shuffling
procedure, whereas multifractality due to different long-range correlations of small and large fluctuations are destroyed
through a random shuffling process. Hence, if the multifractality only corresponds to the long range correlation, we may
find h(q)shuffled = 0.5, and where the source of multifractality is exclusively due to the width of the probability density
function, both h(q) and h(q)shuffled are the same value. If both kinds of multifractality are present, the shuffling process will
only be characterized by a weaker multifractality than the original one. Since we were interested in the possible source
of multifractality, a shuffling procedure of the returns time series was performed. Shuffled time series were obtained by
following the procedure proposed by Matia et al. [22], which consists of: First, generating pairs of random integer numbers
(m, n ≤ N), N being the length of the time series; second, interchanging entries m and n; and finally, repeating these steps
20N times, for the purpose of ensuring adequate random shuffling.

Fig. 6 evinces that there are notable differences concerning the source of multifractality among time series. In general,
the main source of multifractality in these time series is the broadness of the probability density function, due to the fact
that shuffled returns also exhibit a multifractal nature. h(q) and h(q)shuffled curves overlap for Merino paschal (Seville) and
Segureña milk-fed (Jaen), which indicates that the source of multifractality is solely responsible for the multifractal nature



Fig. 6. Comparison of the generalized Hurst exponent h(q) as a function of q for original and shuffled h(q)shuffled time series of sheep prices of series (a)
Merino milk-fed, Seville; (b) Merino paschal, Seville; (c) Merino paschal, Cordoba; (d) Segureña milk-fed, Jaen; and (e) Segureña paschal, Jaen.

of both time series (see Fig. 6b and d). By contrast, in Fig. 6a and e a loss of multifractality is noted. For both cases – Merino
milk-fed (Seville) and Segureña paschal (Jaen) –, the source of multifractality due to the different long-range correlations of
the small and large fluctuations has been destroyed through the shuffling procedure, but the shuffled time series also show a
multifractal nature. Therefore, both sources of multifractality coexist in these time series. Merino paschal (Cordoba) (Fig. 6c)
is an intermediate case, in which both sources of multifractality also coexist. However, the relevance of the broadness of the
probability density function is greater than the long-range correlations.



Fig. 7. Multifractal spectra of time series.

Meanwhile, the multifractal spectrum provides an adequate characterization of the multifractal nature of price fluctu-
ations and enables one to describe in detail the price fluctuations among the previously defined time scales. In all cases,
multifractal spectra (see Fig. 7) are convex parabolas, which confirm the multifractal behavior of these time series. All of
them reach the maximum f (α) value for 1, according to the one dimension of the studied variables. Furthermore, when
comparing the spectra, we can observe that their shapes are completely different and consequently, all of the studied mar-
kets and breeds are subject to different high and low price fluctuations. Segureña milk-fed spectrum exhibits longer tails
than Merino milk-fed, which indicates the existence of greater heterogeneity in the distribution of both low and high price
fluctuations. Merino paschal (Seville) spectrum has a longer right tail than the Merino milk-fed (Seville), which evinces
greater heterogeneity in the distribution of low price fluctuations. This heterogeneity is evenmoremarked for Merinomilk-
fed (Cordoba) time series as consequence of the longer length of the right tail of its spectrum.

4. Conclusions

According to the results, time series of livestock prices are amultifractal process, as indicated by the strong q dependence
of h(q) and τ(q) in time series of prices. This q-dependence has different behaviors for q < 0 and q > 0 in all the studied time
series. Thus, it can be stated that the time series of sheep prices are of a multifractal nature. Hence, this study reveals that
time series of prices paid to sheep livestock farmers exhibit a multifractal behavior, which can be characterized by using the
MF-DFA. This finding allows one to useMFDFA as a suitable tool for the description and characterization of price fluctuations
of livestock products in original markets. Multifractal properties are kept from 10 weeks to 42–51 weeks (around one year),
which corresponds to the crossover time scale sx, which is in agreement with the annual seasonality of these markets.

Multifractal results demonstrate that similar time series recorded in nearby markets might show different underlying
fluctuations, sources and degrees of multifractality, persistency, anti-persistency and even poor correlation. By analyzing
the Hurst exponent valuesH , it is possible to assert that the time series of sheep prices are stationary signals exhibiting both
long and short memory. Moreover, comparing the generalized Hurst exponent of the original time series with the results
of the corresponding shuffled series, we found that multifractality of these time series of sheep prices is mainly due to the
broadness of the probability function, instead of the long-range correlation properties between small and large fluctuations,
which play a clearly secondary role. Therefore, uncertainty in prices depends on themarket, the breed and also the slaughter
weight. Further studies may deepen the understanding of price fluctuations in different original markets at a regional scale,
in light of the consequences of these disturbances, among others, on farmer incomes.
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