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Summary 
Rust diseases are a significant concern in legume production worldwide, 

causing substantial losses, particularly in developing countries that rely on grain 

legumes as a staple food and a key protein source. Fungal species from the genera 

Uromyces, Phakopsora, and Puccinia are the main causative agents. They contribute 

to yield losses of up to 100% in susceptible cultivars and are emerging as a substantial 

threat to global food security. Therefore, developing durable resistance to rusts has 

become a critical goal in plant breeding, along with efforts to improve cultural 

practices and disease management. This doctoral thesis begins by specifically 

focusing on recent advances in understanding and improving genetic resistance to 

rust in various leguminous crops, as they share common infection and resistance 

strategies that are approachable from a plant breeding perspective. Key topics 

covered in the first chapter include: i) the diversity and host range of rust species 

affecting legumes; ii) disease management strategies ranging from cultural practices 

to chemical control; iii) available detection methods to identify new sources of 

resistance; iv) the genetic basis of resistance, encompassing both major resistance 

genes and quantitative trait loci; v) insights into genetic regulation and effector 

molecules that lead to interactions between legumes and rust; and vi) emerging 

genomics-assisted breeding techniques that can accelerate the development of 

durable resistance to rust in legumes. Overall, the first chapter of this doctoral thesis 

highlights the progress made to date and the remaining challenges in the sustainable 

management of rusts in various leguminous crops through integrated approaches 

that encompass pathogen biology, advanced phenotyping, genetic resistance, and 

molecular breeding. 

Pea (Pisum sativum L.) is a temperate zone grain legume that is extensively 

cultivated. It ranks as the second most cultivated legume in the world and the first in 

Europe, including both dry and green peas. Its use extends to food and feed and 

represents a versatile and economical protein source, offering benefits to human 

health. Pea rust has become a major concern globally, causing losses between 30-50% 

under suitable climatic conditions for the fungus. Depending on the region, pea rust 

has been reported to be caused by Uromyces viciae-fabae (Pers. de Bary) in tropical 

and subtropical zones, or by U. pisi (Pers.) (Wint.) in more temperate areas. To date, 

only moderate levels of partial resistance against U. pisi have been identified in peas, 

urging an expansion of available resistance levels for breeding. In the second chapter 

of this doctoral thesis, we describe the response to U. pisi in 320 Pisum spp. 

accessions, including cultivated peas and wild relatives, under both field and 

controlled conditions. Significant variations in the response to U. pisi infection were 

observed for most traits among the pea samples, in both field and controlled 

conditions, allowing for the detection of genotypes with partial resistance. 

Simultaneous multi-trait indices were applied to the datasets, enabling the 
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identification of partial resistance, particularly in the samples JI224, BGE004710, 

JI198, JI199, CGN10205, and CGN10206. Macroscopic observations were 

complemented by histological observations of the nine most resistant accessions and 

compared to three intermediate and three susceptible ones. This study confirmed 

that the reduction in infection of the resistant accessions was associated with smaller 

rust colonies due to a decrease in the number of haustoria and hyphal tips per colony. 

Furthermore, a late-acting hypersensitive response was identified for the first time in 

a pea sample (PI273209). The findings obtained in the second chapter demonstrate 

that screening pea collections remains a necessary method in the search for complete 

resistance against U. pisi. Additionally, the wide phenotypic diversity contained in 

the studied collection will be useful for further association analysis and breeding 

perspectives. 

Therefore, rust is a harmful disease that affects vital crops, including peas, and 

the identification of highly resistant genotypes remains a challenge, as concluded in 

the second chapter. Accurate measurement of infection levels in large germplasm 

collections is crucial for finding new sources of resistance. Current evaluation 

methods are based on the visual estimation of disease severity and infection type 

under field or controlled conditions. While they identify some sources of resistance, 

they are prone to errors and time-consuming. An image analysis system proves 

useful, as it provides an affordable and user-friendly way to quickly count and 

measure rust-induced pustules in pea samples. In the third chapter of this doctoral 

thesis, an automated image analysis process was developed to accurately calculate the 

parameters of rust disease progression under controlled conditions, ensuring reliable 

data collection. This work was carried out using R to create a highly efficient and 

automated image-based method for evaluating rust on pea leaves. The optimization 

and validation of the method involved testing different segmentation indices and 

image resolutions on 600 pea leaflets with rust symptoms. The approach allows for 

the automatic estimation of parameters such as the number of pustules, the size of 

the pustules, leaf area, and the percentage of pustule coverage. It reconstructs time-

series data for each leaf and integrates daily estimates into the disease progression 

parameters, including the latency period and the area under the disease progression 

curve. In this chapter, significant variation in disease responses among genotypes was 

observed using visual ratings and image-based analysis. Among the evaluated 

segmentation indices, the Normalized Green-Red Difference Index (NGRDI) proved 

to be the fastest, analysing 600 leaflets with 60% resolution in 62 seconds using 

parallel processing. The Lin's Concordance Correlation Coefficient between visual 

and image-based pustule counts showed an accuracy greater than 0.98 at full 

resolution. While a lower resolution slightly reduced accuracy, the differences were 

statistically insignificant for most disease progression parameters, significantly 

reducing processing time and storage space. NGRDI was optimal at all times, 

providing highly accurate estimates with minimal cumulative error. This work 
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proposes a new image-based method to monitor pea rust disease on detached leaves, 

using RGB spectral index segmentation and pixel value thresholding, to improve 

resolution and accuracy compared to traditional evaluations. This allows for the rapid 

analysis of hundreds of images with accuracy comparable to visual methods and 

superior to other image-based approaches. This method evaluates the progression of 

rust in peas, eliminating evaluator-induced errors in traditional methods. 

Implementing this new approach to evaluate large germplasm collections will 

enhance our understanding of plant-pathogen interactions and aid in the future 

breeding of new pea cultivars with greater resistance to rust. 

In the fourth chapter, it is highlighted that, despite some efforts to assess the 

natural variation in pea resistance, its efficient exploitation in plant breeding is 

limited due to the scarcity of identified resistance loci and the unknown nature of 

their responsible genes. To overcome this knowledge gap, a comprehensive genome-

wide association study (GWAS) on pea rust, caused by Uromyces pisi, was conducted 

to discover genetic loci associated with resistance. This utilized the datasets produced 

in the previous two chapters. Thus, using a diverse collection of 320 pea accessions 

and the phenotypic responses to two rust isolates using traditional methods and 

advanced image-based phenotyping, the association studies were carried out. We 

detected 95 significant trait marker associations using a set of 26,045 polymorphic 

DArT-seq markers. Our in-silico analysis identified 62 candidate genes supposedly 

involved in rust resistance, grouped into different functional categories, such as gene 

expression regulation, vesicle trafficking, cell wall biosynthesis, and hormonal 

signalling. This research conducted in the fifth chapter highlights the potential of 

GWAS to identify sources of resistance, molecular markers associated with 

resistance, and candidate genes against pea rust, offering new targets for precision 

breeding. By integrating our findings with current breeding programs, we can 

facilitate the development of pea varieties with greater rust resistance, contributing 

to sustainable agricultural practices and food security. This study lays the 

groundwork for future functional genomic analyses and the application of genomic 

selection approaches to improve disease resistance in peas. 

In the fifth and final chapter, the same phenotypic and genotypic datasets were 

used for a marker-assisted selection (MAS) approach different from GWAS: Genomic 

Selection (GS). Genomic prediction or selection has become an indispensable tool in 

modern plant breeding, particularly for complex traits such as resistance to rust in 

peas, which are strongly influenced by environmental factors. In this chapter, the 

effectiveness of GS to predict rust resistance was evaluated, using the panel of 320 

pea accessions and 26,045 Silico-DArT markers. We compared the predictive abilities 

of various GS models, including the Best Linear Unbiased Genomic Prediction 

(GBLUP), and explored the impact of incorporating marker × environment (MxE) 

interactions as a covariate in the GBLUP model. The analysis encompassed both data 

generated in the field and under controlled conditions. We assessed the predictive 
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accuracy of different cross-validation strategies and compared the efficiency of using 

single traits versus a multi-trait index approach, specifically FAI-BLUP, which 

combines traits from controlled conditions. The GBLUP model, particularly when 

modified to include MxE interactions, consistently outperformed other models, 

demonstrating its suitability for traits affected by complex genotype-environment 

interactions. Specifically, the best predictive ability (0.635) was achieved using the 

FAI-BLUP approach within the Bayesian Lasso (BL) model. The inclusion of MxE 

interactions significantly improved prediction accuracy in various environments in 

the GBLUP models, although it did not notably improve predictions for non-

phenotyped lines. These findings highlight the variability of predictive capabilities 

due to genotype by environment interactions (GEI) and the effectiveness of multi-

trait approaches in addressing such complexities. Overall, our study illustrates the 

potential of GS, especially when employing a multi-trait index like FAI-BLUP and 

considering MxE interactions, in pea breeding programs focused on rust resistance. 

This approach provides a solid framework to tackle the challenges of GEI, making GS 

an asset in the quest for improved rust resistance in peas. 
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Resumen 
Las royas son una preocupación importante en la producción de leguminosas 

en todo el mundo y causan pérdidas sustanciales, particularmente en los países en 

desarrollo que dependen de las leguminosas como alimento básico y fuente clave de 

proteínas. Las especies de hongos de los géneros Uromyces, Phakopsora y Puccinia 

son los principales agentes causantes. Contribuyen a pérdidas de rendimiento de 

hasta el 100% en cultivares susceptibles y están surgiendo como una amenaza 

sustancial para la seguridad alimentaria mundial. Por lo tanto, desarrollar una 

resistencia duradera a las royas se ha convertido en un objetivo crítico en el 

fitomejoramiento, junto con los esfuerzos para mejorar las prácticas culturales y el 

manejo de enfermedades. Esta tesis doctoral comienza centrándose específicamente 

en los avances recientes en la comprensión y mejora de la resistencia genética a la 

roya en varios cultivos de leguminosas, ya que comparten estrategias comunes de 

infección y resistencia que son accesibles desde una perspectiva de fitomejoramiento. 

Los temas clave cubiertos en el primer capítulo incluyen: i) la diversidad y la gama de 

huéspedes de especies de roya que afectan a las leguminosas; ii) estrategias de manejo 

de enfermedades que van desde prácticas culturales hasta control químico; iii) 

métodos de detección disponibles para identificar nuevas fuentes de resistencia; iv) 

la base genética de la resistencia, que abarca tanto los principales genes de resistencia 

como los loci de rasgos cuantitativos (QTL); v) conocimientos sobre la regulación 

genética y las moléculas efectoras que conducen a interacciones entre las leguminosas 

y la roya; y vi) nuevas técnicas de mejoramiento asistidas por genómica que pueden 

acelerar el desarrollo de una resistencia duradera a la roya en las leguminosas. En 

general, el primer capítulo de esta tesis doctoral destaca los avances realizados hasta 

la fecha y los desafíos pendientes en el manejo sostenible de las royas en diversos 

cultivos de leguminosas a través de enfoques integrados que abarcan la biología de 

patógenos, el fenotipado avanzado, la resistencia genética y el mejoramiento 

molecular. 

El guisante (Pisum sativum L.) es una leguminosa de grano de zona templada 

que se cultiva extensivamente. Se sitúa como la segunda leguminosa más cultivada 

en el mundo y la primera en Europa, incluyendo tanto los guisantes secos como los 

verdes. Su uso se extiende a los alimentos y piensos y representa una fuente de 

proteínas versátil y económica, que ofrece beneficios para la salud humana. La roya 

del guisante se ha convertido en una gran preocupación a nivel mundial, provocando 

pérdidas de entre el 30 y el 50 % en condiciones climáticas adecuadas para el hongo. 

Dependiendo de la región, se ha informado que la roya del guisante es causada por 

Uromyces viciae-fabae (Pers. de Bary) en zonas tropicales y subtropicales, o por U. 

pisi (Pers.) (Wint.) en áreas más templadas. Hasta la fecha, sólo se han identificado 

niveles moderados de resistencia parcial contra U. pisi en los guisantes, lo que insta 

a ampliar los niveles de resistencia disponibles para el mejoramiento. En el segundo 
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capítulo de esta tesis doctoral describimos la respuesta a U. pisi en 320 Pisum spp. 

accesiones, incluidos guisantes cultivados y parientes silvestres, tanto en condiciones 

de campo como controladas. Se observaron variaciones significativas en la respuesta 

a la infección por U. pisi para la mayoría de los rasgos entre las muestras de guisantes, 

tanto en condiciones de campo como controladas, lo que permitió la detección de 

genotipos con resistencia parcial. Se aplicaron índices de multi-rasgos simultáneos a 

los conjuntos de datos, lo que permitió la identificación de resistencia parcial, 

particularmente en las entradas JI224, BGE004710, JI198, JI199, CGN10205 y 

CGN10206. Las observaciones macroscópicas se complementaron con observaciones 

histológicas de las nueve accesiones más resistentes y se compararon con tres 

intermedias y tres susceptibles. Este estudio confirmó que la reducción en la infección 

de las accesiones resistentes se asoció con colonias de roya más pequeñas debido a 

una disminución en el número de haustorios y puntas de hifas por colonia. Además, 

se identificó por primera vez una respuesta hipersensible de acción tardía en una 

muestra de guisantes (PI273209). Los hallazgos obtenidos en el segundo capítulo 

demuestran que el cribado de colecciones de guisantes sigue siendo un método 

necesario en la búsqueda de una resistencia completa contra U. pisi. Además, la 

amplia diversidad fenotípica contenida en la colección estudiada será útil para 

análisis de asociación adicionales y perspectivas de mejoramiento. 

Así pues, la roya es una enfermedad dañina que afecta a cultivos vitales, 

incluidos los guisantes, y la identificación de genotipos altamente resistentes sigue 

siendo un desafío, como se concluye en el segundo capítulo. La medición precisa de 

los niveles de infección en grandes colecciones de germoplasma es crucial para 

encontrar nuevas fuentes de resistencia. Los métodos de evaluación actuales se basan 

en la estimación visual de la gravedad de la enfermedad y el tipo de infección en 

condiciones de campo o controladas. Si bien identifican algunas fuentes de 

resistencia, son propensos a cometer errores y requieren mucho tiempo. Un sistema 

de análisis de imágenes resulta útil, ya que proporciona una forma asequible y fácil 

de usar para contar y medir rápidamente las pústulas inducidas por la roya en 

accesiones de guisantes. En el tercer capítulo de esta tesis doctoral, se desarrolló un 

proceso automatizado de análisis de imágenes para calcular con precisión los 

parámetros de la progresión de la roya en condiciones controladas, garantizando una 

recopilación de datos confiable. Este trabajo se llevó a cabo utilizando R para crear 

un método basado en imágenes altamente eficiente y automatizado para evaluar la 

roya en las hojas de guisantes. La optimización y validación del método implicó 

probar diferentes índices de segmentación y resoluciones de imagen en 600 folíolos 

de guisantes con síntomas de roya. Este método permite la estimación automática de 

parámetros como el número de pústulas, el tamaño de las pústulas, el área foliar y el 

porcentaje de cobertura de las pústulas. Es capaz de reconstruir datos de series 

temporales para cada hoja e integra estimaciones diarias en los parámetros de 

progresión de la enfermedad, incluido el período de latencia y el área bajo la curva de 
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progresión de la enfermedad. En este capítulo, se observó una variación significativa 

en las respuestas a las enfermedades entre genotipos mediante clasificaciones 

visuales y análisis basados en imágenes. Entre los índices de segmentación evaluados, 

el Índice Normalizado de Diferencia Verde-Rojo (NGRDI) demostró ser el más 

rápido, analizando 600 muestras con una resolución del 60% en 62 segundos 

utilizando procesamiento paralelo de la GPU. El coeficiente de correlación de 

concordancia de Lin entre los recuentos de pústulas visuales y basados en imágenes 

mostró una precisión superior a 0,98 a resolución completa. Si bien una resolución 

más baja redujo ligeramente la precisión, las diferencias fueron estadísticamente 

insignificantes para la mayoría de los parámetros de progresión de la enfermedad, lo 

que redujo significativamente el tiempo de procesamiento y el espacio de 

almacenamiento. NGRDI fue el índice de segmentación óptimo en todo momento, 

proporcionando estimaciones muy precisas con un error acumulativo mínimo. Este 

trabajo propone un nuevo método basado en imágenes para monitorear la 

enfermedad de la roya del guisante en foliolos, utilizando segmentación del índice 

espectral RGB y categorización del valor de píxeles, para mejorar la resolución y 

precisión en comparación con las evaluaciones tradicionales. Esto permite el análisis 

rápido de cientos de imágenes con una precisión comparable a la de los métodos 

visuales y superior a otros enfoques basados en imágenes. Este método evalúa la 

progresión de la roya en los guisantes, eliminando errores inducidos por el evaluador 

en los métodos tradicionales. La implementación de este nuevo enfoque para evaluar 

grandes colecciones de germoplasma mejorará nuestra comprensión de las 

interacciones entre plantas y patógenos y ayudará en el futuro mejoramiento de 

nuevos cultivares de guisantes con mayor resistencia a la roya. 

En el cuarto capítulo se destaca que, a pesar de algunos esfuerzos para evaluar 

la variación natural en la resistencia de los guisantes, su explotación eficiente en el 

fitomejoramiento es limitada debido a la escasez de loci de resistencia identificados y 

la naturaleza desconocida de sus genes responsables. Para superar esta brecha de 

conocimiento, se llevó a cabo un estudio integral de asociación de todo el genoma 

(GWAS) sobre la roya del guisante, causada por Uromyces pisi, para descubrir loci 

genéticos asociados con la resistencia. Para ello se utilizaron los conjuntos de datos 

producidos en los dos capítulos anteriores. Así, utilizando una colección diversa de 

320 accesiones de guisantes y las respuestas fenotípicas a dos aislados de roya 

utilizando métodos tradicionales y fenotipado avanzado basado en imágenes, se 

llevaron a cabo los estudios de asociación. Detectamos 95 asociaciones significativas 

de marcadores moleculares con los caracteres evaluados utilizando un conjunto de 

26.045 marcadores polimórficos Silico-DArT. Nuestro análisis in-silico identificó 62 

genes candidatos supuestamente involucrados en la resistencia a la roya, agrupados 

en diferentes categorías funcionales, como regulación de la expresión génica, tráfico 

de vesículas, biosíntesis de la pared celular y señalización hormonal. Esta 

investigación realizada en el quinto capítulo destaca el potencial de GWAS para 
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identificar fuentes de resistencia, marcadores moleculares asociados con la 

resistencia y genes candidatos contra la roya del guisante, ofreciendo nuevos 

objetivos para el mejoramiento genético de precisión. Al integrar nuestros hallazgos 

con los programas de mejoramiento actuales, podemos facilitar el desarrollo de 

variedades de guisantes con mayor resistencia a la roya, contribuyendo a prácticas 

agrícolas sostenibles y a la seguridad alimentaria. Por lo tanto, este estudio sienta las 

bases para futuros análisis genómicos funcionales y la aplicación de enfoques de 

selección genómica para mejorar la resistencia a enfermedades en los guisantes. 

En el quinto y último capítulo, se utilizaron los mismos conjuntos de datos 

fenotípicos y genotípicos para un enfoque de selección asistida por marcadores 

(MAS) diferente de GWAS: selección genómica (GS). La predicción o selección 

genómica se ha convertido en una herramienta indispensable en el fitomejoramiento 

moderno, particularmente para rasgos complejos como la resistencia a la roya en los 

guisantes, que están fuertemente influenciados por factores ambientales. En este 

capítulo se evaluó la efectividad de GS para predecir la resistencia a la roya, utilizando 

el panel de 320 accesiones de guisantes y 26,045 marcadores Silico-DArT. 

Comparamos las capacidades predictivas de varios modelos GS, incluida la Mejor 

Predicción Genómica Lineal Imparcial (GBLUP), y exploramos el impacto de 

incorporar interacciones marcador × ambiente (MxE) como covariable en el modelo 

GBLUP. El análisis abarcó tanto los datos generados en campo como en condiciones 

controladas. Evaluamos la capacidad predictiva de diferentes estrategias de 

validación cruzada y comparamos la eficiencia del uso de rasgos únicos versus un 

enfoque de índice de multi-rasgo, específicamente FAI-BLUP, que combina rasgos 

evaluados en condiciones controladas. El modelo GBLUP, particularmente cuando se 

modificó para incluir interacciones MxE, superó consistentemente a otros modelos, 

lo que demuestra su idoneidad para rasgos afectados por interacciones complejas 

genotipo-ambiente. Específicamente, la mejor capacidad predictiva (0,635) se logró 

utilizando el enfoque FAI-BLUP dentro del modelo Bayesiano Lasso (BL). La 

inclusión de interacciones MxE mejoró significativamente la precisión de la 

predicción en diversos entornos en los modelos GBLUP, aunque no mejoró 

notablemente las predicciones para líneas no fenotipadas en ambientes conocidos. 

Estos hallazgos resaltan la variabilidad de las capacidades predictivas debido a las 

interacciones entre el genotipo y el entorno (GEI) y la eficacia de los enfoques de 

multi-rasgo para abordar tales complejidades. En general, en este capítulo se ilustra 

el potencial de GS, especialmente cuando se emplea un índice como FAI-BLUP y se 

consideran las interacciones MxE, en programas de mejoramiento de guisantes 

enfocados en la resistencia a la roya. Este enfoque proporciona un marco sólido para 

abordar los desafíos de GEI, lo que convierte a GS en una herramienta aplicable en la 

búsqueda de una mejor resistencia a la roya en los guisantes.  
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1. Abstract 

Rust diseases are a major concern in legume production worldwide causing 

heavy losses especially in developing countries that depend on grain legumes as 

staple food being a key protein source. Fungal species from Uromyces, Phakopsora 

and Puccinia genera are the main causal agents. They contribute to up to 100 % yield 

losses on susceptible cultivars and are emerging as a substantial threat to global food 

security. Developing durable resistance to rusts has thus become a critical plant 

breeding objective alongside efforts to improve cultural and disease management 

practices. This review specifically focuses on recent advances in understanding and 

enhancing genetic rust resistance across diverse legume crops. Key topics covered 

include: i) the diversity and host range of the rust species affecting legumes; ii) the 

disease management strategies from cultural practices to chemical control; iii) the 

available screening methods for identifying new sources of resistance; iv) the genetic 

basis of resistance, encompassing both major resistance genes and quantitative trait 

loci; v) insights into gene regulation and effector molecules leading legume-rust 

interactions; and vi) emerging genomic-assisted breeding techniques that can 

accelerate the development of durable rust resistance in legumes. Overall, this review 

highlights the progress made to date and the remaining challenges in sustainably 

managing rust diseases across diverse legume crops through integrated approaches 

spanning pathogen biology, advanced phenotyping, genetic resistance, and Mol 

Breed. 

2. Introduction 

Rusts are important plant diseases caused by pathogens belonging to the 

Pucciniales order, which is the most extensive taxonomic order of plant pathogenic 

fungi, encompassing over 8,000 species (Toome-Heller 2016). Widely distributed, 

rust-causing agents have specialized across various hosts and climates, being obligate 

basidiomycete pathogens of annual crops, shrubs, and even trees worldwide (Helfer 

2014). Due to its negative impact on cropping systems, two species of rust have been 

included among the 10 plant pathogens with the greatest scientific and economic 

relevance. These are Puccinia spp., responsible for rust in cereals and, to a lesser 

extent, in some legumes, and Melampsora lini, which causes rust in flax (Dean et al. 

2012). Although not included in this ranking, soybean rust caused by Phakopsora 

pachyrhizi warrants special attention due to its recent surge in incidence globally, 

particularly in regions where soybean is a main crop (Dean et al. 2012; Goellner et al. 

2010). 

Most rust species are macrocyclic heteroecious fungi, meaning they have 

complex cycles involving various spore types infecting different plant host species 

through their lifetime (Duplessis et al. 2021). Their combination of sexual and asexual 

life cycles renders them high-risk evolutionary pathogens, capable of overcoming 
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plant defences with relative ease (Mapuranga et al. 2022). The life cycle stages of rusts 

are traditionally referred to by Roman numerals: 

• Pycniospores (Stage 0): Produced in pycnidia, these serve as haploid gametes 

in heterothallic rusts. 

• Aeciospores (Stage I): Arising from aecia, these non-repeating, dikaryotic 

asexual spores infect the primary host. 

• Urediniospores (Stage II): Formed in uredia, these repeating, dikaryotic 

vegetative spores can cause autoinfection on the primary host. They are often visible 

as rust-coloured pustules on the plant. 

• Teliospores (Stage III): Produced in telia, these spores typically represent the 

overwintering stage and lead to the production of basidia and basidiospores. 

• Basidiospores (Stage IV): Arising from teliospores, these wind-dispersed 

haploid spores typically infect an alternate host, playing a crucial role in the pathogen 

lifecycle. 

Depending on the rust species, the epidemic cycle may involve stage I, caused 

by aeciospores, or stage II, caused by urediniospores (Singh et al. 2023; Beniwal et 

al. 2022). Symptoms are characterized by numerous small, rust-like, orange/yellow, 

or brown pustules forming on infected plant tissues (Figure 1). These pathogens 

extract nutrients from infected plant cells through specialized structures called 

haustoria (Voegele and Mendgen 2003). During sporulation, the fungus can form 

from light-yellow halo to dark necrotic area around diseased pustules. The disease 

severity leads to a loss of photosynthetic area in infected leaves (Figure 1a, b) or even 

in the stem and pods (Figure 1c), resulting in reduced overall plant yield depending 

on the crop and the favourable rust environment (Newcombe 2004; Gautam et al. 

2022a). 

The Fabaceae family, second in global agricultural importance after the Poaceae 

is fundamental in the context of food security and environmental sustainability 

(Graham and Vance 2003). Legume crops like beans, lentils, alfalfa, and peas 

constitute 27 % of the world primary crop production (Vance et al. 2000). These grain 

and forage legume crops, using 12 % to 15 % of arable land, are indispensable in 

various agronomic systems (Azooz and Ahmad 2015; FAOSTAT 2022). They are 

particularly crucial in low-income and developing countries, serving as the main 

source of grain and fodder for both human consumption and livestock feeding 

(Mitchell et al. 2022). Legumes are notable for their nutritional richness, providing 

essential plant-based proteins, vitamins, and minerals, critical for diets worldwide, 

especially for smallholders and subsistence farmers, as most legumes are recognized 

as low-input crops (Jha and Warkengin 2020; Venkidasamy et al. 2019; Didinger and 

Thompson 2021). Additionally, legumes offer environmental benefits, notably 

atmospheric nitrogen fixation, improving soil structure and benefiting rotations with 
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other annuals crop (Gungaabayar et al. 2023). Therefore, the production of grain and 

forage legumes continues to grow globally (FAOSTAT 2022), primarily to meet high 

demands in livestock feed for meat and dairy production and to a lesser extent for 

human consumption due to new plant-based dietary habits (Alexandratos 2012). 

However, global legume production faces challenges such as production limitations 

due to environmental adaptability issues and susceptibility to pest and diseases, with 

rust disease being a major agent of these problems (Rubiales et al. 2015). These 

factors hinder the capacity of legume production to meet the growing demands posed 

by demographic growth, emphasizing the need to improve agricultural practices and 

disease management, such as rust control, to boost legume cultivation. 

 

Figure 1. Rust symptoms in two legume species. a) shows pustules of Uromyces 

ciceris-arietini on the adaxial surface of chickpea leaves inoculated under controlled 

conditions. b) represents the same disease under field conditions. c) the fungus U. viciae-

fabae has sporulated on the leaves, stem, and pod of the faba bean plant 

As an air-borne pathogen capable of surviving in the field for multiple seasons 

in alternative hosts, eradicating rust is challenging and can only be addressed by 

integrating various disease management methods. Among these, the use of rust 

resistant varieties is widely recognized as the most cost-effective, efficient, and 

environmentally friendly method to prevent the massive losses caused by this 

pathogen (Rubiales et al. 2015; Barilli et al. 2014). 

This work reviews the efforts made in various aspects related to the 

management and breeding approaches of legume crops for resistance against rust. 

These efforts encompass a range of strategies, from cultural practices to conventional 
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and advanced breeding techniques, reflecting the importance and complexity of 

combating rust diseases in these crops. 

3. Rust Diversity in Legumes 

Understanding pathogen diversity is essential to design efficient disease 

management strategies, and to develop new rust resistant cultivars (Sillero et al. 

2006). Legume rusts are mainly incited by fourteen fungal species (Table 1), most of 

them belong to the Uromyces genus, although some species from the Phakopsora 

and Puccinia genus can also be of importance for some legumes. Collectively, these 

rust species can exhibit a wide and overlapping host range with several Uromyces 

species able to infect the same host (Zhang et al. 2011). As for other pathosystems, 

numerous races and pathotypes have been described for several rust species 

according to their virulence pattern on different host genotypes. 

Table 1. Causal agents of rust disease in legumes species. 

Legume 
crop 

Main specie/s Main causal agent References 

Pigeon 
peas 

Cajanus cajan Phakopsora 
pachyrhizi 

Nunkumar et al. 2008 

Soybean Glicine max P. pachyrhizi, P. 
meibomiae 

Bromfield 1984 

Peanut Arachis 
hypogaea 

Puccinia arachidis Mondal and Badigannavar 
2015 

Bambara 
groundnut 

Vigna 
subterranea 

Puccinia spp. Hillocks et al. 2012 

Common 
bean 

Phaseolus 
vulgaris 

Uromyces 
appendiculatus 

de Jesús et al. 2001 

Chickpeas Cicer arietinum U. ciceris-arietini Sillero et al. 2012 
Lupins Lupinus spp. U. lupinicolus Huyghe 1997 
Cowpea Vigna 

unguiculata 
U. phaseoli var. vignae Edema and Adipala 1995 

Grass pea Lathyrus sativus U. pisi Vaz Patto and Rubiales 2013 
Vetches Vicia sativa U. pisi, U. viciae-fabae Rubiales et al. 2013a; 

Georgieva 2018; Rubio and 
Rubiales 2021 

Peas Pisum sativum U. pisi, U. viciae-fabae Barilli et al. 2009a, b 
Faba bean Vicia faba U. viciae-fabae Rashid and Bernier 1991 

Lentils Lens culinaris U. viciae-fabae Negussie and Pretorius 2012 
Alfalfa Medicago sativa U. striatus UK CAB et al. 1965 
Clovers Trifolium spp. U. striatus, U. trifolii Barbetti and Nichols 1991 

Birdsfoot 
trefoil 

Lotus spp. U. striatus var. loti, U. 
loti 

Zeiders 1985; Ciliuti et al. 
2003  

It is recognized that the resistance mechanisms of rust against P. pachyrhizi 

are race-specific, although these mechanisms are not well-defined and, 

comprehensive studies on the physiological races of the pathogen are still needed 

(Chanders et al. 2019). However, some studies identified 6 races of P. pachyrhizi on 

soybean and 4 on its wild alternative host plant kudzu (Pueraria lobata) in regions 
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of Japan (Yamaoka et al. 2002, 2014). In addition, preliminary studies have indicated 

the existence of at least two different races of the pathogen in South Africa and Brazil 

(Darben et al. 2020; Caldwell and McLaren 2004). These findings suggest a 

geographical and host-based pathogenic variation of P. pachyrhizi, highlighting the 

need for further research to understand the extent and implications of this diversity 

(Akamatsu et al. 2017). 

In peanut crop, several studies have suggested the existence of races of P. 

arachidis, as susceptibility has been reported in plants presumed to be resistant 

under tropical climatic conditions (Kuo et al. 2021). However, physiological 

identification of these different races remains unclear so far (Subrahmanyam et al. 

1993; Waliyar et al. 1993). These findings highlight the complexity of pathogen-plant 

interactions and the potential impact of environmental factors on disease dynamics. 

The inability to physiologically differentiate these pathogenic races underscores the 

challenges in managing peanut rust and suggests a need for ongoing research, 

particularly in understanding how climatic conditions influence pathogen virulence 

and host resistance (Kuo et al. 2021). 

A wide global diversity has also been demonstrated for some Uromyces spp. 

populations, such as U. appendiculatus (syn. U. phaseoli), for which hundreds of 

races and pathotypes have been described in different regions of the world (Acevedo 

et al. 2013; Nyang et al. 2016; Liebenberg and Pretorius 2011). Research on the broad 

range of virulence on common bean genotypes has shown that U. appendiculatus 

races segregate into two distinct groups, Andean, and Mesoamerican (Pastor-

Corrales and Aime 2004). Some of these pathotypes are limited to their geographic 

origin, as for the Andean races that usually infect common beans with the same 

Andean origin (Sandlin et al. 1999). By contrast, races belonging to the Mesoamerican 

gene pool present a broader range of virulence and are capable of infecting common 

beans of Andean, Middle American, and Mesoamerican origin (Pastor-Corrales 

2004). 

Two races have been described within U. phaseoli var. vignae affecting cowpea 

(Gay 1971). While most research have focused on race 1, whose resistance genes act 

independently of leaf age, the resistance genes of race 2 have been shown to act 

differentially depending on the leaf age, the site of infection, and the cultivar used 

(Heath 1994). Consequently, greater specificity has been suggested in race 2 than in 

race 1 of cowpea rust. 

Although the existence of races has not been clarified within U. pisi population, 

it is recognized as the causal agent with the broadest host range among legumes. It 

significantly affects peas, grass pea and to a lesser extent lentils and vetches (Barilli 

et al. 2012). Although differences in the level of partial resistance expressed by 

specific host genotypes have been detected in response to different U. pisi isolates, 

differential patterns of the hypersensitive response (HR) were not detected impeding 
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the definition of differential races (Osuna-Caballero et al. Under Review). 

Interestingly, host range studies and phylogenetic analysis of Uromyces species 

suggests that the other legume infecting Uromyces species might have evolved from 

U. pisi (Emeran et al. 2008; Chung et al. 2004). 

U. viciae-fabae can also affect a wide range of legumes, including faba bean, 

lentil, pea, and vetches (Conner 1982a; Gautam et al. 2022b). It is a complex species 

for which host specialization has been suggested (Emeran et al. 2005). Existence of 

races have been proposed within the faba bean infecting isolates, although not 

systematically monitored. Up to 9 races have been reported in Australia alone (Ijaz et 

al. 2020, 2021a), while and up to 16 races have been described from isolates of 

worldwide distribution (Emeran et al. 2001). This classification is based on the 

presence or absence of necrosis as a criterion for discrimination in broad bean 

cultivars. Some studies had also postulated existence of races based on pustule size 

(Conner 1982b; Rashid 1984). Recent studies have demonstrated differences in the 

pattern of HR expressed by Lens spp. genotypes in response to U. viciae-fabae 

isolates, suggesting the presence of four distinct races of this pathogen in lentils 

(Barilli and Rubiales 2023). 

Although the available resources on U. lupinicolus are limited in terms of host 

diversity, one instance of inappropriate specificity between this pathogen and M. 

truncatula has been described (Vaz Patto and Rubiales 2014). Furthermore, available 

pathogenicity studies revealed a close relationship between U. lupinicolus and U. 

ciceris-arietini (Emeran et al. 2008). However, studies targeting the host range of U. 

ciceris-arietini showed successful infection and symptom manifestation on chickpeas 

and Medicago spp., including M. truncatula, but not on lupins (Stuteville et al. 2010). 

Therefore, given these contradictory results, further studies on host adaptation and 

virulence tests on both lupin and chickpea rusts species are needed. 

Understanding the host range and diversity of rust isolates is crucial to design 

efficient management strategies, as it reveals how alternative hosts can serve as 

reservoirs for fungi, propagate the disease, and cause unexpected outbreaks. 

Moreover, if the same rust species or pathotype can infect two legume species, 

knowledge about the resistance developed for one of these species can also be useful 

for improving resistance in the other (Kawashima et al. 2016). 

4. Disease Management 

The very efficient spreading mechanism of rust that allow the transport of its 

urediniospores by winds or travellers over thousands of kilometres, coupled with its 

wide host range, make the eradication of the pathogen in the field a challenging task. 

Efficient control of rust requires the integration of different disease management 

approaches. The elimination or reduction of the pathogen propagules and of its aerial 
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dispersion are the primary objectives of these disease control measures 

(Chandrashekara et al. 2022). 

4.1. Cultural Control 

Agricultural practices can play a major role in reducing rust incidence in 

legumes. Accordingly, they are included in a sustainable integrated pest management 

approach in combination with other activities. Field assessment of previous crop, 

tillage, sowing date, cropping system, plant density and weed control are included as 

parameters that potentially decrease rust severity (Juroszek and von Tiedemann 

2011). 

Early sowing can facilitate the premature dispersal and germination of fungal 

spores, prompted by the advent of favourable temperatures and humidity levels. This 

phenomenon triggers an early emergence of the disease and increase the number of 

fungal cycles during the epidemic phase, thereby intensifying damage to the crop 

(Dawit and Andnew 2005; Das et al. 1999). Accordingly, numerous studies have 

corroborated that postponing planting diminishes the impact of rust in peanut (Das 

et al. 1999), faba bean or pea (Eshetu et al. 2018; Singh et al. 2014). This practice was 

also found efficient against some Uromyces species in cereals (Dawit and Andnew 

2005), making it a suitable solution to prevent or reduce rust incidence in the field. 

The choice of the preceding crop in rotation also plays a pivotal role in the severity of 

rust infestation on the subsequent legume crop. If this crop is susceptible to rust, the 

remaining debris might serve as an inoculum reservoir, initiating plant infection 

under conducive environmental conditions. 

The agricultural system, be it monoculture or mixed cropping, is another 

determinant of rust severity under field conditions. In intercropping systems, where 

legumes are mixed with other crops, these plants can form a physical barrier (Guo et 

al. 2021). This barrier impedes spore dispersion, thereby curtailing the number of 

fungal reproductive cycles in the epidemic stage and subsequently diminishing the 

disease impact on host plants. Recent studies underscore the superiority of 

intercropping over monoculture in managing diseases in legumes (Singh et al. 2014; 

Guo et al. 2021; Luo et al. 2022; Zhang et al. 2019). Moreover, the reduction of weeds 

which can serve as alternative hosts for rust, achieved with cropping mixtures, 

effectively lessens the disease severity in the field (Shtaya et al. 2021). Controlling the 

alternative host is also a key strategy in managing rust diseases in legumes, as 

evidenced by the historical success in controlling wheat stem rust by eradicating 

barberries (Zhao et al. 2016). This method reduces the likelihood of sexual 

recombination of the rust pathogen, which often occurs when infects on its alternate 

host. For instance, U. pisi, the pea rust pathogen, completes its life cycle on 

Euphorbia cyparissias and E. esula, which can grow in the vicinity of pea fields as 

spontaneous weeds and spread the fungal aeciospores over the crop (Pfunder and 

Roy 2000). By managing or eradicating such alternate hosts, the source of inoculum 
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is significantly reduced, thereby reducing the spread of the disease. This approach is 

crucial in integrated pest management programs. 

Lastly, the density of plantations may influence the spread and severity of the 

fungus (Fernández-Aparicio et al. 2006). While certain studies observed a strong 

correlation between sowing density and rust severity (Eshetu et al. 2018; Fernández-

Aparicio et al. 2006; McEwen and Yeoman 1989), others only detected a marginal 

effect if any with climatic conditions playing a more substantial role in the disease 

development (Olle and Sooväli 2020; More et al. 2020). 

4.2. Biological Control 

Biological control has primarily revolved around the use of living organisms 

such as predators, parasites, and pathogens to manage pest and disease populations 

in the field. However, the scope of biological control also encompasses the utilization 

of natural compounds derived from these organisms. This includes pheromones, 

hormones, and metabolism-derived products that may function as repellents, 

attractants, or growth inhibitors of pathogens. Both approaches have been 

documented in legume crops to manage rust disease. 

Various microorganisms have been identified as biological control agents 

(BCAs) against rust disease. The study of host plant leaf microbiome allowed the 

discovery of antagonistic endophytic bacteria (Kiani et al. 2021). These beneficial 

bacteria limit fungal growth thereby reducing rust disease severity (Yuen et al. 2001). 

Several studies have demonstrated the effectiveness of bacteria from the Bacillus 

genera, against both cereal and legume rusts where they significantly mitigate disease 

severity in the field and under controlled conditions (Baker et al. 1983, 1985). In 

addition, bacteria from the Pseudomonas genera have also been described as 

potential BCAs against U. appendiculatus (Abo-Elyousr et al. 2021). Endophytic 

fungi able to induce resistance, antagonize rusts or even act as hyperparasites of the 

pathogen have also been described (Fontana et al. 2021). For instance, different 

strains of Trichoderma spp. have been reported to stimulate systemic resistance in 

common bean against U. appendiculatus (Burmeister and Hau 2009; Cruz-Triana et 

al. 2018). These strains can also antagonize the pathogen by inhibiting urediniospore 

germination and germ tube growth (Abeysinghe 2009). Further studies highlight the 

use of BCAs from Simplicillium and Cladosporium genera as hyperparasites of 

various rust species from the genera Puccinia, Phakopsora, and Uromyces genera (Si 

et al. 2022; Assante et al. 2004; Moricca et al. 2005; Barge et al. 2022). 

A more accurate approach of biological control involves unveiling which 

specific products from these fungal and bacterial species can limit the growth and 

spread of rusts. This method would restrict the introduction of exogenous organisms 

into crop fields, potentially averting ecosystem destabilization if their growth 

becomes uncontrolled (Herskowitz et al. 2023). In this direction, the inhibitory effect 
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of several compounds isolated from plant essential oils or fungal secondary 

metabolism have been validated against different rust species. The antifungal effect 

of crude plant extracts has also been tested. For instance, crude extracts from 

Ageratum conyzoides, Nigella sativa, and Pelargonium zonale were found effective 

in reducing germination of P. arachidis, U. appendiculatus, and U. viciae-fabae 

urediniospores, respectively (Yusnawan and Inayati 2018; Arslan et al. 2009; El-

Fawy et al. 2021). Notably, Nigella sativa extract reduced common bean rust severity 

by up to 96 % (Arslan et al. 2009). Evidence also suggests that plant derived essential 

oils can reduce the number of rust pustules in legumes. Application of lin seed oil, for 

example, was found to completely inhibit U. appendiculatus urediniospore 

germination in both in vivo and in planta experiments (Arslan 2014). Other trials on 

U. viciae-fabae demonstrated a reduction of rust severity of up to a 96 % after treating 

infected plants with basil oil three hours after inoculation (Oxenham et al. 2005) 

while hyssop and pumpkin seed oils were less efficient (Letessier et al. 2001; El-Fawy 

et al. 2022). While not achieving as high a reduction in rust severity on the complete 

plant, the application of these essential oils carries additional synergistic benefits for 

legumes, potentially enhancing plant height and yield, as demonstrated in 

greenhouse conditions (El-Fawy et al. 2022). 

The isolation and analysis of secondary metabolites have also constituted an 

important area of research in combating rust. Effective substances produced by the 

secondary metabolism of both bacteria and fungi have been identified, with notable 

contributions from the Bacillus (Lim et al. 2017; Manjula et al. 2004), Trichoderma 

and Cladosporium genera (El-Hasan et al. 2022; Nasini et al. 2004). Similarly, 

several bio-compounds isolated from the secondary metabolism of phytopathogenic 

fungi such as Seiridium cupressi, Diplodia quercivora, and Ascochyta lentil can 

reduce the U. pisi severity on peas (Barilli et al. 2016, 2017, 2022). Additionally, 

evidence suggests that the accumulation of phytoalexins in non-host species inhibits 

the development of the pathogen within their plant tissue. For instance, phytoalexins 

such as medicarpin and scopoletin have been associated with resistance to P. 

pachyrhizi in the non-host species M. truncatula and A. thaliana, respectively, and 

their influence on soybean plants have been successfully tested against P. pachyrhizi 

(Beyer et al. 2019; Ishiga et al. 2015). Accumulation of these phytoalexins can also be 

induced by exogenous compounds that induce the systemic acquired response (SAR), 

such as BTH and BABA, as it has been demonstrated in pea against U. pisi (Barilli et 

al. 2010a, 2012, 2015). This line of research highlights a wide range of biological 

resources to enhance plant defence mechanisms against rust pathogens in an eco-

friendlier way although their large-scale application in the field is so far not possible 

compromised by the low yield of the isolation methods that are in most cases not 

standardised and well-polished. 
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4.3. Chemical Control 

The management of rusts in agricultural fields can be effectively achieved using 

chemical-synthesized fungicides. Among the primary phytochemicals employed for 

rust disease control, albeit with varying efficiencies, are triazoles, strobilurins, and 

carboxamides (Juliatti et al. 2017; Chen 2005; Alam et al. 2007). Triazoles function 

by inhibiting the enzyme 14α-sterol demethylase, thereby obstructing the binding of 

ergosterol, and subsequently disrupting the structural and functional integrity of the 

fungal cell wall. Additionally, triazoles exhibit systemic action, disseminating through 

both the leaves (translaminar movement) and the xylem (acropetal movement). Their 

effectiveness, whether applied solely or in combination with benzimidazoles, has 

been validated in several legume crops against rust species such as U. viciae-fabae, 

U. appenditucalus, and U. lupinicolus (Devi et al. 2020; Emeran et al. 2011; 

Etheridge and Bateman 1999; Modesto et al. 2005; Sugha et al. 2008). However, 

triazoles are categorized as posing an intermediate risk for fungicide resistance, with 

mutations in sterol demethylase identified in plant pathogens of cereals, leading to 

reduced triazole sensitivity (Cools et al. 2006). 

Strobilurins impede mitochondrial respiration by targeting the electron 

transfer chain between cytochromes b and c1, which hampers ATP synthesis (Köle et 

al. 1997). Known as QoIs (quinoline outside inhibitors), these broad-spectrum 

fungicides have demonstrated efficacy against various rust species and, in some 

instances, have enhanced growth and yield (Rasha et al. 2021; Glaab and Kaiser 

1999). Although the risk of rust species developing resistance to strobilurins is 

generally low, studies have indicated that a single point mutation in the 

mitochondrial cytochrome b (the target of strobilurins) can lead to QoIs fungicide 

resistance (Grasso et al. 2006a, b). 

The action mechanism of carboxamides targets the enzyme succinate 

dehydrogenase (SDH), a crucial component of the tricarboxylic acid cycle (TCA) and 

the mitochondrial electron transport chain (Rheinheimer 2019). Carboxamides, thus, 

inhibit fungal cell respiration by blocking the TCA cycle at the oxidation stage from 

succinate to fumarate, culminating in the rapid cell death. These fungicides have also 

been tested against rust diseases in legumes; for instance, they limit rust damage in 

faba beans affected by U. viciae-fabae (Emeran et al. 2011). While carboxamides 

effectively mitigate rust disease across a spectrum of legumes and cereal rusts, the 

Fungicide Resistance Action Committee (FRAC) has developed resistance 

management recommendations for various crop pathogens to minimize the risk of 

resistance to this class of fungicides (Sierotzki and Scalliet 2013). 

Despite their efficiency, the utilization of fungicides imposes a significant 

financial burden on legume production, especially in developing countries where 

legumes are the main protein source for human food (Emeran et al. 2011). The use of 

these chemicals can also pose health risks to users, adversely impact the 



Chapter 1 

38 

 

environment, and lead to the emergence of fungicide-resistant rust strains (Oliver 

2014). Consequently, cultivating varieties with an adequate level of durable resistance 

represents the most effective strategy for rust disease control in legumes. 

5. Basis of Resistance 

The study of the resistance mechanisms that the host holds to respond the 

pathogen are intricately linked to the infection process of rust. This infection cycle, 

detailed in the Figure 2, begins when a spore lands on the tissue surface (Figure 2a). 

If the environmental conditions are favourable, the spore will form a germ tube. If 

this germ tube successfully locates a stoma, it can form an appressorium over it, 

serving to penetrate the host (Figure 2b). Successful penetration leads to the 

formation of a substomatal vesicle in the substomatal space (Figure 2c). From here, 

an initial infection hypha emerges and, upon contacting a mesophyll cell, can 

differentiate at its tip into a haustorial mother cell (HMC). Then the pathogen can 

enter the mesophyll cell via a neckband and forming a haustorium (Figure 2d). If this 

first haustorium is effective, the fungus will continue to develop secondary hyphae to 

infect more cells and continue extracting nutrients to expand the colony inside the 

host (Figure 2e). Once it has accumulated sufficient resources, sporogenic tissue 

begins to form, and spores emerge through an opening on the tissue surface created 

by pressure exerted from within (Figure 2f), leading to what we know as a pustule. 

This detailed understanding of the rust infection process is crucial for developing 

effective resistance strategies in the host plants, as it reveals the critical stages where 

intervention might be most effective. 

5.1. Resistance Mechanisms against Rust 

The detailed monitorisation of the infection process at microscopic level on a 

set of differential accessions allowed the detection of different resistance mechanism. 

The first resistance mechanism expressed by the plant is related with leaf 

morphology, reducing surface area and growth orientation, thus hindering spore 

deposition. It has been proposed that spore deposition (Figure 2a) would be lower in 

plants with vertical leaves compared to horizontal ones. However, the impact of leaf 

orientation on spore deposition is less significant than the effect of the foliar 

microclimate on germination. It has also been observed that bean rust germ tubes 

grow along trichomes on soybean plants, reducing the contact with the leaf surface 

(Wynn 1976). In this case, the trichome acted as a passive screen that can reduce 

disease severity although, this factor was not decisive in final plant severity under 

field conditions (Mmbaga et al. 1994). Some additional pre-infection mechanisms 

have been described including those preventing pathogen adhesion to the leaf surface 

(Mmbaga et al. 1994; Wynn and Staples 1981), diverting the thigmotropically 

sensitive germ tube away from stomata (Wynn and Staples 1981), impeding stomata 

recognition through atypical morphology of stomatal guard cells, and the secretion of 
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protective compounds on the leaf surface (Niks and Rubiales 2002; Prats et al. 2007). 

Genotypic differences that limit spore germination and directional growth of the 

germ tube have been detected against U. pisi and U. viciae-fabae (Vaz Patto et al. 

2009). However, these mechanisms can, at best, reduce infection levels at the early 

epidemic cycles but are of marginal importance in natural conditions (Rubiales and 

Moral 2004; Vaz Patto et al. 2009). 

 

Figure 2. Rust infection process: a) spore deposition; b) spore germination and 

appressorium formation; c) stomatal penetration and substomatal formation; d) 

development of the first intracellular hyphae and haustorium formation: e) colonization; f) 

spore formation and release. Created with BioRender.com. 

For pathogenic fungi that penetrate stomata, it is important that they locate 

them through an efficient chemical recognition (Cooper et al. 2007). The U. viciae-

fabae fungus seems quite inefficient since typically only about 50 % of germ tubes 

find a stoma in faba beans, compared to figures ranging from 80 to 100 % for pea 

rusts caused by U. pisi (Sillero and Rubiales 2002; Barilli 2009c). Germ tubes of rust 
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that reach a stoma must stop growing and develop an appressorium to enter the leaf 

(Figure 2b). Reaching a stoma does not automatically result in stoma recognition and 

subsequent penetration (Chethana et al. 2021). There is evidence that urediniospore 

germs of U. appendiculatus detect morphological features of host stomata on which 

to develop appressoria in common bean (Wynn 1976; Hoch et al. 1987). Generally, 

stoma recognition is very efficient: typically, more than 90 % of germ tubes reaching 

a stoma form an appressorium. However, there are evidence of misplaced 

appressorium formation by the faba bean rust fungus, U. viciae-fabae. In this 

pathogen, the proportion of misplaced appressoria reach about 20 %, but it is rather 

uniformly distributed among faba bean accessions offering little opportunity for 

breeding (Sillero and Rubiales 2002). 

The most efficient resistance mechanisms against rust occur after the formation 

of the substomatal vesicles, since changes before then, though significant, were too 

small to cause substantial epidemiological effects in the case of bean or pea rust 

(Barilli et al. 2009c). Non-host resistance, an inherent defence mechanism against 

non-adapted pathogens, is typically manifested before the formation of the first 

haustorium (Bettgenhaeuser et al. 2014). This type of resistance is also relevant to 

host-pathogen interactions, significantly contributing to partial resistance (PR), 

which is a quantitative mechanism characterized by a slower rate of disease 

development compared to susceptible plants (Parlevliet 1979). Being controlled by 

multiple genes, this mechanism showed an enhanced durability compared to 

monogenic R gene-mediated resistance (Niks and Rubiales 2002; Rubiales and Niks 

1995). PR has been documented in a range of legumes including faba bean (Sillero 

and Rubiales 2002) and M. truncatula (Rubiales and Moral 2004), where a 

considerable proportion of infection units fail to establish haustoria. By contrast, host 

resistance mediated by R genes is characteristically induced after haustoria formation 

and is frequently correlated with the hypersensitive response, a localized cellular 

apoptosis designed to constrain pathogen propagation (Camagna and Takemoto 

2018). Despite the efficacy of this response, the durability of R gene-mediated 

resistance is potentially compromised due to the pathogen evolutionary capacity to 

overcome specific resistance genes (Niks and Rubiales 2002). 

The spectrum of rust resistance responses in legume crops are mostly 

categorized as incomplete. This classification encompasses instances where the host's 

affliction by the pathogen is mitigated relative to a susceptible control, albeit without 

the absolute inhibition of the pathogen life cycle. For instance, some faba bean and 

pea cultivars showed a partial hypersensitive resistance (HR) permitting some degree 

of sporulation in the presence of host cell necrosis around the infection site (Sillero 

et al. 2000; Osuna-Caballero et al. 2022).  

Non-hypersensitive resistance constitutes an alternative form of incomplete 

resistance that impedes epidemic progression without eliciting programmed cell 
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death. Research indicates that this type of rate-reducing resistance is widespread 

within legumes species and frequently represents the sole form of defence (Sillero et 

al. 2012; Barilli et al. 2009a; Osuna-Caballero et al. 2022; Singh et al. 2015). This 

situation contrasts with other pathosystems dominated by HR and for which such PR 

is not common (Niks and Rubiales 2002). 

5.2. Genetic Basis of Resistance against Rust 

Precision genetic breeding for rust resistance requires an understanding of the 

genetic basis of resistance. For instance, through genome-wide association studies 

(GWAS) and linkage mapping, several types of resistance against different rust 

species have been localized among legumes. These qualitative and quantitative 

resistance mechanisms are dependent on one or multiple genes, respectively. This 

distinction between single gene and multiple resistance genes is crucial, as it 

influences the breeding methodology and the potential durability of the resistance. 

Linkage mapping and GWAS have enabled the identification of specific genetic loci 

and alleles responsible for resistance, thereby providing a foundation for targeted 

breeding strategies. 

Monogenic resistance in rusts enable the cell programmed death when the 

haustorium forms inside the host. Although it is not the most common source of 

resistance in legumes, its use in breeding is available for some species. The known 

candidate resistance genes or QTLs and their location are displayed in Table 2 when 

the resistance sources contribute > 10 % to the phenotypic variance.
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Table 2. Quantitative trait loci (QTLs) and candidate resistance genes and against rust infecting legumes, their genetic location (linkage 

group or chromosome) and linked markers 

Legume 

crop 
Rust specie 

Linkage Group/ 

Chromosome 
Resistance Genes/QTLs Linked Markers References 

Grass 

pea 
U. pisi 

LG IV/Chr4 Psat4g145320 SNP1323 Martins et al. 2022 

LG II/Chr6 Psat6g010840 and Psat6g006320 SNP2174, SNP2175 and SNP2145 Martins et al. 2022 

Chickling 

pea 
U. pisi 

LG II UpDSIIa_field, UpDSIIb_field and 

UpDSIIc_field 

SSRLCI336, DArT39737826, 

DArT100000564 and DArT39732468a  

Santos et al. 2022 

LG IV UpDSIV_chamber, 

UpDSIVa_field, GluvIVa and 

GlucIVb  

SNP1000037810_21, SSRLCI220 and 

DArT100036350 

Santos et al. 2022 

Pea U. pisi 

LG VI/Chr1 127135829; 127115771; 127082329 DArT3551012; DArT5886489 and 

DArT19788813; DArT26138450 

Osuna-Caballero et 

al. 2024 

LG I/Chr2 127117481; 127103325 DArT3551269, DArT3557565 Osuna-Caballero et 

al. 2024 

LG V/Chr3 127132076; 127125898; 127130208; 

127127564; 127127894 

DArT3544108; DArT5937399; 

DArT5880972; DArT3552072; 

DArT3555519 

Osuna-Caballero et 

al. 2024 

LG IV/Chr4 UpDSIV; UpDSIV.2 

127138740 

DArT3563695, DArT3569323, 

DArT3560101_51 and DArT3536169; 

DArT3536422 and DArT3538789 

DArT4659565 and DArT5947149 

Barilli et al. 2018; 

Osuna-Caballero et 

al. 2024 

LG III/Chr5 Up1 

127084018; 127084564; 127087291; 

127087323; 127087508; 127105708 

RAPDOPY111316 and RAPDOPV171078 

DArT3541671; DArT3558891; 

DArT3551119; DArT8175311; 

DArT4656208; DArT5900633 

Barilli et al. 2010b; 

Osuna-Caballero et 

al. 2024 

LG II/Chr6 UpDSII 

127097832 

SSRAD280, DArT3534625, 

DArT3539148 and DArT3567800 

DArT3557403 

Barilli et al. 2018; 

Osuna-Caballero et 

al. 2024 



Chapter 1 

43 

 

Legume 
crop 

Rust specie 
Linkage Group/ 

Chromosome 
Resistance Genes/QTLs Linked Markers References 

Pea 

U. pisi 
LG VII/Chr7 127084730; 127108155 DArT5897640; DArT3549271, 

DArT3541979 and DArT4662232 

Osuna-Caballero et 

al. 2024 

U. viciae-fabae 

 Ruf RAPDSC10-82360 and RAPDSCRI-

711000 

Vijayalakshmi et 

al. 2005 

LG I/Chr2 Qruf2 SSRAA121 and SSRAD147 Rai et al. 2016 

LG III/Chr5 Qruf3 SSRGa20X and SSRAD160 Rai et al. 2016 

LG VII/Chr7 Qruf; Qruf1 SSRAA446 and SSRAA505; 

SSRAD146 and SSRAA416  

Rai et al. 2011, 

2016 

Lentil U. viciae-fabae 

  RAPDOPX-15760 and RAPDOPX-

171075; SSRGllc527; SSRGLLC106 

Kant et al. 2004; 

Dikshit et al. 2016; 

Fikru et al. 2014 

LG III  SRAPF7XEM4a Saha et al. 2010 

LG I  SSRLcSSR440 and SSRLcSSR606 Singh et al. 2021 

Faba 

bean 

 

 

U. viciae-fabae 

 Uvf-1 RAPDOPI20900 Avila et al. 2003 

Chr3 Uvf-2 KASPVf_0703 and KASPC250539 Ijaz et al. 2021b 

Chr5 Uvf-3 KASPAc×F165 and KASPvf_1090 Ijaz et al. 2021b 

Chickpea 
U. ciceris-

arietini 

LG VII Uca1/uca1 STMSTA18 and STMSTA180 Madrid et al. 2008 

Common 

bean 

U. 

appendiculatus 

B1 Ur9 RAPDOA4.1050 Park et al. 1999 
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Legume 
crop 

Rust specie 
Linkage Group/ 

Chromosome 
Resistance Genes/QTLs Linked Markers References 

Common 

bean 

U. 

appendiculatus 

B4/Pv04 Ur5; Ur-Dorado; Ur-Ouro Negro; 

Ur14; Phvul.004G012300; 

Phvul.004G012400; Qur-1 

RAPDOI19460; SCARBA08 and 

SCARF10; SSRR04596 and 

SSR04599 

Haley et al. 1993; 

Kelly et al. 2003; 

Corrêa et al. 

2000;Valentini et 

al. 2017; Wu et al. 

2022 

B11/Pv11 Ur3; Ur6; Ur7; Ur11  RAPDOK14620; KASPSS68; 

SCARSOBC06.308; RAPDOAD12.550 

and RAPDOAF17.900; 

RAPDOAC20490  

Haley et al. 1994; 

Hurtado-Gonzales 

et al. 2017a; Park 

et al. 2003, 2004; 

Johnson et al. 1995 

B8/Pv08 Ur13; Phvul.008G061600; 

Phvul.008G065600; 

Phvul.008G065700; 

Phvul.008G253400; 

Phvul.008G270700 

SCARKB126 and CAKB4HhaI; 

SNP03379; DArT07386; SNP03385; 

SNP03819; SNP03850 

Mienie et al. 2005; 

Leitão et al. 2023 

B6/Pv06 Ur4; Phvul.006G152200; Qur-3 RAPDOA141100; DArT05945 Wu et al. 2022; 

Leitão et al. 2023; 

Miklas et al. 1993 

B7/Pv07 Ur12; Phvul.007G031000; 

Phvul.007G032266  

DArT06294; DArT06303  Corrêa et al. 2000; 

Leitão et al. 2023 

Pv05 Qur-2  Wu et al. 2022 

Cowpea U. vignae 

LG IX Rr1; Ruv1 SCARABRSAAG/CTG98; SNP2_01772, 

SNP2_03292 and SNP2_04336 

Li et al. 2007; Wu et 

al. 2018a 

LG VII/Chr2 Ruv2  SNP2_00934, SNP2_12503, SNP2_09656 

and SNP1_0906; SNP2_00973 

Wu et al. 2018, b 
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Legume 
crop 

Rust specie 
Linkage Group/ 

Chromosome 
Resistance Genes/QTLs Linked Markers References 

Cowpea U. vignae 
LG VIII Ruv3 SNP2_37041, SNP2_07847 and 

SNP2_00497  

Wu et al. 2018a 

Pigeon 

peas 
P. pachyrhizi 

LG V CcRpp1 CAPS52491 and SSR2152 Kawashima et al. 

2016 

Soybean P. pachyrhizi 

LG G/Chr18 

 

 
 
 

LG J/Chr16 

 
 

 
LG C2/Chr6 
 
 

LG N/Chr3 
 

LG L/Chr19 

Rpp1; Rpp4; Rpp6  

 

 
 
 

Rpp2  

 
 

 
Rpp3  
 
 

Rpp5  
 

Rpp7  

SSRSct_187 and SSRSat_064; 

SSRSatt288, SSRSatt612 and 

SSRAF162283; SSRSatt324 and 

SSRSatt394 

 

SSRSatt183, SSRSat-255, SSRSatt620 

and SSRSct-01 

 

SSRSatt658, SSRSat-263, SSRSatt460 

and SSRSatt307  

 

SSRSat-166, SSRSat-275 and SSRSat-

280  

SNPGSM0547 and SNP0547 

McLean and Byth 

1980; Hyten et al. 

2007; Hartwig 

1986; King et al. 

2016; Bromfield et 

al. 1980, 1982; 

Garcia et al. 2008; 

Childs et al. 2018; 

Chanchu et al. 

2022; Liu et al. 

2016; Yu et al. 

2015; Vuong et al. 

2016; Lemons et 

al. 2011 

Peanut P. arachidis 

A03 Aradu.Z87JB, Aradu.RKA6 M, 

Aradu.T44NR, Aradu.IWV86 and 

Aradu.NG51Q 

RAPDJ71300 and RAPDJ71350; 

SSRpPGPseq4A05, and 

SSRgi56931710; TE360 and TE498; 

SSRIPAHM103, SSRGM2009, 

SSRGM1536, SSRGM2301, 

SSRGM1954, SSRGM2079; 

SSRGO340445, SSRFRS72  

Mondal et al. 

2008, 2012, 2014, 

2018; Yol et al. 

2016 
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In pea, only incomplete resistance has been identified against U. viciae-fabae 

and U. pisi. While some QTLs associated with resistance have been mapped, they are 

not yet suitable for marker-assisted selection (MAS) in breeding programs (Rubiales 

et al. 2011). There is evidence suggesting that partial resistance to U. viciae-fabae 

may be due to a single major gene (Ruf), with two RAPD markers identified nearby, 

but not close enough for effective MAS (Vijayalakshmi et al. 2005; Rai et al. 2011, 

2016). For U. pisi, a QTL responsible for 63 % of resistance was located, with two 

associated RAPD markers, but further validation in different environments and 

genetic backgrounds is needed before these findings can be applied to MAS (Barilli et 

al. 2010b, 2018). In those cases, the development of standard markers and 

conversion of RAPDs to sequence-characterized amplified regions (SCARs) is 

necessary to improve their utility for MAS. On the other hand, new silico DArTseq 

makers have been associated to U. pisi partial resistance in pea where putative genes 

were proposed as resistance’s causative agents for their use in breeding programs, 

but validation is still needed (Osuna-Caballero et al. 2024). 

Likewise, researchers have found only incomplete resistance to rust caused by 

U. ciceris-arietini in chickpea (Sillero et al. 2012). A major QTL, accounting for 81 % 

of the resistance in adult plants, was mapped to linkage group 7 on the chickpea 

genetic map (Madrid et al. 2008). This resistance is thought to be controlled by a 

single gene (Uca1/uca1) closely flanked by two STMS markers suitable for reliable 

marker-assisted selection for rust resistance in chickpea breeding programs (Madrid 

et al. 2008). 

In lentils, resistance to U. viciae-fabae is generally partial, but some sources 

show hypersensitive resistance (Rubiales et al. 2013b, Negussie et al. 2005, 2012; 

Barilli et al. 2023). There is known monogenic resistance, and research is advancing 

on identifying its chromosomal location and linked markers (Kant et al. 2004; Dikshit 

et al. 2016; Fikru et al. 2014; Saha et al. 2010; Singh et al. 2021). Significant 

association between the resistance and a specific SRAP and SSR markers has been 

found and could be used in MAS, though identification of markers closer to the gene 

would improve this approach (Kant et al. 2004; Dikshit et al. 2016; Fikru et al. 2014; 

Saha et al. 2010; Singh et al. 2021). 

In common bean, researchers have identified various sources of resistance that 

are specific to individual races of U. appendiculatus (Hurtado-Gonzales et al. 2017b). 

However, some of these resistance sources have been overcome by the pathogen 

adaptation (Hurtado-Gonzales et al. 2017a). Recent studies have advanced our 

understanding of the genotypic basis of common bean resistance to diverse rust 

strains (Wu et al. 2022; Montejo-Domingez et al. 2022). These investigations 

encompass both partial and hypersensitive resistance mechanisms (Leitão et al. 

2023). Therefore, several genes associated with these resistance forms have been 
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proposed, and several markers closely linked to these genes are now available for 

application in breeding programs (Table 2). 

In faba bean, most resistance against U. viciae-fabae is of incomplete 

expression and non-hypersensitive (Sillero et al. 2010). The genetic basis of this 

resistance is not well understood, though race-specific genes reducing pustule size 

have been suggested (Conner 1982; Rashid and Bernier 1986). Recent mapping 

studies to identify genes associated with non-hypersensitive resistance have 

identified two genes, Uvf-2 and Uvf-3, linked to RAPD markers (Ijaz et al. 2021b). 

Hypersensitive resistance in faba bean, controlled by major-effect genes, has also 

been identified (Avila et al. 2003). For instance, three RAPD markers linked to a 

resistance gene, Uvf-1, have been found, associated with two additional markers 

identified in repulsion phase (Mikas et al. 1993).  

In cowpea, four QTLs have been proposed to induce resistance against rust with 

twelve linked markers available for MAS (Li et al. 2007; Wu et al. 2018a). Recently, 

the first QTL proposed, Rr1 was coincident with the Ruv1 in the Wu et al. (2018a) 

studies. Therefore, the SNPs markers are considered the most reliable in their use for 

breeding (Wu et al. 2018b). 

In the case of pigeon pea, a single source of partial resistance against P. 

pachyrhizi known as the CcRpp1 gene (Cajanus cajan Resistance against 

Phakopsora pachyrhizi 1) has been reported and successfully transferred to 

transgenic soybean plants (Kawashima et al. 2016). 

5.3. Gene Regulation upon Rust Infection in Legumes 

A transcriptional profiling during plant–pathogen interaction allows 

identifying both candidate resistance genes from the plant and genes involved in 

disease processes from the pathogen (Jha et al. 2021). Rust triggers important 

transcriptional changes in legume plants during infection, with several hundreds of 

genes being either up- or downregulated. RNA-seq and transcriptome analyses are 

powerful tools to identify key defence responsive genes and transcription factors in 

legume-rust interaction. 

5.3.1. Defence/Resistance genes 

In peas, an increase in glucanase activity has been observed during infection 

with U. viciae-fabae and U. pisi (Barilli et al. 2010a; Kushwaha et al. 2018). This 

enzyme activity is thought to contribute to the formation of phenolic compounds 

involved in lignin formation in cell walls, thereby strengthening the plant defence 

against the pathogen (Yadav et al. 2023). This aligns with transcriptomic analyses in 

grass pea, where resistance to U. pisi was correlated with the overexpression of an 

endo-beta-1,3-glucanase gene in resistant genotypes. Additionally, overexpressed 

genes in resistant genotypes of grass pea suggested a comprehensive molecular 
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response to rust infection which has also been indicated in pea partial resistant 

accessions (Almeida et al. 2014; Santos et al. 2018). These previous studies in grass 

pea indicated the overexpression of genes related to phytohormones and 

transcription factors in resistant genotypes, suggesting a shared genetic basis for 

resistance in these related legume species against the same rust pathogen and thereby 

enabling more breeding opportunities (Martins et al. 2022; Osuna-Caballero et al. 

2024). In the case of V. angularis, a relative to V. unguiculata, a response to U. 

vignae infection was characterized by the activation of genes encoding glutamate 

receptor proteins (Yin et al. 2023). 

Additionally, genetic expression studies in common bean inoculated with U. 

appendiculatus revealed significant changes in over five hundred genes when 

compared to control conditions at various time points post-inoculation (0, 12, and 84 

hours) (Ayyappan et al. 2015). Among these, 90 genes were differentially expressed 

at all time points, including genes involved in stress responses such as calmodulin, 

cytochrome P450, chitinase, DNA polymerase II, and LRR, as well as transcription 

factors including WRKY, bZIP, MYB, HSFB3, GRAS, NAC, and NMRA (Ayyappan et 

al. 2015). These findings underscore the importance of these genes in the common 

bean-rust interaction which are also similar to those found in other rusts, such as 

peanut rust caused by P. arachidis (Ayyappan et al. 2015; Rathod et al. 2020). Similar 

differential expression patterns were observed in the "Sierra" cultivar of common 

bean harbouring the resistance gene Ur3, where genes containing NBS, LRR, and TIR 

signature motifs, along with WRKY-type transcription factors, were overexpressed at 

the onset of infection (Todd et al. 2017). Differential expression was also assessed in 

common bean to study the genetic architecture of Ur4 resistance source. In that 

study, up to 90 genes were differentially expressed along U. appendiculatus infection 

and were mainly attributed to stress response, hormone regulation/signalling, 

transport, and cell wall formation (Thibivilliers et al. 2009). In faba bean, studies 

demonstrated a systemic plant response to localized leaf infection by U. viciae-fabae, 

involving changes in carbohydrate and amino acid metabolism as an adaptive 

strategy to the pathogen’s entry into cells via the haustorium (Wirsel et al. 2001) 

which agrees with similar studies in U. appendiculatus (Puthoff et al. 2008). 

Overall, several candidate resistance genes have been identified in plants by 

transcriptomic approaches which can complement the previously described genetic 

insights for the breeding of rust-resistant crops. However, functional studies are still 

missing to validate their role during plant–pathogen interaction. 

Understanding both sides of the plant–pathogen interaction is important to 

completely unravel the molecular basis of resistance. However, most previous 

legume–rust interaction transcriptomic studies, only compared the plant transcripts 

induced in response to the pathogen due to low detection of fungal transcript. 

Identification of rust effector genes controlling pathogen host colonization must be 
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considered in transcriptomic studies focused on the identification of differentially 

expressed genes from the rust side and integrated with comparative rust genomics 

studies. 

5.3.2. Candidate Effector Molecules 

In the research of effector proteins, a significant focus has been placed on the 

legume rust pathogens of U. appendiculatus, P. pachyrhizi, and U. viciae-fabae 

which genomes are available (Link et al. 2014a). These candidate effectors are known 

to play a major role in activating response genes in the host plant and can suppress 

various resistance mechanisms. Specifically, in the pathosystems involving broad 

bean-U. viciae-fabae and common bean-U. appendiculatus, extensive studies have 

been conducted, proposing it as model systems for in-depth investigation of legume-

rust interactions and for Asian soybean rust, respectively (Link et al. 2008; 

Thibivilliers et al. 2007). Preliminary studies on U. appendiculatus have utilized the 

haustoria transcriptome analysis to predict and identify effector molecules secreted 

by the pathogen (Link et al. 2014b). Among the discovered effectors of U. 

appendiculatus, some of them including Uaca_9, Uaca_12, Uaca_14, and Uaca_22, 

can suppress the hypersensitive response in the host plants (Qi et al. 2019). 

Additionally, effectors like Uaca_4, Uaca_5, Uaca_7, Uaca_9, Uaca_28, and 

Uaca_44 can suppress basal resistance in Nicothiana benthamiana against the 

bacterial pathogen Pseudomonas syringae (Qi et al. 2019). This indicates the broad 

impact these effectors might have across different species and pathogen types. It was 

also noted that some of the genes encoding these effector proteins contain highly 

conserved motifs within the Pucciniales family, suggesting a possible similarity in 

effector mechanisms across different rust species (Cooper et al. 2016). 

A commonality in the action patterns between U. appendiculatus and P. 

pachyrhizi has been observed, where both pathogens initiate their infection by 

secreting families of hydrolase proteins to degrade the host plant's cell wall (245). 

They also produce structural proteins crucial for forming and stabilizing the 

haustorium within the host cells, which is a pivotal step in the infection cycle (Link et 

al. 2014b). The effector proteins from these pathogens are localized in the cytoplasm 

and nucleus of the host plant cells, where they exert their influence by activating or 

suppressing various plant responses (de Carvalho et al. 2017). 

In the case of U. viciae-fabae, specific molecules responsible for the biotrophic 

interaction between the pathogen and its host have been identified (Voegele 2006). 

One such molecule, Uf-RTP1p (Rust Transferred Protein 1 from Uromyces fabae), 

secreted by the haustorium, is found within the infected cells, including their nucleus 

(Kemen et al. 2005). Similar molecules with homologous domains have been 

discovered whose analogous functions in other rust species have been proposed 

(Kemen et al. 2005; Vieira et al. 2012). The detection of these molecules facilitates 

accurate quantification of haustoria using RT-qPCR analysis (Voegele and Schmid 
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2011). Therefore, a deeper understanding of the substances secreted by the fungus 

and their functional roles enhances our knowledge of the effectors and the biotrophic 

interaction between rust-host (Link et al. 2005; Voegele et al. 2005). This knowledge 

is crucial for developing specific improvement strategies to breed plants that are fully 

resistant to rust since more effector genes are known, new resistance genes could be 

identified (Jakupović et al. 2006; Link 2020). 

6. Breeding for Resistance 

The main objective of breeding for rust resistance is to develop varieties that 

either show delayed disease onset, minimal symptom development, or slow disease 

progression, thereby minimizing crop damage. This process begins with the crucial 

step of identifying and characterizing potential resistance sources for integration into 

breeding programs. 

6.1. Resistance Screening Methods 

Efficient screening methods are essential for discovering new resistance 

sources against rust. In general, this process starts with mass screenings, where large 

germplasm collections, primarily from the same legume species or occasionally from 

its wild relatives are evaluated. These initial screenings aim to identify potential 

resistance sources. Following this, the resistance mechanisms of these promising 

candidates are further investigated through more in-depth screenings on a selected 

group of accessions. This two-tiered approach allows breeders not only to identify 

novel resistance sources but also to understand the underlying mechanisms, thereby 

aiding the development of rust-resistant varieties. 

Mass screenings can be conducted either in natural field settings or under 

controlled conditions. It is a cornerstone in identifying aerial disease resistance in 

legumes (Sillero et al. 2006). These screenings employ a range of tools and 

techniques, to monitor symptom development on the whole plant or on the leaves, 

which are the most affected plant organs. Field screenings enable the simultaneous 

evaluation of extensive germplasm collections in conditions where natural inoculum 

is present allowing an understanding of the genetic and environmental factors that 

influence the phenotypic variances (Civantos-Gómez et al. 2022; Das et al. 2019). For 

more uniform and precise assessments, artificial inoculation with urediniospore is 

often employed and recommended when natural infestation is not high enough. This 

approach consists of spraying with aqueous suspension of rust spores or dusting 

mixture of spores in an inert carrier, ensuring consistency across the experimental 

trial (Sillero et al. 2000). However, natural conditions present challenges, such as the 

co-occurrence of other aerial diseases like ascochyta blight or powdery mildew, which 

can complicate rust assessments. The low initial inoculum densities of rust can also 

lead to the underestimation of its impact due to interference from these other 

diseases providing some risks of confusing escape with resistance (Porta-Puglia et al. 
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1993). To mitigate this, reinoculation with urediniospore may be necessary during 

field trials to ensure accurate evaluation of legume responses to rust (Barilli et al. 

2009a). In addition, it is recommended to inoculate the plants after sunset to benefit 

from both the darkness and the high relative humidity of the night (Sillero et al. 

2006). 

In field conditions, the assessment of quantitative resistance to rust involves 

several methodologies. A common approach includes the visual estimation of foliar 

area affected by pustules, referred to as disease severity percentage (DS). When 

periodic evaluations of DS are performed, it provides insights into both the final 

severity of the disease (captured in the last DS data) and its progression overtime. 

Rust disease progression is estimate through the integration of the periodic DS 

evaluation into some parameters including the area under the disease progress curve 

(AUDPC) and the epidemic growth rate (r) (Arneson 2001; Jeger and Viljanen-

Rollinson 2001), both critical in understanding the rust impact over time. Alongside 

DS, it is standard to record the infection type (IT) in the field. Various measurement 

scales have been developed for IT, which describe the plant reaction to rust disease. 

This reaction is characterized by the extent of necrosis or chlorosis at the infection 

sites, as well as the sporulation rate of the colonies that have formed on the tissue. 

One of the most widely used IT scales, developed for wheat rusts by Stakman et al. 

(1962), categorizes the reaction as follows: 0 = no symptoms, ; = necrotic flecks, 1 = 

tiny pustules without sporulation, 2 = necrotic halo surrounding small pustules, 3 = 

chlorotic halo surrounding pustules, and 4 = well-formed pustules without associated 

chlorosis or necrosis. On this scale, values between 0 - 2 indicate resistance, while 3 

and 4 imply susceptibility. More comprehensive scales such as the scale developed by 

Bernier et al. (1984) for faba beans rust, combine IT with DS percentages for refined 

field assessments. This scale, for instance, ranges from 1 (highly resistant) to 9 (highly 

susceptible), considering both the leaf area and the whole plant affected. Similar 

scales exist for another legume rusts such peanut and pea (Sokhi et al. 1984; 

Subrahmanyam et al. 1995). Increasingly, traditional visual assessments are being 

supplemented, and in some cases replaced, by remote sensing technologies in many 

pathosystems. These methods, leveraging the contrast between damaged and healthy 

tissue, are developing new models for rust evaluation with comparable or higher 

accuracies than visual estimates (Simko et al. 2017). However, most current models 

are tailored to cereal rusts, where resources and research investment are more 

substantial (Rubiales et al. 2023). Therefore, adapting these remote sensing 

methodologies for rusts in legumes could enhance precision allowing timesaving in 

field evaluations under natural conditions. 

A more detailed analysis of disease symptoms is feasible under controlled 

conditions using growth chambers or greenhouses. This setting enables evaluations 

at both seedling and adult plant stages. These systems are essential to test the efficacy 

and multiplication of rust isolates for subsequent evaluation. The most common 
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method for inoculation involves dusting plants with urediniospores diluted in an 

inert carrier such as talc powder (Chand et al. 2004). To achieve uniform spore 

deposition, the use of inoculation towers is recommended (Sillero et al. 2000). After 

inoculation, it is necessary to provide the environmental conditions required for 

urediniospore germination and successful plant infection. This typically involves 

incubation in darkness with 100 % relative humidity for 12 - 24 hours (More et al. 

2018). Depending on the rust species, the first macroscopic symptoms are visible 

between 7 - 9 days post-inoculation (dpi), marking the start of evaluations symptoms. 

Unlike field evaluations, where DS is the most recorded parameter, controlled 

conditions allow for a more in-depth analysis of the disease. This includes counting 

pustules per unit area (infection frequency, IF), typically in a defined leaf area, and 

measuring pustule size in mm2 (Asare et al. 2019; Barilli and Rubiales 2023). IF 

facilitates the calculation of the latency period (LP), the time between inoculation and 

observation of 50 % of total pustules. Both DS percentage estimation and pustule 

counting is highly time consuming, especially when assessing large plant collections 

(Bock et al. 2020). Therefore, standard area diagrams (SADs) have been developed 

for some rust pathosystems to help reduce evaluator bias (Del Ponte et al. 2017). 

However, these SADs have not been adapted for most legume-infecting rust species, 

except for soybean rust (Franceschi et al. 2020). Efforts have also been made to 

automate the evaluation process under controlled conditions. For instance, through 

detached leaf assays, IF and DS can be calculated using easily acquired images such 

as RGB (red-green-blue) or thermal sensors, as done in pea and faba bean rust (Alves 

et al. 2020; Olivoto 2022; Osuna-Caballero et al. 2023). These developing techniques 

could be readily adapted to other pathosystems, as they share similar symptoms, 

improving evaluation precision and enabling the assessment of large germplasm 

collections. In addition, the common infection cycle shared by most rust species allow 

the evaluation of the different stages of the infection process by microscopic 

observation of infected leaves at an early stage of the interaction. For instance, in 

several rust-legume pathosystems, the formation of appressoria over the stomata has 

been assessed, allowing for the calculation of tissue penetration percentage (first 3-6 

hours post-inoculation) (Figure 2b). Substomatal vesicle formation, hyphal 

development, and haustorium formation within cells (6-12 hours post-inoculation) 

are also evaluated in several cases (Figure 2c) (Dugyala et al. 2015; Sillero and 

Rubiales 2002). Colony size within plant tissue at 24- or 48-hours post-inoculation 

is another commonly assessed parameter (Figure 2d) (Barilli et al. 2009c; Kushwaha 

et al. 2016; Negussie et al. 2012; Sillero et al. 2012). These microscopic evaluations 

allow to characterise the resistance mechanisms expressed by the most resistant 

accessions and select cultivar with a specific resistance mechanism for breeding. 

6.2. Conventional Breeding 

Classical breeding techniques such as backcrossing, pedigree selection, and 

recurrent selection can be used to develop rust-resistant cultivars. These techniques 
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involve crossing elite cultivars with sources of rust resistance. The development of 

legume resistant cultivars against rust infection with an interesting agronomic 

potential is the main goal of any breeding program for disease resistance (Renzi et al. 

2022). The search and identification of resistant sources is the first step in any 

classical breeding program for rust resistance and has also been the case for several 

legume breeding programs. 

Once the source of resistance is identified, the introgression of the genomic 

regions conferring resistance to rust into non-resistant elite genotypes can be 

obtained by a complex crossing selection scheme. For instance, Conventional 

breeding for rust resistance in peanuts involves introgression of resistance genes 

from wild species into cultivated varieties (Stalker 2017). This is achieved through 

wide hybridization, where genes from cross-compatible wild species are transferred 

into the cultivated peanut. Efforts in India led to the development of rust-resistant 

peanut breeding lines such as VG 9514, derived from A. cardenasii which were 

subsequently used as parental lines to develop mapping populations for genetic and 

QTL mapping, enabling the development of molecular markers for rust resistance 

(Varman 1999). 

In soybean breeding for rust resistance, conventional strategies like gene 

pyramiding have been applied (Chander et al. 2019). This involves combining 

multiple Rpp genes within a single genotype for broader and more durable resistance 

(Yamanaka et al. 2015). Molecular markers assist in identifying and selecting these 

genes, facilitating efficient breeding. Studies have shown that combinations of Rpp 

genes, like Rpp2, Rpp3, Rpp4, and Rpp5, provide enhanced resistance to P. 

pachyrhizi (Meira et al. 2022; Yamanaka et al. 2019). The effectiveness of these gene 

combinations varies with the genetic background of the soybean variety, indicating 

the importance of considering both specific genes and the overall genetic context in 

breeding programs. 

In common bean cultivation, the optimal approach for traditional breeding also 

involves accumulating and pyramiding various race-specific resistance sources 

(Beaver et al. 2003), considering the isolate’s specific climatic zones. Common bean 

varieties with rust resistance are typically developed through crossbreeding, 

backcrossing, and continuous disease pressure over successive generations, ensuring 

the acquisition of homozygous resistance genes. Unfortunately, not all registered 

plant varieties with rust resistance levels have validated reports of their development 

and resistance levels. Nonetheless, the extensive collaborations between the 

University of Puerto Rico and The USDA allow to develop various common bean 

ecotypes resistant to different races of U. appendiculatus (genes Ur-3, Ur-5, Ur-4, 

Ur-6, and Ur-11) (Beaver et al. 1999, 2015, 2020; Osorno et al. 2021; Pastor-Corrales 

et al. 2007). 
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In the case of chickpea, a single interspecific cross between C. arietinum and C. 

reticulatum enabled the wild parent to contribute the Uca1/uca1 gene, resulting in 

segregating resistance lines within the offspring (Madrid et al. 2008). This allowed 

for the selection and registration of some rust-resistant material (Rubio et al. 2006). 

For lentil and faba bean, simple crossings and single seed descendant selection 

have also made possible the registration of improved lines with significant levels of 

resistance to rust caused by U. viciae-fabae that are available to farmers (Idrissi et al. 

2012; Rubiales and Khazaei 2022; Sakr et al. 2004). These breeding strategies 

demonstrate the integration of genetic resistance into cultivars, providing a 

sustainable approach to manage rust diseases in these legume crops, which have been 

developed to combat other legumes rusts (Deshmukh et al. 2020; Paul et al. 2010). 

However, the described conventional breeding approaches to obtain legume resistant 

varieties against rust are time-consuming and not very efficient for complex 

resistance traits. To increase the efficiency and speed of breeding programs, precision 

breeding approaches, based on molecular innovations, have been developed and 

applied for rust-resistant legume cultivars development. 

6.3. Precision Breeding Strategies 

Genomic technologies, including genome sequencing, resequencing, genetic 

mapping, and diverse omics strategies, are crucial in legume precision breeding. 

Advances such as next-generation sequencing (NGS) have led to techniques like 

genotyping by sequencing (GBS), diversity array technology sequencing (DArTseq), 

RNA-sequencing, and whole-genome sequencing (WGS), significantly improving 

marker technologies. These have enabled the discovery of numerous single nucleotide 

polymorphisms (SNPs) closely linked to genes or QTLs controlling rust resistance, 

enabling faster and more accurate breeding. A compilation of different types of 

molecular markers closely associated with legume rust resistance genes (previously 

described in Section 5.2) is presented, which could be beneficial for marker-assisted 

selection (MAS). These advancements in genomic tools and techniques signify a 

substantial leap in the ability to understand and manipulate genetic factors 

underlying rust resistance in legumes, potentially transforming breeding programs 

and enhancing crop resilience. 

Precision breeding in peanuts for rust resistance involves the introgression 

resistance genes from wild species into cultivated varieties, utilizing MAS for efficient 

selection (Bertioli et al. 2016). For instance, markers like SSRGO340445 and 

SSRIPAHM103 have been identified near P. arachidis resistance loci (Varshney et al. 

2014). These markers are then used in marker-assisted backcrossing to introgressive 

hybridization resistance into elite peanut genotypes, enhancing rust resistance in 

cultivated peanut varieties (Ramakrishnan et al. 2020). 
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Common bean serves as a prime example of a legume crop where, to date, the 

highest number of molecular markers have been identified in associated with U. 

appendiculatus resistance. Decades of dedicated efforts have led to a thorough 

understanding of different race-specific resistance genes, facilitating the 

development of various marker-assisted selection (MAS) strategies. The resistance 

gene Ur-14, present in the Ouro Negro cultivar, has been transferred to offspring 

using flanking markers RAPDOXY11 and SCARF10 (Ragagnin et al. 2009). Selecting 

within segregating populations using these polymorphic molecular markers in 

parental lines, along with others conferring resistance to different diseases, has 

enabled the development of elite varieties resistant to U. appendiculatus and other 

pathogens through a detailed MAS scheme (Ragagnin et al. 2009). Furthermore, the 

cultivar obtained in that study has also served as a parental donor of Ur-14 in crosses 

and backcrosses with parental donors of resistance genes Ur-5 (markers RAPDOPF10 

and SCARSI19) and Ur-11 (markers RAPDOPAC20 and SCARFSAE19) (Souza et al. 

2014). This approach has allowed pyramiding diverse resistance sources against rust 

into elite varieties using MAS (Pilet-Nayer et al. 2017; Souza et al. 2014). In this 

context, the identification of high-quality SNP markers and specific genes will 

continue to expand knowledge and tools for MAS in common beans, as evidenced by 

recent GWAS studies (Leitão et al. 2023). Similarly, in other airborne diseases 

affecting common beans, SNPs linked to resistance genes have been identified, and 

through introgressions, they have been transferred to elite varieties exhibiting the 

same resistance level as the donor parent (Keller et al. 2015). These advancements 

demonstrate the significant progress in the application of genomic tools in breeding 

for rust resistance in legumes, particularly in enhancing the effectiveness of MAS. 

However, the utilization of molecular markers to aid legume breeding for rust 

resistance has not been widely adopted in breeding programs so far. Various factors 

contribute to this limitation, but a significant one may be the substantial genetic 

distance between markers and resistance genes/QTLs. Most legume markers listed 

in Table 2 are not closely linked to rust resistance genes/QTLs. Large cM distances 

often identified in linkage maps make their application in precision breeding 

challenging. For instance, in lentils, some markers linked to rust resistance exceed 

distances of 5 cM, and others even surpass 10 cM, signifying a considerable gap 

between the marker and the resistance gene (Kant et al. 2004). Furthermore, not all 

markers are ideal for MAS. Specifically, OPX-15760 and OPX-171075, implicated in 

resistance to U. viciae-fabae in lentils, are RAPD markers with limitations in 

reproducibility and detecting allelic variants among heterozygotes (Jiang et al. 2013). 

Finally, while some polymorphic SSR markers associated with resistance traits have 

been described, the exact distance between the marker and the gene/QTL, or their 

location in linkage groups/chromosomes, is not always known (Dikshit et al. 2016; 

Fikru et al. 2014). These challenges highlight the complexity of integrating molecular 
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markers into legume breeding programs for rust resistance and underscore the need 

for continued research to refine these tools for more effective application. 

The identification of SNP markers saturating the plant genome is gaining 

widespread acceptance due to their diverse applications in plant breeding and 

genetics (Hickey et al. 2019). These markers, numbering in the thousands, allow to 

study the genetic diversity within core collections of plants. The high-resolution data 

provided by SNPs allows for an in-depth examination of the genetic makeup, 

including analysis of linkage disequilibrium and population structure, which are 

essential components in whole-genome studies (Rispail et al. 2023). In the context of 

GWAS, these SNP markers are crucial for identifying allelic polymorphisms within 

genes that are involved in resistance mechanisms. This is particularly significant for 

enhancing marker-assisted breeding, as it allows for greater precision and efficiency 

in selecting for traits such as rust resistance in legumes (Susmitha et al. 2023). 

Moreover, genotyped collections derived from SNP markers are helpful for fitting 

genomic selection (GS) models. This GS strategy enables the prediction of phenotypes 

in various unknown plant varieties, considering different agroclimatic environments 

(Annichiarico et al. 2019). In legumes, both GWAS and GS studies have played a 

pivotal role in uncovering new genes linked to disease resistance and their utilization 

in breeding (Zargar et al. 2015). The markers identified through these studies 

facilitate the breeding of new varieties with enhanced resistance to diseases like rust. 

The effectiveness of these precision breeding methodologies is not limited to 

legumes. Therefore, the advancements in genomic tools and procedures show a 

substantial improvement in breeders' ability to incorporate biotechnological methods 

into conventional breeding strategies. Post-genomic reverse genetics techniques, 

such as RNA interference (RNAi) and Targeting Induced Local Lesions IN Genomes 

(TILLING), are being used to confirm genetic functions and expedite the selection 

process for desirable traits (Padilla-Roji et al. 2023). Although initially more common 

in cereals for combating diseases like rust, the application of these techniques in 

legumes, such as peas, has shown promising results, for instance, allowing the 

characterization of nodulation trait mutants in peas (Tayeh et al. 2015). In M. 

truncatula, suppressing pathogenesis-related gene expression through gene 

silencing of a yeast protein MtSTP13 increased susceptibility to powdery mildew, 

while its transient overexpression enhances resistance against the disease in peas 

(Gupta et al. 2021). This expansion of genomic and molecular techniques in plant 

breeding, particularly in disease resistant, marks significant progress adaptable to 

other legumes. The ability to accurately quantify genetic diversity, identify disease-

resistant genes, and predict phenotypic outcomes across different environments 

accelerates the development of improved crop varieties, ultimately enhancing crop 

resilience and productivity. 
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Similarly, the latest advancements in genetic transformation including 

CRISPR/Cas9 and single-guided RNA sequence (sgRNA) have achieved ambitious 

goals in rust resistance, though currently limited to cereals (Hickey et al. 2019). Using 

the CRISPR/Cas9 technique, it has been possible to silence Ca+ transporter genes 

involved in disease resistance, leading to the development of wheat varieties resistant 

to Puccinia striiformis f. sp. tritici (He et al. 2023). This breakthrough demonstrates 

the potential of advanced gene-editing techniques in enhancing rust resistance in 

crops. While this approach has primarily been applied to cereals, its successful 

application in wheat suggests promising prospects for its use in legumes, where some 

advances have been made in pea, cowpea, and common bean (de Koning et al. 2023; 

Ji et al. 2019; Li et al. 2023). The ability to precisely edit genes linked to rust 

resistance can significantly accelerate the breeding of resistant varieties, potentially 

revolutionizing the management of rust diseases in legume crops. 

7. Conclusions and Future Prospects 

Rust diseases present substantial challenges in legume breeding caused by a 

wide range of causal agents not limited to Uromyces genus. The management of these 

diseases demands integrated approaches that are both environmentally sustainable 

and cost-effective. Efforts to enhance rust resistance in legumes have led to the 

development of cultivars with varying levels of incomplete resistance. Despite these 

advancements, the resistance sources against rust are still limited, and current 

screening methods are laborious and time-consuming. This highlights the necessity 

for more accurate phenotyping, achievable through the integration of novel, high-

throughput phenotyping platforms. 

Significant strides in genomic technologies, including genome sequencing and 

the discovery of marker-trait associations, are essential in enhancing legume 

breeding strategies. The availability of optimized reference genomes in several 

legumes such as pea (Kreplak et al. 2019; Yang et al. 2022), common bean (Shmutz 

et al. 2014) or faba bean (Jayakodi et al. 2023) are proving invaluable at the molecular 

level. These resources aid in precise breeding and in unravelling complex trait 

genetics for better genetic gains. Collaboration among breeding programs is also 

crucial to share diverse genetic materials, facilitating the gene pyramiding of useful 

traits and implementing various hybridization regimes to stabilize resistance genes. 

The complex nature of rust diseases in legumes requires multidisciplinary 

approaches that employ both biological knowledge and policy directives to enhance 

environmental sustainability and food security. Exploring resistance in lesser known 

but resilient legume species could provide valuable insights for breeding major 

legume crops. The resistant rust gene transferred from pigeon pea to soybean serve 

as a successful example (Kawashima et al. 2016). Therefore, investigating wild 

relative species for rust resistance has also the potential to significantly contribute to 

the improvement of other major legume crops. 
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Objectives 
Considering rust one of the main diseases worldwide, this doctoral thesis 

focuses on the pathogen U. pisi for the study and identification of new 

sources/mechanisms of resistance in pea and its use in marker assisted selection in 

plant breeding. Taking this general objective into account, the specific objectives of 

this thesis are: 

i. Identification of novel sources of resistance to U. pisi in a collection of Pisum 

spp. under field conditions and controlled conditions (Chapter 2 and 3). 

ii. Identification of resistant accessions based on stability indices on field 

conditions, allowing the selection of potential resistance donors (Chapter 5). 

iii. Characterization of the resistance mechanisms occurring in different pea 

accessions resistant to U. pisi at histologically level (Chapter 2). 

iv. Develop an image processing workflow using R software to produce reliable 

and repeatable measurements of rust-infected pea leaf area, counting the 

number of pustules, and track disease progression parameters automatically 

(Chapter 3). 

v. Identification of novel molecular markers associated with rust resistance 

enabling its use in marker assisted selection breeding (Chapter 4). 

vi. To propose candidate genes responsible of rust susceptibility/resistance 

caused by U. pisi trough a genomic association approach (Chapter 4). 

vii. To evaluate different genomic prediction models to select the more 

appropriate in future breeding scenarios for rust resistance (Chapter 5). 

viii. To evaluate the genotype by effect interaction in different cross-validation 

strategies to enhance predictive abilities and accuracies in the best genomic 

selection models proposed (Chapter 5). 
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Chapter 2 

Identification and Characterization of 

Novel Sources of Resistance to Rust 

Caused by Uromyces pisi in Pisum spp. 
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1. Abstract 

Pea rust is a major disease worldwide caused by Uromyces pisi in temperate 

climates. Only moderate levels of partial resistance against U. pisi have been 

identified so far in pea, urging for enlarging the levels of resistance available for 

breeding. Herein, we describe the responses to U. pisi of 320 Pisum spp. accessions, 

including cultivated pea and wild relatives, both under field and controlled 

conditions. Large variations for U. pisi infection response for most traits were 

observed between pea accessions under both field and controlled conditions, allowing 

the detection of genotypes with partial resistance. Simultaneous multi-trait indexes 

were applied to the datasets allowing the identification of partial resistance, 

particularly in accessions JI224, BGE004710, JI198, JI199, CGN10205, and 

CGN10206. Macroscopic observations were complemented with histological 

observations on the nine most resistant accessions and compared with three 

intermediates and three susceptible ones. This study confirmed that the reduced 

infection of resistant accessions was associated with smaller rust colonies due to a 

reduction in the number of haustoria and hyphal tips per colony. Additionally, a late 

acting hypersensitive response was identified for the first time in a pea accession 

(PI273209). These findings demonstrate that screening pea collections continues to 

be a necessary method in the search for complete resistance against U. pisi. In 

addition, the large phenotypic diversity contained in the studied collection will be 

useful for further association analysis and breeding perspectives. 

2. Introduction 

Pea (Pisum sativum L.) is a widely grown temperate grain legume. It is the 

second most cultivated legume in the world and the first in Europe, including both 

dry and green peas (FAOSTAT 2022). Its use extends to food and feed and represents 

a versatile and inexpensive protein source, bringing benefits to human health 

(Borges-Martínez et al. 2021; Clemente and Olias 2017; Tulbek et al. 2016). As for any 

other crop, pea production can be affected by a range of pests and diseases, among 

which pea rust has become a major concern worldwide (Rubiales et al. 2015). 

Pea rust has been described to be incited by Uromyces viciae-fabae (Pers. de 

Bary) in tropical and subtropical regions (Singh et al. 2015) or by U. pisi (Pers.) 

(Wint.) in temperate areas (Barilli et al. 2009a; Emeran et al. 2005). U. pisi is a 

heteroecious macrocyclic fungus that completes its life cycle on Euphorbia 

cyparissias L. and E. esula L., which can grow in the vicinity of pea fields as 

spontaneous weeds and spread the fungal aeciospores over the crop (Pfunder and 

Roy 2000). When aeciospores infect pea, the uredial stage initiates a polycyclic 

infection, which results in the reduction in a photosynthetic area of an 

underdeveloped pod with yield losses up to 30 % (EPPO Standards Pea 2021). 
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Chemical control with fungicides is effective to control rust, but it is expensive 

and has environmental side effects (Emeran et al. 2011). Alternative control methods, 

such as application of natural substances with fungistatic effects (Barilli et al. 2017), 

the induction of systemic acquired resistance (Barilli et al. 2010, 2012), or agronomic 

practices, such as intercropping (Shtaya et al. 2021; Singh et al. 2014), are being 

explored but are not yet available at a commercial level. Therefore, it is important to 

pay attention to the inherent resistance within Pisum spp. diversity because the 

development of resistant varieties through plant breeding remains the most 

economical and eco-friendly approach to control foliar diseases, such rust in pea 

(Barilli et al. 2014). Some efforts have been achieved in that direction to identify 

sources of resistance to U. pisi and to understand the genetic basis of resistance. 

Large pea collections have been screened under field and controlled conditions, but 

complete resistance has not been found so far (Barilli et al. 2009a, 2009b). The 

development of a RIL population with the partially resistant P. fulvum accession 

IFPI3260 as donor allowed the detection of four QTLs related to phenotypic disease 

variation (Barilli et al. 2010, 2018). 

The aim of this work was to expand the genetic background of U. pisi resistance 

in pea, evaluating new germplasm, including wild relatives, landraces, cultivars, and 

breeding lines from all over the world. The new resistant sources selected using a 

multi-trait index approach were characterized histologically to identify early 

resistance mechanisms. The components of resistance operating in each selected 

genotype are discussed according to their appropriate use in pea breeding programs 

for efficient and durable resistance to U. pisi. 

3. Materials and Methods 

3.1. Pisum spp. Germplasm Origin 

This study used a worldwide germplasm collection containing 320 pea 

accessions kindly provided by USDA (Department of Agriculture, Quezon City, 

Philippines), JIC (John Innes Centre, Norwich, UK), CRF-INIA (Centro Nacional de 

Recursos Fitogenéticos, Madrid, Spain), CGN (CPRO-DLO, Wageningen, The 

Netherland), IPK (Gatersleben, Germany), and ICARDA (International Centre for 

Agricultural Research in the Dry Areas, Beirut, Lebanon). The core collection 

represents the Pisum genera in taxonomy, geographic distribution, and phenotypic 

variation (Additional file 1). All accessions were multiplied at the Institute for 

Sustainable Agriculture—CSIC at Cordoba, Spain, under field conditions before the 

experiments. 

3.2. Pathogen Isolate and Multiplication 

All experiments were performed with the U. pisi isolate Up-Co01 previously 

collected from naturally infested pea fields in Cordoba, Spain, and conserved at − 80 

°C. Before use, rust spores were multiplied on susceptible pea cv. Messire under 
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controlled conditions (CC) to ensure availability of freshly collected spores at 

optimum conditions for inoculations, following the Sillero et al. 2000 procedure with 

modifications. For this, two-week-old Messire plants were inoculated by dusting the 

plants with 1 mg urediospores per pot, mixed in pure talc (1:10, v: v), and incubated 

for 24 h at 20 °C in complete darkness and 100 % relative humidity. Plants were then 

transferred to a growth chamber at 20 °C with a photoperiod of 14 h of light and 10 h 

of darkness and a light intensity of 148 µmol m−2 s−1. After 2 weeks, the fresh 

urediospores were collected using a vacuum spore collection device, dried, and stored 

until inoculation assays. 

3.3. Field Experiments and Data Assessments 

The pea collection was phenotyped over three crop seasons (2017/2018, 

2018/2019, and 2019/2020) at Cordoba, Spain (Table 3), using the rust susceptible 

pea cv. Messire as control check, following an alpha lattice design with three 

replicates. To ensure optimal germination, pea seeds were first scarified and then 

sown in the field by early December each year, according to local practice. The 

experimental unit consisted of a single 1-m long row per accession with 10 seeds per 

row, separated from the adjacent row by 0.7 m. 

Table 3. Description of the environments of the trials for the multi-environment 

study during the crop cycle from December to May. 

ENV Season Site Soil 
Type 

Soil 
pH 

Organic 
Matter 
(g/110 

g) 

Available 
Phosphorus 

(mg/kg) 

C:N 
Ratio 

Avg 
Tmax 
(°C) 

Avg 
Tmin 
(°C) 

Avg 
RH 
(%) 

* 

Rain 
(mm) 

Co-
18 

2017–
2018 

37.862875, 
−4.791796 

Vertisol - - - - 18.37 6.17 75.2 472 

Co-
19 

2018–
2019 

37.864470, 
−4.789733 

Vertisol 7.8 0.7 9.9 7.25 21.04 5.78 63.4 127 

Co-
20 

2019–
2020 

37.866372, 
−4.787661 

Vertisol - - - - 21.00 8.45 73.9 382 

* Relative humidity data taken from U. pisi inoculation to disease severity assessment. 

Plants were inoculated at mid-March to ensure high and uniform levels of rust 

infection. The inoculation consisted of spraying plants with an aqueous urediospores 

suspension (± 1.0 × 105 urediospores mL-1) with Tween-20 (0.03 %, v:v) as surface-

active agent after sunset to benefit from the darkness and high relative humidity of 

the night. Disease severity (DS) was visually estimated as the percentage of canopy 

covered by rust pustules 30 days after inoculation (dai) (Barilli et al. 2009b). 

3.4. Controlled Condition Experiment and Assessments 

Seeds of each accession were scarified and surface-sterilized for 20 min in a 

20% solution of sodium hypochlorite and rinsed twice with sterile water for 20 min. 

Seed vernalization was induced for 3 days on wet tissue in a Petri dish at 4 °C in 

darkness and then shifted to 20 °C for 4 days for complete germination. Two 

germinated seeds per accession were sown in a 1:1 mixture of sand and peat per pot 
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(35 × 35 cm) to finally leave one grown plant per pot for the evaluation. Each 

accession was replicated once. Pots were placed in a randomized complete block 

design and seedlings were inoculated when the third leaf was completely expanded 

(±12 days after sowing). Inoculation was carried out as described above for the CC 

multiplication of pea rust spores on cv. Messire. Then, plants were transferred to a 

growth chamber at 20 °C with a photoperiod of 14 h of light and 10 h of darkness and 

148 µmol m-2 s-1 of irradiance at plant canopy level. The whole experiment was 

repeated three times leading to the evaluation of a total of six plants per accession. 

Two days after inoculation, one leaflet of the third leaf was cut from each 

seedling and processed for histological assessments. The rest of the plants were 

maintained in-tact for macroscopical observations of rust development from 7 to 14 

dai by daily counting of the number of emerged pustules on a 1 cm2 marked area of 

the third leaf. These daily scorings of the first rust cycle were used to calculate the 

time when 50% of pustules were formed (latency period, LP50) and the monocyclic 

disease progress rate (MDPr) given by the slope of the regression line. To calculate 

MDPr, daily emerged pustules numbers were converted into relative pustule values 

expressed as the per-centage of the most susceptible cultivar in the collection (cv. 

Erygel-JI1210). The last count was used to determine the final number of pustules 

cm-2 (infection frequency, IF). By 14 dai, disease severity was also visually estimated 

as the percentage of canopy covered by rust, and infection type (IT) was assessed 

using the scale of Stakman et al. 1962. 

3.5. Histological Assessments 

The leaflet samples collected at 2 dpi were bleached on filter paper dipped in 

fixative solution (absolute ethanol/glacial acetic acid, 1:1, v:v) ,and then they were 

boiled in 0.05 % trypan blue in lactophenol/ethanol (1:2, v:v) for 10 min. Finally, they 

were cleared in a nearly saturated aqueous solution of chloral hydrate (5:2, w:v) to 

remove trypan blue from chloroplast membranes as described in Sillero and Rubiales 

2002. Histological observations were made using a phase contrast Leica DM LS 

microscope at × 400 magnification. Assessments were based on the observation of 25 

random infection units per leaflet with three independent replicated leaflets per 

accession. For each infection unit, the number of hyphal tips and haustoria were 

counted allowing estimation of the early abortion rate (colonies without haustoria). 

Presence or absence of host cell necrosis associated to the infection units was also 

noted through the detection of autofluorescence upon cell excitation by UV light. The 

colony size, including perimeter and area, was also determined using a Levenhuk 

M1400 PLUS camera and LevenhukLite software. 

3.6. Data Manipulation and Statistical Analysis 

The control condition (CC) and field experiment datasets were analysed 

separately. Control of data quality was performed individually for each trait through 
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graphical inspection of residuals to assess normality, homogeneity of variance, and 

outliers’ detection. To ensure residuals normalization and variance stabilization, 

arcsine transformation was applied on the parameters expressed as percentages 

while square root transformation was performed for MDPr and IF and logarithmic 

trans-formation for LP50. A two-way ANOVA and post-hoc Tukey test were performed 

for post-haustorium histological studies.  

For CC traits (MDPr, IF, DSCC, IT, and LP50), the experiment was analysed 

using a linear mixed-effect model (LMM) according to the following equation: 

𝑦𝑖𝑗 =  𝜇 +  𝛼𝑖 + 𝜏𝑗 + 𝜀𝑖𝑗 

where yij is the trait observed value for the ith genotype in the jth replicate (i = 

1, 2, … 320; j = 1, 2, … 6); αi is the random effect of the ith genotype; τj is the fixed 

effect of the jth replicate; and εij is the random error associated to yij. 

For field data where multi-environment trials were conducted, the linear model 

with interaction effect was used to analyse data: 

𝑦𝑖𝑗𝑘 =  𝜇 +  𝛼𝑖 + 𝜏𝑗 + (𝛼𝜏)𝑖𝑗 +  𝛾𝑗𝑘 + 𝜀𝑖𝑗𝑘 

where yijk is the trait observed value in the kth block of the ith genotype in the 

jth environment (i = 1, 2, … 320; j = 1, 2, 3; k = 1, 2, 3); μ is the grand mean; αi is the 

effect of the ith genotype; τj is the effect of the jth environment; (ατ)ij is the 

interaction effect of the ith genotype with the jth environment; γjk is the effect of the 

kth block within the jth environment; and εijk is the random error. In this case, the 

genotype effect, and the interaction genotype × environment (G × E) effect was 

selected as random effects and environment and replicates in environments were 

selected as fixed effects in the model. 

In both models, the restricted maximum likelihood (REML) procedure was 

con-ducted to estimate the variance components of the linear mixed model to 

compute the predicted means (best linear unbiased prediction—BLUP) genotype 

values according to DeLacy et al. 1996. BLUPs were used as phenotypic data for 

subsequent correlations and genotype selection assessments. Variance components 

were also estimated in terms of coefficient of variation, following the formula: 

𝐶𝑉 = (√𝜎̂2 𝜇⁄ ) × 100 

where σ2 is the variance and μ is the grand mean. The broad-sense heritability 

(H2) on an entry mean basis in all growing conditions was estimated following the 

Toker (2004) study and calculated as: 

𝐻2 =  
𝜎̂𝑔

2

𝜎̂𝑔
2 +  𝜎̂𝑖

2 +  𝜎̂𝑒
2 
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where σg2 is the genotypic variance, σi2 is the genotype-by-environment 

interaction variance, and σe2 is the residual variance. 

To select rust resistant accessions through traits evaluated under controlled 

conditions, multi-trait genotype-ideotype distance (MGIDI) (Olivoto and Nardino 

2021), Smith-Hazel (Smith 1936), and FAI-BLUP (Rocha et al. 2018) indexes were 

performed. For field data, the Linn and Binns superiority measures were assessed 

using a non-parametric method for genotype selection (Lin and Binns 1988). Every 

index ranks the accession based on their rust resistance level, and the selected 

resistant genotypes were those accessions that appeared in the best positions over all 

four indices. 

All data analyses were performed in R Core Team (2021) with the “metan” 

(Olivoto and Lúcio 2020) package for fit-ting LM/LMM interpretation and “ggplot2” 

(Wickham 2016) package for visualization. 

4. Results 

4.1. Phenotypic Response, Variance Components and Broad-Sense 

Heritability 

All accessions showed rust symptoms under both controlled and field 

conditions albeit with variable intensities. A large phenotypic variation was observed 

in all trials for all traits, although accessions with moderate levels of disease 

symptoms were the most frequent in revealing a positive skewness, except for IT, as 

most accessions showed well-formed pustules (IT = 4; Figure 3g). The susceptible 

check cv. Messire showed a DS under field conditions of 28, 35, and 50 in 2018, 2019, 

and 2020, respectively, which was in all cases higher than the total mean of these 

environments (Figure 3). 
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Figure 3. Phenotypic variation in rust response adjusted means (BLUPs) among 320 pea 

accessions after infection with U. pisi. (a–d) show the DS plants under field conditions 

during 2018, 2019, and 2020 seasons and DS seedlings under controlled conditions (CC), 

respectively. (e–h) show seedlings under CC, the monocyclic disease progress rate (MDPr), 

infection frequency (IF), infection type (IT), and latency period (LP50), respectively. 

Genotypic coefficient of variation (CVg) and heritability (H2) are also shown. Dashed red 

lines and black arrows indicate the overall mean and where the susceptible control Messire 

is located, respectively. 

Under CC, cv. Messire showed higher values than the total mean for MDPr, IF, 

IT, and DS CC and lower values for LP50. These values were far from the min and 

max value, showing a range from incomplete resistant to highly susceptible 

accessions. The lowest IT value was observed in accession PI273209, with moderate 

levels of macroscopically visible necrosis associated with rust pustules (IT = 2), 

whereas all other accessions displayed a fully compatible interaction (IT > 3, with IT 

= 4 being the most frequent). 

The likelihood ratio test revealed significant difference between genotypes for 

all traits (p < 0.05). In CC, 63 % of the phenotypic variance of DS was due to genetic 

differences between accessions. This trait also showed the highest broad-sense 

heritability (H2 = 0.86). By contrast, genotypic effect explained only 11.2 % of the LP50 

variance suggesting the low suitability of this parameter to predict the rust 

susceptibility/resistance response of a genotype. Under field conditions, the 

maximum genotypic effect was explained in 2020 with a 57 % of the phenotypic 
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variance and a broad-sense heritability of 0.80 (Figure 3). By contrast, the lowest 

genotypic effect was detected in 2018 explaining only 36 % of the phenotypic variance 

and a broad-sense heritability of 0.63 (Figure 3). 

These variations between environments are also affected by genotype x 

environment interactions. The minimum interaction coefficient was detected for 

2019 with 11 % and peaks in 2020 with 27 % (Table 4). In most cases, the accuracy of 

the LMM applied in CC and field conditions is >75 %, except for LP50. 

Table 4. Statistics performed for disease components studied in CC and under field 

conditions. Arithmetic mean ± standard error (SE), minimum and maximum values, 

skewness, accuracy of the selection in LMM applied, and their likelihood ratio test for 

genotype effect (LRT). The percentage of genotype-by-environment interaction coefficient of 

variation (CVi) is also shown with a significance p < 0.01. 

4.2. Trait Correlations 

Phenotypic correlations were calculated for each trait in each experimental 

condition. DS in the various field seasons were significantly correlated (p ≈ 0.5, p < 

0.001) (Table 5). Adult plant responses in the field (DS in the various season) were 

significantly correlated with seedling responses under controlled conditions, with IF 

showing higher correlations, followed by MDPr, DS, and IT. On the contrary, LP50 in 

seedlings was poorly correlated with DS in the field, although it was correlated with 

DS in seedlings (p = -0.20, p < 0.01). 

The strongest positive correlation was detected between MDPr and IF under CC 

(p = 0.96, p < 0.001) while the strongest negative correlation was detected between 

MDPr and LP50 (p = -0.21, p < 0.01) under controlled conditions. 

4.3. Selected Rust Resistant Accessions 

Grouping accession according to the species and subspecies they belong to did 

not reveal a group of accessions with higher level of resistance, due to the large 

variance within groups (data not shown). In addition, the interaction between these 

factors and the environment hampers direct selection of most resistant accessions 

(Additional file 2). 

 Trait Mean ± SE Skewness Min Max Accuracy LRT CVi 

Controlled 
Conditions 

MDPr 5.7 ± 0.01 0.28 2.66 8.8 0.87 280 - 

IF 50.3 ± 1.19 2.33 1.00 387.0 0.87 264 - 

IT 3.8 ± 0.01 −2.05 2.00 4.0 0.82 180 - 

LP50 9.3 ± 0.02 −0.02 6.71 12.6 0.58 11 - 

DSCC 20.1 ± 0.29 0.53 2.00 60.0 0.93 549 - 

Field Season 

DS2018 27.5 ± 0.49 1.73 2.00 60.0 0.79 111 27 

DS2019 26.2 ± 0.56 1.06 1.00 65.0 0.86 205 11 

DS2020 28.8 ± 0.59 0.95 1.50 65.0 0.89 299 17 
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Table 5. Pearson (p) correlation coefficient between traits evaluated under field and 

controlled conditions and calculated from adjusted mean (BLUPs) values from the 320 pea 

accessions. 

 Field Conditions Controlled Conditions 

 DS2018 DS2019 DS2020 MDPr IF LP50 DSCC 

Field conditions 

DS2019 0.46***       

DS2020 0.46*** 0.55***      

Controlled conditions 

MDPr 0.21*** 0.44*** 0.39***     

IF 0.21*** 0.46*** 0.40*** 0.96***    

LP50 −0.04 0.01 −0.04 −0.21** −0.05   

DS 0.14* 0.28*** 0.30*** 0.58*** 0.57*** -0.20**  

IT 0.18* 0.29*** 0.25*** 0.45*** 0.42*** -0.20** 0.33*** 

* p < 0.05, ** p < 0.01, *** p < 0.001. 

Therefore, multi-trait indexes were applied to the dataset to drive selection of 

resistant accessions. This approximation points to several pea accessions that belong 

to different Pisum taxa and origin. Based on this multi-trait index selection of the 

nine most resistant accessions, the three most susceptible ones and three with 

intermediate levels were selected (Table 6). 

 

Figure 4. U. pisi structures infecting pea cells at 48 hpi. (a) Early rust infection 

event: a germinated urediospore (1) develops a germ tube (2) that differentiates an 

appressorium over a stoma (3). (b) A colony with hyphae growing between mesophyll cells 

(1) differentiates an haustoria mother cell (HMC) (2) which invaginates into the mesophyll 

cell via a neckband (3) forming an haustorium (4). 
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Table 6. Selected accessions representing three rust response levels (partial resistant, 

intermediate, and highly susceptible) through multi-trait index approach (FAI-BLUP, 

MGIDI, Smith-Hazel (SH), and Lin-Bin (LN), respectively). 

Rust 
Level 

Bank Code Species Origin 
DSfield 

(%) 
DSCC 
(%) 

Ranking Indices  
(1-320) 

FAI
-

BL
UP 

MG
IDI 

SH LIN 

R
e

s
is

ta
n

t 

CGN10206 
P. sativum 
subsp. elatius 

Unknown 3.0 5.2 1 1 1 4 

CGN10205 
P. sativum 
subsp. elatius 

Turkey 6.0 5.5 2 2 2 1 

PI273209 
P. sativum 
subsp. elatius 

Russia 3.3 3.0 3 3 3 2 

IFPI3260 P. fulvum Syria 4.3 6.7 4 4 6 3 

BGE004710 
P. sativum 
subsp. sativum 

Portugal 7.7 6.5 7 8 7 10 

JI199 
P. sativum 
subsp. elatius 

Israel 5.0 6.5 5 5 4 5 

JI198 
P. sativum 
subsp. elatius 

Israel 5.8 11.6 6 6 8 6 

PI347321 P. sativum India 11.0 4.5 9 9 10 11 

JI224 P. fulvum Israel 4.3 10.0 10 10 12 9 

In
te

r
m

e
d

ia
te

 

PI347372 P. sativum India 16.3 16.1 155 155 162 150 

PI143483 P. sativum Azerbaijan 17.0 22.1 160 160 167 156 

PI324705 P. sativum France 15.7 21.0 175 175 184 169 

S
u

s
c

e
p

ti
b

le
 

PI162910 P. sativum Paraguay 34.5 27.6 318 318 318 320 

PI204667 
P. sativum 
subsp. sativum 

Netherland 30.0 45.8 319 319 319 318 

JI1210 
P. sativum 
subsp. sativum 

France 40.7 28.6 320 320 320 315 

4.4. Pea Resistance Mechanisms against U. pisi 

To complement the macroscopic characterization of the pea panel in response 

to U. pisi inoculation, the selected accessions were further analysed at histological 

level. The components of resistance of these selected accessions are presented in 

Table 7. 

As expected, the most resistant accessions showed lower levels of infection with 

significantly lower values for all macro- and microscopical traits. No differences 

among accessions were observed at early stages of the infection (Figure 4a), with no 

significant differences for spore germination or appressoria formation. Post-
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appressoria infection events (Figure 4b), including infection unit area, infection unit 

perimeter, number of hyphal tips, and haustoria, are lower in resistant accessions 

than in susceptible ones (p < 0.05). By contrast, infection unit area, infection unit 

perimeter, and hyphal tips were not significantly different between moderately and 

highly susceptible accessions. However, there is a significant difference between 

moderately and highly susceptible accessions in terms of haustoria number/infection 

unit. 

Significant variation was also observed between partially resistant and 

susceptible accessions in terms of early abortion (infection units forming at least in 

HMC in contact with a mesophyll cell but failing to form any haustoria) not associated 

with host cell necrosis. Such early abortion was particularly high (over 23%) in JI198, 

JI199, and IFPI3260, followed by JI224, CGN10205, CGN10206, and PI347372 (over 

12%) (Table 7). No or negligible levels of host cell necrosis were observed by 48 hpi 

on any of these early aborted colonies. Host cell necrosis was also absent or low (< 7 

%) in established colonies of all studied accessions, except PI273209, where it 

reached 20 %, (Figure 5, Table 7); what was macroscopically visible as small pustules 

surrounded by necrotic halo (IT = 2) did not prevent sporulation but hampered it, 

resulting in incomplete resistance based on late acting hypersensitivity (Figure 6). 

 

Figure 5. Different cells attacked by U. pisi colonies in PI273209 accession: (a) 

Epidermic tissue visualized with fluorescent blue filter at 48 h post inoculation showing a 

germinated urediospore (1), the stoma (2), and a dying epidermal cell (3); (b) Mesophyll 

tissue visualized with fluorescent green filter showing the substomatal space (1) and two 

dying mesophyll cells (2). 
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Figure 6. Rust symptoms progression in cv. Messire and PI273209 accession leaves. 

(1–3) show the macroscopic rust progression in cv. Messire at 8, 10, and 12 dpi, respectively. 

(4–6) show the macroscopic rust progression in PI273209 accession at 8, 10, and 12 dpi, 

respectively. 

Table 7. Microscopic evaluation of U. pisi colonies 48 h post-inoculation in the 

selected genotypes. Values, per column, followed by different letters differ significantly at p 

< 0.05. 

Bank Code 
DSCC 

(%) 
IT 

Infection 
Unit 
Area 

(µm²) 

Infection 
Unit 

Perimete
r 

(µm) 

No. 
Hyphal 

Tips/ 
infectio
n Unit 

Early 
Abort

ion 
(%) 

No. 
Haustoria/
Establishe
d Colony 

Established 
Colonies 

Associated 
with Host 

Cell 
Necrosis (%) 

PI347321 4.5 d 3++ 490.8 c 184.0 d 3.3 c 8.3 c 1.9 ab 0 d 

JI224 10.0bc 3++ 792.5 b 302.3 b 5.8 ab 12.5 b 1.7 a 2.5 c 

BGE004710 6.5 c 3 592.6 bc 211.6 cd 3.6 c 10.6 c 1.6 a 4.3 bc 

PI273209 3.0 d 2 784.3 b 277.5 b 5.4 b 10.0 c 1.9 ab 20.0 a 

JI198 11.6 bc 3 941.2 ab 374.3 a 6.8 a 23.7 a 1.8 ab 0 d 

JI199 6.5 c 3 765.0 b 270.3 bc 5.0 b 23.3 a 1.6 a 6.7 b 

CGN10205 5.5 cd 3 545.4 c 195.7 d 3.8 c 13.3 b 1.6 a 0 d 

CGN10206 5.2 cd 3 606.4 bc 240.2 c 4.8 bc 13.3 b 1.5 a 0 d 

IFPI 3260 6.7 c 4 497.5 c 190.8 d 3.7 c 23.3 a 1.7 a 0 d 

PI143483 22.1 ab 4 1170.7 a 360.5 ab 6.1 ab 0 d 2.3 b 0 d 

PI347372 16.1 b 4 1074.9 a 356.5 ab 7.7 a 12.9 b 2.3 b 0 d 

PI324705 
21.0 
ab 

4 662.6 b 222.6 c 3.8 c 0 d 2.3 b 0 d 

PI162910 
27.6 
ab 

4 1202.0 a 395.7 a 7.9 a 0 d 3.4 c 0 d 

PI204667 45.8 a 4 1024.8 a 334.0 b 6.2 ab 0 d 3.5 c 0 d 

JI1210 
28.6 
ab 

4 1006.1 a 292.0 b 5.9 ab 0 d 3.2 c 0 d 
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5. Discussion 

Pea rust, caused by U. pisi and U. viciae-fabae, is a major disease responsible 

for serious yield losses worldwide (Rubiales et al. 2015). U. pisi is the principal agent 

causing pea rust in temperate regions (Emeran et al. 2008), while U. viciae-fabae is 

more widely distributed in tropical and sub-tropical areas (Anil-Kumar et al. 1994). 

Only moderate levels of resistance against U. pisi have been identified so far (Barilli 

et al. 2009a). 

In this study, we macroscopically analysed the response to rust caused by U. 

pisi in a worldwide Pisum spp. collection of 320 accessions, meticulously selected to 

ensure a wide range of phenotypic and genetic variation ranges. The variability found 

within the collection under field conditions was moderately correlated between 

seasons supporting the strong influence of the weather conditions and the genotype 

x environment interactions as suggested previously for pea rust (Das et al. 2019; 

Singh et al. 2012). Rust DS was higher in 2020, which was characterized by a climate 

more favourable to U. pisi development due to a higher mid temperature and higher 

relative humidity (More et al. 2019) favouring disease infection, in agreement with 

previous studies on U. viciae-fabae (More et al. 2020; Negussie et al. 2005). Infection 

in 2018 were weakly correlated with traits measured under controlled conditions 

(CC) while field data recorded in 2019 and 2020 seasons were characterized by more 

favourable climates, which were better correlated with these traits. Correlation in 

adult plants and seedlings in response to rust disease can be affected not only by 

temperature and relative humidity but also by the polycyclic effect over the host and 

leaf age, which can express or not express the genes behind the resistance 

mechanism. Effect of temperature and leaf age has been well studied (Fondevilla et 

al. 2013) in other pea foliar disease, such as powdery mildew, but it is still unknown 

for rust. 

Variability found in this collection according to disease severity of seedlings in 

CC to rust was higher than other studies performed in lathyrus (Vaz Patto and 

Rubiales 2009) and vetch (Rubio and Rubiales 2021) against U. pisi and comparable 

to pea studies in the same pathosystem where check cultivar Messire showed similar 

DS (~50%) (Barilli et al. 2009a). The screening techniques are well established and 

the U. pisi–legume pathosystem response confirmed the reproducibility of the 

method described by Sillero et al. 2006. All traits assessed under controlled 

conditions showed moderate to high positive correlation between them, except LP50, 

which showed a negative one, in agreement with previous studies (Barilli et al. 

2009a). Latency period of U. pisi development increases with the quantitative 

resistance level of pea genotypes similarly to other biotrophic pathogens (Précigout 

et al. 2020). Accordingly, it was negatively correlated with MDPr, IT, and DS. 

However, final IF was not correlated with the latency period in our collection, 

suggesting that the final number of pustules emerging on a leaf is an independent 
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event controlled by mechanisms distinct from those controlling the incubation period 

and the pre-sporulation symptoms involved in the latency period (Dehghani and 

Moghaddam 2004). In addition, latency period in plant diseases is very sensitive to 

variations in disease ex-pressions, including those due to phenotypic plasticity 

(Suffert and Thompson 2018), defined as the ability of in-dividual genotypes to 

produce different phenotypes when exposed to different environmental conditions 

(Pigliucci et al. 2006). A study carried out in wheat rust caused by Puccinia triticina 

revealed that, even in a clonal lineage population, significant differences were pre-

sent in the latency period within identical pathotypes (Pariaud et al. 2012). 

In this study, resistance based on DS reduction without host cell necrosis was 

the most common response of the collection under field and controlled conditions for 

adult plants and seedlings, respectively. This incomplete resistance not associated 

with hypersensitive response is known as partial resistance. It is characterized by a 

decrease in IF and DS while IT is high (Sillero et al. 2012), which means that plants 

harbour a lower number of pustules but those that do form develop normally. These 

components of quantitative resistance have demonstrated they are more durable than 

major gene resistance on average (Mundt 2014), so they are considered desirable 

traits for an effective field rust resistance, also in other crops, such as cereals 

(Rosewarne et al. 2013; Singh et al. 2008, 2011). The partial resistance reported here 

has been observed previously in pea against both U. viciae-fabae and U. pisi (Barilli 

et al. 2009a, 2009c). We support other studies in the identification of PI347321 and 

IFPI3260 accessions as partially resistant (Barilli et al. 2009a). In addition, we have 

identified novel sources of partial resistance in the accessions JI224, BGE004710, 

JI198, JI199, CGN10205, and CGN10206. The level of partial resistance of two of 

these accessions, JI224 and JI198, was similar to the highest level of resistance 

previously detected (DS ~ 10 %) (Barilli et al. 2009a). The additional resistant 

accessions, BGE004710, JI 199, CGN10205, and CGN10206, had a slightly higher 

level of partial resistant with DS < 7 %. Those results expand the genetic source of 

resistance by providing new accessions with levels of partial resistance similar to the 

previously described IFPI3260, which was to date the most resistant accession 

available against U. pisi. 

On the one hand, there is only one P. sativum subsp. sativum accession 

described with high partial resistance levels, BGE004710. Its origin is assigned to 

Mogadouro in Portugal, according to its passport, where the incidence of rust caused 

by U. pisi and U. viciae-fabae is elevated (Talhinhas et al. 2019). Due to this 

taxonomy, its potential use to transfer the mi-nor genes conferring the partial 

resistance to pea cultivars in temperate climates is high. On the other hand, it is also 

possible to use other wild relatives and landraces described here as donor of partial 

resistance, since crosses between wild pea species and subsp. sativum cultivars have 

been already explored (Kosterin et al. 2019). In fact, it is known that wild pea relatives 

from P. fulvum work as a donor of resistance to biotic stresses, such as insect, 
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diseases, or weeds (Coyne et al. 2020). P. sativum subsp. elatius var. elatius has been 

used for breeding purposes increasing the nutritional value of peas, without being 

exploited as a source of resistance to biotic stresses so far (Clemente et al. 2015). In 

this context, the additional partial resistance sources detected here belonging to P. 

sativum subsp. sativum and P. sativum subsp. elatius var. elatius could allow the 

localization of new genome regions associated with rust resistance in pea, in addition 

to those currently described in the P. fulvum (Barilli et al. 2018). Recently, a panel of 

Lathyrus sativus inoculated with U. pisi revealed novel loci behind partial resistance 

mechanisms using an association mapping approach (Martins et al. 2022). Similarly, 

the present pea panel would be valuable to expand the genetic bases of resistance for 

future breeding of rust resistant pea. 

To integrate all traits scored in controlled and field conditions a multi-trait 

index approach was applied to differentiate accessions. Since the first index was 

proposed by Smith 1936, multi-trait selection indices are established strategies to 

select superior genotypes in plant breeding and provide the breeder with an objective 

rule for evaluating and selecting several traits simultaneously (Cerón-Rojas and 

Crossa 2022). However, the Smith-Hazel index can be affected by multicollinearity 

problems, providing erroneous conclusions and inefficient conservation measures 

(Prunier et al. 2015). To offset this possibility, we applied in parallel two additional 

multi-trait indices, MGIDI and FAI-BLUP, that have been established for plant 

breeding selection and are free from weighting coefficients and multicollinearity 

issues (DeLacy et al. 1996; Olivoto and Nardino 2021). In addition, a non-parametric 

index that includes the genotype x environment interaction was used to select the 

most resistant pea genotypes to U. pisi in the field (Lin and Binns 1988). The results 

obtained from these indexes are quite similar in the cases of FAI-BLUP and MGDI, 

while SH and LIN provide different rankings of the superior genotypes. Even if one 

of the index criteria performed an erroneous selection, this was compensated by the 

other three indices supporting the usefulness of applying simultaneous indices. Based 

on this methodology the nine best-performing pea accessions in the four indices were 

selected and used to assay the underlying resistance mechanisms to U. pisi infection 

histologically. 

In the microscopical study, the variation in urediospores germination and 

appressoria formation over stoma did not affect rust severity, suggesting that the 

resistance mechanisms took place after formation of substomatal vesicles (Niks and 

Rubiales 2002; Singh et al. 2014). One of the most efficient post-appressoria 

resistance mechanisms is the early abortion of colonies that failed to form any 

haustoria in mesophyll cells. Here, we detected a high proportion of early colony 

abortion in the resistant accessions JI198, JI199, and IFPI3260. Histological and 

biochemical studies in pea rust suggested early abortive colonies are explained by a 

physical barrier to successful infection due to a lignification process in the mesophyll 

cells around the infection unit (Barilli et al. 2012; Kushwaha et al. 2016). Additional 
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assessments are currently underway to confirm the involvement of host cell wall 

strengthening in these accessions. When this first mechanism failed and the first 

haustoria mother cells develop a haustorium into mesophyll cell, a second resistance 

mechanism may impede penetration of secondary hyphae, reducing the number of 

haustoria per infection unit and, therefore, decreasing the colony size and the number 

of hyphal tips. All selected accessions show some degree of this penetration 

resistance, which was particularly visible for IFPI3260, BGE004710, and PI347321, 

showing the smallest infection unit size and hyphae number. A similar resistance 

mechanism had been found in pea–rust studies against U. viciae-fabae (Barilli et al. 

2009c) and U. pisi (Barilli et al. 2009a) and in another legume–rust pathosystems 

(Mundt 2014; Rubiales et al. 2011; Rubiales and Moral 2004). 

Hypersensitive response (HR) is another post-appressorium formation 

mechanism associated with disease resistance. HR has been described previously 

against U. viciae-fabae in some legume crops, such lentil (Negussie et al. 2012; 

Rubiales et al. 2013) and faba bean (Adhikari et al. 2021; Sillero and Rubiales 2002), 

although it is not the most common resistance mechanism against rust (Sillero and 

Rubiales 2002; Stavely 1989). Here, low levels of hypersensitive reaction to U. pisi 

infection were observed in accessions JI224, BGE004710, and JI199 showing less 

than 7 % of infection units associated with cell death but revealing a compatible 

reaction with high infection type (IT = 3++, 3 and 3, respectively). On the contrary, 

PI273209 that displayed a considerable percentage of necrotic mesophyll cells (20 %) 

showed an incomplete reaction associated with macroscopically visible necrosis (IT 

= 2). In addition, this accession also showed non-hypersensitive resistance supported 

by histological results, reducing hyphal growth, and hampering haustorium 

formation resulting in reduced disease severity despite some well-formed pustules. 

These observations indicate that a combination of both hypersensitive and non-

hypersensitive resistance operates in PI273209 against U. pisi, but that the early 

abortion of colonies is not associated with cell death. This mechanism reveals that 

non-hypersensitive reaction can occur before and after haustoria formation, but HR 

only takes place after haustoria formation. This type of incomplete resistance has 

been described as “late acting” hypersensitive rust resistance, and it allows some 

haustoria failing to form due to hypersensitive cell death but others forming 

successfully (Rubiales and Khazaei 2022). Incomplete resistance associated with HR 

has been reported before in pea against U. pisi or U. viciae-fabae. The use of 

fluorescence microscopy and digital image technology was particularly useful to study 

these resistance components, allowing the detection of necrotic host cells and 

precisely measuring the colony area and perimeter similar to Sillero and Rubiales 

2002. In other legume–rust pathosystems, this HR type has been described as 

monogenic, allowing the identification of genes Uvf-1, Uvf-2, and Uvf-3 conferring 

hypersensitive resistance against U. viciae-fabae in faba bean (Avila et al. 2003; Ijaz 

et al. 2021) and gene Rpp2 conferring hypersensitive resistance against Phakopsora 
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pachyrihizi in soybean (Yu et al. 2015). Consequently, future studies are needed to 

determine the genetic inheritance behind this resistance mechanism that will 

complement the actual genetic basis conferred by QTL’s UpDSII, UpDSIV, and 

UpDSIV.2, responsible for the genetic variance in partial resistance caused by U. pisi 

in pea wild relatives (Barilli et al. 2018). 

In conclusion, this study allowed the identification of new resistance sources 

from a wide collection of pea accessions and confirmed the importance of crop core 

collection to identify traits of interest. In addition to identifying additional sources of 

partial resistance with a similar level to the highest previously described resistant 

accessions, we identified a moderate level of late-acting HR in one of our accessions, 

which had never been described before in the pea—U. pisi pathosystem. Including 

this accession, together with the additional sources of partial resistant in our breeding 

programs, should broaden the genetic bases of resistance, which is key for a more 

durable resistance. In addition, these novel resistance sources can be the base for 

further studies to establish the genetic, biochemical, and molecular nature of rust 

resistance in pea. 

6. Additional files 

Additional file 1. Accession list including bank code, bank origin, taxonomy, 

common name, germplasm origin and material type. 

Bank code 
Bank 
origin 

Taxonomy Common Name 
Germplasm 

origin 
Material 

type 
PI 109865 USDA P. sativum  L. Arvejas Amarillas Venezuela Landraces 

PI 117910 USDA P. sativum  L. Ervilha Ana Brazil Cultivar 
PI 140297 USDA P. sativum subsp. sativum No. 6192 Iran Landraces 

PI 142442 USDA P. sativum  L. Alberjon Peru Cultivar 
PI 142774 USDA P. sativum  L. G 1704 Mexico Landraces 

PI 142776 USDA P. sativum  L. G 1705 Mexico Landraces 
PI 142776 USDA P. sativum  L. G 1705 Mexico Landraces 

PI 143483 USDA P. sativum  L. No. 7351 Azerbaijan Landraces 
PI 143484 USDA P. sativum  L. Cpi 135298 Azerbaijan Landraces 

PI 143486 USDA P. sativum  L. No. 7790 Iran Landraces 
PI 153351 USDA P. sativum  L. Arvejas Verdes Ecuador Landraces 
PI 162568 USDA P. sativum  L. Orgullo Del Mercada Argentina Cultivar 

PI 162692 USDA P. sativum  L. Cuarentona Argentina Cultivar 
PI 162693 USDA P. sativum  L. Ojo Negro Argentina Cultivar 

PI 162693 USDA P. sativum  L. Ojo Negro Argentina Cultivar 
PI 162910 USDA P. sativum  L. L.P. No. 7 Paraguay Landraces 

PI 164568 USDA P. sativum  L. Patani India Landraces 
PI 166082 USDA P. sativum subsp. sativum Matar India Landraces 

PI 195405 USDA P. sativum  L. Quezaltenango Guatemala Landraces 
PI 203065 USDA P. sativum  L. G 6821 Finland Landraces 
PI 204305 USDA P. sativum  L. Collegian Australia Cultivar 

PI 204667 USDA P. sativum subsp. sativum var. sativum Stijfstro Netherland Cultivar 
PI 220175 USDA P. sativum  L. No. 150 Afganistan Landraces 

PI 220673 USDA P. sativum  L. Moshong Afganistan Landraces 
PI 222069 USDA P. sativum  L. Moshong Afganistan wild 

PI 234262 USDA P. sativum  L. Carlon USA Cultivar 
PI 254625 USDA P. sativum  L. Kellerva Finland Landraces 

PI 254626 USDA P. sativum  L. Lima Australia Cultivar 
PI 261678 USDA P. sativum  L. Col. No. D-237 Netherland Landraces 
PI 262189 USDA P. sativum  L. Big Pea Costa Rica Landraces 

PI 266069 USDA P. sativum  L. Line No. 110 Sweden 
breeding 
lines 

PI 269760 USDA 
P. sativum 
subsp. sativum var. arvense (L.) Poir. 

G 16701 UK 
breeding 
lines 
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Bank code 
Bank 
origin 

Taxonomy Common Name 
Germplasm 

origin 
Material 

type 

PI 269763 USDA 
P. sativum subsp. jomardii (Schrank) 
Kosterin 

Aa86 UK Landraces 

PI 269786 USDA P. sativum  L. Aa96 UK Landraces 

PI 272143 USDA P. sativum subsp. thebaicum Thebaicum Ruby Germany Landraces 
PI 272151 USDA P. sativum  L. Uniflorum Germany Landraces 
PI 272153 USDA P. sativum  L. Hiemale Greece Landraces 

PI 272156 USDA P. sativum  L. Hiemale Greece Landraces 
PI 280621 USDA P. sativum  L. Amplissimo Spartanec Rusia Landraces 

PI 280623 USDA P. sativum  L. Amplissimo Pulavskij Poland Landraces 
PI 306592 USDA P. sativum  L. G 19029 Hungary Landraces 

PI 312136 USDA P. sativum  L. Alberga Guatemala Landraces 
PI 319373 USDA P. sativum  L. Chicharo Serrano Mexico Landraces 

PI 326194 USDA P. sativum  L. Col. No. 22340 Mexico Landraces 
PI 343326 USDA P. sativum  L. G 18456 USA Landraces 
PI 343329 USDA P. sativum  L. G 18459 USA Landraces 

PI 343935 USDA P. sativum  L. 6922 Ethiopia Landraces 
PI 343962 USDA P. sativum  L. 22662 Turkey wild 

PI 343965 USDA P. sativum  L. 22706 Turkey Landraces 
PI 343965 USDA P. sativum  L. 22706 Turkey Landraces 

PI 343969 USDA P. sativum subsp. sativum var. sativum Araka Turkey Landraces 
PI 343981 USDA P. sativum subsp. sativum var. sativum 22654 Turkey Landraces 

PI 343984 USDA P. sativum subsp. sativum 22712 Turkey Landraces 

PI 343993 USDA 
P. sativum 
subsp. sativum var. arvense (L.) Poir. 

22652 Turkey Landraces 

PI 347282 USDA P. sativum  L. Plp 11 India Landraces 
PI 347316 USDA P. sativum  L. Plp 68 India Landraces 

PI 347317 USDA P. sativum  L. Plp 71 India Landraces 
PI 347319 USDA P. sativum  L. Plp 73 India Landraces 

PI 347321 USDA P. sativum  L. Plp 88 India Landraces 
PI 347323 USDA P. sativum  L. Plp 89 India Landraces 
PI 347326 USDA P. sativum  L. Plp 93 India Landraces 

PI 347328 USDA P. sativum  L. Plp 99 India Landraces 
PI 347330 USDA P. sativum  L. Plp 102 India Landraces 

PI 347332 USDA P. sativum  L. Plp 104 India Landraces 
PI 347333 USDA P. sativum  L. Plp 105 India Landraces 

PI 347334 USDA P. sativum  L. Plp 109 India Landraces 
PI 347335 USDA P. sativum  L. Plp 113 India Landraces 

PI 347336 USDA P. sativum  L. Plp 118 India Landraces 
PI 347338 USDA P. sativum  L. Plp 126 India Landraces 
PI 347342 USDA P. sativum  L. Plp 154 India Landraces 

PI 347343 USDA P. sativum  L. Plp 156 India Landraces 
PI 347347 USDA P. sativum  L. Plp 173 India Landraces 

PI 347348 USDA P. sativum  L. Plp 182 India Landraces 
PI 347356 USDA P. sativum  L. Plp 218 India Landraces 

PI 347357 USDA P. sativum  L. Plp 219 India Landraces 
PI 347359 USDA P. sativum  L. Plp 222 India Landraces 

PI 347366 USDA P. sativum  L. Plp 266 India Landraces 
PI 347367 USDA P. sativum  L. Plp 268 India Landraces 

PI 347370 USDA P. sativum  L. Plp 278 India Landraces 
PI 347372 USDA P. sativum  L. Plp 297 India Landraces 
PI 347373 USDA P. sativum  L. Plp 301 India Landraces 

PI 347374 USDA P. sativum  L. Plp 303 India Landraces 
PI 347375 USDA P. sativum  L. Plp 304 India Landraces 

PI 347383 USDA P. sativum  L. Plp 316 India Landraces 
PI 347385 USDA P. sativum  L. Plp 320 India Landraces 

PI 347388 USDA P. sativum  L. Plp 330 India Landraces 
PI 347389 USDA P. sativum  L. Plp 332 India Landraces 

PI 347401 USDA P. sativum  L. Plp 363 India Landraces 
PI 347471 USDA P. sativum  L. Plp 450 India Landraces 

PI 358642 USDA 
P. sativum 
subsp. sativum var. arvense (L.) Poir. 

22793 Ethiopia Landraces 

PI 379612 USDA P. sativum  L. Weibull 700 Sweden Cultivar 

PI 385981 USDA P. sativum  L. Onward UK Cultivar 
PI 399129 USDA P. sativum  L. Florida Germany Cultivar 
PI 494079 USDA P. sativum  L. G 27917 Chile Landraces 

PI 560065 USDA P. fulvum Sm. Cpi 134669 Israel wild 
PI 560067 USDA P. fulvum Sm. Cpi 134471 Israel wild 

PI 595933 USDA P. fulvum Sm. Atc 113 Australia wild 
PI 595945 USDA P. fulvum Sm. Cpi 53306 Jordan wild 

PI 595947 USDA P. fulvum Sm. Vir 2523 Israel wild 
JI 85 JIC UK P. sativum  L. P.Sativum-Afghanistan Afganistan Landraces 

JI 156 JIC UK P. sativum  L. P.Sativum-Ussr Sudan Landraces 
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Bank code 
Bank 
origin 

Taxonomy Common Name 
Germplasm 

origin 
Material 

type 
JI 156 JIC UK P. sativum  L. P.Sativum-Ussr Sudan Landraces 

JI 262 JIC UK 
P. sativum subsp. elatius var. elatius (M. 
Bieb.) Alef. 

P. Elatius Turkey wild 

JI 263 JIC UK 
P. sativum 
subsp. sativum var. arvense (L.) Poir. 

P.Sativum-Balkans Greece wild 

JI 228 JIC UK P. sativum  L. P.Sativum-Bolivia Bolivia Landraces 

JI 209 JIC UK 
P. sativum 
subsp. sativum var. arvense (L.) Poir. 

P.Sativum Arvense India Landraces 

JI 209 JIC UK 
P. sativum 
subsp. sativum var. arvense (L.) Poir. 

P.Sativum Arvense India Landraces 

JI 207 JIC UK P. sativum subsp. sativum var. sativum P.Sativum Choresmicum UZBEKISTAN Landraces 

JI 224 JIC UK P. fulvum Sm. P. Fulvum Israel wild 

JI 196 JIC UK 
P. 
sativum subsp. transcaucasicum Govorov 

P.Sativum-Georgia Georgia Landraces 

JI 190 JIC UK P. sativum  L. Wiraig Sudan Landraces 
JI 189 JIC UK P. sativum  L. Wiraig Sudan Landraces 

JI 185 JIC UK P. sativum  L. Wiraig Sudan Landraces 
JI 267 JIC UK P. sativum  L. P.Sativum-Greece Greece wild 

JI 268 JIC UK P. sativum  L. P.Sativum-Crete Crete wild 
JI 275 JIC UK P. sativum  L. P.Sativum-Crete Crete wild 
JI 280 JIC UK P. sativum  L. P.Sativum-Albania Albania wild 

JI 288 JIC UK P. sativum  L. P.Sativum-Greece Greece wild 
JI 502 JIC UK P. sativum  L. Rondo Netherland Cultivar 

JI 701 JIC UK P. sativum  L. P.Sativum-Italy Italy Landraces 
JI 1030 JIC UK P. sativum  L. P.Sativum-Iran Iran Landraces 

JI 1057 JIC UK P. sativum  L. Antioquia I Chilena Colombia Landraces 

JI 1089 JIC UK 
P. sativum 
subsp. sativum var. arvense (L.) Poir. 

P.Elatius Turkey Landraces 

JI 1107 JIC UK P. sativum  L. Keerau Pea Nepal Landraces 
JI 1213 JIC UK P. sativum  L. Erylis  France Cultivar 

JI 1345 JIC UK P. sativum  L. P.Sativum-Mongolia Mongolia Landraces 
JI 1346 JIC UK P. sativum  L. P.Sativum-Mongolia Mongolia Landraces 

JI 2263 JIC UK P. sativum  L. Wild Tunesian Germany Landraces 
JI 2265 JIC UK P. sativum  L. P.Sativum Var. Hiemale Albania Landraces 

JI 2356 JIC UK P. sativum  L. P.Sativum-Nepal Nepal Landraces 
JI 2385 JIC UK P. abyssinicum A. Braun Pisum Sp.-Yemen Yemen Landraces 
JI 2387 JIC UK P. sativum  L. P.Sativum-Ethiopia Ethiopia Landraces 

JI 2545 JIC UK P. sativum  L. P. Sativum-Pakistan Pakistan Landraces 
BGE001004 CRF INIA P. sativum subsp. sativum Garvanzo Enano Spain Landraces 

BGE001034 CRF INIA P. sativum subsp. sativum var. sativum Pesol Spain Landraces 
BGE001121 CRF INIA P. sativum subsp. sativum var. sativum Negrer Spain Landraces 

BGE001121 CRF INIA P. sativum subsp. sativum var. sativum Negrer Spain Landraces 
BGE001662 CRF INIA P. sativum subsp. sativum Chicharo Spain Landraces 

BGE002168 CRF INIA P. sativum subsp. sativum Tito Spain Landraces 
BGE002168 CRF INIA P. sativum subsp. sativum Tito Spain Landraces 
BGE003315 CRF INIA P. sativum subsp. sativum Tirabeque Spain Landraces 

BGE004710 CRF INIA P. sativum subsp. sativum Ervilha Portugal Landraces 
BGE004713 CRF INIA P. sativum subsp. sativum Ervilha Portugal Landraces 

BGE004958 CRF INIA P. sativum subsp. sativum Ervilhoto Portugal Landraces 
BGE006125 CRF INIA P. sativum subsp. sativum Grizeu Farroba Portugal Landraces 

BGE006126 CRF INIA P. sativum subsp. sativum var. sativum Ervilha Portugal Landraces 
BGE019594 CRF INIA P. sativum subsp. sativum Arveja Spain Landraces 

BGE022159 CRF INIA 
P. sativum 
subsp. sativum var. arvense (L.) Poir. 

Bisalto Spain Landraces 

BGE020326 CRF INIA 
P. sativum 
subsp. sativum var. arvense (L.) Poir. 

Bisalto Del Terreno Spain Landraces 

BGE023256 CRF INIA P. sativum subsp. sativum Guisante Spain Landraces 

BGE025263 CRF INIA P. sativum subsp. sativum var. sativum Guisante Verde Spain Landraces 

BGE025267 CRF INIA P. sativum subsp. sativum 
Mangano;Presol;Guisante 
Claro 

Spain Landraces 

BGE025270 CRF INIA P. sativum subsp. sativum Guisante Negro Spain Landraces 
BGE026428 CRF INIA P. sativum subsp. sativum var. sativum Guisante Rastrero Spain Landraces 

BGE026429 CRF INIA P. sativum subsp. sativum Arvilla Spain Landraces 
CGN16690 CGN P. sativum  L.   Italy Landraces 
CGN03277 CGN P. sativum  L. Npe 378 Pakistan Landraces 

CGN13253 CGN P. sativum  L. P.Sativum-Ethiopia Ethiopia Landraces 
CGN16640 CGN P. sativum  L. Khadraa Sudan Landraces 

CGN16562 CGN P. sativum  L. Ji 1543 Mongolia wild 

CGN16571 CGN 
P. sativum subsp. jomardii (Schrank) 
Kosterin 

P. Jomardii Egypt wild 

CGN16581 CGN P. sativum  L. Ji 93 Afganistan Landraces 
CGN16639 CGN P. sativum  L. Ji 171 Ethiopia Landraces 
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Bank code 
Bank 
origin 

Taxonomy Common Name 
Germplasm 

origin 
Material 

type 
CGN16679 CGN P. sativum subsp. cinereum Govorov Ji 204 Russia wild 

CGN16582 CGN P. sativum  L. Keerau Pea Nepal Landraces 
CGN16684 CGN P. sativum  L.   Greece Landraces 

CGN16646 CGN P. sativum  L.   Mongolia Landraces 
CGN16636 CGN P. abyssinicum A. Braun P. Abyssinicum Ethiopia Landraces 

CGN03328 CGN P. sativum  L. Npe 1210.362a Pakistan Landraces 
CGN03170 CGN P. sativum  L. Turkey-19 Irak Landraces 

CGN03190 CGN P. sativum  L. Kulur Turkey Landraces 
CGN03245 CGN P. sativum  L. Ethiopia-32 Ethiopia Landraces 
CGN03165 CGN P. sativum  L. Turkey-16 Turkey Landraces 

CGN03289 CGN P. sativum  L. Npe 1175.346 Pakistan Landraces 

CGN03171 CGN P. sativum  L. Selection 266/1 Turkey 
breeding 
lines 

CGN03290 CGN P. sativum  L. Npe 1180.392 Pakistan Landraces 
CGN03305 CGN P. sativum  L. Npe 1169.248 Pakistan Landraces 

CGN02921 CGN P. sativum subsp. sativum var. sativum Semi Nano Ideal Italy Cultivar 
CGN03003 CGN P. sativum subsp. sativum var. sativum Petit Provencal France Cultivar 

CGN03273 CGN P. sativum  L. 950 3e Peru 
breeding 
lines 

CGN03229 CGN P. sativum  L. Ethiopia-31 Ethiopia Landraces 
PI 413686 USDA P. sativum  L. Felicitas Hungary Cultivar 
PI 477371 USDA P. sativum  L. Rosakrone Denmark Cultivar 

PI 307666 USDA P. sativum  L. Verja Costa Rica Landraces 
PI 307666 USDA P. sativum  L. Verja Costa Rica Landraces 

PI 324693 USDA P. sativum  L. Abesinijas Hungary Cultivar 
PI 324705 USDA P. sativum  L. No. 830 France Unknown 

PI 355905 USDA P. sativum subsp. sativum var. sativum Kairyo Aotenashi Japan Cultivar 
PI 241593 USDA P. sativum  L. G 6571 Taiwan Unknown 

PI 273207 USDA 
P. sativum subsp. elatius (M. Bieb.) Asch. 
& Graebn. 

9006/60 Bulgaria Landraces 

PI 266070 USDA P. sativum subsp. sativum var. sativum Line No. 930 Sweden 
breeding 
lines 

PI 198074 USDA P. sativum  L. Gorsdagsart Iii Sweden Landraces 

PI 357292 USDA P. sativum subsp. sativum var. sativum Kiflica 
North 
Macedonia 

Cultivar 

PI 357293 USDA P. sativum subsp. sativum var. sativum Debarski 
North 
Macedonia 

Cultivar 

PI 249645 USDA P. sativum  L. B.R. 178 India Landraces 

PI 357048 USDA 
P. sativum subsp. elatius (M. Bieb.) Asch. 
& Graebn. 

Plp 514 India wild 

PI 357289 USDA P. sativum subsp. sativum var. sativum Ran 
North 
Macedonia 

Cultivar 

PI 253968 USDA 
P. sativum subsp. elatius (M. Bieb.) Asch. 
& Graebn. 

Col. No. K1722 Afganistan Landraces 

PI 103058 USDA P. sativum  L. No. 10 China Cultivar 
PI 180329 USDA P. sativum  L. Watana India Landraces 
PI 184131 USDA P. sativum subsp. sativum var. sativum No. 310 Serbia Landraces 

PI 124478 USDA P. sativum  L. Matar Pakistan Landraces 
PI 124479 USDA P. sativum  L. Matar Pakistan Landraces 

PI 124479 USDA P. sativum  L. Matar Pakistan Landraces 

JI 2480 JIC P. sativum  L. Cgn 3352 Peru 
breeding 
lines 

JI 1951 JIC P. sativum  L. P.Sativum-China China Cultivar 

JI 2302 JIC P. sativum subsp. sativum var. sativum B76-197 (Stratagem) Sweden 
breeding 
lines 

JI 1566 JIC P. sativum  L. Almota USA Cultivar 

PI 608038 USDA P. sativum  L. 74sn5 USA Cultivar 
PI 613100 USDA P. sativum  L. Mini USA Cultivar 

Atc-4235-53  Commercial P. sativum  L. Atc-4235-53 Australia 
breeding 
lines 

Boreen  Commercial P. sativum  L. Boreen Australia Cultivar 

Danclale  Commercial P. sativum  L. Danclale Australia Cultivar 
Kagpa  Commercial P. sativum  L. Kagpa Australia Cultivar 

M5  Commercial P. sativum  L. M5 Australia Cultivar 
Pinochio  Commercial P. sativum  L. Pinochio Denmark Cultivar 

B 99-114  Commercial P. sativum  L. B 99-114 
Czech 
Republic 

breeding 
lines 

AGT 205,21  Commercial P. sativum  L. Agt 205,21 
Czech 
Republic 

breeding 
lines 

Morris  Commercial P. sativum  L. Morris 
Czech 
Republic 

Cultivar 

JI 1210 JIC P. sativum  L. Erygel France Cultivar 
JI 1412 JIC P. sativum  L. Marlin USA Cultivar 
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Bank code 
Bank 
origin 

Taxonomy Common Name 
Germplasm 

origin 
Material 

type 
JI 1559 JIC P. sativum  L. Mexique 4 Mexico Cultivar 

JI 1747 JIC P. sativum  L. Almires Germany Cultivar 
JI 1760 JIC P. sativum subsp. sativum var. sativum Consort-Af UK Cultivar 

JI 210 JIC P. sativum  L. Lucknow Boniya India Cultivar 
JI 252 JIC P. sativum  L. P.Sativum-Ethiopia Ethiopia Landraces 

JI 82 JIC P. sativum  L. P.Sativum-Afghanistan Afganistan Landraces 
Messire IAS P. sativum subsp. sativum var. sativum Messire France Cultivar 

Radley IAS P. sativum subsp. sativum var. sativum Radley UK Cultivar 
Ballet IAS P. sativum subsp. sativum var. sativum Ballet UK Cultivar 
W6 17515 USDA P. sativum subsp. sativum var. sativum Little Marvel USA Cultivar 

W6 17516 USDA P. sativum subsp. sativum var. sativum Dark Skin Perfection USA Cultivar 
W6 17517 USDA P. sativum subsp. sativum var. sativum New Era  USA Cultivar 

W6 17518 USDA P. sativum subsp. sativum var. sativum New Season USA Cultivar 
W6 17520 USDA P. sativum subsp. sativum var. sativum Wsu 28 USA Cultivar 

KEBBY  Commercial P. sativum subsp. sativum var. sativum Kebby UK Cultivar 
POLAR  Commercial P. sativum subsp. sativum var. sativum Polar Spain Cultivar 

W6 17519 USDA P. sativum subsp. sativum var. sativum Wsu 23 Unknow Cultivar 
W6 17521 USDA P. sativum subsp. sativum var. sativum Wsu 31  Unknow Cultivar 
BGE023667 INIA P. sativum subsp. sativum Guisante Spain Landraces 

BGE025727 INIA P. sativum subsp. sativum Guisante Spain Landraces 

PI 358608 
USDA-
EEUU 

P. sativum 
subsp. sativum var. arvense (L.) Poir. 

22770b Ethiopia Landraces 

PI 358609 
USDA-
EEUU 

P. abyssinicum A. Braun Wat Ethiopia wild 

PI 173055 
USDA-
EEUU 

P. sativum subsp. elatius var. elatius (M. 
Bieb.) Alef. 

Hatun Bakleri Turkey Landraces 

PI 120617 
USDA-
EEUU 

P. sativum subsp. elatius var. elatius (M. 
Bieb.) Alef. 

No. 738 Turkey Landraces 

PI 273209 
USDA-
EEUU 

P. sativum subsp. elatius var. elatius (M. 
Bieb.) Alef. 

9009/60 Russia Landraces 

PI 344003 
USDA-
EEUU 

P. sativum subsp. elatius var. elatius (M. 
Bieb.) Alef. 

22703 Turkey wild 

PI 344005 
USDA-
EEUU 

P. sativum subsp. elatius var. elatius (M. 
Bieb.) Alef. 

22611 Greece wild 

PI 344006 
USDA-
EEUU 

P. sativum subsp. elatius var. elatius (M. 
Bieb.) Alef. 

22618 Greece wild 

PI 343976 
USDA-
EEUU 

P. sativum subsp. elatius var. elatius (M. 
Bieb.) Alef. 

22716 Turkey wild 

PI 505059 
USDA-
EEUU 

P. sativum subsp. elatius var. elatius (M. 
Bieb.) Alef. 

Ilca 5076 Sudan Landraces 

PI 344010 
USDA-
EEUU 

P. sativum subsp. elatius var. elatius (M. 
Bieb.) Alef. 

22732 Greece wild 

PI 344011 
USDA-
EEUU 

P. sativum subsp. elatius var. elatius (M. 
Bieb.) Alef. 

22733 Greece wild 

PI 344013 
USDA-
EEUU 

P. sativum subsp. elatius var. elatius (M. 
Bieb.) Alef. 

22735 Greece wild 

PI 116056 
USDA-
EEUU 

P. sativum subsp. sativum Matar India Landraces 

PI 505127 
USDA-
EEUU 

P. sativum subsp. sativum Ilca 5094 Albania Landraces 

PI 242027 
USDA-
EEUU 

P. sativum subsp. jomardii (Schrank) 
Kosterin 

G 11764 Denmark Unknown 

PI 269762 
USDA-
EEUU 

P. sativum subsp. jomardii (Schrank) 
Kosterin 

Aa38 UK Landraces 

PI 343987 
USDA-
EEUU 

P. sativum subsp. sativum var. sativum 22718 Turkey Landraces 

PI 505080 
USDA-
EEUU 

P. sativum subsp. sativum Ilca 5039 Cyprus Unknown 

PI 505111 
USDA-
EEUU 

P. sativum subsp. sativum Ilca 5075 Syria Landraces 

PI 268480 
USDA-
EEUU 

P. sativum 
subsp. elatius var. pumilio Meikle 

Col. No. 317 Afganistan Landraces 

JI 45 JIC 
P. 
sativum subsp. transcaucasicum Govorov 

P.Transcaucasicum Georgia wild 

JI 198 JIC 
P. sativum subsp. elatius var. elatius (M. 
Bieb.) Alef. 

P. Elatius Israel wild 

JI 199 JIC 
P. sativum subsp. elatius var. elatius (M. 
Bieb.) Alef. 

P. Elatius Israel wild 

JI 225 JIC P. abyssinicum A. Braun P. Abyssinicum Ethiopia Landraces 
JI 227 JIC P. abyssinicum A. Braun P. Abyssinicum Ethiopia Landraces 

JI 241 JIC 
P. sativum 
subsp. elatius var. pumilio Meikle 

P. Humile Israel wild 
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Bank code 
Bank 
origin 

Taxonomy Common Name 
Germplasm 

origin 
Material 

type 

JI 254 JIC 
P. sativum subsp. elatius var. elatius (M. 
Bieb.) Alef. 

P. Elatius Ethiopia wild 

JI 804 JIC P. sativum subsp. sativum var. sativum P.Tibetanicum Unknow Landraces 

JI 1398 JIC P. sativum  L. P.Sativum China Landraces 
JI 1428 JIC P. sativum subsp. sativum var. sativum P.Tibetanicum Tibet wild 

JI 1854 JIC 
P. sativum 
subsp. elatius var. pumilio Meikle 

P. Humile Israel Landraces 

JI 2116 JIC P. sativum subsp. sativum var. sativum P.Speciosum Spain Landraces 

JI 2202 JIC P. abyssinicum A. Braun P. Abyssinicum Yemen Landraces 

PIS 1318/91 IPK 
P. sativum subsp. elatius (M. Bieb.) Asch. 
& Graebn. 

  Unknow Unknown 

CGN10205 CGN 
P. sativum subsp. elatius var. elatius (M. 
Bieb.) Alef. 

1140175 Turkey Landraces 

CGN10206 CGN 
P. sativum subsp. elatius var. elatius (M. 
Bieb.) Alef. 

1145176 Unknow 
breeding 
lines 

CGN10193 CNG 
P. sativum 
subsp. sativum var. arvense (L.) Poir. 

  Unknow Unknown 

IFPI 3365 
ICARDA-
Siria 

P. sativum subsp. elatius var. elatius (M. 
Bieb.) Alef. 

Ig 52524 Turkey wild 

IFPI 3370 
ICARDA-
Siria 

P. sativum subsp. elatius var. elatius (M. 
Bieb.) Alef. 

Ig 52529 Turkey wild 

IFPI 387 
ICARDA-
Siria 

P. sativum subsp. thebaicum Ig 49546 USSR wild 

IFPI 436 
ICARDA-
Siria 

P. sativum subsp. jomardii (Schrank) 
Kosterin 

Ig 49595 Egypt Landraces 

IFPI 2348 
ICARDA-
Siria 

P. sativum 
subsp. sativum var. arvense (L.) Poir. 

Ig 51507 Ethiopia Landraces 

IFPI 2350 
ICARDA-
Siria 

P. sativum 
subsp. sativum var. arvense (L.) Poir. 

Ig 51509 Ethiopia Landraces 

IFPI 2351 
ICARDA-
Siria 

P. sativum 
subsp. sativum var. arvense (L.) Poir. 

Ig 51510 Ethiopia Landraces 

IFPI 2352 
ICARDA-
Siria 

P. sativum 
subsp. sativum var. arvense (L.) Poir. 

Ig 51511 Ethiopia Landraces 

IFPI 2353 
ICARDA-
Siria 

P. sativum 
subsp. sativum var. arvense (L.) Poir. 

Ig 51512 Ethiopia Landraces 

IFPI 2354 
ICARDA-
Siria 

P. sativum 
subsp. sativum var. arvense (L.) Poir. 

Ig 51513 Ethiopia Landraces 

IFPI 2356 
ICARDA-
Siria 

P. sativum 
subsp. sativum var. arvense (L.) Poir. 

Ig 51515 Ethiopia Landraces 

IFPI 2357 
ICARDA-
Siria 

P. sativum 
subsp. sativum var. arvense (L.) Poir. 

Ig 51516 Ethiopia Landraces 

IFPI 2358 
ICARDA-
Siria 

P. sativum 
subsp. sativum var. arvense (L.) Poir. 

Ig 51517 Ethiopia Landraces 

IFPI 2360 
ICARDA-
Siria 

P. sativum 
subsp. sativum var. arvense (L.) Poir. 

Ig 51519 Ethiopia Landraces 

IFPI 2362 
ICARDA-
Siria 

P. sativum 
subsp. sativum var. arvense (L.) Poir. 

Ig 51521 Ethiopia Landraces 

IFPI 2363 
ICARDA-
Siria 

P. sativum 
subsp. sativum var. arvense (L.) Poir. 

Ig 51522 Ethiopia Landraces 

IFPI 2364 
ICARDA-
Siria 

P. sativum 
subsp. sativum var. arvense (L.) Poir. 

Ig 51523 Ethiopia Landraces 

IFPI 2365 
ICARDA-
Siria 

P. sativum 
subsp. sativum var. arvense (L.) Poir. 

Ig 51524 Ethiopia Landraces 

IFPI 2367 
ICARDA-
Siria 

P. sativum 
subsp. sativum var. arvense (L.) Poir. 

Ig 51526 Ethiopia Landraces 

IFPI 2369 
ICARDA-
Siria 

P. sativum 
subsp. sativum var. arvense (L.) Poir. 

Ig 51528 Ethiopia Landraces 

IFPI 2370 
ICARDA-
Siria 

P. sativum 
subsp. sativum var. arvense (L.) Poir. 

Ig 51529 Ethiopia Landraces 

IFPI 2371 
ICARDA-
Siria 

P. sativum 
subsp. sativum var. arvense (L.) Poir. 

Ig 51530 Ethiopia Landraces 

IFPI 2372 
ICARDA-
Siria 

P. sativum 
subsp. sativum var. arvense (L.) Poir. 

Ig 51531 Ethiopia Landraces 

IFPI 2441 
ICARDA-
Siria 

P. sativum subsp. jomardii (Schrank) 
Kosterin 

Ig 51600 Denmark Unknown 

IFPI 2495 
ICARDA-
Siria 

P. sativum subsp. jomardii (Schrank) 
Kosterin 

Ig 51654 UK Landraces 

IFPI 3232 
ICARDA-
Siria 

P. fulvum Sm. Ig 52391 Syria Wild 

IFPI 3250 
ICARDA-
Siria 

P. sativum  L. Ig 52409 Syria wild 

IFPI 3252 
ICARDA-
Siria 

P. sativum subsp. elatius (M. Bieb.) Asch. 
& Graebn. 

Ig 52411 Syria wild 
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Bank code 
Bank 
origin 

Taxonomy Common Name 
Germplasm 

origin 
Material 

type 

IFPI 3253 
ICARDA-
Siria 

P. fulvum Sm. Ig 52412 Syria wild 

IFPI 3257 
ICARDA-
Siria 

P. fulvum Sm. Ig 52416 Syria wild 

IFPI 3260 
ICARDA-
Siria 

P. fulvum Sm. Ig 52419 Syria wild 

IFPI 3261 
ICARDA-
Siria 

P. fulvum Sm. Ig 52420 Syria wild 

IFPI 3262 
ICARDA-
Siria 

P. fulvum Sm. Ig 52421 Syria wild 

IFPI 3280 
ICARDA-
Siria 

P. sativum subsp. elatius (M. Bieb.) Asch. 
& Graebn. 

Ig 52439 Syria wild 

IFPI 3282 
ICARDA-
Siria 

P. sativum subsp. elatius (M. Bieb.) Asch. 
& Graebn. 

Ig 52441 Syria wild 

IFPI 3330 
ICARDA-
Siria 

P. sativum subsp. elatius var. elatius (M. 
Bieb.) Alef. 

Ig 52489 Turkey wild 

IFPI 3334 
ICARDA-
Siria 

P. sativum subsp. elatius var. elatius (M. 
Bieb.) Alef. 

Ig 52493 Turkey wild 

IFPI 3338 
ICARDA-
Siria 

P. sativum subsp. elatius var. elatius (M. 
Bieb.) Alef. 

Ig 52497 Turkey wild 

IFPI 3358 
ICARDA-
Siria 

P. sativum subsp. elatius var. elatius (M. 
Bieb.) Alef. 

Ig 52517 Turkey wild 

   IAS - CSIC 
P. sativum subsp. elatius var. elatius (M. 
Bieb.) Alef. 

  Unknow wild 

JI 1006 JIC P. fulvum Sm. Wbh 2142 Israel wild 

 

Additional file 2. Differences between groups in pea panel grouped by material 

type, growth condition and taxonomy. 

Grouped bya Group 1 Group 2 Signif.b 

Material type 

Breeding Line Cultivar * 

Cultivar Landraces **** 

Cultivar Wild **** 

Growing 
Condition 

DS2018 DS2019 *** 

DS2018 DS2020 **** 

DS2019  DS2020 **** 

DS2018 DSCC **** 

DS2019 DSCC **** 

DS2020 DSCC **** 

Taxonomy 

P. fulvum Sm. P. sativum subsp. sativum var. 
sativum 

** 

P. sativum L. P. sativum subsp. sativum var. 
sativum 

**** 

P. sativum subsp. sativum var. 
arvense 

P. sativum subsp. sativum var. 
sativum 

** 

P. sativum subsp. sativum var. 
sativum 

P. sativum subsp. elatius var. elatius **** 

a Grouped by column attend to Material type (Breeding Line, Cultivar, Landrace, Wild or 

Unknown), Growth Condition (Disease severity in Controlled Conditions (DSCC) or Disease 

Severity in environments Co-2018, Co-2019 or Co-202 (DS2018, DS2019 and DS2020, 

respectively)) and Pisum taxonomy. 

b Signif. column reveals the statistical significance in the Wilcoxon test: * = p < 0.05, ** = p < 

0.01, *** = p < 0.001, **** = p < 0.0001. 
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1. Abstract 

Rust is a disease that damages important crops like pea, and researchers are 

still struggling to identify genotypes with high levels of resistance. To find new 

sources of resistance, it is crucial to accurately measure the level of infection on large 

number of accessions. This is where an image analysis system proves useful. By 

applying an easy-to-use and affordable system, researchers can quickly count and 

measure the pustules caused by rust on pea samples. The goal of this study was to 

develop an automated image analysis pipeline that can accurately calculate disease 

progression parameters of rust, while also ensuring that the data collected are 

reliable. To validate the method and determine the best approach, a set of 600 pea 

leaflets affected by rust symptoms were analysed at different resolutions using 

distinct segmentation indices. The processing time varied depending on the 

compression level, with lower resolution resulting in faster processing and reduced 

storage space. Among the segmentation indices tested, the Normalized Green Red 

Difference Index (NRGDI) was the fastest at 60 % resolution, taking a total of 62 

seconds to analyse the 600 leaflets using parallel processing. Lin’s concordance 

correlation coefficient was the metric used to evaluate the accuracy of image-based 

analyses compared to visual pustule counting. The highest accuracies (> 0.98) were 

obtained at full resolution, but a compression level of 60 % was not statistically 

different for most disease progression parameters. Overall, NRGDI was the optimal 

segmentation, providing high accuracy and less accumulated error over time for 

pustule counting. A new image-based method for pea rust disease phenotyping has 

been proposed, using RGB spectral indices segmentation and pixel value 

thresholding to improve resolution and precision. It can analyse hundreds of images 

in seconds and has accuracy comparable to visual methods and better than other 

image-based methods. It captures the full complexity of rust disease in pea and 

eliminates errors introduced by raters in traditional approaches. This method can 

help identify QTLs for pea genetic resistance and improve breeding efforts. 

2. Introduction 

Rusts are a group of plant diseases caused by species of the Pucciniales order 

which is one of the largest orders of plant fungal pathogens comprising more than 

8,000 species (Toome-Heller 2016). They are obligate biotrophs that compromise 

yields of important crops worldwide and exhibit complex lifecycles with up to five 

different stages (i.e., pycnidial, aecial, uredial, telial, and basidial stages) (Helfer 

2014). Rust lifecycle begins when the spores, carried by wind or water, germinate, 

and infect the aerial tissue of the host. Once inside the plant, it produces specialized 

structures called haustoria mother cells, which penetrate the plant cells via a 

neckband, and form haustoria to extract nutrients. Then, the fungus produces 

secondary spores, which can spread to other parts of the same plant or to new host 

plants. This infection cycle and spore production can be repeated several times along 
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the cropping season, leading to the development of visible symptoms such as 

yellowing, spotting or rust-coloured pustules on the leaves, stems, or fruit of the host, 

depending on the rust species or host reaction (Helfer 2014; Newcombe 2004). In 

many cases two taxonomically unrelated hosts are required to complete the life cycle. 

Different species of rust fungi have different host ranges, but many can infect a wide 

variety of plant species within a particular plant family or group, hindering their 

management in the field (Duplessis et al. 2021). In pea (Pisum sativum L.), a 

valuable, versatile, and inexpensive protein source for human food and animal feed 

(Tulbek et al. 2016), rust is a major disease spread worldwide (Rubiales et al. 2015). 

Two rust species, Uromyces pisi (Pers.) (Wint.) and U. viciae-fabae (Pers. de Bary) 

(Barilli et al. 2009b), have been described as causal agent of pea rust. The uredial 

stage of U. pisi produces the infective structures that affects pea crops in temperate 

regions while in warmest countries the aecial stage of U. viciae-fabae is the epidemic 

one (Beniwal et al. 2022). Although agronomical practices and chemical control of 

pea rusts have been explored to reduce their incidence (Shtaya et al. 2021; Luo et al. 

2022; Barilli et al. 2017; Barilli et al. 2022; Khalil et al. 2023; Villegas-Fernández et 

al. 2023), the use of resistant cultivars is considered as the most effective, economic, 

and eco-friendly strategy for rust control (Li et al. 2021). To face the challenge of 

developing new rust resistant varieties, the reference genomes recently available 

provide important resources for pea breeding (Yang et al. 2022; Kreplak et al. 2019; 

Martins et al. 2022; Bari et al. 2023). The constant reduction in sequencing cost 

coupled with the technological advances that refine marker-trait association and 

genome editing approaches are expected to boost future development of pea 

resistance breeding. However, these methods need to be fed with detailed and 

accurate phenotypic data to guide breeding and deepen our understanding of the 

genetic variations controlling complex traits, such as rust disease resistance. 

Phenotyping is therefore becoming the main bottleneck for breeding. It is particularly 

challenging when assessment of very large collection of several thousand lines which 

is the typical size of nested association mapping (NAM) populations (Gireesh et al. 

2021; Diers et al. 2018; Li et al. 2016). 

It is therefore urgent to improve and optimize the available methods of 

phenotyping. The phenotypic characterization of pea response to rust has relied on 

disease assays conducted under controlled or field condition, in seedlings or adult 

plants, and with natural or artificial infestation. In these assays, disease was 

evaluated by measuring qualitative and/or quantitative measurements. Qualitative 

assessment of rust disease, known as infection type (IT) usually use a scale ranging 

from 0 to 4, as described by Stakman et al. 1963 in wheat. The IT depends on the host 

reaction to the pathogen. This reaction could be incompatible, when the host shows 

no symptoms or develops a hypersensitive response, or compatible when typical rust 

pustule develops on the susceptible host (Duplessis et al. 2021). Quantitative 

assessment of rust symptoms is conventionally assessed as a visual estimation of the 
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percentage of leaf area covered by rust pustules (disease severity, DS). This can be 

decomposed in more detailed components such as the infection frequency (IF) and 

colony size (CS). IF is the number of lesions (herein, pustules) within a limited area, 

usually 1 cm2. These parameters defined as objective are weakly affected by user bias 

but highly time consuming when screening large germplasm collections. Contrary to 

IF or CS, DS is a subjective parameter highly dependent on the user interpretation 

that requires specialized training (Del Ponte et al. 2022). DS is also affected by IT, so 

the user can confound the area surrounding pustules that sometimes develop 

chlorotic/ necrotic regions. In several foliar diseases, standard area diagrams (SAD) 

can offer increased precision over DS calculations (Modesto et al. 2022; Castellar et 

al. 2021; Lopes et al. 2022). However, SADs are not readily available for pea rust. 

Traditionally, qualitative, and quantitative measurements have been performed to 

better understand the resistance mechanisms that operate in pea-rust pathosystem, 

together with other ones considering the pustule size (Barilli et al. 2009a, 2009b, 

2009c). Periodical evaluation of these quantitative parameters allows to estimate 

disease progression factors such as the Area Under Disease Progress Curve (AUDPC), 

the Latency Period (LP50) and the Monocyclic Disease Progress rate (MDPr) (Smiko 

et al. 2012; Arneson et al. 2001). Through these factors, it is possible to capture most 

of the complexity of rust disease evolution. Little advances have been achieved toward 

automatization of pea rust phenotyping in comparison with other aerial fungal 

pathosystems, for which many platforms and methodologies have been developed to 

increase accuracy and precision of disease estimation including from other fungal 

pathogens in legumes (McDonald et al. 2022) to bacterial pathogens in citrus plants 

(Bock et al. 2009; Bock et al. 2008). Among these so-called high-throughput 

methods, development of image-based phenotyping techniques has largely increased 

in the last decade partly thanks to the decrease in imaging technologies cost and the 

increase in computing power that contributed to make them more affordable and 

accurate (Bock et al. 2010). These approaches take advantage of the clear contrast 

between the lesion emerging on the leaf surface and the healthy leaf background. 

These methods, through the application of appropriate threshold, isolate lesions from 

coloured images (in CMYK, RGB, CIELAB, or HSV format) of the infected leaf to 

count their number and size in pixel. Some systems using RGB images are already 

available to evaluate leaf rust disease in other rust pathosystems, such oat leaf rust 

(Puccinia coronate f. sp. avenae Fraser & Led.) in oat (Avena sativa L.) (Gallego-

Sánchez et al. 2020). More complex methods using multi- and hyperspectral sensors 

that collect information outside the visible light spectrum have also been developed 

to quantify disease severity in various pathosystem including soybean rust, wheat leaf 

rust, and wheat steam rust (Cui et al. 2010; Ashourloo et al. 2014; Abdulridha et al. 

2023). In particular, it has been applied to quantify leaf rust (Puccinia triticina 

Eriks.) diseases under controlled conditions in wheat (Triticum aestivum L.) through 

vegetation indices (Ashourloo et al. 2014) and their application in the field have 
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already been explored using unmanned aerial vehicles (UAV) (Guo et al. 2021). 

However, there are currently no high-throughput image-based method that can be 

used to estimate rust disease evolution during the complete cycle and to estimate 

disease progression parameters, particularly in pea. The growing interest in image-

based disease phenotyping has driven the development of various image analysis 

platforms. Particularly promising are the platforms based on free and open-source 

environments that align with the principles of open science, with Python language 

being a notable example. Python’s versatility and ease of use have made it a popular 

choice for various scientific disciplines, including plant disease phenotyping trough 

packages such as PlantCV (Gehan et al. 2017; Fahlgren et al. 2015). In parallel, the R 

language, known for its extensive use in statistical computing and graphics, is also 

gaining traction in the field of plant phenotyping. Researchers are increasingly 

recognizing the capabilities of R for handling and analysing complex datasets, making 

it a valuable tool for studying plant diseases (Beare et al. 2018; Miller et al. 2023; 

Olivoto et al. 2022). This study aimed to develop an image processing workflow using 

R software that achieves several goals, including producing reliable and repeatable 

measurements of rust-infected pea leaf area, counting the number of pustules, and 

measuring them on the leaf surface, combining leaf information over time to track 

disease progression, automating the process to analyse thousands of images, and 

allowing for data tracking from image acquisition to output. 

3. Materials and Methods 

3.1. Plant materials, Pathogen isolate and Inoculation 

The plant material used in the image analysis to set up and validate our method 

was a randomly selected subset of 33 accessions from a pea core collection of 320 

genotypes which previously reported to show a wide variability of responses to rust 

caused by Uromyces pisi (Osuna-Caballero et al. 2022). Disease assays were 

performed at seedling stage under controlled conditions. The experiment followed a 

randomized complete block design with three biological replicates being planted at a 

time, using pea cv. Messire as a high-susceptible rust control, meaning a total of 100 

experimental units. Seeds of each accession were surface-sterilized, scarified and 

vernalized to ensure optimal germination. Three germinated seeds per accession 

were sown in a sand:peat mixture (1:1, w/w) in a 15 cm2 plastic pot. At 7 days post 

germination, plants were thinned to one plant per pot to maximize light distribution. 

The growth chamber was maintained at 20 ºC with a photoperiod of 14 h of light and 

10 h of darkness and 148 µmol m− 2 s− 1 of irradiance at plant canopy level. Once the 

third leaf of each plant was fully expanded, plants were inoculated with freshly 

collected urediospores of the highly virulent isolate UpKeS-05 of U. pisi (Barilli et al. 

2012) previously multiplied on cv. Messire seedlings. Inoculation was performed by 

dusting the plants with 1 mg urediospores per pot, mixed in pure talc (1:10, v:v) and 

the infected plants were incubated for 24 h at 20 ºC in complete darkness and 100% 
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relative humidity as previously described [75]. Then, plants were transferred back to 

the growth chamber. Pustules associated with rust symptoms started to emerge on 

pea plants eight days after inoculation (dai). 

3.2. Image Acquisition 

In order to cover the first rust disease cycle that goes from 8 to 13 dai, a leaflet 

from the third leaf of each plant (n = 100) was cut at 7 dai and transferred to square 

Petri dishes filled with water:agar (0.5%) media and 0.005% Benzimidazole as 

fungicide with nine leaflets per Petri dish (Figure 7). Petri dishes were maintained in 

the growth chamber until the end of the experiment. RGB images of the whole Petri 

dishes were then acquired daily from 8 to 13 dai, with a smartphone brand Xiaomi, 

carrying a Sony IMX363 Exmor RS Sensor with a focal ratio ƒ/ 1.9 with a 12-

megapixel resolution. To ensure homogeneity of the RBG images, the smartphone 

was set on a tripod 0.35 m above the Petri dish and images were acquired on a plain 

black background under fluorescent light tubes set at 35º angles on both side of the 

plate. White balance, shutter speed, aperture and ISO speed of the camera was 

adjusted according to default parameters without flash. Each Petri dish was opened 

before image acquisition to avoid light reflection and closed thereafter to prevent 

contaminations (Figure 7). Daily RGB images were saved in .jpg format with an 

original resolution of 3024 × 3024 pixels. 

 

Figure 7. Example of a stored RGB image. The image represents a typical Petri dish 

containing nine inoculated pea leaflets and their labels. Each row contains the same 

genotype, and the columns are their biological replicates. The example shows the genotypes 

302, 301, and 280 at 8 dai. 
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3.3. Disease assessments 

Infection frequency (IF) was estimated by counting the number of rust pustules 

emerging daily on each leaflet from 8 to 13 dai, visually or through the image analysis 

procedure. The resulting daily counting were then integrated in three parameters 

representing disease progression: 

• AUDPC. The Area Under Disease Progress Curve (Jeger et al. 2001) following 

the formula: 

𝐴𝑈𝐷𝑃𝐶 =  ∑
𝑦𝑖 + 𝑦𝑖+1

2
× (𝑡𝑖+1 − 𝑡𝑖)

𝑛−1

𝑖=1

 

where yi is the IF at the ith observation, ti is days at the ith observation, and n 

is the total number of observations. 

• MDPr. The Monocyclic Disease Progress rate, as described by Arneson (2001), 

is a proportionality constant that represents the rate of disease progress per 

unit of inoculum. 

• LP50. The Latency Period is the elapsed time between inoculation day and the 

day when 50 % of pustules are formed. 

3.4. Image Segmentation 

Image-based quantification of rust damage requires a two-stage segmentation 

of the original images to separate leaves from the background and to distinguish rust 

damage from healthy tissue. This segmentation was performed for each image subset 

allowing the estimation of DS, IF and PS. 

The colour differences between foreground and background in our images are 

represented by different values from the red (R), green (G), and blue (B) channels in 

the RGB colour space, allowing the object segmentation in the images. Accordingly, 

the first segmentation was performed by applying a HUE index prevailing the green 

region to isolate the leaflets from the background with the formula: 

𝐻𝑈𝐸 =  
atan(2(𝑅 − 𝐺 − 𝑅))

30.5(𝐺 − 𝐵)
 

The threshold used to separate the background from the leaflets were based on the 

Otsu method (Otsu 1979).  

To isolate rust pustules from the healthy tissue, a second segmentation step was 

performed. Four indices commonly used in remote sensing and phytopathometry 

were tested for their capacity to detect rust pustules (Best and Harlan 1985; Blancon 

et al. 2019; Gitelson et al. 2002; Motohka et al. 2010), three operating in the RGB 

channels and one in the CIELAB colour space stack. The selected indices were the 

Normalized Green Red Difference Index (𝑁𝐺𝑅𝐷𝐼 =  
𝐺−𝑅

𝐺+𝑅
)  (Chapu et al. 2022), 
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Primary Colours Hue Index (𝐻𝐼 =  
2(𝑅−𝐺−𝐵)

𝐺−𝐵
) , Green Leaf Area Index (𝐺𝐿𝐴𝐼 =

 
25(𝐺−𝑅)

(𝐺+𝑅−𝐵)+1.25
)  , and the a*- chrominance channel from CIELAB band (𝑎∗ =

 0.55
(𝑅−(0.2126 𝑅+0.7152 𝐺+0.0722 𝐵))

1−0.2126
). Each index applies a different transformation of 

RGB values, therefore, each one requires a different threshold. The thresholds used 

were set as 0, 1, 1, and 0.50 for NGRDI, HI, GLAI, and a*- respectively. To maximize 

the accuracy of image-based pustules counting, the Watershed algorithm was also 

implemented, permitting to segment pustules connected by a few pixels that could be 

considered as two distinct lesions (Beucher et al. 1979). 

3.5. Image Compression and Processing Time 

Image compression can improve the processing time while saving store 

capacity in RAM and ROM memories. To get the optimum processing time without 

compromising precision and accuracy, four different compression levels ranged from 

full resolution (3024 × 3024 pixels) to 40% of the full resolution (1210 × 1210 pixels) 

were tested. Images compression were performed by applying the image_resize() 

function from “pliman” R package (Olivoto et al. 2022). The processing time required 

to analyse all images at each compression level was calculated using mark() function 

from “bench” R package (Hester and Vaughan 2023). 

3.6. Method Validation 

To validate and select the best segmentation index and optimum image 

compression, the Lin’s concordance correlation coefficient (ccc, ρc) (Lin 1989) was 

computed between visual counting and software-estimation for each dai (from 8 to 

13) and disease progression parameter (AUDPC, MDPr and LP50). The Lin’s ccc not 

only evaluates how well the software-predicted values align with the visual counting 

values but also considers their systematic differences and scale variations. It provides 

a comprehensive assessment of the agreement by measuring both the correlation and 

the bias between the predicted and real values. Therefore, the ccc has been widely 

recommended and utilized in studies that involve comparing estimated severity 

values with actual severity values in phytopathometry (Del Ponte et al. 2017, 2022; 

Pereira et al. 2020). This parameter was calculated using a resampling approach 

between predicted and visual values for each parameter using the R package 

“yardstick” (Kuhn et al. 2023). In addition, the root-mean-square error (RMSE) were 

also calculated for an additional accuracy estimation between visual and software-

based calculations. ρc values range from 0 to 1 while RMSE values are in the same 

units as the original data. 

3.7. Description of Rust evaluation Method 

The script controlling the image analysis method was developed in R software 

version 4.2.2 (R Core Team 2021) under RStudio version 2022.07.2.576, using the R 
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packages “pliman” (Olivoto et al. 2022), “EBImage” (Pau et al. 2010), and “Tidyverse” 

(Wickham et al. 2019). The approach to analyse the images using batch processing 

were also implemented with the R package “foreach”, which facilitates to compute the 

analyses in a parallel process. This parallel strategy allows to split the jobs across 

multiple cores in the CPU, regarding an extra processing time saving. All the analyses 

were performed on a PC equipped with an AMD Ryzen 9 CPU (16 cores) with 3.4 GHz 

frequency, a NVIDIA GTX 1660 Ti GPU, and 32 GB of RAM memory. 

The method was developed using the set of 600 individual leaflets with different 

levels of rust disease symptoms. The symptoms ranged from no disease to leaflets 

heavily covered with pustules. The image processing pipeline (Additional file 4), 

developed as a R script (Osuna-Caballero et al. 2023), consists of a function which 

imports and analyses the images following a batch processing strategy. First, the 

input plate image is loaded following a name pattern inside the file path, then it is 

resized, before the nine leaflets within plate image are split according to the first index 

segmentation (HUE index). Then the split samples are analysed individually through 

a for loop using the measure_disease() function that estimates the total leaflet area, 

the number of pustules, the leaflet area covered by pustules and the mean pustule 

size, and saves these values for each sample in the output data frame. Furthermore, 

the developed function integrates an additional argument to analyse the input images 

in parallel (“parallel” argument set to “TRUE”) or sequentially (if parallel argument 

set to “FALSE”). 

Therefore, the method can rapidly and accurately count the number of pustules 

(IF), report the percentage of leaf area covered by pustules (DS) and the average 

pustules size (PS) for each genotype daily from 8 to 13 dai. The daily values obtained 

for the same leaflet/genotype are then stored and combined into the AUDPC, MDPr 

and LP50 parameters, also stored in the output data frame. 

4. Results 

4.1. Pea Rust Monitoring 

The developed R script enables the tracking of rust progression through image 

analysis, as shown in Figure 8A. The method allows the accurate detection of the 

pustules and the storage of the results in a readily usable data frame for further 

calculation. The evaluation of 33 diverse pea genotypes randomly selected revealed 

their variability in response to rust infection caused by U. pisi. A moderate variation 

was detected in disease severity (DS) which ranged from 1 to 14%. The average pustule 

size (PS) also exhibited variability between 0.3 and 1.0 mm², reflecting the presence 

of some resistance mechanism reducing the rust pustules size in some genotypes. As 

expected, a more pronounced variability was detected for the infection frequency (IF) 

that ranged from 10 to 82 pustules per cm² at 13 days after inoculation (dai) (Figure 

8B). Monitoring the evolution of these disease parameters over time showed a steady 
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increase of DS and PS throughout the experiment (Figure 8B), although the 

increment rate varies according to the genotype. IF also increment over time although 

in this case the increment follows an exponential evolution with a slow increase from 

8 to 9 dai followed by a rapid increase from 9 to 11 dai and thereafter a saturation 

plateau (Figure 8B). As for DS and PS, the increment rate of the different IF phase 

varied according to the genotypes. Integration of these daily disease estimates from 

8 to 13 dai allowed the calculation of AUDPC, LP50, and MDPr progression 

parameters which capture most of the complexity of rust resistance and facilitate the 

selection and discrimination of genotypes (Additional file 3). As expected, the 

susceptible genotypes GEN261 exhibited the highest AUDPC and MDPr values and 

one of the shortest latency periods (LP50), while the susceptible GEN62 displayed the 

lowest AUDPC and MDPr values and the longest LP50, as expected (Additional file 3). 

These progression parameters, combined with daily point resistance mechanisms 

(IF, DS, and PS), enable a more precise estimation of the resistance or susceptibility 

levels of the pea genotypes to the pathogen. Similar results were obtained with the 

visual counting. Accordingly, these results showcase the potential of the image-based 

method to accurately assess rust disease progression in pea leaves and its capability 

to discriminate between genotypes based on their disease severity and pustule size 

variations. 

4.2. Processing Time optimization and RGB Segmentation Selection 

To validate the method and select the optimal criterion, a set of 100 leaflets x 6 

time-points images were randomly selected. The 600 pea samples affected by rust 

symptoms were analysed following a parallel or sequential batch processing approach 

to detect the fastest one. In all cases, parallel strategy was five time faster than 

sequential strategy on average (Additional file 5). Only small processing time 

differences was detected with the parallel strategy between segmentation index 

independently of the image resolution (Figure 9). In most cases NGRDI (Normalized 

Green Red Difference Index) tend to be faster than the other segmentation index 

although the difference was only statistically significant with images at 60% 

resolution. At this resolution the analysis of the 600 leaflets with the NGRDI index 

took 62 s. 
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Figure 8. Pea rust evolution assessed with the RGB-based method. (A) The images show 

the evolution of rust pustule development at three different days after inoculation (8 dai, 10 

dai, and 12 dai) on a representative leaflet of three differential genotypes (GEN62, GEN56, 

and GEN261) covering the wide range of susceptibility detected in the collection. White 

spots on the images indicate rust pustules detected by the image-based analysis methods. 

(B) Line plots showing the progression of disease severity (DS), pustule size (PS) and 

infection frequency (IF) over time estimated from these genotypes with the RGB-based 

method. 
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Clear differences in processing time were observed between compression levels. 

The processing time required to analyse a single leaflet image varied from an average 

of 65.7 ms at 40% resolution to 274 ms at full resolution (Table 8). Therefore, 

reducing the image resolution allowed decreasing processing time from up to 76% at 

40% resolution (Table 8). The image compression also allowed reducing storage 

space required in the ROM memory. The average input image size in megabytes (Mb) 

varied from 3.5 to 1.0 between full resolution to 40% resolution, respectively, 

resulting in a store saving of up to 71% at maximum compression in comparison to 

full resolution (Table 8). 

 

Figure 9. Boxplots showing the effect of image compression on processing time per leaflet 

by index applied to segment the pustules from healthy tissue. Different letters above the box 

indicate the statistical differences between indices for each image resolution estimated by 

Tukey HSD test at p = 0.05 for n = 600. 

Table 8. Effect of image compression over processing time and image size. 

Resolution 
Time by 
leaflet 
(ms) 

Input 
Image 

size (Mb) 

Speed increase 
vs 

full resolution 
(%) 

ROM saving vs 
full resolution 

(%) 

full (3024 px) 274 3.5 - - 

80 % (2419 px) 178 3.1 35 11 

60 % (1814 px) 106 2.0 61 43 

40 % (1210 px) 65.7 1.0 76 71 

To select the most appropriate compression level without compromising 

accuracy of rust pustule estimation, concordance correlation coefficient (ccc) using a 

resampling approach were evaluated between visual pustule counting and image-

based analysis. As expected, the averaged indices ccc and RMSE varied largely 

depending on the compression level. As expected, accuracy for all traits was 

proportional to the image compression level (Figure 10A) while RMSE was inversely 

proportional to image compression level (Figure 10B). The highest accuracies and 

lowest RMSE were always obtained at full resolution. However, the accuracies and 

RMSE obtained for all traits at 80% resolution were not statistically different to the 

full resolution (Figure 10). At these resolutions, the accuracy of AUDPC and MDPr 

estimates ranged from 0.952 to 0.962 for AUDPC and from 0.918 to 0.922 for MDPr. 
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LP50 was more difficult to estimates with accuracies varying from 0.811 to 0.852. 

Increasing the compression level reduced accuracy and increased RMSE although 

accuracies of AUDPC and MDPr estimations at 60% resolution was still higher than 

0.9 (ρc = 0.918 and ρc = 0.901 for AUDPC and MDPr, respectively) (Figure 10). 

 

Figure 10. Boxplots showing the effect of image compression in the precision of 

comparison, by accuracy (A) and RMSE (B), between visual calculation and image-based 

calculation on LP50, MDPr and AUDPC. Different letters above the boxes indicate 

statistically significant differences at p = 0.05 according to the Tukey HSD test for n = 600. 

Significant differences in accuracy and RMSE were also detected between 

segmentation index for all estimated disease parameters (Figure 11 and Figure 12). 

In all cases, the NGRDI index was the best index accumulating significantly less error 

and providing a significantly higher accuracy while a* chrominance from LAB colour 

space and GLAI (Green Leaf Area Index) were the worst. The average accuracies of 

NGRDI were 0.975, 0.945, and 0.957 for AUDPC, LP50, and MDPr, respectively. The 

average accuracy of HI (Primary Colours Hue Index) was also higher than 0.9 in all 

cases, suggesting that this index also provided suitable rust estimation, may be useful 

to analyse leaves from other species. 

Variations were also detected in the estimation capacity of each model over 

time. Indeed, accuracy and RMSE obtained from the estimations obtained from the 

different indices were more variable at 8 and 9 dai then at later stages (Figure 12). In 

general, accuracy increase while time advances and RMSE decrease. NGRDI was the 
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only index which gave accuracies higher than 0.9 for all time points, reaching an 

accuracy of 0.98 at 11 dai. Although accuracy of HI was slightly lower, the estimation 

capacity of HI was still acceptable (Figure 12). 

 

Figure 11. Bar plots showing the effect of the different indices on accuracy (A) and RMSE 

(B) when visual method and image-based method are compared by each parameter studied 

from images at 60% of the full resolution. Different letters above the boxes indicate 

statistically significant differences at p = 0.05 according to the Tukey HSD test for n = 600. 
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Figure 12. Bar plots showing the effect of the different indices on accuracy (A) and RMSE 

(B) when visual method and image-based method are compared for each parameter studied 

at 60% resolution. Different letters above the boxes indicate statistically significant 

differences at p = 0.05 according to the Tukey HSD test for n = 600. 

5. Discussion 

In recent years, advancements in image analysis software and computing power 

have enabled the use of high-throughput methods for plant disease phenotyping. 

These methods are nowadays used to analyse plant diseases at different architecture 

levels, including stems, leaves, and roots (Bock et al. 2010). Remote sensing 

techniques are playing a major role in modern breeding programs, providing accurate 

and high-resolution methods for identifying and quantifying novel natural variations 

within crops (Dissanayake et al. 2020; Watanabe et al. 2017; Yang et al. 2021). This 

present study describes a new method for the automatic assessment of daily rust 

disease parameters from RGB images and their integration into rust disease 

progression parameters fastening both disease ratings and phenotype data analysis. 

The method, developed on the R programming environment, counts, measures, and 

reports the damage caused by rust on pea leaflets. Moreover, when images are 

provided in a temporal sequence, the method can accurately integrate the damage 

into the most common disease progression parameters and report them by genotype 

in a ready-to-use data frame. Overall, the image-based method proposed here to 

analyse rust disease progression in pea provides breeders with a powerful tool to 

improve the efficiency and effectiveness of their breeding programs. It enables the 

rapid and accurate screening of large germplasm collections against rust, which will 

facilitate the future development of pea cultivars with high level of rust resistance. 
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Although not tested, the method proposed should be easily applied to evaluate rust 

in other plant species. 

5.1. Automatization of Pea Rust Progress Monitoring 

Traditional image-based methods for evaluating plant aerial diseases have been 

destructive and do not allow comprehensive disease tracking. The proposed method 

enables the periodic evaluation of several disease parameters throughout the first 

cycle of rust disease on the same sample and to integrated them into disease 

progression parameters (AUPDC, MDPr and LP50) providing a comprehensive 

analysis of the pea genotype response to rust. This approach is an adaptation of 

previously designed detached leaf assay used to assess other foliar diseases such as 

powdery mildew in legumes (Barilli et al. 2019) and cereals (Rubiales and Carver 

2000) which enable the preservation of viable leaflet simples throughout the first 

cycle of rust disease and ensure standardize condition for image acquisition. One of 

the key advantages of the proposed method is the improved efficiency in data 

collection. The image analysis workflow (Additional file 4) allows for disease 

monitoring and captures maximum information regarding disease progression in an 

automatic process, which, as far as we know, could not be achieved by the previously 

developed methods (Alves et al. 2022; Dissanayake et al. 2020; Gallego-Sánchez et 

al. 2020; Pierz et al. 2023). Here, estimation of the daily resistance components (IF, 

DS, and PS) for each leaflet allows the calculation of disease progression parameters 

such as AUDPC, LP50, and MDPr for each genotype. Application of this method was 

suitable to discriminate between genotypes and identify pea genotypes with high 

partial resistance such as GEN62 (Figure 8) providing seminal works for the 

implementation of this method to evaluate large pea collection. The fast, accurate and 

comprehensive information gathered by this method is crucial for future breeding 

efforts of pea with higher resistance to rust (Rubiales et al. 2015). 

Very few image-based analysis methods tackle temporal analysis of fungal 

infection in plants (Heineck et al. 2019; Pavicic et al. 2021). Beside some studies in 

different Arabidopsis thaliana (L.) pathosystems (Pavicic et al. 2021), Only one study 

targeted rust and compared rust disease progression parameters estimated by image 

analysis in R or visual rating (Mattos et al. 2020). This study that counted rust 

pustules on ryegrass leaves with the “EBImage” R package allowed to estimate 

AUDPC with an accuracy of 0.77 which is lower than the accuracy we obtain in pea 

with the present method (ρc = 0.975). In addition, by contrast with all previous 

method, calculation of disease progression parameters is integrated in the R script, 

resulting in an automated process that incorporates all quantitative assessments 

obtained through RGB image analysis that will help researchers to better understand 

disease progression and resistance mechanisms in aerial diseases. 
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5.2. Processing Time Optimization 

Image-based disease assessments face the challenge of balancing storage 

capacity, processing time, and accuracy. The present R-based approach is based on 

the “pliman” package functions. This package, recently launched by Olivoto et al. 

(2022a), is specifically designed for plant disease image phenotyping. It is a 

promising tool faster than other software such as the widely used license-based APS 

Assess 2.0 software or the LeafDoctor free-app, while still maintaining high levels of 

accuracy (Olivoto et al. 2022b). The processing speed of the R package “pliman” has 

been considerably increased compared to the first stable version available on CRAN 

(v 1.0.0). For example, the processing time required to analyse one image of ~ 3 

mega-pixels (1367 × 2160) with only one leaflet was previously reported as ~ 1 and 3 

s, for a parallel and sequential strategy, respectively (Olivoto et al. 2022b). 

Considering the average time to process one Petri dish (~ 900 ms) with 9 leaves using 

an image of ~ 3.3 mega-pixels (1814 × 1814), we have shown that the processing time 

per leaflet is almost nine time faster. The greater speed observed here is attributed to 

recent improvements of the packages that now use C + + language for the most 

critical functions (Eddelbuettel and Francois 2011) which offers faster computation 

speeds compared to other languages such as JavaScript or Python 

(https://github.com/niklas-heer/speed-comparison). The potential of “pliman” to 

quantify disease severities was initially explored on infected Populus spp. leaves, and 

it was found to be faster and more efficient than manual analyses with ImageJ 

software to estimate necrotic area percentages (Dreischhoff et al. 2023). However no 

previous studies used “pliman” to assess rust disease. 

The present method can analyse 100 pea samples in 27.4 segs at full resolution, 

or in 10.6 segs at 60% resolution, provide estimates with accuracies higher than 0.91 

at all time-points. This is a significant improvement compared to the previously 

developed RUST software developed on Image-J that took 20 to 80 min to estimate 

IF on 100 oat samples in automatic and semi-automatic mode, respectively (Gallego-

Sánchez et al. 2020; Milus et al. 2009). Additional methods using free or licensed 

image-based analysis software are able to predict rust IF with good accuracy. 

Although not all studies reported processing time. The present method appears, as 

far as we know, 100 to 200 times faster than previously existing method to 

quantifying rust IF. In addition, these previous methods did not allow estimation of 

disease progression parameters such as AUDPC while they are automatically 

estimated by the present method within the processing time. In others pathosystems, 

incorporation of additional colour space transformations or implementation of 

machine learning tool was shown to improve lesion segmentation and accuracy 

however each additional step increased processing time. For example, McDonald et 

al. proposed an automated method for measuring soybean [Glycine max (L.) Merr] 

frogeye leaf spot that involves converting RGB images to HSB (hue, saturation, 
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brightness) and then to LAB (lightness, a* chrominance, b* chrominance) to remove 

the background and isolate the lesion (McDonald et al. 2022). While the method was 

highly accurate, reaching accuracy of 0.99 it took 16.7 min to analyse 100 leaf 

samples. Although, this method was slightly more accurate, it was around 100 times 

slower than the method proposed here. Implementation of machine learning to 

segment and quantify cassava (Manihot esculenta Crantz) bacterial blight disease 

severity also improved accuracy but takes 250 min to analyse 100 cassava leaves due 

to higher computer requirements (Elliott et al. 2022). The method proposed here is 

simpler and more cost-effective allowing the comprehensive fast analysis of pea rust 

disease without compromising accuracy. It is based on RGB spectral indices 

segmentations discussed by Alves et al. (2022). These authors also coincide in the use 

of NGRDI and HI as the optimal one for foliar diseases segmentations when 

compared to others (Alves et al. 2022). 

The high accuracy provided for all disease parameters compared with the 

present method coupled with it unprecedent speed which should be even more 

reduced by reducing image resolution to 60% if needed allow it is implementation to 

evaluate large collections. It could be the method of choice for the evaluation of NAM 

population, typically comprising several thousand genotypes (Diers et al. 2018; 

Gireesh et al. 2021) that cannot be evaluated by current rust evaluation methods. 

5.3. Rust Resistance Mechanisms Estimations through RGB Images 

The proposed RGB image-based method in controlled conditions showed high 

accuracies (ρc) exceeding 0.9, and in most stages of the disease cycle. This method 

requires neither a large budget nor specific training, making it a cost-effective and 

feasible option for phenotyping rust in pea and other crops. In contrast to other 

complex techniques like multi- or hyperspectral imaging, which have also proven 

useful in rust phenotyping in different rust pathosystems (Zhang et al. 2012, 2014), 

our approach stands out as a more accessible and user-friendly alternative. The 

acquisition of these sophisticated phenotyping platforms can be prohibitively 

expensive and demands specialized training, limiting their widespread application 

(Simko et al. 2017). 

Traditionally, DS is the measure used to assess the extent of damage caused by 

plant diseases, especially those affecting the aerial parts (Alves et al. 2022). The 

colour thresholding method used in this study is considered the most reliable method 

to accurately determine DS in phytopathometry (Bock et al. 2020). To automate DS 

assessment, the capacity to accurately predict DS of several free open-source or 

licensed software have been explored (Barbedo 2016; Bock et al. 2008; Schneider et 

al. 2012; Vale et al. 2003). In the context of the R environment, Mattos et al. (2020) 

developed models that indirectly determined the percentage of injured area from 

images of Septoria leaf spot in tomatoes (Solanum lycopersicum L.), achieving 

accuracies of 0.925 and 0.98 for the percentage of necrotic area and the necrotic plus 
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chlorotic area, respectively. These accuracies are similar to the accuracies obtained 

with the present method, but the method proposed by Mattos et al. required to 

manually delimit the injured area using an image software (GIMP) which is not 

require for our method. Previous study on crown and stem rust in perennial ryegrass 

(Lolium perenne L.), using the “EBImage” R package predicted crown rust with 

similar accuracy (0.93) but only allow evaluation of from single-leaf samples at a 

single time point and it was around 10 time slower (Heineck et al. 2019). 

Despite being widely used, visual DS estimations can be imprecise and biased 

for diseases with small and numerous lesions like rust (Del Ponte et al. 2022). 

Therefore, researchers usually also analyse IF and/or PS that are less prone to user 

bias to quantify more precisely partial resistance in pea (Barilli et al. 2014). Some 

previous studies reported the estimation of some of these disease components 

through RGB image analysis with variable efficiency (Bade and Carmona 2011; Díaz-

Lago et al. 2003; Gallego-Sánchez et al. 2020; Milus et al. 2009). 

For instance, the widely used license based Assess 2.0 software seems efficient 

to estimate rust PS in wheat (Bade and Carmona 2011) although its accuracy to 

estimate IF was more limited as shown by a study on maize (Zea mays L.) leaves 

(R2 = 0.49) (Díaz-Lago et al. 2003). By contrast, highly accurate estimation of rust IF 

in oat was obtained with the license-based Image Pro or the free ImageJ software that 

reported accuracies of 0.97 in pustules counting but with image resolution doubling 

the image resolution required by the present method (Gallego-Sánchez et al. 2020; 

Milus et al. 2009). Heineck et al. also estimate IF in their methodology of crown and 

stem rust in perennial ryegrass images, although the reported accuracies were lower 

reaching 0.77 and 0.84 respectively (Henieck et al. 2019). 

Moreover, our image-based approach provides a more detailed and precise 

characterization of rust disease resistance mechanisms and its progression. 

Traditional methods may suffer from subjectivity and limitations in capturing subtle 

variations in rust disease development. In contrast, our method captures the high 

complexity of rust disease by analysing daily symptoms and integrating them into 

disease progression parameters, allowing for a more comprehensive understanding 

of the plant-pathogen interaction. 

6. Conclusion 

Accurate and detailed information on the phenotype of rust disease in pea crop 

is crucial to develop new cultivars with improved genetic resistance. The proposed 

method for image-based rust phenotyping uses RGB spectral indices segmentation 

and pixel value thresholding to separate important features from the image, such as 

the leaf and pustule lesions if present. This enables the measurement of disease 

severity by calculating the percentage of the leaflet area affected and counting the 

number of pustules on a leaflet. With minimal computational requirements, the 
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program can analyse hundreds of images in seconds and has accuracy comparable to 

visual methods. The proposed method is significantly faster than previously 

developed image-based workflows for plant disease phenotyping without 

compromising accuracy. In addition, this is the first methods that allow to capture 

most of the complexity of rust disease in pea by assessing daily DS, IF and PS and 

integrating them into three disease progression parameters through an automated 

process. Being developed as an R script, the proposed method can also easily adjust 

to evaluate rust in other pathosystems where these detailed measurements are 

necessary to comprehend partial disease resistance. In addition, the application of 

image processing alleviates the raters bias that can be introduce in traditional 

methods, making it a convenient and precise approach to gather data on rust disease 

symptoms. As a results, application of the proposed method can have implications 

for both basic research and plant breeding, paving the way for more effective disease 

management strategies and the development of pea varieties with higher resistance 

in the future. 

7. Additional files 

 

Additional file 3. Histograms showing disease parameters distributions. Red, yellow, and 

green arrows indicate the values for GEN261, GEN56 and GEN62, respectively. 
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Additional file 4. Image processing pipeline. (A) shows the image modifications from 

the original image to the individual leaflet output and (B) represents the function flowchart 

summarized in the script. Every coloured region represents the four main steps. In green, the 
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image loading; in yellow, the leaflet segmentation; in blue, the lesion segmentation and, in 

grey, the storing of the collected data and reporting. 

 

Additional file 5. This table shows the processing time for 600 leaflets of the CPU in 

hh:mm:ss format by index, processing strategy and resolution applied. 

   Pustules index segmentation 

   NGRDI HI GLAI a* 

Processing 
strategy 

Sequential 

Full resolution 00:12:40 00:12:55 00:12:27 00:12:10 

80 % resolution 00:08:23 00:08:53 00:08:21 00:08:13 

60 % resolution 00:05:18 00:05:44 00:05:10 00:05:06 

40 % resolution 00:03:06 00:03:19 00:03:19 00:02:58 

Parallel 

Full resolution 00:02:22 00:02:27 00:02:26 00:02:25 

80 % resolution 00:01:39 00:01:40 00:01:40 00:01:39 

60 % resolution 00:01:02 00:01:09 00:01:05 00:01:05 

40 % resolution 00:00:42 00:00:42 00:00:42 00:00:42 
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1. Abstract 

Pea is an important temperate legume crop providing plant-based proteins for 

food and feed worldwide. Pea yield can be limited by a number of biotic stresses, 

among which, rust represents a major limiting factor. Some efforts have been made 

to assess the natural variation in pea resistance, but its efficient exploitation in 

breeding is limited since the resistance loci identified so far are scarce and their 

responsible gene(s) unknown. To overcome this knowledge gap, a comprehensive 

Genome-Wide Association Study (GWAS) on pea rust, caused by Uromyces pisi, has 

been performed to uncover genetic loci associated with resistance. Utilizing a diverse 

collection of 320 pea accessions, we evaluated phenotypic responses to two rust 

isolates using both traditional methods and advanced image-based phenotyping. We 

detected 95 significant trait-marker associations using a set of 26,045 DArT-seq 

polymorphic markers. Our in-silico analysis identified 62 candidate genes putatively 

involved in rust resistance, grouped into different functional categories such as gene 

expression regulation, vesicle trafficking, cell wall biosynthesis, and hormonal 

signalling. This research highlights the potential of GWAS to identify resistance 

sources, molecular markers associated with resistance and candidate genes against 

pea rust, offering new targets for precision breeding. By integrating our findings with 

current breeding programs, we can facilitate the development of pea varieties with 

improved resistance to rust, contributing to sustainable agricultural practices and 

food security. This study sets the stage for future functional genomic analyses and the 

application of genomic selection approaches to enhance disease resistance in peas. 

2. Introduction 

Pea (Pisum sativum L. 2n = 14) is one of the principal legume crops grown 

globally, ranking as the third most produced pulse in the world after dry beans and 

chickpeas (FAOSTAT 2021). This crop is a vital source of plant-based protein for both 

animal feed and human food, offering significant health benefits (Tulbek et al. 2016; 

Clemente and Olias 2017). Additionally, pea plays a crucial role in agricultural 

sustainability through nitrogen fixation enhancing soil fertility and structure, making 

it a valuable component of crop rotation or intercropping systems, particularly in 

conjunction with cereals (Skoufogianni et al. 2019; Gungaabayar et al. 2023). 

Despite its global significance, peas have received less attention compared to 

other crops such as soybeans or wheat, where yields have significantly increased over 

the years due to the development of new varieties and improved farming practices 

(Rubiales et al. 2019). One of the main reasons for the lower yield of peas is their high 

susceptibility a wide range of diseases and pests (Rubiales et al. 2015, 2023). A major 

disease affecting peas is rust, which can be caused by two different biotrophic fungus: 

Uromyces viciae-fabae (Pers. de Bary) or U. pisi (Pers.) (Wint.). In warm and humid 

climates, the disease is attributed to U. viciae-fabae, whereas in more temperate 



Chapter 4 

109 

 

climates, U. pisi is the causal agent (Barilli et al. 2012a). Both fungi can cause yield 

losses of up to 50% and 30%, respectively (Singh et al. 2023). The impact of pea rust 

on both yield and seed quality highlights the pressing need for targeted breeding and 

management strategies to mitigate this disease. 

Rust control with fungicides is effective (Emeran et al. 2011) but requires 

repeated treatments which is hardly economical for low input field crops like pea. 

Also, concerns are raised on environmental issues of pesticide control. To address 

this, efforts have been made to control pea rust inducing systemic acquired resistance 

(Barilli et al. 2009b) or using natural compounds, that were shown promising 

although the available formulations are only partly effective, and their long-term 

environmental impacts remain unverified (Barilli et al. 2012b, 2017, 2022). 

Therefore, further emphasis is needed to develop cultivars resistant to rust. In this 

line, large pea germplasm collections have been evaluated for resistance to U. pisi, 

disclosing and characterizing variable levels of incomplete resistance, with no 

complete resistance available so far (Barilli et al. 2009a; Osuna-Caballero et al. 

2022). Partial resistance (PR) is characterized by a non-hypersensitive response and 

reduced disease severity (DS). It is very frequent in other legumes against various 

rusts, and it is the common source of resistance found in peas against rust (Rubiales 

et al. 2011). Conversely, hypersensitive resistance (HR), often monogenic in origin, 

has also been observed in other rust pathosystems caused by U. viciae-fabae in lentils 

and faba beans (Avila et al. 2003; Negussie et al. 2012; Rubiales et al. 2013; Adhikari 

et al. 2021). Recent screenings of a pea core collection have uncovered new sources 

of PR and identified for the first time a pea accession combining HR and PR against 

U. pisi (Osuna-Caballero et al. 2022). Furthermore, new, and more efficient image-

based phenotyping methods are improving the limitations of traditional breeding in 

this pathosystem (Olivoto et al. 2022; Osuna-Caballero et al. 2023). Nevertheless, 

despite previous efforts to unravel the genetic control underlying resistance to this 

fungal disease—where QTL responsible for resistance in P. fulvum were identified—

clarifying the genetic architecture of HR and PR to rust caused by U. pisi remains 

necessary (Barilli et al. 2018). Furthermore, identification of candidate genes could 

be instrumental in foreground selection of favourable alleles. 

The phenotypic information available in pea germplasm, combined with new 

high-throughput phenotyping systems focused on rust, and the availability of high-

quality reference pea genomes (Kreplak et al. 2019; Yang et al. 2022), enables more 

in-depth genomic studies (Pandey et al. 2021). Genome-wide association studies 

(GWAS) have emerged as a powerful approach to dissect the complex genetic 

underpinnings of quantitative traits within diverse plant populations. By scanning 

the genome for polymorphisms correlated with phenotypic variance, GWAS has 

facilitated the identification of both single nucleotide polymorphisms (SNPs) and 

DArT-seq derived markers that are intricately linked with key traits, providing 

candidate genes associated with traits of interest across numerous legume species 
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(Susmitha et al. 2023). Specifically, recent GWAS in peas have been useful to identify 

favourable alleles for agronomic traits or disease resistance (Alemu et al. 2022; 

Leprévost et al. 2023), but there is still a lack of such studies for rust disease. 

In the present study, we bring new sources of resistance against two U. pisi 

isolates by employing both traditional screening methods and innovative image-

based methodologies across an extensive germplasm collection of 320 pea accessions, 

representative of global diversity. Moreover, we explored the genetic architecture of 

partial resistance to rust infection through GWAS, as a preliminary step towards 

more efficient precision breeding. To achieve this, the phenotypic response of the 

world collection of pea accessions inoculated with U. pisi was integrated with 

previously generated DArT-seq polymorphic markers, revealing significant 

associations between them. Our in-silico analysis of the genes containing or in the 

vicinity of the associated markers led to the discovery of previously uncharted 

metabolic pathways potentially implicated in rust response. These findings open new 

avenues for precision breeding, offering novel targets for rust resistance 

improvement and enhancement of crop resilience and productivity through the 

development of new pea rust-resistant varieties. 

3. Material and Methods 

3.1. Plant and Fungal Material 

Plant material consisted in a diverse core collection of 320 Pisum accessions of 

worldwide origin gathered previously at Institute for Sustainable Agriculture – CSIC 

to ensure an extensive range of characteristics in terms of phenotype and their genetic 

makeup (Rispail et al. 2023). The collection includes accessions that have already 

demonstrated their potential for resistance to several pea diseases including rust 

(accessions IFPI3260, PI347352, PI347343, PI347353 and PI347389) (Barilli et al. 

2009a). 

To assess the resistance levels within the collection to rust disease, we used in 

this study two highly virulent isolates of Uromyces pisi that specifically affect pea 

crop, UpCo-01 and UpKeS-05, preserved at IAS – CSIC (Barilli et al. 2012a). 

3.2. Phenotyping 

Three series of experiments were conducted to assess the rust resistance 

components of the pea collection. One series of experiments took place under field 

conditions over three cropping seasons, involving adult plants, while the other two 

experiments were conducted in controlled conditions (CC) using seedlings infected 

with the U. pisi isolate UpCo-01 or UpKeS-05. 

For the field experiment, the pea collection was evaluated over three 

consecutive crop seasons from 2018 to 2020 in Cordoba, Spain, as described in 

Osuna-Caballero et al. (2022). Briefly, ten seeds per accession were sown in 1-meter 
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rows, spaced 0.7 meters apart, in an alpha lattice design with three replicates. Mature 

plants were artificially inoculated with the U. pisi isolate UpCo-01, and Disease 

Severity (DS) was assessed as the percentage of rust coverage 30 days after 

inoculation (dai). 

The first CC experiment, involved evaluating the pea collection against the 

UpCo-01 isolate, followed a randomized complete block design (RCBD), and the 

inoculations were performed as described in Osuna-Caballero et al. (2022). Screening 

was done with six replicates per genotype, visually counting pustules (Infection 

Frequency, IF) from 7 to 13 dai to estimate Area Under Disease Progress Curve 

(AUDPC), Latency Period (LP50) and Monocyclic Disease Progress rate (MDPr). 

Additionally, at 13 dai, DS and infection type (IT) was visually evaluated. 

The second CC experiment, using UpKeS-05 isolate, replicated this design but 

with a different approach. In this case, we applied a detached leaflets procedure, as 

described in Barilli et al. (2022), to maintain the viability of the pea leaves and 

capture the rust evolution through imaging. Daily photographs of Petri dishes 

containing pea leaflets, from 7 to 13 dai, were analysed to determine IF, DS, and PS 

(pustule size, mm2), along with the corresponding disease progression parameters 

(AUDPC, LP50 and MDPr), using the RGB-method as described in Osuna-Caballero 

et al. (2023). 

3.3. Phenotypic data analysis 

The statistical analysis of the three phenotypic data sets (field, CCUpCo-01, and 

CCUpKeS-05) was conducted using R 4.2.2 (R Core Team, 2021) and the lme4 

package (Bates et al. 2015) for mixed models. The linear model with interaction effect 

used to analyse the field data from multi-environment trials was applied using the 

genotype effect as fixed factor, while the remaining sources of variance, such as 

environment, environment x genotype interaction, and replicated block nested in 

environments, were included as random effects variables. Prior to analysis, field data 

set underwent an arcsine transformation to achieve normal distribution of disease 

severity percentages (DS), which was confirmed by checking the assumptions of 

residual normality and variance homogeneity. Heritability on the mean basis (H2) 

was calculated following the formula: 

𝐻2 =
𝜎̂𝑔

2

𝜎̂𝑔
2 + 𝜎̂𝑖

2 𝑒⁄ + 𝜎̂𝑒
2 (𝑒𝑏)⁄

 

Where 𝜎̂𝑔
2 , 𝜎̂𝑖

2 , and 𝜎̂𝑒
2  are the genotypic, the genotype-by-environment 

interaction, and the residual variance, respectively; and e and b are the number of 

environments and blocks, respectively. 

For both controlled conditions (CC) phenotypic data sets, DS was transformed 

with an arcsine transformation, and other parameters related to disease progression 
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and daily resistant components (IF and PS) were transformed with a square root 

transformation to achieve normal distribution. The genotype effect was included as a 

fixed factor, and the replicate, block, and combination of genotype and replicate were 

treated as random effects variables in the mixed model analysis. In case of CC, the H2 

was calculated as follows: 

𝐻2 =
𝜎̂𝑔

2

𝜎̂𝑔
2 + 𝜎̂𝑒

2 𝑟𝑒𝑝⁄
 

Where rep means the number of replicates within the experiment. 

For the three data sets, mean separation between accessions and the overall 

mean was determined using Dunnett's test (p ≤ 0.05). The distributions are 

presented as best linear unbiased estimations (BLUEs) obtained from the mixed 

model. Correlation between estimated means under controlled or field conditions 

was assessed using the Pearson correlation coefficient. To simplify the complexity of 

the 21 traits evaluated, a Principal Component Analysis (PCA) was performed using 

factoextra R package (Kassambara and Mundt 2020). 

3.4. Genotyping 

The process of DNA extraction, DArTseq protocol, and data analysis were 

previously detailed in Rispail et al. (2023). In summary, the genotyping of the pea 

core collection was carried out using the DArTSeq approach, as described by Barilli 

et al. (2018). DNA was extracted from pooled leaves of 20 seedlings per accession and 

subjected to high-density Pea DArTSeq 1.0 array analysis. Data cleaning was 

performed to remove markers with low quality or lacking polymorphism, following 

the recommendations of Pavan et al. (2020). As a result, 26,045 polymorphic Silico-

DArT markers were retrieved. The filtered markers were then mapped onto the 

improved Pisum reference genome sequences (Kreplak et al. 2019; Yang et al. 2022). 

3.5. Genome-wide association mapping 

The GWAS analysis between 26,045 DArTseq markers spread across the pea 

genome were tested for their association with rust disease variation on 320 pea 

phenotypes. In this study, a single-trait GWAS was conducted using two different 

models: the single locus mixed linear model (MLM) and the multi-locus Bayesian 

information and linkage disequilibrium iteratively nested keyway (BLINK) model 

(Huang et al. 2019). Both models were performed within GAPIT 3.0 (Wang and 

Zhang 2021) and have different assumptions: the MLM model allows for the 

identification of individual markers associated with the trait, while the BLINK model 

considers multiple markers simultaneously, considering the joint effects of nearby 

markers. Therefore, the analysis can capture both major and minor genetic effects 

contributing to the rust response variation. 
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The Bayesian information criterion (BIC)-based model selection procedure was 

used to determine the optimum number of principal components (PCs) required to 

efficiently control for population structure of the collection Additionally, the Astle 

kinship matrix was used to estimate relatedness among individuals, further 

accounting for potential genetic correlations (Astle and Balding 2009). 

To determine significant DArTseq markers, two different threshold levels were 

applied. The Bonferroni corrected LOD threshold, calculated based on the number of 

markers (26,045), offers a more stringent criterion to minimize false positives. On 

the other hand, the false discovery rate (FDR) method, proposed by Storey and 

Tibshirani (2003), provides a less restrictive threshold, allowing for the identification 

of potentially interesting markers that might be missed by the Bonferroni correction. 

FDR limit was set for each model and trait combination to ensure less than one false 

positive association with the R package qvalue (Storey and Bass 2022). 

To visualize the results, Manhattan plots were generated, displaying the -

log10(p-value) for each marker along the seven chromosomes, highlighting regions 

where significant associations occur. Quantile-quantile (Q-Q) plots were also 

performed to assess the overall distribution of p-values and evaluate whether any 

genomic inflation or deflation occurred though the calculation of lambda (λ) using 

QQperm R package (Petrovski and Wang 2016). All models with genomic inflation 

(λ) below 0.8 or higher than 1.2 were not considered. Manhattan and Q-Q plots were 

generated using CMplot R package (Lilin-Yin 2023). 

3.6. Candidate Genes and Pathways selection 

To identify potential candidate genes, we scrutinized the genomic regions 

surrounding the significant DArTseq markers using the Cameor and ZW6 pea 

reference genome browsers 

(https://urgi.versailles.inra.fr/jbrowse/gmod_jbrowse/?data=myData/Pea/Psatv1a

/data; https://www.peagdb.com/index/). We considered genes either containing a 

DArTseq marker or residing within a 30 kb window from the marker as putative 

candidate genes. 

The process of gene annotation involved associating these candidate genes with 

enzyme codes to investigate their metabolic pathways using the Kyoto Encyclopaedia 

of Genes and Genomes (KEGG). In cases where the proteins encoded by these genes 

were not characterized in the KEGG database, we extended our search to include 

orthologous sequences. For this purpose, the TAIR database was mined to identify 

corresponding orthologous proteins in Arabidopsis thaliana. This extensive 

annotation approach facilitated the elucidation of the potential function of each gene 

and the delineation of pathways relevant to resistance mechanisms against pea rust. 

To enrich our analysis, we integrated this genomic data with existing literature and 
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performed comprehensive in silico analyses, thereby enhancing our understanding of 

the genetic factors contributing to rust resistance in peas. 

4. Results 

4.1. Variance components, Heritability and Correlations between Traits 

The pea collection demonstrated a wide diversity of response to rust 

underscoring the large genetic heterogeneity of the pea collection. Under controlled 

conditions (CC), the response of the pea collection to each ruts isolate was different 

(Table 9). The UpCo-01 isolate exhibited higher virulence, with more pronounced 

AUDPC and DS average values (36.1 and 20.2%, respectively) compared to the 

UpKeS-05 isolate, which recorded an AUDPC_IF of 29.9 and a DS of 10.9% in 

average. Notably, symptoms development initiated earlier with UpKeS-05 than with 

UpCo-01, as indicated by their LP50_IF, with values of 8.98 and 9.28 days, 

respectively. Moreover, the MDPr_IF — representing the rate of disease symptom per 

time unit — was also higher for UpKeS-05. For both isolates, the highest coefficient 

of variation (CV%) values were obtained for AUDPC, MDPr, DS and IF, while LP50 

presented the lowest CV% values. In terms of heritability, UpCo-01 consistently 

outperformed UpKeS-05 across most comparable traits, implying that a high portion 

of variability stemmed from genetic differences. A notable exception was IT, which 

exhibited a moderate H² value of 0.67, and LP50, with a lower H² value of 0.21. 

Table 9. Variance components, heritability and descriptive statistic by phenotypic data set 

and its trait. 

Data 
set 

Trait Average SE Range Skewness CV 
(%) 

H2 Accuracy 

C
C

U
p

C
o

-0
1 

AUDPC_IF 36.07 1.24 173.07 1.77 61.52 0.77 0.87 
DS 20.21 0.48 55.44 0.59 42.44 0.86 0.93 
IF 50.48 1.8 252.31 2.34 63.95 0.76 0.87 
IT 3.79 0.01 1.6 -1.94 6.88 0.67 0.82 

LP50_IF 9.28 0.02 2.76 0.18 4.12 0.21 0.45 
MDPr_IF 11.41 0.13 16.13 0.27 20.8 0.73 0.86 

C
C

U
p

K
e

S
-0

5
 

AUDPC_DS 21.99 1.04 148.67 2.56 85.11 0.51 0.71 
AUDPC_IF 29.95 1.23 117.4 1.83 73.89 0.5 0.7 
AUDPC_PS 0.1 0.01 0.23 0.34 29.62 0.44 0.66 

DS 10.86 0.2 23.62 0.96 33.27 0.51 0.72 
IF 51.28 1.81 156.09 0.94 63.17 0.49 0.7 

LP50_DS 9.31 0.08 3.69 -0.95 15.07 0.24 0.49 
LP50_IF 8.98 0.07 3.51 -0.79 13.65 0.11 0.33 
LP50_PS 9 0.07 3.66 -0.8 13.91 0.28 0.53 

MDPr_DS 0.93 0.03 3.38 1.41 60.19 0.51 0.72 
MDPr_IF 13.62 0.43 44.03 0.96 56.97 0.36 0.6 
MDPr_PS 0.38 0.01 0.98 1 45.41 0.4 0.63 

F
ie

ld
 

U
p

C
o

-0
1 DS2018 31.02 0.40 53.98 1.72 23.05 0.62 0.79 

DS2019 29.73 0.52 51.58 0.85 31.07 0.74 0.86 
DS2020 31.62 0.53 47.41 0.80 29.76 0.81 0.90 
DS_field 30.79 0.39 42.56 0.94 22.91 0.75 0.87 
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Field conditions revealed a slightly different picture (Table 9). As a result of the 

polycyclic evolution of the disease in the field, DS in the three field seasons were 

higher than in controlled conditions. While the three campaigns and their estimated 

average (DS_field) had similar mean values and ranges, the 2018 campaign displayed 

a lower H², accompanied by a pronounced positive skewness of 1.72. This suggests 

that most pea accessions exhibited reduced DS in 2018 campaign which is further 

corroborated by its lower CV% relative to the subsequent two field campaigns. 

In general, the accuracy values—interpreted as the square root of H²— 

consistently exceeded 0.7 for most traits, confirming the reliability of the 

experimental measurements. On the other hand, strong positive (> 0.50) and strong 

negative (< -0.50) skewness was detected for most traits confirming the need to 

transform raw values to achieve a normal distribution before fitting the mixed models 

and predicting the estimated means (BLUEs) for each trait. 

Phenotypic correlations of BLUEs for each trait across different experimental 

conditions are depicted in Figure 13 in terms of Pearson correlation (ρ). As expected, 

the most pronounced correlations were observed within individual datasets. For 

instance, traits from the CCUpCo-01 dataset, including AUDPC, MDPr, and IF, 

exhibited strong and significant interrelations (ρ > 0.9, P < 0.001). A similar trend 

was observed for traits of the CCUpKeS-05 dataset, such as AUDPC_DS, AUDPC_IF, 

MDPr_DS, and MDPr_IF, and the DS measurements across the three field seasons. 

Several significant correlations were also detected between traits from different 

datasets. DS and IF consistently displayed notable correlations regardless the rust 

isolate, evidenced by values of ρ = 0.57 and ρ = 0.58 for UpCo-01 and UpKeS-05 

isolates, respectively. Similarly, IT maintained slight but consistent correlations with 

DS across isolates, with ρ = 0.34 for UpCo-01 and ρ = 0.35 for UpKeS-05. 

Intriguingly, IT correlation with IF varied depending on the rust isolate from a low 

correlation for UpKeS-05 (ρ = 0.15) to a moderate correlation for UpCo-01 (ρ = 0.54). 

When correlation with Latency period was significant, this trait was always inversely 

proportional to the other trait. Accordingly, a moderate correlation was detected 

between LP50_IF and DS and its associated AUDPC with the UpKeS-05 isolate (ρ = 

-0.36). Unexpectedly, the latency period for pustule size (LP50_PS) directly 

correlated with MDPr_PS (ρ = 0.47) and, to a lesser extent, with AUDPC_PS (ρ = 

0.19). This suggests that a delayed pustule size growth accelerates the disease rate 

(MDPr) and affects positively the AUDPC in terms of pustule size. 
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Figure 13. Cor plot based on Pearson’s correlation values between phenotypic traits across 

the three-dataset evaluated with two different U. pisi isolates (UpCo-01 and UpKeS-05). 

The PCA biplot provides a comprehensive visual representation of the primary 

patterns of variability among the twenty-one traits across the three datasets (Figure 

14). The first two principal components (PCs), accounted for over 47% of the total 

trait variability. Dim1 differentiated traits based on their influence on rust symptoms. 

Traits positively contributing to rust symptoms clustered on the right, while those 

playing a protective role, such as latency periods, positioned on the left. By contrast, 

Dim2 effectively delineated traits based on the rust isolate. Specifically, traits 

assessed for UpCo-01 were situated at the top of the biplot, while those associated 

with UpKeS-05 are anchored at the bottom. Mirroring the patterns observed in the 

PCA biplot (Figure 14), the correlogram (Figure 13) also indicated that the DS values 

from the field campaigns exhibited stronger correlations with CC traits evaluated for 

UpCo-01. 
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Figure 14. PCA biplot by trait contribution to phenotypic variance. 

4.2. Detection of Associated Markers 

To identify genetic variations associated with rust symptoms in pea, a GWAS 

was conducted using two different models, MLM and BLINK, for each of the 21 traits 

evaluated in three conditions across 320 pea accessions. A total of 95 DArTseq 

markers were found to be significantly associated with some of the evaluated traits in 

combination with the two models applied (Figure 15 and Additional file 6). 

Examining the BIC estimates, the genomic inflation factor (λ) and the QQ plot 

revealed that population structure was efficiently controlled by the Kinship matrix 

without the need to add other population structure covariates (PCs) (Figure 16, Table 

10, and Additional file 7). 
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Figure 15. Manhattan plots showing marker significance in a combination of MLM and 

BLINK models by phenotypic data base across pea genome. Chromosome 9 shows 

unmapped markers onto reference genome. Associated markers through Bonferroni-based 

LOD are highlighted in red and the genomic region with dashed lines while in green are the 

associated markers retrieved based on FDR adjustment method. 
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Figure 16. Q-Q plots between theoretic and observed p values using the BLINK model. a) 

and b) show p values from UpCo-01 isolate in field and controlled conditions, respectively. c) 

and d) show p values from UpKeS-05 results in controlled conditions. 

The BLINK approach identified 70 markers linked to pea rust of which 49 were 

unique to this model while the MLM model detected 46 associated markers of which 

25 were unique to this method. Notably, 21 associated markers were common to more 

than one trait or model (Figure 17a) while one marker was identified from all three 

data sets (Figure 17b). 
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Figure 17. Venn diagram of common markers across data sets. a) and b) represent the 

common associated markers by applied model and the common associated markers by 

phenotypic dataset in combination of both models’ outputs. c) and d) show the linked 

markers to pea rust from BLINK and from MLM results, respectively. 

In general, the BLINK method yielded a higher number of significantly 

associated markers with lower p-value and higher LOD (Table 10). The total 

phenotypic variation explained by the associated marker for each trait (PVE) varied 

also greatly depending on the GWAS model. As the BLINK model identified more 

significant marker-trait associations for each trait, their corresponding PVEsum was 

generally higher (Table 10). The highest number of associated markers for a single 

trait was identified with the BLINK method for DS_field, with a total of 13 markers 

explaining 86.2% of the total phenotypic variance while the MLM model only uncover 

3 associated markers for this trait accounting for 10.2% of the phenotypic variance 

(Table 10). By contrast, the MLM method uncovered 7 markers associated with 

AUDPC for UpCo-01 under CC while BLINK only uncovered 5 significantly associated 

marker for this trait although associated markers identified by both methods 

explained around 70% of PVEsum. 

Table 10. BLINK and MLM model outputs obtained for each trait from the three 

phenotypic data sets. N indicates the number of significant marker-trait associations; λ is 

the genomic inflation factor; the LODrange is the range of the -log10(p-value); PVErange is 
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the range of the phenotypic variance explained by each individual marker and PVEsum is the 

total phenotypic variance explained by the associated markers.  

  BLINK MODEL MLM MODEL 
Data 
set 

Trait N λ LODrange PVErange PVEsum N λ LODrange PVErange PVEsum 

C
C

U
p

C
o

-0
1 

AUDPC 5 0.9 5.1-10.1 3.4-17.8 69.2 7 1.1 5.3-7.1 2.5-16.1 73.7 

DS 3 0.8 6.0-9.3 7.5-10.5 26.6 1 1.0 4.6 6.1 6.1 

IF 3 0.9 5.4-13.0 1.5-8.4 47.6 7 1.0 5.5-6.2 6.0-17.5 78.5 

IT 7 0.9 5.8-7.2 2.2-16.1 73.6 2 1.1 4.5-6.3 2.2-9.6 11.7 

LP50 3 1.0 4.4-6.1 6.1-7.6 20.1 1 1.0 4.7 6.3 6.3 

MDPr 5 1.0 6.5-7.5 3.0-15.4 52.9 2 1.1 4.7-4.7 3.9-6.2 10.1 

C
C

U
p

K
e

S
-0

5
 

AUDPC_DS 4 1.0 4.6-7.9 2.6-10.6 24.3 3 1.0 4.5-5.3 2.6-5.2 13.1 

AUDPC_IF 5 1.1 4.6-6.5 3.6-10.5 39.7 2 1.0 4.4-4.4 2.8-3.6 6.3 

AUDPC_PS 2 1.0 5.8-6.2 3.2-5.0 8.1 2 1.0 5.0-5.0 6.3-12.0 18.3 

DS 3 1.1 4.8-7.4 4.4-14.4 29.6 2 1.0 5.0-5.3 6.9-12.8 19.7 

IF 3 1.0 5.2-10.7 14.1-17.6 17.6 1 0.9 4.5 2.2 2.2 

LP50_DS 1 1.0 4.4 5.3 5.3 1 1.0 4.5 5.3 5.3 

LP50_IF 7 1.2 4.9-8.7 0.4-7.6 19.6 2 1.0 4.8-4.8 4.5-6.3 10.8 

LP50_PS 1 1.0 4.5 6.6 6.1 1 0.9 4.4 4.4 4.4 

MDPr_DS 6 0.9 5.1-10.7 3.8-15.3 58.5 6 1.0 5.3-5.9 2.5-15.3 56.1 

MDPr_IF 3 1.1 4.5-5.7 1.1-7.5 13.8 2 1.0 4.4-4.4 5.2-7.5 12.7 

MDPr_PS 3 1.0 5.2-7.5 2.6-9.9 20.5 2 1.1 4.5-5.5 5.2-9.9 15.1 

F
ie

ld
U

p
C

o
-0

1 DS_field 13 1.0 5.5-8.5 0.3-14.5 86.2 3 1.0 5.1-5.4 0.5-6.8 10.2 

DS2018 5 0.9 6.3-7.0 4.6-10.2 36.5 4 1.0 5.6-6.5 4.9-10.2 29.7 

DS2019 6 1.0 5.2-7.6 1.1-22.8 77.4 6 1.0 4.7-5.5 3.5-19.5 67.7 

DS2020 2 1.0 4.6-5.0 2.9-3.1 5.9 1 0.9 4.4 1.4 1.4 

It is worth noting that the sum of the phenotypic variation explained by the 

associated markers for each trait was closely related to heritability for the BLINK 

model (Additional file 8), except for DS2020. 

4.3. In silico Identification of Candidate Genes 

To identify putative candidate genes the genomic regions surrounding the 

significantly associated markers was examined. Out of the 95 associated markers 

detected (Additional file 6), 75 markers were located within or next to 62 genes from 

the Cameor and/or ZW6 reference genomes (Table 11). It is interesting to note several 

of these candidate genes contained more than one significant associated marker, 

underscoring their importance in contributing to the phenotypic variation of the trait. 

By chromosome, the gene annotation results were as follows: 

A total of 10 candidate genes were detected on chromosome 1. Among them, 

two genes, 127087512 and 127115771, each marked by two associated markers were 

related to vesicle trafficking within cells. Two additional genes 127115471 and 

127137201 were related with wax and cell wall biosynthesis. Interestingly, one 
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uncharacterized gene, marked by three associated markers, was related to BFA1 

assembly which is required for ATP synthesis in A. thaliana.  

On chromosome 2, 7 candidate genes were detected. Four of these genes 

(127120834, 127121528, 127118910 and 127117580) are related with carbohydrate and 

amino acid metabolism. Two genes, 127117481 encoding an F-box protein, and 

127118667 encoding a MADS-box transcription factor were related to defence 

response to stresses in plants (Table 11) while the last identified candidate genes 

engaged in cell trafficking. 

On chromosome 3, 9 candidate genes were detected. Among them, two genes, 

127132076 and 127127305, encoded protein kinases related to plant development, 

stress responses and hormone signalling. Two genes, 127130208 and 127127894, 

were also associated with vesicle trafficking. Additionally, two genes were related 

with secondary metabolism while another one was related to auxin homeostasis as 

gene 127080599 from chromosome 1. 

From the three genes detected on chromosome 4, two genes (127138368 and 

127076644) encoded proteins related with the secondary metabolism and cell wall 

biosynthesis while the last one, gene 127138740 putatively encodes a haloacid 

dehalogenase-like hydrolase (HAD).  

Chromosome 5 harboured the highest number of candidate gene with 18 genes 

identified from 23 associated markers. A notable hotspot in chromosome 5 consisted 

of three closely spaced markers within a 1.2 Mb window, located within genes 

127082537, 127087291, and 127087323. Interestingly, two of these genes 127082537 

and 127087323 were related with mobile elements in A. thaliana while the third one 

together with genes 127087766 and 127084564 were related with DNA transcription 

regulation. As in chromosomes 1 and 4, several genes related with cell wall 

biosynthesis and maintenance were detected on chromosome 5. Several genes related 

with transport and signalling, and with fatty acid or secondary metabolism were also 

detected on this chromosome. 

From the five candidate genes identified on chromosome 6, three were related 

with DNA formation and transcription. The last two genes were related to inositol 

phosphate metabolism and abscisic acid (ABA) signalling, respectively. 

Chromosome 7 harbour 11 genes in the vicinity of 13 associated markers. 

Among them, the function of three genes were not known in peas but the ortholog of 

two of them, 127105234 and 127105763, in A. thaliana have been related to tissue 

development. Similarly, to the other chromosomes, several candidate genes related 

with the regulation of DNA transcription regulation (127108155 and 127105708), the 

amino acid metabolism (127103253), the vesicle trafficking (127102730) and the 

response to stresses (127105022, 127104606 and 127104295) were identified in this 

chromosome.
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Table 11. Potential candidate genes containing or in the vicinity of significant markers. * Function annotation deduced from the role of its closest 

orthologous protein in A. thaliana. 

N Gene IDNCBI Gene description Pathway DArT ID Position ZW6 LD 

1 127087512 Coatomer subunit beta'-2 in COPI 
Vesicle trafficking: from 
Golgi to ER 

3536217 Chr1_638769913 in 

5922176 Chr1_638767256 in 

2 127115471 Cytochrome P450 86B1 
Cutin, suberin and wax 
biosynthesis 

3540396 Chr1_96490148 0.23 kb 

3 127121867 Uncharacterized protein Assembly of BFA1* 

41128912 Chr1_128396385 in 

5916127 Chr1_128396397 in 

5933458 Chr1_128395696 in 

4 127101876 Uncharacterized protein Unknown function* 
5944598 Chr1_249806845 11.83 kb 

3542029 Chr1_249828952 3.94 kb 

5 127135829 Guanine nucleotide-binding protein 
Signal transmission outside 
the cell 

3551012 Chr1_346012159 6.01 kb 

6 127137201 Glycosyltransferase BC10 Cell wall biosynthesis* 19178657 Chr1_368992937 in 

7 127115771 Putative clathrin assembly protein 
Vesicle trafficking: Clathrin-
mediated endocytosis 

5886489 Chr1_367783858 0.37 

19788813 Chr1_335454587 31.2 kb 

8 127080599 WAT1-related protein Auxin homoeostasis 3568148 Chr1_435743430 in 

9 127082329 Splicing factor 3B subunit 2 Spliceosome 26138450 Chr1_446396667 in 

10 127085672 Potassium channel AKT2/3 
Regulation of membrane 
potential, Response to 
abscisic acid 

5926320 Chr1_461368879 in 

11 127117481 F-box/kelch-repeat protein 
Negative regulation of 
defence response 

3551269 Chr2_2285562 7.45 kb 

12 127117580 
Nicotinamide/nicotinic acid 
mononucleotide adenylyltransferase 

Nicotinate and nicotinamide 
metabolism 
Metabolic pathways 
Biosynthesis of cofactors 

5943946 Chr2_8124874 in 
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N Gene IDNCBI Gene description Pathway DArT ID Position ZW6 LD 

13 127118910 Aminoacylase 

Arginine biosynthesis 
Metabolic pathways 
Biosynthesis of secondary 
metabolites 
2-Oxocarboxylic acid 
metabolism 
Biosynthesis of amino acids 

3544074 Chr2_207090849 in 

14 127118667 MADS-box protein AGL24-like Transcription factor 
3545236 Chr2_160200620 in 

8174445 Chr2_160210451 in 

15 127103325 
Uncharacterized GPI-anchored 
protein 

Vesicle trafficking 3557565 Chr2_293250588 in 

16 127120834 Hexokinase 

Sugars metabolism 
Starch and sucrose 
metabolism 
Amino sugar and nucleotide 
sugar metabolism 
Metabolic pathways 
Biosynthesis of secondary 
metabolites 
Carbon metabolism 
Biosynthesis of nucleotide 
sugars 

4660875 Chr2_488496120 18.91 kb 

17 127121528 Pectate lyase 
Pentose and glucuronate 
interconversions 
Metabolic pathways 

3557551 Chr2_453678844 6.68 kb 

18 127132076 CDPK-related kinase 3 
Plant development, stress 
responses and hormone 
signalling 

3544108 Chr3_7935806 in 

19 127125898 WAT1-related protein Auxin homoeostasis 5937399 Chr3_149104224 in 

20 127130208 Plasmodesmata-located protein Intercellular transport 5880972 Chr3_160776867 in 

21 127126068 Transcription factor EMB1444-like 
Regulation of DNA 
transcription 

4660018 Chr3_172692251 in 

22 127126145 
ATP-dependent RNA helicase 
DHX8/PRP22 

Spliceosome 4659692 Chr3_185293539 6.59 kb 
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N Gene IDNCBI Gene description Pathway DArT ID Position ZW6 LD 

23 127127305 
Serine/threonine-protein kinase 
PBL18 

Plant development, stress 
responses and hormone 
signalling 

3544804 Chr3_307444551 in 

24 127127564 
Fructose-1,6-bisphosphatase, 
chloroplastic 

Glycolysis / 
Gluconeogenesis 
Pentose phosphate pathway 
Fructose and mannose 
metabolism 
Carbon fixation in 
photosynthetic organisms 
Metabolic pathways 
Biosynthesis of secondary 
metabolites 
Carbon metabolism 

3552072 Chr3_344541908 in 

25 127127894 Phragmoplastin DRP1E 
Defence response to fungus 
and vesicle-mediated 
transport 

3555519 Chr3_390153145 in 

26 127133145 Small nucleolar RNA R71  5916636 Chr3_458654213 20.98 kb 

27 127138368 Peroxidase 42 

Phenylpropanoid 
biosynthesis 
Metabolic pathways 
Biosynthesis of secondary 
metabolites 

3559464 Chr4_10427626 22.00 kb 

28 127138740 Uncharacterized protein 
Haloacid dehalogenase-like 
hydrolase 

4659565 Chr4_41816686 in 

29 127076644 Aldehyde decarbonylase 

Cutin, suberine and wax 
biosynthesis 
Biosynthesis of secondary 
metabolites 

3551373 Chr4_493077319 in 

30 127087766 
Chromodomain-helicase-DNA-
binding protein 

ATP-dependent chromatin 
remodeling 

3538596 Chr5_90360668 in 

31 127087924 
ATP-dependent zinc metalloprotease 
FTSH 4 

Proteolysis and meristem 
maintenance* 

5934956 Chr5_99840368 in 

32 127079825 Uncharacterized protein Unknown function* 3569894 Chr5_156765071 in 
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N Gene IDNCBI Gene description Pathway DArT ID Position ZW6 LD 

33 127080906 Uncharacterized protein Unknown function* 3556574 Chr5_169393625 0.09 kb 

34 127082843 Long-chain acyl-CoA synthetase 
Metabolic pathways 
Fatty acid metabolism 
Peroxisome 

5941026 Chr5_201861329 21.33 kb 

5958686 Chr5_201824241 9.87 kb 

35 127082981 
Pectic arabinogalactan synthesis-
related protein 

Cell wall pectin biosynthetic 
process* 

3567360 Chr5_211456207 in 

36 127084018 Trichome birefringence-like protein 
Plant-type secondary cell 
wall biogenesis* 

3541671 Chr5_293235930 0.10 kb 

37 127084160 Uncharacterized protein 
Intracellular signal 
transduction* 

3566561 Chr5_305106410 in 

38 127084564 
Zinc finger CCCH domain-containing 
protein 

Regulation of DNA 
transcription and 
translation* 

3558891 Chr5_346387511 in 

39 127084634 
Alpha-glucan phosphorylase, H 
isozyme 

Starch and sucrose 
metabolism 
Metabolic pathways 
Biosynthesis of secondary 
metabolites 

19230512 Chr5_354090893 in 

40 127084730 4-coumarate--CoA ligase 

Ubiquinone and other 
terpenoid-quinone 
biosynthesis 
Phenylpropanoid 
biosynthesis 
Metabolic pathways 
Biosynthesis of secondary 
metabolites 

5897640 Chr5_364545534 in 

41 127086095 Actin-related protein 8 
Actin filament-based 
process* 

41124830 Chr5_528086379 in 

42 127087180 
Dolichol-phosphate 
mannosyltransferase 

N-Glycan biosynthesis 
Metabolic pathways 

5948001 Chr5_621702676 in 

43 127082537 Uncharacterized protein Plant mobile domain* 3552142 Chr5_627629549 in 

44 127087291 NLP9-like protein 
Regulation of DNA-
templated transcription* 

3551119 Chr5_627951949 in 

45 127087323 Plant transposase Plant mobile domain* 8175311 Chr5_628892227 in 
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N Gene IDNCBI Gene description Pathway DArT ID Position ZW6 LD 

46 127087508 Sulfate transporter 3 Phosphate ion transport* 4656208 Chr5_638399837 in 

47 127096746 
Chromodomain-helicase-DNA-
binding 

ATP-dependent chromatin 
remodeling 

3540395 Chr6_26605159 in 

48 127097832 
Rho-N domain-containing protein, 
chloroplastic 

DNA-templated 
transcription termination* 

3557403 Chr6_68402207 in 

49 127096589 
Inositol polyphosphate 5-phosphatase 
4 

Inositol phosphate 
metabolism 

3540217 Chr6_82691906 in 

50 127091595 Retarded root growth-like protein 
Involved in ABI4-mediated 
mitochondrial retrograde 
signalling* 

3543069 Chr6_167359798 in 

51 127097692 Guanylate kinase 1-like Nucleotide metabolism 3535374 Chr6_449699858 in 

52 127105022 
Phosphatase 1 regulatory subunit 7 
protein 

Abscisic acid-activated 
signaling pathway 

3543068 Chr7_27387876 in 

53 127101904 Uncharacterized protein  5941166 Chr7_39362330 27.69 kb 

54 127103253 Amidase 

Arginine and proline 
metabolism 
Phenylalanine metabolism 
Tryptophan metabolism 
Metabolic pathways 

3556244 Chr7_131668232 in 

55 127108155 
Cell division cycle-associated protein 
7 

Regulation of DNA-
templated transcription 

3549271 Chr7_207690490 in 

3541979 Chr7_207717206 26.66 kb 

4662232 Chr7_207717206 26.66 kb 

56 127105708 Cyclic dof factor 3-like isoform X1 
Regulation of DNA-
templated transcription* 

5900633 Chr7_237959555 in 

57 127102730 Transport protein SEC31 (COPII) 
Protein processing in 
endoplasmic reticulum, cell 
wall formation 

3553784 Chr7_403662597 0.386 kb 

58 127105234 Uncharacterized protein 
Root and shoot system 
development* 

5963353 Chr7_286715392 in 

59 127105763 Uncharacterized protein 
Root and tissue 
development* 

3569870 Chr7_302256784 in 

60 127104295 Secreted RxLR effector protein 161-like Defence response (CRK8) * 3641999 Chr7_448189894 8.27 kb 
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N Gene IDNCBI Gene description Pathway DArT ID Position ZW6 LD 

61 127104606 Uncharacterized protein 
Response to ABA and 
defence response* 

3555097 Chr7_486340934 in 

62 127105963 
Queuine tRNA-ribosyltransferase 
subunit 

tRNA modification factors 3562429 Chr7_506822033 in 
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5. Discussion 

Rust is a world-wide distributed disease that severely affects pea crop yield 

(Rubiales et al. 2015). In warm and humid areas, the main causative pathogen is 

Uromyces viciae-fabae, while U. pisi is responsible for pea rust in more temperate 

regions (Singh et al. 2023). Complete resistance to rust in peas has not yet been 

identified, with partial resistance being the primary source of genetic resistance 

available so far to control this disease in pea (Barilli et al. 2014). In this study, we 

applied a GWAS approach to identify regions of the pea genome associated with traits 

linked to the partial resistance response. To achieve this, a collection of 320 pea 

accessions was evaluated under field and control conditions in response to two rust 

isolates (UpCo-01 and UpKeS-05). 

5.1. Phenotypic Variance and GWAS Model Outputs 

The phenotypic response of the collection against the rust isolate UpCo-01 was 

previously described in Osuna-Caballero et al. (2022). Comparing those results with 

the response of the pea collection to the UpKeS-05 isolate, revealed some 

commonalities and differences. Similarly, to the situation with UpCo-01, complete 

resistance to UpKeS-05 was not detected in the collection. In addition, the reduced 

number of well-developed pustules and low IT detected on the accession PI273209 

in response to UpKeS-05 suggest that this accession also exhibits a late hypersensitive 

resistance response against this isolate (Additional file 9). Disease ratings were 

nonetheless lower in response to UpKeS-05 than to UpCo-01 and the response to each 

isolate were clearly differentiated on the PCA suggesting that the collection 

responded differentially to the isolates  As mild to moderate relationship was also 

observed for most traits between isolates, these differences are more likely revealing 

differences in the overall virulence level of the isolates although the existence of U. 

pisi races in peas could not be ruled out. 

Previous studies performed on the pea core collection demonstrated a rapid LD 

decay and a broad distribution of the polymorphic DArT markers throughout the pea 

genome (Rispail et al. 2023). Although a significant portion of the population resulted 

admixed in phylogenetic terms, the collection was found to be structured into six 

groups consistent with the taxonomy of the Pisum species and subspecies (Rispail et 

al. 2023). However, BIC selection models indicated that population structure was 

efficiently controlled in the GWAS models by the kinship matrix alone and did not 

require adding the initial PCs to the models as it was previously demonstrated on 

GWAS studies performed on plant populations with a high percentage of admixture 

(Kaur et al. 2023).  The BLINK method improves the statistical power and enhances 

the robustness of association signals compared to MLM (Huang et al., 2019). 

Furthermore, the extensive coverage of the DArT markers across the pea genome is 

ideal for multi-locus methods like BLINK, making it a frequently used model in 
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GWAS studies to analyse complex traits in legumes (Tibbs Cortes et al. 2021; 

Susmitha et al. 2023). Accordingly, this method detected a high number of markers 

associated with rust disease development. 

The two GWAS methods applied here detected a total of 95 markers 

significantly associated with one or more of the 21 rust disease traits, among which 

21 markers were detected by both methods which will be instrumental for future 

breeding for rust resistance in pea. Previous studies based on linkage mapping 

identified three QTLs located in LGII and LGIV which correspond with chromosome 

6 and 4, respectively (Barilli et al. 2018). Our findings support these results providing 

a total of 4 and 3 candidates genes surrounding QTL UpDSII in chromosome 6 and 

QTLs UpDSIV and UpDSIV.2 on chromosome 4. On the other hand, this is the first 

GWAS targeting rust resistance in pea while similar studies addressing rust disease 

in legumes remains scarce. Most previous studies were based on the MLM method 

while only one study on soybean (Glycine max) – rust (Phakopsora pachyrhizi) 

applied the BLINK method (Martins et al. 2022; Montejo Domínguez et al. 2022; Wu 

et al., 2022; Xiong et al. 2023). The number of significant marker-trait associated 

largely depended on the number and distribution of the available markers. 

Accordingly, 100 and 129 marker-trait associations were identified in response to rust 

in soybean and common bean in studies with more than 20,000 genome-wide 

markers (Wu et al. 2022; Xiong et al. 2023) while only 7 DS associated markers was 

identified in response to U. pisi in grass pea from a marker set of 5,651 SNPs (Martins 

et al. 2022). Interestingly, aligning these 7 grass pea markers onto pea reference 

genomes allowed the identification of 19 candidates genes among which 5 have 

similar function to those detected in the present study (Martins et al. 2022). 

5.2. Candidate Genes Represent Diverse Functional Roles 

Examining the surrounding regions of the 95 associated markers detected in 

the present study allowed the identification of 62 candidate genes with potential 

function in rust resistance. According to their annotation, these candidate genes 

participate in a variety of function, including primary and secondary metabolism, cell 

wall synthesis, cell trafficking, DNA transcription regulation and defence response. 

5.2.1. Regulators of Gene Expression 

Among the 62 candidate genes, 12 are related to the regulation of DNA 

transcription/translation, RNA modification, and transposable elements. Seven of 

them are transcription factors (TFs), including a Nodule inception-like 9 protein 

(NLP9, 127087291) a Cycling DOF factor 3 (CDF3, 127105708) and a Zinc finger 

transcription factor orthologous to Tandem Zinc Finger 9 (TZF9, 127084564). 

Previous studies on TZF9 identified it as an important regulator of plant immune 

defence in A. thaliana (Maldonado-Bonilla et al. 2014; Tabassum et al. 2020). While 

NLP9 and CDF3 have been mainly associated with nitrogen use efficiency in plants 
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some studies in tomato and soybean linked them to the response to biotic and abiotic 

stresses (Renau-Morata et al. 2017; Domínguez-Figueroa et al. 2020; Konishi et al. 

2021; Amin et al. 2023). Interestingly, two candidate genes (127087323 and 

127082537) encoding plant mobile domains are located within a 1.2Mb distance on 

both side of NPL9. While the role of these two genes in genomic regulation is under 

study, their involvement in plant defence has yet to be clarified (Fambrini et al. 

2020). Apart from these TFs, two candidate genes (12782329 and 127126145), 

encoding a splicing factor (SF3b) of the U2 spliceosome complex and an RNA helicase 

(PRP22) respectively, are related to mRNA splicing via the spliceosome, which play 

an important role in the plant response to biotic stresses (Shang et al. 2017). 

Accordingly, knock-out mutation in SMD3, other subunits of the U2 complex, 

increase the susceptibility to Pseudomonas syringae in A. thaliana (Golisz et al. 

2021). In addition, the orthologous gene of RNA helicase in A. thaliana (At1g32490) 

have been implicated in the negative regulation of numerous genes related to cell wall 

formation (Howles et al. 2016), which could improve the physical barrier against 

haustoria formation inside the plant cells. 

5.2.2. Regulators of Vesicle Trafficking and Cell Wall Components 

Several of the candidate genes containing or closely related to the associated 

markers are related to vesicle trafficking and cell wall biosynthesis suggesting the 

importance of the cell wall and cell trafficking in response to rust. Among them, three 

genes (127087512, 127102730, and 127115771) encode proteins of the coat protein 

complex I (COPI), coat protein complex II (COPII), and clathrin-mediated 

endocytosis vesicles that mediate basic functions of protein export/import to the ER 

in plant cells (Zeng et al. 2023). COPII has been directly involved in the process of 

autophagy, which enable the ABA-mediated cell nutrient recycling in response to 

stress (Li et al. 2022). In addition, the gene 127086095 encodes an actin-related 

protein (ARP8) that participates in cytoskeleton-related functions (Kandasamy et al. 

2008). Recent studies in A. thaliana have shown that related ARPs, such as ARP4 and 

ARP6, are involved in both biotic and abiotic environmental changes (Nie and Wang 

2021; Jakada et al. 2023). This suggest that vesicle trafficking, and particularly the 

endomembrane cell system, could play an important function in response to rust in 

pea. 

On the other hand, eight candidate genes (127086095, 127076644, 127115471, 

127137201, 127084018, 127082981, 127076644 and 127115471) are related to cell wall 

formation or to the biosynthesis of cell-wall related secondary metabolites such as 

lignin. Among them, gene 127137201 encodes a glycosyltransferase BC10 that have 

been related to the cellulose and lignin biosynthesis at the cell wall (Zhou et al. 2009; 

Zhang et al. 2016) while two genes (127082981 and 127084018) are related to the 

synthesis of rhamnogalacturonan-I (RG-I), one of the pectic components of the cell 

wall (Stonebloom et al. 2016). This suggests that changes in the cell wall composition 
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may participate in the plant cell response to rust. Interestingly, two additional genes 

(127076644 and 127115471), encoded  an  Eceriferum (CER1) -like enzyme and a mid-

chain alkane hydroxylase (MAH1), respectively, are important players of wax on the 

cell wall (Lewandowska et al. 2020;  Wang et al. 2020) which play an important role 

in the host recognition by rust in several species (Niks and Rubiales 2002) and on the 

modulation of plant susceptibility to necrotrophic fungus such as  Sclerotinia 

sclerotiorum (Bourdenx et al. 2011). 

5.2.3. Regulators of Hormone Signalling and Defence Response 

Eleven of the identified genes in the vicinity of the significantly associated 

markers were related to hormone signalling and defence. Among them, two genes 

(127080599 and 127125898) encoded two copies of a nodulin like proteins homologs 

to Medicago truncatula NODULIN 21 (MtN21) and A. thaliana WAT1 (walls are thin 

1) genes that have been involved in auxin metabolism and play a significant role in 

secondary cell wall formation of (Ranocha et al. 2010). Recent studies showed that 

additional MtN21-related homologs in A. thaliana, such as RTP1 negatively regulates 

plant resistance to biotrophic pathogens through cell death and auxin-mediated 

production of reactive oxygen species (Pan et al. 2016; Gao et al. 2023) linking these 

genes to auxin signalling and defence. Apart for auxin, several genes pointed to the 

potential involvement of ABA in response to rust since four genes (127085672, 

127091495, 127105022 and 127104606) encoded ABA-responsive genes including 

orthologs of the potassium channel AKT2/3, the regulatory subunit of protein 

phosphatase 1 (PP1R3), the Abscisic Acid Insensitive 4 (ABI4) and a SEC14-like 

protein (Chérel et al. 2002; Wang et al. 2016; Chandrasekaran et al. 2020; Zhang et 

al. 2020).  Among their distinct functions, several studies in A. thaliana or Nicotiana 

benthamiana showed that AKT2/3, ABI4 and the SEC14 proteins contributed to plant 

defence being important actors of the plant resistance to different pathogens (Kiba et 

al. 2012; Zhou et al. 2014; Yop et al. 2023). 

Several genes identified in this study are also directly involved in the plant 

defence mechanisms against pathogen attacks, involving some regulatory proteins 

and kinases. Accordingly, three of the identified genes encoded protein kinases 

including a PBS1-like protein kinase, a calcium-dependent protein kinase (CDPK3) 

and cysteine-rich receptor-like kinase (CRK8). Previous studies reported the crucial 

role of PBS1 in bacterial and viral resistance in A. thaliana and soybean (Pottinger et 

al. 2020).  PBS1 was also shown to play a role in herbivore resistance in interaction 

with CDPK3 (Miyamoto et al. 2019; Desaki et al. 2023) hinting the involvement of 

both gene in a common defence pathway. Interestingly, one marker significantly 

associated with pea rust resistance was located at 8.27 kb of the receptor-like kinase 

CRK8 that have been shown previously to play a crucial role in rust resistance in 

wheat (Gu et al. 2020; Kamel et al. 2023). In addition to these kinases, this study 

identified an ortholog of a F-box protein CPR1/CPR30 (127117481), that acts, 
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between other function, as a negative regulator of salicylic acid-dependent  resistance 

(R) proteins like SNC1 (Gou et al. 2012), and a dynamin-related protein 1E (DRP1E; 

127127894) which knock-out mutation was found in A. thaliana to induce stronger 

hypersensitive response to powdery mildew (Tang et al. 2006; Leibman-Markus et 

al. 2022; Mc Gowan et al. 2022). 

Altogether, this GWAS study shed light on the complex genetic architecture 

underpinning partial resistance to rust in pea. In addition to the detection of 95 new 

molecular markers associated with partial resistance, this study detected 62 

candidate genes that contains or was intricately linked to these markers, which offer 

several promising targets to improve our understanding of rust resistance in pea and 

future plant breeding strategies. These genes span a diverse array of biological 

functions providing the basis for further gene functional mapping. The identification 

of several candidate genes known to participate in rust resistance in cereal (i.e., wax 

genes, CRK8) suggest that at least some of these candidate genes might be the 

responsible gene underlying the detected QTL confirming the usefulness of GWAS 

studies to uncover new resistance QTL and genes. Therefore, this study opens the 

possibility to characterize further, via gene expression studies or TILLING, the 

function of these candidate genes to explore their implication in rust disease in pea. 

The significantly associated DArT-seq markers also provides a basis for future 

marker-assisted selection and the development of more efficient genomic prediction 

models for rust resistance. Therefore, this study contributes to understanding the 

genetic make-up of rust resistance in pea and promotes future crop improvement. By 

focusing on the candidate genes uncovered, breeding programs can develop more 

targeted approaches, upon their validation, leveraging genetic variation to improve 

the resilience of pea crops against rust disease. This not only contributes to secure 

yield and quality in the face of biotic stress but also supports sustainable agricultural 

practices by reducing the reliance on chemical fungicides. 

6. Additional files 

Additional file 6. The 95 Silico-DArT markers associated with rust disease traits. N 

= Linked or same marker related to a genomic region. Marker_ID = DArTseq marker 

identificatory. Chr_ZW6 = chromosome location of DArT marker on ZW6 reference 

genome. Pos_ZW6 = DArT marker position (pb) on ZW6 reference genome. P.value = 

significance of association. MAF = minor allele frequency. H.B.P.Value = False Discovery 

Rate (FDR) control of p value developed by Benjamini and Hochberg. Effect = marker effect 

on phenotypic variance. Model = GWAS model applied. Trait = current trait. DataSet = 

current data set. Lambda = genomic inflation factor. LOD = -Log10(p value). Criterion = 

marker retrieved by FDR or Bonferroni adjustment. PVE = phenotypic variance explained 

(%) by each marker.
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N Marker_ID Chr_ZW6 Pos_ZW6 P.value MAF H.B.P.Value Effect Model Trait DataSet Lambda LOD Criterion PVE 

1 3536217 chr5 638769913 1.29E-04 0.40 0.87 -0.04 MLM AUDPC_DS CC_egy 0.97 4.48 FDR adjusted 4.52 

1 5922176 chr5 638767256 2.12E-04 0.42 0.97 -0.04 MLM AUDPC_IF CC_egy 0.98 4.45 FDR adjusted 2.79 

2 3540396 chr1 96490148 2.48E-05 0.11 0.15 -0.17 BLINK LP50_IF CC_egy 1.16 5.25 FDR adjusted 3.05 

3 41128912 chr1 128396385 4.20E-05 0.27 0.61 -0.02 BLINK AUDPC_DS CC_egy 0.99 4.65 FDR adjusted 2.25 

3 41128912 chr1 128396385 2.84E-05 0.27 0.25 0.00 MLM AUDPC_DS CC_egy 0.99 5.02 FDR adjusted 2.65 

3 41128912 chr1 128396385 1.40E-05 0.27 0.12 -0.01 MLM MDPr_DS CC_egy 1.00 5.34 FDR adjusted 2.46 

3 5916127 chr1 128396397 1.18E-08 0.45 0.00 0.00 BLINK AUDPC_DS CC_egy 0.93 7.93 Gapit Default 5.92 

3 5916127 chr1 128396397 2.81E-05 0.45 0.68 0.01 BLINK AUDPC_IF CC_egy 1.01 4.58 FDR adjusted 3.55 

3 5916127 chr1 128396397 4.64E-08 0.45 0.00 0.00 BLINK DS_egy CC_egy 1.00 7.33 Gapit Default 6.92 

3 5916127 chr1 128396397 1.08E-07 0.45 0.00 0.01 BLINK MDPr_DS CC_egy 0.94 6.96 Gapit Default 7.30 

3 5916127 chr1 128396397 5.00E-06 0.45 0.13 0.00 MLM AUDPC_DS CC_egy 0.99 5.30 FDR adjusted 5.92 

3 5916127 chr1 128396397 8.36E-05 0.45 1.00 0.01 MLM AUDPC_IF CC_egy 0.95 4.42 FDR adjusted 3.55 

3 5916127 chr1 128396397 1.02E-05 0.45 0.13 0.00 MLM DS_egy CC_egy 1.03 5.30 FDR adjusted 6.92 

3 5916127 chr1 128396397 1.08E-05 0.45 0.12 0.01 MLM MDPr_DS CC_egy 1.00 5.34 FDR adjusted 7.30 

3 5933458 chr1 128395696 1.81E-05 0.39 0.12 -0.01 MLM MDPr_DS CC_egy 1.00 5.34 FDR adjusted 5.11 

4 5944598 chr1 249806845 5.25E-06 0.09 0.00 2.28 MLM AUDPC CC_cor 1.72 7.08 Gapit Default 2.54 

4 3542029 chr1 249828952 2.79E-05 0.13 0.08 0.00 MLM MDPr_PS CC_egy 1.15 5.52 FDR adjusted 5.17 

5 3551012 chr1 346012159 1.70E-07 0.11 0.00 -1.73 BLINK DS_field Field 0.96 7.37 Gapit Default 14.44 

6 19178657 chr1 368992937 3.03E-08 0.07 0.00 0.00 BLINK MDPr_PS CC_egy 0.99 7.54 Gapit Default 9.91 

6 19178657 chr1 368992937 4.69E-05 0.07 0.88 0.00 MLM MDPr_PS CC_egy 1.00 4.48 FDR adjusted 9.91 

7 5886489 chr1 367783858 2.22E-05 0.06 0.49 -3.76 MLM DS2019 Field 0.97 4.73 FDR adjusted 16.03 

7 19788813 chr2 335454587 3.53E-05 0.07 0.02 -0.10 MLM IT CC_cor 1.20 6.33 Gapit Default 2.17 

8 3568148 chr1 435743430 1.51E-06 0.20 0.04 0.04 BLINK AUDPC_DS CC_egy 0.96 5.82 Gapit Default 5.52 

9 26138450 chr1 446396667 2.99E-07 0.09 0.00 2.10 BLINK DS2018 Field 0.89 7.00 Gapit Default 10.24 

9 26138450 chr1 446396667 3.10E-07 0.09 0.01 2.83 MLM DS2018 Field 1.02 6.51 Gapit Default 10.24 
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N Marker_ID Chr_ZW6 Pos_ZW6 P.value MAF H.B.P.Value Effect Model Trait DataSet Lambda LOD Criterion PVE 

9 26138450 chr1 446396667 2.33E-06 0.09 0.02 0.00 BLINK AUDPC_PS CC_egy 0.90 6.23 Gapit Default 3.17 

10 5926320 chr1 461368879 1.24E-04 0.17 0.99 -2.84 MLM DS2020 Field 0.95 4.42 FDR adjusted 1.44 

11 3551269 chr2 2285562 9.33E-11 0.23 0.00 -0.05 BLINK MDPr_DS CC_egy 0.95 10.33 Gapit Default 13.58 

12 5943946 chr2 8124874 8.54E-07 0.07 0.02 0.04 BLINK LP50 CC_cor 0.98 6.08 Gapit Default 6.11 

13 3544074 chr2 207090849 5.12E-05 0.05 1.00 -0.06 MLM LP50_PS CC_egy 0.93 4.42 FDR adjusted 4.36 

14 3545236 chr2 160200620 7.46E-07 0.24 0.00 -1.57 BLINK DS_field Field 0.96 6.97 Gapit Default 5.44 

14 8174445 chr2 160210451 1.63E-06 0.06 0.01 0.05 BLINK MDPr CC_cor 1.04 6.49 Gapit Default 5.58 

15 3557565 chr2 293250588 6.49E-08 0.23 0.00 0.02 BLINK MDPr CC_cor 1.04 7.50 Gapit Default 15.31 

16 5918466 chr2 346062476 1.96E-05 0.07 0.51 0.04 MLM LP50 CC_cor 1.02 4.71 FDR adjusted 6.32 

16 5918466 chr2 346062476 9.12E-05 0.07 0.95 0.00 BLINK LP50 CC_cor 0.98 4.44 FDR adjusted 6.40 

17 4660875 chr2 488496120 1.32E-05 0.07 0.11 -0.04 BLINK MDPr_DS CC_egy 0.95 5.36 FDR adjusted 6.86 

17 4660875 chr2 488496120 2.44E-06 0.07 0.06 -0.06 BLINK MDPr_IF CC_egy 1.23 5.73 FDR adjusted 7.52 

17 4660875 chr2 488496120 8.79E-05 0.07 0.98 -0.08 MLM MDPr_IF CC_egy 0.97 4.42 FDR adjusted 7.52 

18 3557551 chr2 453678844 9.58E-06 0.21 0.04 0.04 BLINK IT CC_cor 0.94 5.80 Gapit Default 16.13 

19 3544108 chr3 7935806 2.84E-05 0.09 0.13 -39.84 MLM AUDPC CC_cor 1.03 5.30 FDR adjusted 9.67 

19 3544108 chr3 7935806 5.82E-05 0.09 0.31 0.16 BLINK LP50_IF CC_egy 1.01 4.93 FDR adjusted 7.62 

19 3544108 chr3 7935806 8.41E-06 0.09 0.05 -12.28 MLM IF_cor CC_cor 1.01 5.68 FDR adjusted 10.33 

20 3553494 chr3 79799764 1.75E-06 0.09 0.05 0.00 BLINK AUDPC_PS CC_egy 1.01 5.76 Gapit Default 4.96 

20 3553494 chr3 79799764 2.80E-05 0.09 0.36 -1.02 BLINK AUDPC_IF CC_egy 1.02 4.85 FDR adjusted 10.46 

21 5937399 chr3 149104224 1.47E-07 0.19 0.00 -1.44 BLINK DS_field Field 0.96 7.37 Gapit Default 13.10 

22 5880972 chr3 160776867 1.38E-07 0.10 0.00 0.06 BLINK IT CC_cor 0.94 7.20 Gapit Default 14.15 

23 4660018 chr3 172692251 3.99E-05 0.06 0.52 0.89 BLINK DS_egy CC_egy 1.20 4.77 FDR adjusted 4.44 

24 5940996 chr3 125011420 1.95E-05 0.08 0.25 0.00 MLM AUDPC_PS CC_egy 1.03 5.02 FDR adjusted 12.00 

25 4659692 chr3 185293539 1.13E-04 0.24 0.58 0.04 BLINK MDPr_IF CC_egy 1.23 4.77 FDR adjusted 1.05 

26 3544804 chr3 307444551 4.56E-05 0.49 0.20 -0.02 BLINK MDPr_DS CC_egy 0.95 5.12 FDR adjusted 3.84 
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N Marker_ID Chr_ZW6 Pos_ZW6 P.value MAF H.B.P.Value Effect Model Trait DataSet Lambda LOD Criterion PVE 

27 3552072 chr3 344541908 1.87E-07 0.05 0.00 -0.10 BLINK IT CC_cor 0.94 7.20 Gapit Default 15.44 

28 3555519 chr3 390153145 5.15E-10 0.13 0.00 -4.25 BLINK DS_cor CC_cor 0.77 9.29 Gapit Default 7.54 

29 5916636 chr3 458654213 9.52E-08 0.35 0.00 -0.02 BLINK MDPr CC_cor 1.04 7.50 Gapit Default 13.71 

30 3559464 chr4 10427626 1.59E-05 0.08 0.21 3.69 MLM DS_field Field 0.97 5.11 FDR adjusted 6.79 

31 4659565 chr4 41816686 2.70E-05 0.36 0.52 0.35 BLINK DS_egy CC_egy 1.20 4.77 FDR adjusted 10.75 

31 4659565 chr4 41816686 2.07E-11 0.36 0.00 0.04 BLINK MDPr_DS CC_egy 0.95 10.68 Gapit Default 15.34 

31 4659565 chr4 41816686 2.06E-05 0.36 0.18 0.00 BLINK MDPr_PS CC_egy 0.99 5.19 FDR adjusted 7.90 

31 4659565 chr4 41816686 2.14E-06 0.36 0.03 0.04 MLM MDPr_DS CC_egy 0.99 5.95 Gapit Default 15.34 

31 5947149 chr4 41816686 2.25E-06 0.42 0.03 -0.04 MLM MDPr_DS CC_egy 0.99 5.95 Gapit Default 13.50 

32 3551343 chr4 51609223 1.96E-07 0.19 0.00 -2.07 BLINK DS2019 Field 1.06 6.82 Gapit Default 19.51 

32 3551343 chr4 51609223 4.38E-05 0.19 0.49 -2.32 MLM DS2019 Field 0.97 4.73 FDR adjusted 19.51 

33 3565209 chr4 401865193 3.68E-05 0.21 0.22 -0.01 BLINK LP50_IF CC_egy 1.32 5.19 FDR adjusted 0.39 

34 3550659 chr4 406124171 5.05E-05 0.28 0.22 -0.01 BLINK LP50_IF CC_egy 1.32 5.19 FDR adjusted 0.76 

35 3551373 chr4 493077319 3.64E-05 0.06 0.19 -2.94 BLINK DS2019 Field 1.06 5.17 FDR adjusted 5.17 

36 3538596 chr5 90360668 7.17E-08 0.06 0.00 2.69 BLINK DS_field Field 0.96 7.37 Gapit Default 2.88 

36 3538596 chr5 90360668 2.90E-07 0.06 0.00 2.68 BLINK DS2018 Field 0.89 7.00 Gapit Default 7.72 

36 3538596 chr5 90360668 8.41E-06 0.06 0.21 3.38 MLM DS_field Field 0.97 5.11 FDR adjusted 2.88 

36 3538596 chr5 90360668 2.23E-06 0.06 0.03 3.29 MLM DS2018 Field 1.02 5.95 Gapit Default 7.72 

37 4660557 chr5 138612700 6.91E-06 0.18 0.09 0.04 BLINK AUDPC_DS CC_egy 0.96 5.46 FDR adjusted 10.60 

38 5934956 chr5 99840368 2.24E-05 0.06 0.22 0.02 BLINK LP50_IF CC_egy 1.32 5.19 FDR adjusted 0.61 

39 3569894 chr5 156765071 3.00E-05 0.12 0.13 38.95 MLM AUDPC CC_cor 1.03 5.30 FDR adjusted 8.84 

40 3556574 chr5 169393625 4.26E-06 0.48 0.06 0.02 BLINK AUDPC_IF CC_egy 1.11 5.71 FDR adjusted 10.32 

40 3556574 chr5 169393625 4.98E-05 0.48 0.19 0.03 BLINK IF_egy CC_egy 1.19 5.19 FDR adjusted 1.46 

41 5941026 chr5 201861329 5.67E-05 0.31 0.69 1.81 BLINK DS2020 Field 0.92 4.58 FDR adjusted 3.05 

41 5958686 chr5 201824241 5.56E-05 0.23 0.14 2.39 MLM DS_field Field 1.20 5.36 FDR adjusted 0.52 
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N Marker_ID Chr_ZW6 Pos_ZW6 P.value MAF H.B.P.Value Effect Model Trait DataSet Lambda LOD Criterion PVE 

42 3567360 chr5 211456207 9.54E-06 0.06 0.06 3.27 MLM DS2018 Field 1.02 5.62 FDR adjusted 4.93 

43 3541671 chr5 293235930 3.80E-05 0.48 0.20 14.65 BLINK AUDPC CC_cor 0.90 5.12 FDR adjusted 14.88 

44 3566561 chr5 305106410 3.12E-05 0.34 0.27 0.02 BLINK AUDPC_IF CC_egy 1.11 5.02 FDR adjusted 9.59 

45 3558891 chr5 346387511 5.35E-08 0.49 0.00 0.02 BLINK MDPr CC_cor 1.04 7.50 Gapit Default 15.38 

46 19230512 chr5 354090893 3.20E-05 0.10 0.22 0.01 BLINK LP50_IF CC_egy 1.32 5.19 FDR adjusted 0.86 

47 5897640 chr5 364545534 3.36E-07 0.43 0.00 -0.03 BLINK IT CC_cor 0.94 7.08 Gapit Default 12.96 

48 3537837 chr5 441607030 7.40E-06 0.06 0.06 3.07 MLM DS2018 Field 1.02 5.62 FDR adjusted 6.81 

49 41124830 chr5 528086379 2.66E-09 0.06 0.00 -0.02 BLINK LP50_IF CC_egy 1.32 8.69 Gapit Default 6.32 

49 41124830 chr5 528086379 4.07E-05 0.06 0.41 -0.02 MLM LP50_IF CC_egy 1.02 4.81 FDR adjusted 6.32 

50 5948001 chr5 621702676 4.47E-05 0.08 0.41 -0.02 MLM LP50_IF CC_egy 1.02 4.81 FDR adjusted 4.51 

51 3552142 chr5 627629549 1.03E-05 0.17 0.09 -37.06 MLM AUDPC CC_cor 1.03 5.46 FDR adjusted 14.26 

51 3552142 chr5 627629549 1.44E-06 0.17 0.02 -11.71 MLM IF_cor CC_cor 1.01 6.23 Gapit Default 16.25 

52 3551119 chr5 627951949 1.32E-05 0.22 0.07 -8.67 MLM IF_cor CC_cor 1.01 5.58 FDR adjusted 13.95 

52 3544538 chr5 627951949 7.70E-11 0.16 0.00 -32.21 BLINK AUDPC CC_cor 0.90 10.11 Gapit Default 16.10 

52 3544538 chr5 627951949 1.01E-13 0.16 0.00 -11.34 BLINK IF_cor CC_cor 0.90 13.00 Gapit Default 17.64 

52 3544538 chr5 627951949 5.21E-06 0.16 0.07 -42.13 MLM AUDPC CC_cor 1.03 5.58 FDR adjusted 16.10 

52 3544538 chr5 627951949 8.40E-07 0.16 0.02 -13.00 MLM IF_cor CC_cor 1.01 6.23 Gapit Default 17.64 

53 8175311 chr5 628892227 5.42E-07 0.15 0.01 -2.23 BLINK DS_cor CC_cor 0.77 6.57 Gapit Default 10.49 

53 8175311 chr5 628892227 3.37E-05 0.15 0.09 -1.12 BLINK DS_field Field 0.96 5.47 FDR adjusted 14.54 

53 8175311 chr5 628892227 4.87E-07 0.15 0.00 -2.09 BLINK DS2019 Field 1.06 6.82 Gapit Default 22.77 

53 8175311 chr5 628892227 6.22E-06 0.15 0.08 -0.27 BLINK IF_egy CC_egy 0.95 5.51 FDR adjusted 7.71 

53 8175311 chr5 628892227 2.11E-05 0.15 0.13 -40.04 MLM AUDPC CC_cor 1.03 5.30 FDR adjusted 15.36 

53 8175311 chr5 628892227 1.77E-06 0.15 0.02 -12.87 MLM IF_cor CC_cor 1.01 6.23 Gapit Default 17.54 

54 4656208 chr5 638399837 9.03E-06 0.34 0.24 -0.56 MLM DS_egy CC_egy 0.98 5.04 FDR adjusted 12.83 

54 4656208 chr5 638399837 7.63E-06 0.34 0.07 -0.04 MLM MDPr_DS CC_egy 0.99 5.60 FDR adjusted 12.39 
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55 3538568 chr5 647525119 3.35E-07 0.38 0.00 -1.51 BLINK DS2019 Field 1.06 6.82 Gapit Default 13.83 

55 3538568 chr5 647525119 1.40E-05 0.38 0.12 -2.52 MLM DS2019 Field 1.14 5.38 FDR adjusted 13.57 

55 26137611 chr5 647525119 1.56E-05 0.24 0.27 -1.51 BLINK DS2020 Field 1.12 5.01 FDR adjusted 2.90 

56 3540395 chr6 26605159 5.61E-07 0.10 0.00 -2.09 BLINK DS_field Field 0.96 7.03 Gapit Default 4.88 

57 3557403 chr6 68402207 5.46E-06 0.42 0.04 16.38 BLINK AUDPC CC_cor 0.90 5.86 Gapit Default 16.98 

57 3557403 chr6 68402207 1.14E-05 0.42 0.10 4.76 BLINK IF_cor CC_cor 0.90 5.42 FDR adjusted 14.13 

58 3540217 chr6 82691906 1.38E-07 0.15 0.00 -0.04 BLINK MDPr CC_cor 1.04 7.46 Gapit Default 2.97 

59 3543069 chr6 167359798 8.82E-08 0.13 0.00 -1.62 BLINK DS2018 Field 0.89 7.05 Gapit Default 7.11 

60 3565836 chr6 403894626 2.64E-07 0.18 0.00 -1.49 BLINK DS_field Field 0.96 7.28 Gapit Default 3.47 

61 5921762 NA NA 4.67E-06 0.35 0.01 0.87 BLINK DS_field Field 0.96 6.29 Gapit Default 0.29 

62 5900228 chr6 429004258 1.94E-11 0.47 0.00 -0.28 BLINK IF_egy CC_egy 0.95 10.71 Gapit Default 8.44 

62 5900228 chr6 429004258 3.63E-05 0.47 0.87 -0.02 BLINK MDPr_IF CC_egy 1.00 4.48 FDR adjusted 5.19 

62 5900228 chr6 429004258 4.56E-05 0.47 0.97 -0.02 MLM MDPr_IF CC_egy 0.99 4.43 FDR adjusted 5.19 

63 3535374 chr6 449699858 3.21E-07 0.10 0.01 -0.05 BLINK AUDPC_IF CC_egy 1.11 6.53 Gapit Default 5.76 

64 3543068 chr7 27387876 1.47E-05 0.16 0.25 0.00 MLM AUDPC_PS CC_egy 1.03 5.02 FDR adjusted 6.29 

65 5941166 chr7 39362330 7.17E-06 0.22 0.09 0.00 BLINK MDPr_PS CC_egy 0.99 5.47 FDR adjusted 2.65 

66 5932021 chr7 51930899 6.15E-04 0.19 0.95 0.02 BLINK LP50_DS CC_egy 0.96 4.44 FDR adjusted 5.34 

66 5932021 chr7 51930899 1.87E-04 0.19 0.93 0.01 MLM LP50_DS CC_egy 1.00 4.47 FDR adjusted 5.34 

67 3556244 chr7 131668232 4.81E-05 0.49 0.20 -0.02 BLINK MDPr_DS CC_egy 0.95 5.12 FDR adjusted 11.59 

68 3549271 chr7 207690490 6.15E-07 0.17 0.00 -1.34 BLINK DS2018 Field 0.89 6.81 Gapit Default 6.81 

68 3549271 chr7 207690490 2.27E-08 0.17 0.00 -3.73 BLINK DS2019 Field 0.99 7.64 Gapit Default 15.03 

68 3549271 chr7 207690490 3.11E-09 0.17 0.00 -3.13 BLINK DS_field Field 1.08 8.54 Gapit Default 11.77 

68 3549271 chr7 207690490 3.70E-05 0.17 0.48 -3.33 MLM DS2019 Field 0.96 4.73 FDR adjusted 15.03 

68 3541979 chr7 207717206 3.98E-05 0.33 0.15 -2.36 MLM DS2019 Field 1.14 5.27 FDR adjusted 4.04 

68 3541979 chr7 207717206 3.32E-06 0.33 0.03 -2.36 BLINK DS_field Field 1.16 5.99 Gapit Default 3.61 
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68 4662232 chr7 207717206 8.44E-06 0.35 0.08 -1.72 MLM DS2019 Field 1.15 5.55 FDR adjusted 3.54 

68 4662232 chr7 207717206 1.72E-05 0.35 0.07 NA BLINK DS_field Field 1.26 5.60 FDR adjusted 2.15 

69 5900633 chr7 237959555 1.14E-04 0.17 0.91 0.06 MLM IT CC_cor 1.01 4.47 FDR adjusted 9.59 

69 5900633 chr7 237959555 7.73E-07 0.17 0.02 0.04 BLINK IT CC_cor 1.06 6.12 Gapit Default 9.67 

70 3553784 chr7 403662597 1.70E-06 0.09 0.04 68.32 MLM AUDPC CC_cor 1.03 5.77 Gapit Default 6.93 

70 3553784 chr7 403662597 2.01E-05 0.09 0.07 17.41 MLM IF_cor CC_cor 1.01 5.54 FDR adjusted 5.98 

70 3553784 chr7 403662597 2.80E-05 0.09 0.50 0.06 MLM MDPr CC_cor 1.07 4.72 FDR adjusted 3.86 

71 5963353 chr7 286715392 1.63E-07 0.09 0.00 -2.21 BLINK DS_field Field 0.96 7.37 Gapit Default 8.19 

71 5963353 chr7 286715392 1.06E-06 0.09 0.01 -2.06 BLINK DS2018 Field 0.72 6.27 Gapit Default 4.63 

72 3569870 chr7 302256784 2.61E-05 0.20 0.23 -0.02 BLINK LP50 CC_cor 0.98 5.07 FDR adjusted 7.60 

73 3641999 chr7 448189894 4.07E-06 0.46 0.01 0.95 BLINK DS_field Field 0.96 6.29 Gapit Default 1.44 

74 3555097 chr7 486340934 8.42E-08 0.11 0.00 -0.06 BLINK IT CC_cor 0.94 7.20 Gapit Default 3.01 

75 3558830 chr7 500294438 3.37E-05 0.45 0.77 -0.25 MLM IF_egy CC_egy 0.95 4.53 FDR adjusted 5.04 

76 3562429 chr7 506822033 3.25E-06 0.48 0.03 1.48 BLINK DS_cor CC_cor 0.77 5.96 Gapit Default 8.61 

77 3542176 NA NA 1.96E-05 0.09 0.07 -11.34 MLM IF_cor CC_cor 1.01 5.54 FDR adjusted 12.64 

78 3542944 NA NA 4.02E-06 0.45 0.03 18.14 BLINK AUDPC CC_cor 0.90 5.87 Gapit Default 17.84 

78 3542944 NA NA 1.24E-07 0.45 0.00 5.70 BLINK IF_cor CC_cor 0.90 7.21 Gapit Default 15.88 

79 3547116 NA NA 2.47E-06 0.42 0.02 -1.23 BLINK DS2019 Field 1.06 6.24 Gapit Default 1.13 

80 4657913 NA NA 7.20E-07 0.09 0.00 0.06 BLINK IT CC_cor 0.94 6.84 Gapit Default 2.21 

81 5898238 NA NA 1.75E-04 0.22 0.90 0.03 BLINK LP50_PS CC_egy 0.99 4.48 FDR adjusted 6.06 

82 5933084 NA NA 3.20E-07 0.08 0.00 26.70 BLINK AUDPC CC_cor 0.90 6.80 Gapit Default 3.37 

82 5933084 NA NA 3.81E-05 0.08 0.50 0.07 MLM MDPr CC_cor 1.07 4.72 FDR adjusted 6.24 

83 5962639 NA NA 4.52E-05 0.11 0.66 -3.62 MLM DS_cor CC_cor 1.06 4.61 FDR adjusted 6.06 
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Additional file 7. Bayesian Information Criteria (BIC) analysis for the number of 

Principal Components (PCs) by each trait and Data set. 

DataBase Trait 
Number of 

PCs/Covariates 
BIC (larger is better) 

- Schwarz 1978 
log Likelihood 
Function Value 

CCUpCo-01 AUDPC 0 -1836.629324 -1827.976842 

CCUpCo-01 AUDPC 1 -1839.357944 -1827.821302 

CCUpCo-01 AUDPC 2 -1841.986658 -1827.565855 

CCUpCo-01 AUDPC 3 -1842.063123 -1824.75816 

CCUpCo-01 AUDPC 4 -1844.832186 -1824.643063 

CCUpCo-01 AUDPC 5 -1843.266178 -1820.192894 

CCUpCo-01 AUDPC 6 -1846.178743 -1820.221298 

CCUpCo-01 AUDPC 7 -1846.626064 -1817.784459 

CCUpCo-01 AUDPC 8 -1847.545339 -1815.819573 

CCUpCo-01 DS 0 -1084.431685 -1075.779204 

CCUpCo-01 DS 1 -1087.313626 -1075.776984 

CCUpCo-01 DS 2 -1089.616766 -1075.195964 

CCUpCo-01 DS 3 -1090.724519 -1073.419556 

CCUpCo-01 DS 4 -1093.65717 -1073.468046 

CCUpCo-01 DS 5 -1091.603944 -1068.53066 

CCUpCo-01 DS 6 -1094.656057 -1068.698613 

CCUpCo-01 DS 7 -1093.688932 -1064.847327 

CCUpCo-01 DS 8 -1094.164427 -1062.438661 

CCUpCo-01 IF 0 -1452.3178 -1443.665319 

CCUpCo-01 IF 1 -1455.09815 -1443.561508 

CCUpCo-01 IF 2 -1457.702211 -1443.281408 

CCUpCo-01 IF 3 -1457.422793 -1440.11783 

CCUpCo-01 IF 4 -1459.952167 -1439.763043 

CCUpCo-01 IF 5 -1456.602125 -1433.528841 

CCUpCo-01 IF 6 -1459.472561 -1433.515116 

CCUpCo-01 IF 7 -1459.017409 -1430.175804 

CCUpCo-01 IF 8 -1459.502987 -1427.777222 

CCUpCo-01 IT 0 151.0841163 159.7365978 

CCUpCo-01 IT 1 148.2602911 159.7969331 

CCUpCo-01 IT 2 145.4529507 159.8737532 

CCUpCo-01 IT 3 144.2539844 161.5589474 

CCUpCo-01 IT 4 141.4872734 161.6763969 

CCUpCo-01 IT 5 139.7072834 162.7805674 

CCUpCo-01 IT 6 138.5311374 164.4885819 

CCUpCo-01 IT 7 135.671465 164.51307 

CCUpCo-01 IT 8 138.3100282 170.0357937 

CCUpCo-01 LP50 0 362.5797033 371.2321848 

CCUpCo-01 LP50 1 359.8990089 371.4356509 

CCUpCo-01 LP50 2 357.7542508 372.1750533 

CCUpCo-01 LP50 3 355.0243478 372.3293108 

CCUpCo-01 LP50 4 354.0435762 374.2326996 

CCUpCo-01 LP50 5 351.0034247 374.0767086 

CCUpCo-01 LP50 6 348.0597713 374.0172158 

CCUpCo-01 LP50 7 344.885435 373.72704 

CCUpCo-01 LP50 8 343.6626757 375.3884411 

CCUpCo-01 MDPr 0 360.6956472 369.3481287 

CCUpCo-01 MDPr 1 357.9664604 369.5031024 
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CCUpCo-01 MDPr 2 355.6475095 370.068312 

CCUpCo-01 MDPr 3 355.3337176 372.6386806 

CCUpCo-01 MDPr 4 352.4887957 372.6779192 

CCUpCo-01 MDPr 5 352.752123 375.8254069 

CCUpCo-01 MDPr 6 350.2535358 376.2109802 

CCUpCo-01 MDPr 7 349.1245157 377.9661207 

CCUpCo-01 MDPr 8 351.0736744 382.7994399 

CCUpKeS-05 AUDPC_DS 0 198.7668081 207.4192896 

CCUpKeS-05 AUDPC_DS 1 196.0140767 207.5507187 

CCUpKeS-05 AUDPC_DS 2 193.349389 207.7701915 

CCUpKeS-05 AUDPC_DS 3 191.5341026 208.8390656 

CCUpKeS-05 AUDPC_DS 4 188.8571973 209.0463208 

CCUpKeS-05 AUDPC_DS 5 192.3317425 215.4050265 

CCUpKeS-05 AUDPC_DS 6 189.1672834 215.1247278 

CCUpKeS-05 AUDPC_DS 7 186.1903702 215.0319752 

CCUpKeS-05 AUDPC_DS 8 184.4372792 216.1630447 

CCUpKeS-05 AUDPC_IF 0 241.3528511 250.0053326 

CCUpKeS-05 AUDPC_IF 1 238.6027033 250.1393453 

CCUpKeS-05 AUDPC_IF 2 235.8901153 250.3109178 

CCUpKeS-05 AUDPC_IF 3 233.8715846 251.1765476 

CCUpKeS-05 AUDPC_IF 4 231.543843 251.7329665 

CCUpKeS-05 AUDPC_IF 5 232.316143 255.3894269 

CCUpKeS-05 AUDPC_IF 6 230.0283542 255.9857987 

CCUpKeS-05 AUDPC_IF 7 227.5242585 256.3658635 

CCUpKeS-05 AUDPC_IF 8 227.1184141 258.8441796 

CCUpKeS-05 AUDPC_PS 0 3217.346974 3225.999455 

CCUpKeS-05 AUDPC_PS 1 3214.445472 3225.982114 

CCUpKeS-05 AUDPC_PS 2 3211.777535 3226.198337 

CCUpKeS-05 AUDPC_PS 3 3209.304442 3226.609405 

CCUpKeS-05 AUDPC_PS 4 3206.484016 3226.67314 

CCUpKeS-05 AUDPC_PS 5 3203.811321 3226.884605 

CCUpKeS-05 AUDPC_PS 6 3202.386999 3228.344444 

CCUpKeS-05 AUDPC_PS 7 3199.950601 3228.792206 

CCUpKeS-05 AUDPC_PS 8 3197.026778 3228.752544 

CCUpKeS-05 DS 0 -608.768544 -600.1160626 

CCUpKeS-05 DS 1 -611.6021578 -600.0655158 

CCUpKeS-05 DS 2 -614.3050938 -599.8842913 

CCUpKeS-05 DS 3 -615.8150839 -598.5101209 

CCUpKeS-05 DS 4 -618.7633 -598.5741765 

CCUpKeS-05 DS 5 -614.7145816 -591.6412976 

CCUpKeS-05 DS 6 -617.6961305 -591.738686 

CCUpKeS-05 DS 7 -620.0673767 -591.2257717 

CCUpKeS-05 DS 8 -621.9240275 -590.198262 

CCUpKeS-05 IF 0 -410.867552 -402.2150705 

CCUpKeS-05 IF 1 -413.5723697 -402.0357277 

CCUpKeS-05 IF 2 -416.5070376 -402.0862351 

CCUpKeS-05 IF 3 -418.7826601 -401.4776971 

CCUpKeS-05 IF 4 -421.6318321 -401.4427086 

CCUpKeS-05 IF 5 -422.9055249 -399.832241 

CCUpKeS-05 IF 6 -425.9432575 -399.985813 

CCUpKeS-05 IF 7 -428.4016068 -399.5600018 

CCUpKeS-05 IF 8 -431.0086043 -399.2828388 
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CCUpKeS-05 LP50_DS 0 492.3210673 500.9735488 

CCUpKeS-05 LP50_DS 1 489.9531865 501.4898285 

CCUpKeS-05 LP50_DS 2 487.0584892 501.4792917 

CCUpKeS-05 LP50_DS 3 489.4036102 506.7085732 

CCUpKeS-05 LP50_DS 4 487.3603746 507.5494981 

CCUpKeS-05 LP50_DS 5 484.7451698 507.8184538 

CCUpKeS-05 LP50_DS 6 482.4362628 508.3937073 

CCUpKeS-05 LP50_DS 7 479.7161193 508.5577243 

CCUpKeS-05 LP50_DS 8 477.4677256 509.1934911 

CCUpKeS-05 LP50_IF 0 664.4158492 673.0683307 

CCUpKeS-05 LP50_IF 1 661.5765637 673.1132057 

CCUpKeS-05 LP50_IF 2 658.6611067 673.0819092 

CCUpKeS-05 LP50_IF 3 655.7499985 673.0549615 

CCUpKeS-05 LP50_IF 4 652.9067076 673.0958311 

CCUpKeS-05 LP50_IF 5 650.0254523 673.0987363 

CCUpKeS-05 LP50_IF 6 647.3820004 673.3394448 

CCUpKeS-05 LP50_IF 7 644.4443717 673.2859767 

CCUpKeS-05 LP50_IF 8 641.6487432 673.3745087 

CCUpKeS-05 LP50_PS 0 313.5855246 322.2380061 

CCUpKeS-05 LP50_PS 1 310.9583475 322.4949895 

CCUpKeS-05 LP50_PS 2 307.9213953 322.3421978 

CCUpKeS-05 LP50_PS 3 305.196908 322.501871 

CCUpKeS-05 LP50_PS 4 302.5965982 322.7857216 

CCUpKeS-05 LP50_PS 5 309.1446295 332.2179135 

CCUpKeS-05 LP50_PS 6 306.8233849 332.7808294 

CCUpKeS-05 LP50_PS 7 304.0504556 332.8920606 

CCUpKeS-05 LP50_PS 8 301.2081306 332.9338961 

CCUpKeS-05 MDPr_DS 0 210.4625909 219.1150724 

CCUpKeS-05 MDPr_DS 1 207.7157248 219.2523668 

CCUpKeS-05 MDPr_DS 2 205.2524441 219.6732466 

CCUpKeS-05 MDPr_DS 3 203.919043 221.224006 

CCUpKeS-05 MDPr_DS 4 201.0786518 221.2677753 

CCUpKeS-05 MDPr_DS 5 206.4461219 229.5194058 

CCUpKeS-05 MDPr_DS 6 203.2239402 229.1813847 

CCUpKeS-05 MDPr_DS 7 200.3843595 229.2259645 

CCUpKeS-05 MDPr_DS 8 197.8880741 229.6138396 

CCUpKeS-05 MDPr_IF 0 126.6897689 135.3422504 

CCUpKeS-05 MDPr_IF 1 123.8148325 135.3514745 

CCUpKeS-05 MDPr_IF 2 121.3865352 135.8073377 

CCUpKeS-05 MDPr_IF 3 119.412142 136.717105 

CCUpKeS-05 MDPr_IF 4 116.5488945 136.738018 

CCUpKeS-05 MDPr_IF 5 118.8402935 141.9135775 

CCUpKeS-05 MDPr_IF 6 116.7198564 142.6773009 

CCUpKeS-05 MDPr_IF 7 116.5958193 145.4374243 

CCUpKeS-05 MDPr_IF 8 118.1126726 149.8384381 

CCUpKeS-05 MDPr_PS 0 1653.943456 1662.595937 

CCUpKeS-05 MDPr_PS 1 1651.104104 1662.640746 

CCUpKeS-05 MDPr_PS 2 1648.164795 1662.585598 

CCUpKeS-05 MDPr_PS 3 1645.408209 1662.713172 

CCUpKeS-05 MDPr_PS 4 1642.434048 1662.623172 

CCUpKeS-05 MDPr_PS 5 1643.689891 1666.763175 

CCUpKeS-05 MDPr_PS 6 1641.283304 1667.240748 
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CCUpKeS-05 MDPr_PS 7 1638.811825 1667.65343 

CCUpKeS-05 MDPr_PS 8 1635.668485 1667.39425 

FieldUpCo-01 DS_field 0 -969.096726 -960.4442445 

FieldUpCo-01 DS_field 1 -971.7952153 -960.2585733 

FieldUpCo-01 DS_field 2 -974.7089842 -960.2881818 

FieldUpCo-01 DS_field 3 -975.9296814 -958.6247184 

FieldUpCo-01 DS_field 4 -977.7769702 -957.5878467 

FieldUpCo-01 DS_field 5 -977.1602916 -954.0870077 

FieldUpCo-01 DS_field 6 -979.4395547 -953.4821102 

FieldUpCo-01 DS_field 7 -981.9978888 -953.1562839 

FieldUpCo-01 DS_field 8 -984.9265113 -953.2007458 

FieldUpCo-01 DS_2018 0 -936.1170249 -927.4645434 

FieldUpCo-01 DS_2018 1 -939.0509782 -927.5143362 

FieldUpCo-01 DS_2018 2 -941.771783 -927.3509805 

FieldUpCo-01 DS_2018 3 -944.4845542 -927.1795912 

FieldUpCo-01 DS_2018 4 -946.4971521 -926.3080286 

FieldUpCo-01 DS_2018 5 -948.3202499 -925.2469659 

FieldUpCo-01 DS_2018 6 -949.8942639 -923.9368194 

FieldUpCo-01 DS_2018 7 -952.9389032 -924.0972983 

FieldUpCo-01 DS_2018 8 -955.9977196 -924.2719541 

FieldUpCo-01 DS_2019 0 -1034.601155 -1025.948674 

FieldUpCo-01 DS_2019 1 -1037.010733 -1025.474091 

FieldUpCo-01 DS_2019 2 -1039.911396 -1025.490594 

FieldUpCo-01 DS_2019 3 -1040.76812 -1023.463157 

FieldUpCo-01 DS_2019 4 -1041.764394 -1021.575271 

FieldUpCo-01 DS_2019 5 -1038.665906 -1015.592622 

FieldUpCo-01 DS_2019 6 -1040.926593 -1014.969148 

FieldUpCo-01 DS_2019 7 -1041.154473 -1012.312868 

FieldUpCo-01 DS_2019 8 -1043.825191 -1012.099425 

FieldUpCo-01 DS_2020 0 -1100.28252 -1091.630038 

FieldUpCo-01 DS_2020 1 -1103.044926 -1091.508285 

FieldUpCo-01 DS_2020 2 -1105.868679 -1091.447877 

FieldUpCo-01 DS_2020 3 -1106.913756 -1089.608793 

FieldUpCo-01 DS_2020 4 -1109.74129 -1089.552167 

FieldUpCo-01 DS_2020 5 -1110.871206 -1087.797922 

FieldUpCo-01 DS_2020 6 -1113.855119 -1087.897675 

FieldUpCo-01 DS_2020 7 -1116.944602 -1088.102997 

FieldUpCo-01 DS_2020 8 -1119.975702 -1088.249937 
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Additional file 8. Scatterplot between heritability of each trait by its cumulative 

phenotypic variance explained (PVEsum) by the markers obtained through BLINK model 

(left) or MLM model (right). Inferential statistics with effect size plus CIs are at the top of 

the plot while Bayesian hypothesis-testing and estimation are at the bottom. 

 
Additional file 9. Rust (UpKe-05 isolate) symptoms progression by 8, 10 and 12 

days after inoculation (dai) in cv. Messire and PI273209 accession leaflets.
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1. Abstract 

Genomic selection (GS) has become an indispensable tool in modern plant 

breeding, particularly for complex traits like rust resistance in peas (Pisum sativum 

L.) that are heavily influenced by environmental factors. This study evaluates the 

efficacy of GS in predicting rust resistance, using a panel of 320 pea accessions and 

26,045 DArT-Seq markers. We compared the prediction abilities of several GS 

models, including genomic best linear unbiased prediction (GBLUP), and explored 

the impact of incorporating marker × environment (MxE) interactions as a covariate 

in the GBLUP model. The analysis encompassed data from both field and controlled 

conditions. We assessed the predictive accuracies of different cross-validation 

strategies and compared the efficiency of using single traits versus a multi-trait index 

approach, specifically the FAI-BLUP, which combines traits from controlled 

conditions. The GBLUP model, particularly when modified to include MxE 

interactions, consistently outperformed other models, demonstrating its suitability 

for traits affected by complex genotype-environment interactions. Notably, the best 

predictive ability (0.635) was achieved using the FAI-BLUP approach within the 

Bayesian Lasso (BL) model. The inclusion of MxE interactions significantly enhanced 

prediction accuracy across diverse environments in GBLUP models, although it did 

not markedly improve predictions for not-phenotyped lines. These findings 

underscore the variability of predictive abilities due to genotype by environment 

(GEI) interactions and the effectiveness of multi-trait approaches in addressing such 

complexities. Overall, our study illustrates the potential of GS, especially when 

employing a multi-trait index like FAI-BLUP and accounting for MxE interactions, in 

pea breeding programs focused on rust resistance. This approach provides a robust 

framework for handling GEI challenges, making GS a valuable asset in the quest for 

improved rust resistance. 

2. Introduction 

Pea, Pisum sativum L. (7n = 14), is a significant cool-season legume crop 

cultivated predominantly in temperate climates. With an annual global production 

exceeding 14 million tons of dry and 21 million tons of green peas (FAOSTAT, 2022), 

it holds substantial nutritional value, being a rich source of proteins, starch, fibers, 

vitamins, and minerals. Its symbiotic relationship with nitrogen-fixing bacteria 

underscores its role in enhancing soil fertility, making it a vital component in 

sustainable cropping systems (Guo et al., 2021). Cultivars of pea are primarily inbred 

lines, largely homozygous, developed through several generations of self-fertilization 

following initial hybridization (van de Wouw et al., 2010). This breeding process is 

time-intensive, requiring years to yield genetically and phenotypically stable lines 

suitable for field trials and eventual commercialization. Hence, there is a pronounced 

need for more efficient breeding strategies, such as high-throughput genotyping or 
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phenotyping, to expedite the identification and development of elite lines 

(Annicchiarico et al., 2023). 

One of the main objectives in the development of elite pea lines is the 

introduction of new resistance sources to pests and diseases, which are major 

constraints to global pea production (Rubiales et al., 2023). Therefore, disease 

resistance is a key focus in pea breeding programs, and significant advances have 

been made using marker-assisted selection (MAS) for diseases controlled by single 

gene traits. For instance, polymerase chain reaction (PCR) markers facilitate the 

identification of breeding lines carrying DNA polymorphisms linked to resistance 

against viruses such as Pea seedborne mosaic virus (Grimm & Porter, 2021) and Pea 

enation mosaic virus (Jain et al., 2013), as well as fungal diseases like powdery 

mildew which resistance are controlled by er1, er2 and Er3 genes (Fondevilla & 

Rubiales, 2012). However, challenges persist in managing diseases with polygenic 

resistance nature, including root rot caused by Aphanomyces eusteiches (Leprévost 

et al., 2023) or fusarium wilt (Sampaio et al., 2020) and aerial diseases such as 

ascochyta blight (Barilli et al., 2016) or rust (Osuna-Caballero et al., 2022). Rust 

disease, caused by Uromyces spp., can reduce pea yields by up to 50%, varying with 

environmental conditions and the specific pathogen involved. U. viciae-fabae 

predominantly affects peas in tropical and subtropical climates, while U. pisi is more 

prevalent in temperate regions, both causing significant epidemics cycles during the 

crop season (Singh et al., 2023). Complete resistance to rust has yet to be identified 

in peas, and measuring partial resistance is challenging due to the influence of 

environmental factors like rainfall, temperature, and inoculum levels on disease 

prevalence in field (Das et al., 2019). Partial resistance to U. pisi-induced rust is 

multigenic, with some QTLs identified in biparental populations using wild relatives 

as resistance donors (Barilli et al., 2010; 2018). In addition, GWAS analysis has 

identified 95 DArT-seq polymorphic markers linked to rust resistance, pointing to 62 

candidate genes putatively involved in resistance to U. pisi (Osuna-Caballero et al., 

2024a). Genomic selection (GS), utilizing a wide array of genetic markers across the 

genome, offers a promising approach to select elite breeding lines for complex, 

multigenic traits such as rust resistance, where complete resistance is not available. 

Genomic prediction, originally pioneered in the livestock industry, has 

expanded its utility across a diverse range of plant species, encompassing fruit and 

timber trees (Resende et al., 2012; Wang et al., 2023), as well as major crops such 

maize and wheat (Crossa et al., 2017). GS accelerates the breeding cycle in annual 

inbred crops, enabling earlier selection of breeding parents based on Genomic 

Estimated Breeding Values (GEBV) in successive filial generations (Lin et al., 2017). 

The focus of GS studies has often been on genotype-environment interactions (GEI) 

to improve prediction accuracy highlighting those effects as a crucial factor and 

allowing the development of novel complex models which integrate those effects as 

covariates (Tolhurst et al., 2022). This includes predicting GEBVs for lines lacking 
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phenotypic data and extending predictions across various environments for partially 

phenotyped lines. The application of GS in plant breeding varies significantly among 

crops and traits, influenced by each genetic architecture and specific breeding and 

cultivation systems (Akdemir & Isidro-Sánchez, 2019). In pea breeding, GS has been 

employed to assess important agronomic traits such as thousand-seed weight, seed 

number per plant, and flowering date (Tayeh et al., 2015). Remarkably, prediction 

accuracies for traits like thousand-seed weight reached as high as 0.83, underscoring 

the potential of GS in pea breeding, particularly when traits are relatively easy to 

measure and highly heritable. In addition, the size and composition of the training 

population, carefully selected, significantly affect prediction accuracy (Akdemir & 

Isidro-Sánchez, 2019). In recent research, GS has also been applied to predict pea 

grain yield, protein content, and morphological traits using Genotyping-by-

Sequencing (GBS) data (Annicchiarico et al., 2019, 2020; Crosta et al., 2022, 2023). 

For instance, those approaches yielded accurate intrapopulation (0.84) and 

interpopulation (0.71) prediction accuracies for grain yield, proving to be cost-

effective as phenotyping costs were notably higher than genotyping costs 

(Annicchiarico et al., 2019). These findings suggest that GS could be a valuable tool 

in pea breeding programs. However, its efficacy for disease traits in peas remains an 

area for further exploration where some advances have only performed in ascochyta 

blight resistance (Carpenter et al., 2018). 

GS requires comprehensive genotypic data, typically acquired through methods 

like high-density arrays or GBS. Among GBS approaches, DArTSeq genotyping has 

emerged as a suitable genomic method for GS, genetic mapping and population 

genetics approaches in many plant species (Alam et al., 2018; Alemu et al., 2022). 

This method, which enables the generation both SNP and SilicoDArT markers, is 

particularly effective for crops with large genomes abundant in repetitive sequences, 

such as peas (Barilli et al., 2018). It sequences regions adjacent to restriction enzyme 

sites, and by employing methylation-sensitive enzymes, preferentially targets coding 

regions over repetitive DNA (Akbari et al., 2006). In GS analyses, prediction accuracy 

is often gauged by the correlation between predicted and observed trait values. 

However, beyond estimating the breeding value (BV) for entire populations, plant 

breeders are particularly interested in accurately predicting top-performing 

individuals for selection as elite cultivars or parental lines for subsequent breeding 

cycles (Bassi et al., 2016). GS presents a dual advantage in pea genetic improvement: 

it facilitates the prediction of GEBV for individuals lacking phenotypic data and 

enhances the precision of BV estimates for phenotyped individuals, especially for 

traits that are challenging to measure (Rubiales et al., 2021). This is achieved by 

integrating trait data from multiple environments and/or years with genotypic 

information. Moreover, leveraging molecular data for BV estimation offers inherent 

advantages over traditional pedigree-based approaches (Hayes et al., 2009). 

Molecular data provide a 'realized relationship matrix,' reflecting the actual genetic 



Chapter 5 

149 

 

relationships among individuals, as opposed to the 'expected values' used in pedigree-

based matrices, where relative individuals are assumed to have average and equal 

genetic contributions (Crossa et al., 2010). This nuanced understanding of genetic 

relationships afforded by molecular data underpins the enhanced accuracy of GS, 

making it a transformative tool in modern plant breeding. 

Assessments of the different models used for genomic selection have not 

revealed a single model that always surpass the others, since model performance 

depends on the number of genomic regions influencing a trait and the magnitude of 

its effects (Habier et al., 2011; Heffner et al., 2011). Furthermore, different models 

make assumptions that may or may not match the genetic architecture of the traits of 

interest. Therefore, in this study we present a comprehensive evaluation of GS models 

for rust resistance in peas, tailoring our approach to align with the practical demands 

of current pea breeding programs (Annicchiarico et al., 2023). Utilizing genotypic 

data from Rispail et al. (2023) and phenotypic data against U. pisi from Osuna-

Caballero et al. (2022), we trained and validated several GS models. Our objectives 

included comparing the predictive abilities of these models for phenotype prediction, 

examining the influence of multi-trait indices on their predictive accuracy, and 

investigating the role of genotype by environment interactions in the context of field 

condition predictions. The study encompassed an in-depth analysis using the three 

most prevalent cross-validation schemes, recognized for their relevance and 

applicability in validating genomic selection equations in plant breeding. This 

methodical approach allowed us not only to assess the efficacy of different GS models 

in a breeding context but also to explore how the integration of complex data, such as 

multi-trait indices and environmental interactions, can optimize predictive 

accuracies. Our findings aim to contribute valuable insights into the deployment of 

GS strategies for enhancing rust resistance in pea crops, thereby aiding breeders in 

their selection and genetic improvement endeavours. 

3. Material and Methods 

3.1. Plant Material 

The pea panel utilized in this study comprise an extensive collection of 320 

accessions of Pisum spp., encompassing a diverse range of genetic material, including 

wild relatives, landraces, cultivars, breeding lines, and unidentified genotypes 

sourced from various continents. The selection of these genotypes was carried out 

meticulously, with an aim to cover a broad spectrum of genotypic and phenotypic 

variance, as highlighted by Rispail et al. (2023). This approach ensures a 

comprehensive representation of the Pisum genera, capturing the genetic diversity 

across the three main species – P. sativum, P. fulvum, and P. abyssinicum – as well 

as the P. sativum subspecies, namely sativum, arvense, jomardi, elatius, and humile. 

The selection was also based on specific criteria including historical resistance 
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performance, genetic diversity, and unique phenotypic profile that are potentially 

linked to disease resistance and favorable agronomic traits (Rispail et al., 2023). The 

inclusion of genotypes collected worldwide not only adds to the genetic mixture but 

also allows for the examination of genotype-environment interactions. 

3.2. Phenotyping and Statistical Analysis 

The pea panel was evaluated under rain-fed conditions in three autumn-sown 

environments in Cordoba, southern Spain. These environments are referred to as 

Cordoba 2018 (DS-2018), Cordoba 2019 (DS-2019), and Cordoba 2020 (DS-2020). 

According to the Köppen–Geiger classification system, this location represents the 

hot dry-summer Mediterranean climate, a common form of the Mediterranean 

climate characterized by hot, dry summers and mild, wet winters (Kottek et al., 

2006). 

Each growing season, the experiment was conducted in an alpha lattice design 

with three replications, using cv. Cartouche as check control. The experimental 

procedures and evaluations are detailed in Osuna-Caballero et al. (2022). The 

primary recorded trait was disease severity, expressed as the proportion of pustules 

covering the experimental unit. Additionally, four traits related to rust disease in pea 

were assessed in a growth chamber for the entire panel: (i) infection frequency (IF), 

measured as the number of pustules per cm² of leaf, counted daily from day 7 to day 

14 post-inoculation; (ii) the area under the disease progress curve (AUDPC) based on 

the daily IF scores; (iii) infection type (IT), classified according to Stackman et al. 

(1962) and (iv) disease severity (DS), quantified as the percentage of tissue damaged 

by pustules. 

Each accession underwent four evaluation rounds through inoculation, with 

three inoculations performed as described in Osuna-Caballero et al. (2022). An 

analysis of variance (ANOVA) was conducted to assess variation among accessions, 

genotype material, and between environments (controlled conditions or field), 

wherein the genotype × environment interaction (GEI) variation was dissected using 

an additive main effects and multiplicative interaction (AMMI) analysis. This 

approach is particularly valuable for unravelling patterns of GEI, and it was employed 

to determine the range of genotype stability and adaptability among the nine most 

resistant and the three most susceptible lines identified in the study by Osuna-

Caballero et al. (2022). Additionally, the AMMI analysis provided further insights 

into the environmental consistency regarding GEI effects. In this approach, the Yij 

response—denoting the reaction of genotype i in environment j—follows the model 

proposed by Olivoto et al. (2019). The analysis was performed using the 'metan' 

package in R (Olivoto et al., 2020). 

The genetic correlation (r_g) for genotype rust responses across traits and 

environments was estimated according to Howe et al. (2000). For each environment, 
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components of variance relative to genotype variation (CV_g) and experimental error 

(CV_e) were estimated using the restricted maximum likelihood (REML) in the linear 

mixed model, where the factor of interest (accession) was included as fixed effect, and 

the remaining sources of variance were fitted as random variables. The fitted model, 

using the R package lme4 (Bates et al., 2015), allowed the calculation of the best linear 

unbiased prediction (BLUP) by genotype for every single trait following the 

methodology of DeLacy et al. (1996). In addition, multi- environment trial (MET) 

allowed the calculation of the BLUPs of the merged data from the three field seasons 

(megaENV).  The BLUPs estimated for each trait collected under controlled 

conditions served as phenotypic data for computing a multi-trait index (FAI-BLUP) 

based on factor analysis and ideotype-design proposed by Rocha et al. (2018), and for 

subsequent genomic prediction assessments. Broad-sense heritability on an 

accession mean basis was estimated for each trait and environment as per Nizam et 

al. (1994). 

3.3. Genotyping and Data Filtering 

The pea core collection was genotyped using the DArTSeq approach by 

DiversityArray Ltd, Australia. For this process, the third compound leaves from 

twenty-two-week-old seedlings of each accession, grown under controlled conditions, 

were harvested. These samples were pooled, flash-frozen in liquid nitrogen, and 

subsequently lyophilized. DNA extraction was then carried out following the method 

prescribed by Diversity Arrays P/L, Canberra, Australia. The extracted DNA was 

adjusted to a concentration of 20 ng/µl prior to DArT marker analysis. This analysis 

was conducted using the high-density Pea DArTseq 1.0 array, which consists of 

50,000 markers and is specially adapted for wild Pisum spp. accessions. The 

genotyping process involved complexity reduction using PstI-MseI restriction 

enzymes, followed by library construction, amplification, and Illumina sequencing. 

These steps were performed by Diversity Arrays Technology Pty Ltd, Canberra, 

Australia, as detailed in Barilli et al. (2018). The DArTSeq sequence analysis yielded 

two sets of markers: Single Nucleotide Polymorphisms (SNPs) and presence-absence 

sequence variants (Silico-DArT), where Silico-DArT was the genetic information used 

in the GS analysis. 

Data cleaning was then meticulously performed for DArT markers. This process 

was undertaken to eliminate low-quality and non-polymorphic markers, as described 

by Rispail et al. (2023). Markers exhibiting more than 20% missing data, a minor 

allele frequency (MAF) below 5%, and heterozygosity exceeding 0.1% were excluded 

from the analysis. Missing data were imputed using the Singular Value 

Decomposition (SVD) method, adhering to the recommendations of Nazzicari et al., 

(2016). 
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3.4. Genomic Regression Models and Data Configurations 

Genome-enabled predictions in this study were primarily based on Silico-DArT 

markers. We focused on three genomic prediction models known for their predictive 

ability in legume species, particularly in relation to pea traits: Ridge regression BLUP 

(rrBLUP), Bayesian Lasso (BL), and Genomic BLUP (GBLUP), as identified in 

previous comparisons (Annicchiarico et al., 2017; Carpenter et al., 2018). 

The rrBLUP model, proposed by Meuwissen et al. (2001), assumes a common 

variance across all loci, making it suitable for traits influenced by many minor genes. 

Its linear mixed additive model equation is: 

𝑦 = 𝜇 + 𝐺𝑢 + 𝜀 

where 𝑦 is the vector of observed phenotypes, 𝜇 is the mean of 𝑦, 𝐺 is the genotype 

matrix (i.e., {0, 1} for absence/presence sequence variants Silico-DArT markers), 𝑢 ∼

𝑁 (0, 𝐼𝜎2𝑢)  is the vector of marker effects, and 𝜀 ∼ 𝑁 (0, 𝐼𝜎2𝜀)  is the vector of 

residuals. The solution, utilizing standard ridge-regression methods, is: 

𝑢 = 𝐺′(𝐺′ + 𝜆 𝐼)−1(𝑦 − 𝜇) 

where 𝜆 =
𝜎𝑒

2

𝜎𝑢
2  is the ridge parameter, representing the ratio between residual and 

markers variance (Searle et al. 2006) estimated by a REML method implemented by 

a spectral decomposition algorithm (Hyun et al. 2008). Given the vector of markers 

effects, it is then possible to predict phenotypes and GEBV.  

The GBLUP model follows a similar equation to rrBLUP but uses a marker-based 

genomic relationship matrix (GRM) instead of the marker matrix (Hayes et al., 

2009). Allele frequencies in this GRM were estimated from the observed genotype 

data. This model was also trained after incorporating the marker x environmental 

(MxE) effect matrix as covariate to evaluate its influence over the predictions. 

Bayesian models, such as Bayesian Lasso (BL), permit different effects and variances 

for markers, typically few with large effects (Wang et al., 2018). These models assign 

prior densities to marker effects and induce various types of shrinkage. Solutions are 

obtained by sampling from the posterior density via a Gibbs sampling approach 

(Casella & George, 1992), with BL implementation as per Park and Casella, (2008). 

Predictive ability (r_ab) of these genome-enabled models for rust traits in the pea 

panel was assessed using the R package GROAN (Nazzicari & Biscarini, 2022). r_ab 

was estimated as Pearson’s correlation between observed and predicted phenotypes, 

following three cross-validation (CV) strategies: (i) single trait and intra-environment 

cross-validation, training and testing each trait per environment [CV0]; (ii) single 

trait and cross-environment validation, predicting known lines over an environment 

used in the training model [CV1]; (iii) single trait and inter-environment cross-

validation, predicting new lines in an untrained environment [CV2]. 
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Overall, we assessed 11-model configurations represented by combinations of three 

genomic prediction models (rrBLUP, GBLUP or BL) in which MxE interaction is 

evaluated in GBLUP model and three CV procedures with one marker data set (DArT-

seq). 

Finally, the accuracy (r_ac) of these models was estimated from r_ab and the square 

root of broad-sense heritability on an entry mean basis in the validation environment 

(H), following Lorenz et al. (2011):  𝑟𝑎𝑐 =
𝑟𝑎𝑏

𝐻
 

4. Results 

4.1. Phenotypic data 

The phenotypic data revealed consistent patterns across different years under 

field condition and between traits measured under controlled conditions as shown in 

Osuna-Caballero et al. (2022). Here, we further explored the phenotypic correlation 

(rp) between the FAI-BLUP index, and the single traits measured under controlled 

and field conditions, as well as their genetic correlations (Figure 18). Notably, the 

integration of traits measured under controlled conditions into the FAI-BLUP index 

improved Pearson correlations between traits. Consequently, the rp values between 

FAI-BLUP and DS in 2018 (DS-2018), 2019 (DS-2019), 2020 (DS-2020), and in the 

MegaENV were 0.24, 0.47, 0.41, and 0.46, respectively. Higher than those between 

DS in controlled conditions and DS-2018 (rp = 0.14), DS-2019 (rp = 0.32), DS-2020 

(rp = 0.39), and MegaENV (rp = 0.44). In addition, correlations between FAI-BLUP 

and field data were also higher than those estimated between any other single trait 

measured under controlled conditions (AUDPC, IT and IF) and the corresponding 

field data (Figure 18). 

Under controlled conditions, we also observed that the FAI-BLUP index 

correlated more strongly with individual traits. The correlation between the AUDPC 

and FAI-BLUP was the highest (rp = 0.90), while the correlation between IT and FAI-

BLUP was comparatively lower but still robust (rp = 0.70). 
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Figure 18. Trait correlation between field (yellow), controlled conditions (blue) and FAI-

BLUP index (green). Phenotypic correlation (rp) and genotypic correlation (rg) under 

brackets are depicted in each trait’s intersection. Each trait shows its distribution, 

heritability, and genetic variance. *, ** and *** represent the significance of the rp at 0.05, 

0.01 and 0.001, respectively. 
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The genetic correlation, rg, which assesses the extent to which the same genes 

influence a trait across different environments (such as different field seasons or 

traits under controlled conditions), also revealed differences between 

traits/environments. The highest genetic correlation was observed between DS-2020 

and DS-2019 (rg = 0.72), suggesting that rust severity in those years was influenced 

by similar genetic factors. In contrast, genetic correlations were generally lower 

between traits measured under controlled conditions and in the field, with the 

notable exception of DS, which exhibited a high genetic correlation (rg = 0.80) with 

DS-2020 (Figure 18). 

 

Figure 19. Estimated nominal disease severity (DS%) of nine most resistance (straight 

lines) and three susceptible (dashed lines) accessions based on FAI-BLUP index along the 

GEI PC1 axis. 

AMMI analysis of DS percentages revealed that the first GEI principal 

component axis (PC1) was highly significant (P < 0.001), explaining 80% of the GEI 

variance (Additional file 10). This axis notably distinguished the 2020 field season 

from the two preceding years in terms of genotype responses, as depicted in Figure 

19. The AMMI model illustrated pronounced cross-type GEI interactions, 

characterized by a range shift between the resistant and susceptible lines across the 

different environments. Particularly in the 2020 field environment, there was an 

observable increase in line variation (Figure 19). Notably, resistant and susceptible 

accessions form two cluster that did not intersect across environments, indicating 

consistency in their response patterns, as visualized in Figure 19. Specifically, lines JI 
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224, PI 273209, JI 199, and CGN 10206 demonstrated a distinct advantage in terms 

of both resistance and stability, even within these significant contrasting 

environments (Figure 19). 

4.2. Genome-enabled modelling 

4.2.1. Predictive abilities of rrBLUP, BL and GBLUP under CV0 scenario 

This study assessed the intra-environment ability of three genomic prediction 

models (rrBLUP, BL and GBLUP) trained with a Silico-DArT marker data set to 

predict pea rust across controlled and field conditions. The average predictive 

abilities (rab) obtained for each trait under the intra-environment scenario of cross-

validation (CV) are depicted in Table 12. 

rrBLUP and BL models showed similar predictive abilities for all traits. Under 

controlled conditions, predictive abilities (rab) of BL varied from 0.569 for IF 

predicted by BL to 0.635 for FAI-BLUP. In this scenario, rab of the G-BLUP model 

were slightly lower ranging from 0.510 for IF to 0.633 for FAI-BLUP (Table 12). For 

all three models, the highest predictive ability was reached for FAI-BLUP trait (rab = 

0.635). 

Table 12. Intra-environment predictive ability of Ridge regression BLUP (rrBLUP), 

Bayesian Lasso (BL) or Kernel Genomic BLUP model trained with a Silico-Dart data set to 

predict pea rust disease parameter in four environments a. 

 Controlled Conditions Field Conditions 

Model AUDPC IF IT DS 
FAI-

BLUP 

DS-

2018 

DS-

2019 

DS-

2020 

Mega-

ENV 

rrBLUP 0.602 0.572 0.579 0.601 0.633 0.258 0.544 0.308 0.460 

BL 0.602 0.569 0.571 0.604 0.635 0.261 0.541 0.302 0.459 

GBLUP 0.576 0.510 0.544 0.590 0.633 0.270 0.558 0.310 0.446 

a Predictions were based on 50 repetitions of 10-fold stratified cross validations per individual 

analysis. 

For the field data, the predictive abilities of the three models were notably 

lower. In this case, the G-BLUP model achieved the highest predictive abilities for all 

single environment ranging from 0.27 for DS-2018 to 0.558 for DS-2019 while its 

ability to predict MegaENV (rab = 0.446), which encapsulates the overall 

environmental variance, was slightly lower than rrBLUP and BL that reached 0.460 

and 0.459, respectively under this CV scenario. 

4.2.2. Predictive abilities of rrBLUP, BL and GBLUP under CV1 scenario 

The genomic selection models were also trained and tested across different 

environments to evaluate their ability and accuracy in predicting rust disease in peas. 

Under the CV1 scenario, moderate predictive abilities were obtained for all three 
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models when they were trained with DS values obtained under controlled conditions 

and tested on the MegaENV data. In this case, the highest predictive ability value was 

reached by GBLUP (rab = 0.382) followed by rrBLUP (rab = 0.378) and BL (rab = 

0.369. GBLUP also outperformed the other models in terms of predictive accuracy 

(rac), with a score of 0.441, while rrBLUP and BL exhibited rac values of 0.436 and 

0.426 respectively. Training models with the FAI-BLUP index dataset and testing 

them on MegaENV data improved the model predictive abilities with GBLUP 

exhibiting the highest predictive ability (rab = 0.500) and accuracy (rac =0.577). 

Table 13. Cross-environment [CV1] predictive ability (rab) and predictive accuracy 

(rac) of pea rust across different traits and two environments estimated with Ridge 

regression BLUP (rrBLUP), Bayesian Lasso (BL) or Kernel Genomic BLUP model trained on 

a Silico-DArT marker data set a. 

Training  
set 

Test 
set 

rab rac 

rrBLUP BL GBLUP rrBLUP BL GBLUP 

DS  MegaENV 0.378 0.369 0.382 0.436 0.426 0.441 

FAI-BLUP MegaENV 0.419 0.402 0.500 0.484 0.464 0.577 

DS-2018 DS-2019 0.498 0.491 0.605 0.579 0.571 0.703 

DS-2018 DS-2020 0.384 0.411 0.465 0.430 0.460 0.520 

DS-2019 DS-2018 0.357 0.358 0.369 0.450 0.451 0.465 

DS-2019 DS-2020 0.463 0.465 0.503 0.518 0.520 0.562 

DS-2020 DS-2018 0.357 0.386 0.388 0.450 0.486 0.489 

DS-2020 DS-2019 0.605 0.596 0.627 0.703 0.693 0.730 

a Prediction were based on 50 repetitions of 10-fold stratified cross validations per individual 

analysis. 

For the field data with this CV1scenario, the models trained on DS-2018 and 

tested with DS-2019 exhibited high predictive abilities and accuracies, especially for 

GBLUP (rab = 0.605, rac = 0.703). Conversely, models trained on DS-2019 and tested 

on DS-2018, led to lower predictive abilities and accuracies. The highest predictive 

abilities and accuracies were observed after training the models on DS-2020 and 

testing them on DS-2019 (Table 13). Once again, GBLUP outperformed rrBLUP and 

BL, exhibiting predictive ability and accuracy of 0.627 and 0.730 respectively. 

4.2.3. Predictive abilities of rrBLUP, BL and GBLUP under CV2 scenario 

In the last cross-validation scheme (CV2), the genomic selection models were 

trained on one set of data and validated on a different, untrained environment, 

simulating the prediction of new pea lines performance (Table 14). When the models 

were trained on controlled condition DS and validated on MegaENV, predictive 

abilities were moderate, with GBLUP exhibiting a slightly higher ability (rab = 0.332) 

compared to rrBLUP (rab = 0.329) and BL (rab = 0.319). The predictive accuracies 
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for these models were closely matched, with GBLUP leading at 0.383. Training on 

FAI-BLUP and validating on MegaENV data improved the model predictive abilities, 

with GBLUP displaying again the highest ability (rab = 0.427) and accuracy (rac = 

0.493). 

Table 14. Cross-environment [CV2] predictive ability (rab) and predictive accuracy 

(rac) of pea rust traits estimated with Ridge regression BLUP (rrBLUP), Bayesian Lasso (BL) 

or Kernel Genomic BLUP model trained on a Silico-DArT marker data set a. 

Training  
set 

Validation  
set 

rab rac 

rrBLUP BL GBLUP rrBLUP BL GBLUP 

DS MegaENV 0.329 0.319 0.332 0.380 0.368 0.383 

FAI-BLUP MegaENV 0.331 0.400 0.427 0.382 0.462 0.493 

DS-2018 DS -2019 0.377 0.330 0.519 0.438 0.384 0.603 

DS -2018 DS -2020 0.223 0.217 0.295 0.249 0.243 0.330 

DS -2019 DS -2018 0.198 0.197 0.177 0.250 0.220 0.223 

DS -2019 DS -2020 0.326 0.307 0.352 0.365 0.384 0.394 

DS -2020 DS -2018 0.198 0.204 0.201 0.250 0.236 0.253 

DS -2020 DS -2019 0.479 0.435 0.510 0.557 0.502 0.593 

a Prediction were based on 50 repetitions of 10-fold stratified cross validations per individual 

analysis. 

For the field datasets, models trained on DS-2018 and validated on DS-2019 

showed notable predictive abilities and accuracies, particularly GBLUP (rab = 0.519, 

rac = 0.603) while validating these models with DS-2020 decrease predictive abilities 

and accuracies. Training models with DS-2019 led to low predictive abilities and 

accuracies. Conversely, training models on DS-2020 and validating them with DS-

2019 exhibited again the highest predictive ability (rab = 0.479 for GBLUP) and 

accuracy (rac = 0.593 for GBLUP) within this CV2 scenario (Table 14). 

4.2.4. Influence of the MxE Interaction in the GBLUP Prediction 

In an effort to improve the predictive abilities and accuracies of the GBLUP 

model, we incorporated the marker × environment interaction (MxE) matrix as 

covariate within two cross-validation strategies: CV1 and CV2 (Table 4). When 

models were trained on controlled condition DS and tested on MegaENV dataset, the 

inclusion of the MxE interaction as covariate improved predictive abilities and 

accuracies under both CV1 and CV2 scenarios reaching rab values of 0.457 and 0.443 

and rac values of 0.528 and 0.511respectively. Addition of the MxE covariate also 

improves predictive abilities and accuracies of GBLUP models trained on FAI-BLUP 

index data and validated on MegaENV data reaching rab value of 0.500 and 0.465 

and rac values of 0.578 and 0.537 for CV1 and CV2 scenarios respectively (Table 15). 



Chapter 5 

159 

 

Again, FAI-BLUP data was found as the best training-controlled condition trait to 

predict accession response to rust in the field. 

Table 15. Predictive ability (rab) and predictive accuracy (rac) fitting the GBLUP 

model with the effect of the marker x environment interaction (MxE) as covariate in two 

Cross-Validation strategies. 

Training 
set 

Validation 
set 

rab rac 

CV1 CV2 CV1 CV2 

DS MegaENV 0.457 0.443 0.528 0.511 

FAI-BLUP MegaENV 0.500 0.465 0.578 0.537 

DS-2018 DS -2019 0.592 0.536 0.688 0.623 

DS -2018 DS -2020 0.343 0.297 0.383 0.332 

DS -2019 DS -2018 0.400 0.261 0.504 0.329 

DS -2019 DS -2020 0.455 0.300 0.509 0.335 

DS -2020 DS -2018 0.371 0.264 0.467 0.333 

DS -2020 DS -2019 0.670 0.541 0.779 0.623 

Using single field DS to predict another accession response to rust in another 

field season revealed varying results. Training in 2018 and validating in 2019 data 

showed high predictive abilities (rab = 0.592 in CV1 and rab = 0.536 in CV2) and 

accuracies (rac = 0.688 in CV1 and rac = 0.623 in CV2), indicating that the model 

could accurately capture the year-to-year environmental variance. The models 

trained in 2020 and validated in 2019 exhibited the highest predictive ability (rab = 

0.670 and 0.541 under CV1 and CV2 respectively) and accuracy (rac = 0.779 and 

0.623 under CV1 and CV2 respectively). However, training models on DS-2019 and 

validating on DS-2018 decreased predictive ability and accuracy. In summary, while 

the incorporation of the MxE matrix into the GBLUP model does not significantly 

influence the average predictive abilities and accuracies under CV1 scenario, it 

improves by 11% on average the predictive abilities under CV2 scenario (Additional 

file 11). This underscores the potential for the GBLUP model, with the Marker × 

Environment interaction, to predict disease resistance with considerable accuracy, 

especially when data can be validated with DS collected in field seasons with high and 

homogeneous rust infestation levels. 

5. Discussion 

The integration of quantitative genomic methodologies into plant breeding has 

opened a new era for variety development, characterized by reduced cycle times and 

cost savings through diminished reliance on extensive phenotyping (Crossa et al., 

2017). Among these techniques used in marker-assisted selection (MAS) are 

Genome-Wide Association Studies (GWAS) and Genomic Selection (GS). GS has 

gained attraction in legume breeding for the selection of lines with key agronomic 
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traits. However, the accurate prediction of complex traits, especially those like 

disease resistance with quantitative inheritance and strong environmental 

interactions, remains a significant barrier in the effective integration of GS into 

routine plant breeding workflows (Rubiales et al., 2021). In our study, we have 

assessed the ability and accuracy of three GS models to predict disease severity of rust 

in peas, an important trait controlled by such complex quantitative responses. We 

investigated various disease-related parameters as predictors of rust severity under 

controlled and field conditions. Our approach included the consolidation of 

controlled condition traits into a multi-trait index, enhancing our understanding of 

the trait’s performance in field scenarios. Through this, we were able to assess the 

stability of certain accessions deemed resistant or highly susceptible, spanning three 

distinct environments. This enabled a thorough evaluation of the GEI and of the 

consistency of environmental response on the accessions’ response to rust. Upon 

identifying the most promising model, we incorporated additional covariates, namely 

Marker × Environment interactions, to refine predictive performance. This strategic 

adjustment aimed to identify an optimal configuration for practical application in 

ongoing breeding programs. 

The population size and the quantity and quality of molecular markers 

employed are crucial to the efficacy of GS models (Zhang et al., 2017). Our pea 

collection, comprising 320 individuals, is consistent with the scope of analogous 

studies that utilize structured populations of comparable size to train GS models in 

pea (Annicchiarico et al., 2019; 2017; Tayeh et al., 2015). Our population size is also 

similar to those of other studies aiming the prediction of agronomically significant 

traits in other legume species (Biazzi et al., 2017; Pecetti et al., 2023). In line with 

previous findings, the Silico-DArT type marker dataset used here allow similar GS 

model fitting than SNPs datasets (Tayeh et al., 2015). It has been observed that the 

precision of GS models can be moderately enhanced by increasing the marker 

numbers (Heffner et al., 2011). Genotyping of our broadly diverse pea collection 

generated 26,046 high-quality polymorphic Silico-DArT markers covering all pea 

chromosomes after thorough data filtering. This robust marker framework lays the 

groundwork for evaluating genomic prediction models tailored to complex 

quantitative traits. Comparable GS studies that have calibrated models with a few 

thousand SNPs typically report lower predictive abilities ranging from 0.29 to 0.46 

than those reached here for intra-environment predictions (0.63) (Bonnett et al., 

2013; Oakey et al., 2016). Hence, the extensive marker coverage of our Silico-DArT 

marker largely improves the model’s predictive accuracy compared to studies 

including fewer markers. The comprehensive genetic diversity analysis by Rispail et 

al. (2023) demonstrated that the pea collection is structured and divided into either 

three or six clusters, encompassing the various species and subspecies of the Pisum 

genera. Nevertheless, this study also uncovered the presence of significant genetic 

admixture within the collection, indicating prevalent gene flow between sub-
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populations and attenuating the impact of population structure of the collection. 

Given that pronounced population structure can potentially reduce accuracy in cross-

validation schemes of GS, the weak/moderate structure observed in the pea collection 

is considered beneficial for the validation and application of our models. 

It is well-known that GEI is a significant factor influencing DS of rust, as shown 

for several pea studies in the field (Das et al. 2019; Osuna-Caballero et al., 2022). This 

influence is confirmed by by the present AMMI analysis (Additional file 11). Despite 

the complexity introduced by GEI, the phenotypic and genotypic correlations of DS 

under field conditions and the stability of selected accessions across environments 

allowed to consolidate three individual field evaluations into a Mega-Environment 

(MegaENV). The MegaENV reduce the effect of GEI and allow researchers to extract 

valuable information about accessions more effectively, making it a suitable solution 

for trait highly affected by GEI such as rust DS (González‐Barrios et al., 2019). The 

BLUP values derived from the MegaENV successfully integrate the variance of the 

three environments while retaining high correlation with each environment, as 

illustrated in Figure 18. Consequently, this MegaENV dataset, which reflects 

analogous climatic and edaphic conditions, acts as a robust validation set for models 

trained on controlled conditions data as confirmed by other authors (Lado et al., 

2016). 

Field phenotyping of extensive collections is critical for elucidating GEI, a 

cornerstone for the successful deployment of GS schemes (Budhlakoti et al., 2022). 

Nonetheless, this necessity stands in contrast to the associated high costs and 

intensive labour. In this study, we have explored the potential of using controlled 

condition data to predict rust severity observed under field conditions, where disease-

related parameters can be measured with greater accuracy. While some multi-trait 

GS models that incorporate various parameters for model training and validation 

have reported promising results (Gill et al., 2021), others have found that the 

improvements are not consistently marked across different traits (Jarquín et al., 

2014). Our study introduces an alternative approach that consolidates traits 

measured under controlled conditions into a single index: FAI-BLUP (Rocha et al. 

2018). This index, similar to MGDI, accounts for the multicollinearity among 

parameters, yielding more favourable outcomes than traditional indices founded on 

linear models (Rocha et al. 2018; Olivoto et al. 2020). Accordingly, the FAI-BLUP 

index showed the best predictive abilities of the controlled condition traits in the 

intra-environment GS scheme regardless of the model, highlighting its efficacy, and 

validating its application for other GS scenarios. Other authors who evaluated the 

consistency of multi-trait GS models obtained lower predictive abilities compared to 

the application of the FAI-BLUP index proposed here in intra-environment and 

across-environment configurations (Gill et al., 2021; Ward et al., 2019). 
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In the initial GS scheme, the predictive abilities of three models were evaluated 

for each trait within controlled and field conditions. While rrBLUP and BL models 

showed comparable predictive abilities under controlled conditions, GBLUP excelled 

under field conditions, boasting superior predictive abilities as previously shown in 

other related studies (Nazzicari & Biscarini, 2022; Wang et al., 2018). Notably, this 

enhancement in predictive performance was not mirrored for the FAI-BLUP index, 

which exhibited uniform prediction abilities across all three models. Additionally, the 

predictive ability of GBLUP was diminished for the MegaENV assessment. These 

discrepancies may be attributed to the distinct methodologies and assumptions 

inherent to each model. GBLUP, like rrBLUP, assumes that traits are influenced by 

many genes with small effects. However, GBLUP advantage emerges when 

considering the population structure and genetic relationships, which are critical 

factors under field conditions (Habier et al., 2007). We propose that field conditions 

reflect more accurately DS across the complete lifecycle of rust on pea plants, unlike 

controlled conditions that evaluate only the initial rust disease cycle on seedlings. 

Such controlled settings may not fully capture the phenotypic expressions that 

characterize each sub-population—such as leaf size and overall plant size—that could 

impact disease variation. Conversely, in the field, these sub-population traits are 

considered by the GBLUP model leading to more accurate predictions. This 

observation aligns with other studies where GBLUP has been preferred over rrBLUP 

and BL, particularly when modelling traits under field conditions that are influenced 

by population structure (Guo et al., 2014; Roorkiwal et al., 2016). 

In the following GS framework, which is more relevant for plant breeding, 

models were cross trained using data from two distinct conditions, and predictions 

were made for the validation set, which was also part of the training set (CV1). This 

strategy is particularly informative when the environments are homogeneous and 

exhibit strong interrelatedness. Indeed, our results confirm that environments with 

greater genetic or phenotypic similarity yielded higher predictive abilities as 

previously shown (Carpenter et al., 2018; Crosta et al., 2023). Consistently, the 

GBLUP model provided the most robust predictions, achieving a predictive accuracy 

of 0.730 when trained on DS-2020 and validated on DS-2019, and 0.577 when 

employing the FAI-BLUP index for training and validation on MegaENV. This 

highlighted the enhanced predictive potential of multi-trait index over single traits 

measured under controlled conditions (Table 13). Comparatively, these predictive 

accuracies signify an advancement over other GS research focused on pea diseases 

employing a similar cross-validation scheme (CV1) (Carpenter et al., 2018), and they 

even surpass those documented for rust resistance in wheat, ranging from 0.33 to 

0.44, using the same validation strategy and the GBLUP model (Daetwyler et al., 

2014). In the context of plant breeding, the most valuable scheme is the one that 

allows the prediction of phenotypic values in novel lines and untrained environments, 

a configuration referred to as CV2. In this study, CV2 assessment for rust resistance 
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in peas mirrored the pattern seen in CV1, albeit with lower rab and rac values. This 

outcome aligns with previous studies that documented a decline in predictive 

performance from CV1 to CV2 across legumes (Carpenter et al., 2018; Gill et al., 

2021). Despite this drop, the GBLUP model continued to exhibit moderate and still 

useful predictive abilities and accuracies, outperforming other models. The most 

effective approach to predict rust response in the field with controlled conditions data 

was to train models with the FAI-BLUP index and validating them on MegaENV. By 

contrast, to predict rust responses under field conditions with DS collected under 

field condition, the most accurate predictions were obtained when DS-2019 was used 

as validation dataset. This strategy achieved higher predictive values for plant disease 

resistance compared to other GS approaches using similar strategies (Juliana et al., 

2017; Rutkoski et al., 2011), confirming the utility of our models in practical breeding 

applications for rust resistance. 

In the final GS arrangement, we revisited the CV1 and CV2 cross-validation 

scenario of GBLUP model, which consistently provided superior predictive abilities 

and accuracies for the evaluated traits. In this iteration, we introduced the DArT-seq 

marker matrix's interaction with the environments (MxE) as covariate model (Lopez-

Cruz et al., 2015). This addition confirms the critical role of GEI interaction, enabling 

refined adjustments to enhance the model predictive abilities, as demonstrated in 

other studies targeting disease resistance in pea (Carpenter et al. 2018). This 

modification is especially beneficial for traits with complex genetic architectures such 

as rust resistance in pea, which are shaped by the interplay of genetic and 

environmental factors. By incorporating the MxE interaction, the model gains the 

capacity to account for the unique expression of genetic markers across different 

environments, a factor essential for the accurate prediction of phenotypes in variable 

conditions (Cuevas et al., 2016). As other researchers have shown for rust disease in 

other species, modifying the GBLUP model to include the MxE matrix empowers it 

to discern marker effects that may be prominent in one environment but not others, 

an aspect that is critically important in the CV2 scheme, where validation occurs in 

an environment not represented in the training dataset (Fois et al., 2021; Lopez-Cruz 

et al., 2015). Accounting for these interactions has yielded more precise predictions 

in new environments, improving accuracy by up to 11% in this study. We suggest that 

integrating the MxE effect might reduce model bias. Without this interaction, the 

model might be overfitting the conditions of the training set, particularly in the CV1 

scheme. Thus, the inclusion of the MxE covariate is instrumental to generalize the 

model, ensuring stability, and enhancing the accuracy of predictions across a 

spectrum of environmental scenarios. 

This study embarked on a comprehensive exploration of GS models to enhance 

the prediction of rust resistance in pea, a trait of paramount importance in legume 

breeding (Osuna-Caballero et al., 2024b). Our investigation, spanning various 

genomic selection schemes, provides critical insights into the applicability and 
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optimization of GS models for complex traits influenced by both genetic and 

environmental factors. Among the GS models evaluated, GBLUP model consistently 

emerged as the most effective, exhibiting superior predictive abilities and accuracies 

across different environments and traits. This model's strength lies in its ability to 

account for the intricate genetic architecture of rust resistance, a trait governed by 

numerous genes with minor effects and substantially influenced by environmental 

interactions. The success of GBLUP underscores its potential as a powerful tool in 

plant breeding programs, particularly for traits that are challenging to phenotype and 

influenced by environmental conditions. Our study also highlighted the importance 

of accounting for GEI in GS models. By integrating Marker x Environment (MxE) 

interactions as a covariate, we achieved a notable enhancement in the model's 

predictive accuracy, especially under the CV2 cross-validation scenario where 

predictions were made for untested environments. This adjustment demonstrates the 

critical role of environmental factors in shaping phenotypic expression and the 

necessity of modelling these interactions for precise genomic predictions. The 

practical implications of our findings are significant in plant breeding, where 

efficiency and accuracy are paramount, the ability to predict rust resistance in peas 

using GS models, particularly GBLUP with MxE interactions, represents a substantial 

advancement. This approach not only contribute to the breeding process but also 

reduces reliance on extensive phenotyping, which is often resource-intensive and 

environmentally constrained. Our results are especially encouraging for breeding 

programs aimed at developing rust-resistant pea varieties, as they offer a method to 

identify promising lines rapidly and accurately. Moreover, the use of a multi-trait 

index, particularly the FAI-BLUP index, further refined our predictions. This index, 

by integrating multiple traits associated with disease resistance under controlled 

conditions, provided a more holistic view of the genetic potential of each accession, 

outperforming the predictions based on single traits measured under controlled 

conditions. This suggests that incorporating multi-dimensional trait data into GS 

models can yield more robust predictions, a strategy that could be extended to other 

complex traits in plant breeding. In conclusion, our study not only reaffirms the 

efficacy of genomic selection in plant breeding but also advances our understanding 

of how to effectively model complex traits like rust resistance in pea. The insights 

gained here have broader applications in the field of agricultural genetics, providing 

a roadmap for harnessing genomic tools to accelerate the development of crop 

varieties that are resilient to diseases and adaptable to varying environmental 

conditions. As we look to the future, the integration of advanced genomic tools, such 

as those explored in this study, will be instrumental in meeting the growing 

challenges of global food security and sustainable agriculture. 
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6. Additional files 

Additional file 10. AMMI analysis table. Two interactions principal component axis 

(IPCA) were fitted and significant at 5% probability error. 

Source Df Sum Sq Mean Sq F value Pr(>F) Proportion Accumulated 

ENV 2 68194 34097 147.43 6.19E-60 NA NA 

REP(ENV) 6 139557 23260 100.57 5.08E-109 NA NA 

BLOCK 
(REP*ENV) 

162 81240 501 2.17 4.49E-14 NA NA 

GEN 323 277957 861 3.72 1.39E-69 NA NA 

GEN:ENV 646 485286 751 3.25 5.04E-84 NA NA 

PC1 324 385781 1191 5.15 0.00E+00 79.3 79.3 

PC2 322 100731 313 1.35 1.00E-04 20.7 100 

Residuals 1764 407964 231 NA NA NA NA 

Total 3549 1946710 549 NA NA NA NA 

 

 

Additional file 11. Prediction accuracy of GBLUP model in two cross-validation schemes 

(CV1 at the top and CV2 at the bottom) based in the training/validation test described at the 

bottom of each boxplot. 
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General Conclusions 

i. This thesis has successfully identified novel sources of rust resistance within a 

diverse collection of pea accessions, underlining the value of extensive crop core 

collections in pinpointing key traits. Beyond revealing additional sources of 

partial resistance comparable to the most resistant accessions known 

previously, we have also discovered a unique case of moderate, late-acting 

hypersensitive response (HR) in one accession. This particular response to U. 

pisi in peas has not been documented before. Integrating this accession, along 

with the newly identified partial resistance sources, into our breeding programs 

is expected to expand the genetic base of resistance (Chapter 2). 

ii. This thesis introduces a novel, image-based phenotyping method for rust 

disease in peas, utilizing RGB spectral indices segmentation and pixel 

thresholding for accurate disease assessment. This efficient technique, which 

rapidly processes images with minimal computational demands, accurately 

measures disease severity and pustule count on leaflets. Its speed and precision, 

comparable to traditional visual methods, mark a significant advancement over 

existing workflows. Uniquely capable of daily tracking complex disease 

progression parameters, this R script-based approach also offers adaptability 

for studying rust in other pathosystems. By reducing subjective bias inherent in 

manual assessments, this method enhances both fundamental research and 

plant breeding, paving the way for more effective disease management and the 

development of genetically resistant pea varieties (Chapter 3). 

iii. The GWAS study proposed here significantly advances our understanding of 

rust resistance in peas, revealing 95 molecular markers and 62 candidate genes 

linked to partial resistance. These findings not only validate the power of GWAS 

in identifying new resistance-associated QTL but also provide a diverse set of 

potential gene targets for future research and breeding strategies. The 

identification of genes analogous to those in cereal rust resistance suggests a 

shared resistance mechanism. These insights are instrumental for developing 

targeted breeding programs and genomic prediction models, enhancing pea 

crop resilience against rust disease, and supporting sustainable agricultural 

practices by reducing fungicide reliance (Chapter 4). 

iv. The GBLUP model's superiority was highlighted in accommodating the 

complex genetic and environmental factors influencing rust resistance in pea. 

Notably, incorporating Marker x Environment interactions into GBLUP 

significantly enhanced predictive accuracy, especially in scenarios involving 

untested environments and lines. This advancement underscores the potential 

of GS in efficiently identifying rust-resistant pea varieties, thereby reducing 

reliance on labour-intensive phenotyping. The use of the FAI-BLUP index, 
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integrating multiple disease resistance traits, further improved the robustness 

of our predictions. Our findings offer valuable insights for plant breeding, 

suggesting a promising approach to developing disease-resilient crops and 

contributing to global food security and sustainable agriculture (Chapter 5).
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