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Abstract 20 

Amygdalin is a cyanogenic compound found in almonds which gives them their bitter 21 

taste. For the almond industry, it is important to prevent the presence of bitter almonds in 22 

batches of sweet almond that can affect their commercialization and even consumer 23 

safety. This study sought to ascertain the viability of near infrared spectroscopy (NIRS), 24 

as a fast and reliable candidate for non-destructive and in situ quantification of amygdalin 25 

levels and for classification of almonds by bitterness, when analysed in bulk. With that 26 

purpose, in-shell and shelled sweet and bitter almonds were analysed in dynamic mode 27 

using two new handheld NIRS instruments. As a first step, the amygdalin levels in in-28 

shell and shelled almonds were determined using modified partial least squares (MPLS) 29 

and local regression algorithms. Next, classification models for bitterness were made 30 

using partial least square discriminant analysis (PLS-DA). For the discrimination between 31 

sweet and bitter almonds, two strategies to set up the optimum threshold were studied: 32 

the mean value of the discriminant variables and the value calculated using the Receiver 33 

Operating Characteristic (ROC) curves. The results for measuring amygdalin in shelled 34 

almonds showed that NIRS technology, using both regression algorithms, is a robust 35 

technology for inspection purpose at an industrial level. Additionally, excellent 36 

performances were obtained for the classification models of the two in-shell and shelled 37 

almond groups analysed in bulk with both instruments, with better results when the 38 

threshold values obtained from the ROC curves were applied.  39 

 40 

Keywords: In-shell and shelled almonds; In situ bulk NIRS analysis; Amygdalin content; 41 

Discriminant analysis; ROC curve optimum threshold   42 
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1. Introduction 43 

Almonds can be divided into two distinct groups: sweet almonds and bitter 44 

almonds. The bitter taste of almonds is due to the presence of cyanogenic compounds, 45 

such as amygdalin (D-mandelonitrile-2-D-gentiobioside), which is present in almond 46 

kernels, and its precursor, prunasin. The prunasin is a monoglycoside present in the roots, 47 

leaves and kernel of unripe almonds, which turns into amygdalin during the ripening 48 

process (Frehner et al., 1990; Barceloux, 2009). Both compounds are highly toxic and 49 

directly influence the product’s sensory qualities and acceptability (Arrázola et al., 2012).  50 

Chewing brings amygdalin into contact with the emulsine present in saliva, a β-51 

glucosidase, which breaks this compound down into β-D-glucose, benzaldehyde, and 52 

hydrogen cyanide. The benzaldehyde is responsible for the bitter taste and the hydrogen 53 

cyanide can cause toxicity. In addition, the consumption of these compounds can lead to 54 

poisoning, depending on the amount of bitter almonds ingested (Morant et al., 2008; 55 

Mouaffak et al., 2013). 56 

Therefore, the possible existence of bitter almonds in batches of sweet almond can 57 

lead to problems in their commercialization and can even affect consumer safety. This 58 

accounts for the need to prevent bitter almonds from being processed at an industrial level 59 

together with the sweet almonds. However, there is a great variability in the sweet almond 60 

batches due to the heterogeneity of shapes, weights and sizes, as well as their variable 61 

nutrient composition, which is mainly derived from the variety to which they belong. This 62 

variability makes it extremely difficult for the handling and processing industry to classify 63 

them correctly (Yada et al., 2013; Arrázola-Paternina et al., 2015). 64 

Currently, the analytical technique used officially to measure the cyanogenic 65 

compounds found in these nuts is high performance liquid chromatography (HPLC), 66 

which requires a previous extraction process by which the almond has to be shelled before 67 
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the levels of amygdalin and prunasin can be measured (Lee et al., 2013; Xu et al., 2017; 68 

Cortés et al., 2018a). This analytical technique is complex, destructive, highly expensive 69 

and time consuming to obtain results. It therefore does not allow real-time responses to 70 

be obtained, nor is it affordable for all almond processing industries. 71 

For these reasons, the industry currently needs the development, fine-tuning and 72 

implementation of faster, cheaper, non-destructive, reliable analytical methodologies to 73 

detect bitter almonds which are simpler to use routinely and non-polluting, both in the in-74 

shell and the shelled product. Near infrared spectroscopy (NIRS) is one of the most 75 

suitable analytical technologies for this purpose, since it combines speed in its 76 

measurements with great versatility, rapid data collection and low cost per sample 77 

(Sánchez and Pérez-Marín, 2011). This technology is also highly versatile and allows to 78 

analyse the different parameters simultaneously and instantaneously with a single 79 

spectrum and give information at different points in the value chain about the quality and 80 

authentication of the product analysed in situ. In addition, thanks to advances in the 81 

instrumentation over recent years, portable NIRS instruments are now available (Teixeira 82 

Dos Santos et al., 2013; Pasquini, 2018; Yan and Siesler, 2018; Cortés et al., 2019; Beć 83 

et al., 2020). 84 

A number of published works have evaluated the use of NIRS technology in 85 

different areas of almond production: for diagnosing fungal diseases in seeds using the 86 

Foss NIRSystem 6500 spectrophotometer, which is suitable for analysing laboratory 87 

samples (Liang et al., 2015); for assessing damage to raw almonds using the MicroNIR 88 

2200, a portable instrument suitable for in situ product analysis (Rogel-Castillo et al., 89 

2016); for classifying sweet and bitter almonds using the FT-NIR MB160PH Aridzone 90 

instrument (Borrás et al., 2014); and for predicting the amygdalin content and its varietal 91 
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differentiation in almonds analysed with the AvaSpec-NIR256-1.7 NIRLine instrument 92 

(Cortés et al., 2018a, b).  93 

However, these previous works have all been carried out in individual, previously 94 

shelled kernels, and not in batches of the product, as required by the industry. In addition, 95 

no published studies have been found which deal with in-shell almonds. However, the 96 

study of both in-shell and shelled almonds in bulk is of maximum interest since it involves 97 

a practical application of NIRS technology in the almond industry. This would allow to 98 

measure the amygdalin content in product batches and to discriminate between batches 99 

of sweet and bitter almonds when they are received by the industry and throughout the 100 

production process. 101 

The aim of this research work was to assess the viability of NIRS technology for 102 

measuring the amygdalin content in almonds and for differentiating between sweet and 103 

bitter in-shell and shelled almonds, analysed in bulk. At the same time, the performance 104 

of two portable latest generation NIRS instruments with different optical designs, which 105 

are suitable for in situ analysis of the product, was compared to identify the most suitable 106 

spectrophotometer for these purposes. 107 

 108 

2. Materials and methods 109 

 110 

2.1. Samples 111 

 112 

 A total of 145 in-shell almond samples, harvested during the season 2018-2019, 113 

were used in this study. This set in turn was comprised of a group of 84 in-shell sweet 114 

almonds (Prunus dulcis Mill., cv. ‘Antoñeta’, ‘Belona’, ‘Guara’, ‘Lauranne’, ‘Soleta’ and 115 

‘Vairon’) and a group of 61 in-shell bitter almonds of different varieties. Additionally, 84 116 
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samples of shelled sweet almonds, of the same varieties and batches as above were 117 

analysed while the 61 in-shell bitter almond samples were later manually shelled and 118 

analysed. Each sample was around 750 g. 119 

 120 

2.2. NIR spectrum acquisition 121 

 122 

The near infrared (NIR) spectra of the in-shell and shelled sweet and bitter 123 

almonds were taken using two portable handheld NIRS instruments of different optical 124 

designs and technical specifications; the Aurora spectrophotometer (GraiNit S.r.l., 125 

Padova, Italia) and the MicroNIR™ Pro 1700 (VIAVI Solutions, Inc., San Jose, 126 

California, USA), both suitable for the in situ analysis of the product. 127 

The Aurora spectrophotometer is a robust, compact, handheld instrument based 128 

on diode array technology. This instrument works in reflectance mode in the spectral 129 

range 950–1650 nm, taking data every 2 nm, with an optical window of 1256 mm2, and 130 

has an internal reference, which facilitates calibration. In this work, the sensor integration 131 

time was 6.57 ms and each spectrum was the mean of 50 scans. Acquisition of the spectra 132 

was carried out by means of the UCal 4TM software (Unity Scientific LLC, Milford, MA, 133 

USA). Each sample of in-shell and shelled almonds was uniformly distributed on a white 134 

plastic tray covering the whole surface. Four spectra were taken per sample by moving 135 

the sensor along the tray containing the almonds (dynamic analysis mode), covering the 136 

entire area of the tray. 137 

The MicroNIR™ Pro 1700 instrument was also used in this study. It is a light 138 

portable miniature spectrophotometer which works in reflectance mode in the spectral 139 

range 908 to 1676 nm with a constant interval of 6.2 nm. This instrument incorporates 140 

Linear Variable Filters (LVF) technology as the dispersion element and has an optical 141 
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window of around 227 mm2. In this work, the sensor integration time was set at 11 ms 142 

and each spectrum was the mean of 200 scans. Spectra acquisition was carried out using 143 

the VIAVI MicroNIR software Pro version 2.2 (VIAVI Solutions, Inc., San Jose, 144 

California, USA). The instrument’s performance was checked every 10 minutes. A white 145 

reference measurement was obtained using a NIR reflectance standard (SpectralonTM) 146 

with 99 % diffuse reflectance, while a dark reference was obtained from a fixed point on 147 

the floor of the room. For in-shell and shelled almonds, the analysis was carried out in 148 

dynamic mode following the same procedure described above for the product uniformly 149 

distributed on white plastic trays. Four spectra were also taken per sample. 150 

Finally, the four spectra were averaged to obtain a mean spectrum per sample for 151 

each presentation form and instrument. 152 

 153 

2.3. Reference data  154 

 155 

Prior to the extraction of amygdalin, 200 g of shelled almonds were ground in a 156 

SK-3 Cutter-Blender (Sammic, Guipúzcoa, Spain) for 60 seconds. Then, 0.6 g of ground 157 

almonds were inserted in a 50 mL screw cap tube and mixed with 15 mL of methanol. 158 

After that, the mixture was homogenized using a T25 Ultra-Turrax (IKA-Werke Staufen, 159 

Germany) for 1 minute. The extraction was performed under constant stirring for 24 hours 160 

at 30 ºC. Then, the tubes were centrifuged (Selecta Medifriger-BL, Barcelona, Spain) at 161 

4000 rpm for 15 minutes at 6 ºC. Next, the supernatant was filtered using a 0.45 µm 162 

polytetrafluoroethylene (PTFE) syringe filter. The samples were extracted in duplicate 163 

and stored at -80 °C for high performance liquid chromatography diode array detector 164 

(HPLC-DAD) analysis. Additionally, the amygdalin standard was prepared by dissolving 165 

the pure compound in methanol (1 g L-1). 166 
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Amygdalin determination was performed using in a HPLC Perkin Elmer series 167 

200 (Waltham, MA, USA), consisting of an HPLC pump, a diode array detector (DAD), 168 

and an autosampler operating at 4 °C, and following the method described by Cortes et 169 

al. (2018a), with some modifications. Briefly, the amygdalin was separated on a 150 × 170 

4.6 mm i.d. Luna 3 µm C18 (2) column and a 4.0 × 3.0 mm guard column from Analytical 171 

Phenomenex (Torrance, CA, USA) and maintained at 40 °C. In the mobile phases, A: 172 

deionized water and B: acetonitrile, were pumped at a flow rate of 0.3 mL min-1 using an 173 

isocratic method (80 % A–20 % B) for 12 minutes. The injection volume was 10 μL and 174 

detection was carried out at 218 nm. The linearity of the method was determined by a 175 

regression analysis of the area versus the amygdalin concentrations. Thus, standard 176 

solutions of amygdalin in concentrations ranging from 0.001 to 10 g L-1 were prepared 177 

and analysed in triplicate. The determination coefficients (R2) obtained for the standard 178 

curves were higher than 0.9945. 179 

 180 

2.4. Spectral data pre-processing and definition of calibration and validation sets 181 

 182 

Data pre-processing and chemometric treatments were performed using the 183 

WinISI II software package version 1.50 (Infrasoft International LLC, Port Matilda, PA, 184 

USA) (ISI, 2000) and Matlab R2019a (The Mathworks, Inc., Natick, MA, USA). 185 

The sample set used to carry out the quantitative models for amygdalin 186 

determination consisted of 145 in-shell and 145 shelled samples. The structure and 187 

variability of the population available was studied using the CENTER algorithm (Shenk 188 

and Westerhaus, 1995a), which was applied to the four sets of in-shell and shelled 189 

almonds analysed with both instruments used, previous to calibration development.  190 
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The algorithm performs a principal component analysis (PCA) and calculates the 191 

global Mahalanobis distance (GH) of each sample to the centre of the population in the 192 

new n-dimensional space, which enables to sort the samples by their GH distance. An in-193 

depth study of those samples considered as potential outliers or anomalous spectra (GH 194 

> 3.5) was carried out. The CENTER algorithm was applied using a combination of 195 

mathematical pre-treatments — Standard Normal Variate (SNV) and De-trending (DT) 196 

for scatter correction (Barnes et al., 1989), together with the 1,5,5,1 Norris derivative 197 

treatment, where the first digit is the order of the derivative, the second is the gap over 198 

which the derivative is calculated, the third is the number of data points in a running 199 

average or smoothing and the fourth is the second smoothing (Shenk and Westerhaus, 200 

1995b). 201 

Having ordered the sample sets by spectral distances from smallest to largest from 202 

the centre, a structured selection of the validation set, i.e. one out of every four samples 203 

in the overall set of shelled almonds analysed with Aurora instrument, was performed 204 

(Nvalidation = 35). The remaining samples were used to build the calibration set (Ncalibration 205 

= 110) (Shenk and Westerhaus, 1991). Similarly, these samples were then selected to 206 

form the calibration and validation groups for the other three groups - i.e. the shelled 207 

almonds analysed with Aurora and the in-shelled and shelled almonds analysed with 208 

MicroNIRTM Pro 1700. 209 

 210 

2.5. NIRS quantitative models for the prediction of amygdalin content using linear and 211 

non-linear regression procedures 212 

 213 

2.5.1. MPLS regression 214 
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To develop the NIRS calibration models to predict amygdalin content in intact 215 

almonds, the modified partial least squares (MPLS) regression with five cross-validation 216 

groups was used (Fig. 1), using the combined pre-treatment of SNV + DT and first or 217 

second derivative, 1,5,5,1 and 2,5,5,1 treatment (Shenk and Westerhaus, 1995a). 218 

The best models were selected using the statistics, coefficient of determination for 219 

cross validation (R2
cv), standard error of cross validation (SECV) and the residual 220 

predictive deviation for cross validation (RPDcv), and were then subjected to an external 221 

validation process. For this, the validation samples were used, and the external validation 222 

protocol proposed by Windham et al. (1989) was applied to assess their predictive 223 

capacity. 224 

 225 

2.5.2. LOCAL algorithm 226 

In addition, in this study, we applied a non-linear regression method based on local 227 

calibrations. Thus, the LOCAL algorithm (ISI, 2000) was used to predict amygdalin 228 

content in shelled almonds analysed with the two handheld instruments tested (Fig. 1). 229 

LOCAL algorithm works by selecting, for each sample to be predicted, those 230 

samples which belong to the spectral library available and most resemble the unknown 231 

sample. The selected samples are then used to compute a specific calibration equation for 232 

each sample to be predicted, based on PLS regression (Shenk et al., 1997; Pérez-Marín et 233 

al., 2007).  234 

The calibration samples were selected taking into account the coefficient of 235 

correlation value between the spectrum of the unknown sample and those comprising the 236 

spectral data base (Shenk et al., 1997). The parameters defined to run and optimize the 237 

algorithm for this study of viability were: the number of calibration samples (k) from 30 238 

to 50 in steps of 10, the minimum number of calibration samples, fixed at 15, the 239 
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maximum number of PLS factors (l), which was set at eight, and the number of the first 240 

PLS factors to be removed, fixed at three. Furthermore, the same mathematical signal 241 

pre-treatments indicated for MPLS regression were also evaluated. 242 

The coefficient of regression for prediction (Rp
2), the standard error of prediction 243 

(SEP), the bias, the standard error of prediction corrected for bias (SEP(c)) and the slope 244 

value were all used to assess the performance of the LOCAL algorithm using the different 245 

settings defined above. After that, the accuracy of prediction of the LOCAL algorithm 246 

was compared to the SEP and Rp
2 of MPLS regression. 247 

 248 

2.6. Study of the sweet and bitter almond population and construction of NIRS 249 

classification models 250 

 251 

The discriminant study of the sweet and bitter almonds was carried out using a set 252 

of 139 samples (84 sweet and 55 bitter almond samples). In a study conducted by the 253 

California Almond Board it was established that semi-bitter and bitter almonds had an 254 

amygdalin content of 520-1800 mg kg-1 and superior to 33,000 mg kg-1, respectively (Lee 255 

et al., 2013). Considering that, 6 samples with amygdalin levels between 62-374 mg kg-1 256 

initially considered as bitter were not used for classification purposes. 257 

First, a PCA was performed using the full set of 139 shelled samples analysed 258 

with the Aurora instrument and the scores and loadings of this PCA were studied to 259 

explore the potential differences between the sweet and bitter almond groups. 260 

Next, the CENTER algorithm was applied to the eight sets of in-shelled and 261 

shelled sweet and bitter almonds analysed with both instruments, prior to the development 262 

of the qualitative models. The samples that showed a GH > 3.5 were considered as 263 
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potential outlier samples and consequently, the spectral and chemical characteristics of 264 

those samples were studied in detail.  265 

After applying the CENTER algorithm and ordering the set of samples by spectral 266 

distances, the structured selection of training and validation groups was carried out, 267 

following the procedure proposed by Shenk and Westerhaus (1991). To select the 268 

validation set, one out of every nine sweet samples and one out of every six bitter samples 269 

were selected from the group of shelled samples analysed, using the Aurora instrument. 270 

The validation set therefore consisted of a total of 20 samples, 10 sweet and 10 bitter, 271 

while the remaining samples were used to make up the training set (Nsweet = 74 and Nbitter 272 

= 45). Similarly, the same samples were selected from the other six groups (sweet and 273 

bitter in-shell almonds tested with Aurora, and sweet and bitter in-shell and shelled 274 

almonds tested with MicroNIRTM Pro 1700) to make up their respective training and 275 

validation sets. 276 

The classification models for the sweet and bitter almonds were carried out using 277 

partial least squares-discriminant analysis (PLS-DA) (Fig. 1) for supervised classification 278 

(Naes et al., 2002). Specifically, the PLS2 algorithm was used, which generates as many 279 

discriminant variables as there are classes in the learning group. To develop these models, 280 

six cross-validation groups were used and a maximum number of 10 PLS terms was 281 

considered. The same signal pre-treatments described earlier for quantitative analysis 282 

were also tested for qualitative model development. 283 

The performance of the models was assessed in terms of the sensitivity (fraction 284 

of the true positives divided by the true positives and false negatives), specificity (fraction 285 

of true negatives divided by true negatives and false positives) and non-error rate (NER), 286 

which represents the percentage of correctly classified samples. 287 
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Initially, these models were carried out considering the mean value (1.5) of the 288 

discriminant variables as the threshold to discriminate between bitter (class 1) and sweet 289 

(class 2) almonds. However, according to Downey (2000), this may not be the optimal 290 

limit when the models are not balanced as regards the number of samples of the two types. 291 

Consequently, and due to the great importance of eradicating the presence of bitter 292 

almonds from the marketing channels has for producers of sweet almonds intended for 293 

consumption as snacks and other products, an optimum threshold value using the 294 

Receiver Operating Characteristic (ROC) curves was also calculated (Serrano-Lourido et 295 

al., 2012; Martínez -Cagigal, 2020). 296 

The aim here was to maximize the sensitivity and specificity values obtained with 297 

the models developed with a different number of samples per type. In this study, the 298 

strategy aimed at optimizing the threshold value was considered more suitable than the 299 

one which the models are balanced on, with an equal number of samples per class to 300 

discriminate: this involves removing a large number of samples from the type with the 301 

most samples, and this information can be very useful when developing the classification 302 

models. 303 

The ROC curve is a two-dimensional mapping of the ‘false positive rate’ and the 304 

‘true positive rate’ (also respectively called ‘1 – specificity’ and ‘sensitivity’) for all the 305 

possible threshold values between the two classes being studied (Unal, 2017). However, 306 

to obtain the optimal threshold, threshold values were sought that would maximize the 307 

sensitivity and specificity of the model. In those trials which did not have a single 308 

threshold value, but a range of values which maximized sensitivity and specificity, the 309 

optimal threshold was taken from the midpoint of the range (Tena et al., 2014).  310 

Finally, the best classification models obtained were subjected to an external 311 

validation process, using those samples belonging to the validation group. 312 
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 313 

3. Results and discussion 314 

 315 

3.1. Prediction of amygdalin content in almonds using MPLS regression and LOCAL 316 

algorithm 317 

 318 

When the CENTER algorithm was applied to the 145 samples available for 319 

amygdalin determination, four samples presented a GH > 3.5 (3.70, 3.86, 3.89 and 6.43) 320 

when the analysis was carried out in in-shell almonds with the Aurora instrument, plus 321 

four (GH = 3.52, 4.03, 5.34 and 8.20) using the MicroNIRTM Pro 1700, three of which 322 

were included in the four samples with GH > 3.5 identified using the Aurora instrument. 323 

Only one sample belonging to the group of shelled almonds analysed using the Aurora 324 

instrument showed a GH value above the limit (5.52). No shelled samples analysed using 325 

the MicroNIRTM Pro 1700 instrument presented GH values higher than 3.5. 326 

It is worth noting that most of the samples presenting GH values above 3.5 327 

belonged to the group of samples analysed in-shell, which is, based on previous studies 328 

developed by this research group, the sample presentation form that reported the lowest 329 

repeatability compared to those NIRS analyses carried out with shelled almonds. None of 330 

the samples which had a GH > 3.5 were eliminated, since according to a detailed study, 331 

there were no reasons to justify the elimination of these samples. 332 

Table 1 shows the cross validation results for the best prediction models for the 333 

amygdalin content in in-shell and shelled almonds analysed with the two instruments 334 

tested, using MPLS regression. 335 

According to Shenk and Westerhaus (1996) and Williams (2001), the models 336 

developed to predict amygdalin content in in-shell almonds with both instruments would 337 
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enable to discriminate between almonds with low, medium and high amygdalin content. 338 

The in situ quantification of the amygdalin content in in-shell almonds allows to conduct 339 

a first screening of the product when received by the industry. Carrying out this screening 340 

at the reception points in the industry is of great importance, since the industrial 341 

destination of the product will depend on the amount of amygdalin it contains. 342 

This screening in turn would enable to avoid not only the consumption of 343 

poisonous substances, but also the typical unpleasant taste of bitter almonds. No previous 344 

studies can be found in the literature which focus on predicting the amygdalin content in 345 

in-shell almonds.  346 

The models of amygdalin content in shelled almonds showed an excellent 347 

predictive capacity for both instruments, with R2
cv values of 0.95 or higher, and RPDcv 348 

values higher than 4 (Shenk and Westerhaus, 1996; Williams, 2001). A study conducted 349 

by Cortés et al. (2018a) proved NIR spectroscopy to be a suitable tool to quantify the 350 

amygdalin content in intact shelled almonds when the product was analysed as individual 351 

kernels. However, in the present research, the suitability of NIRS technology was proven 352 

when the almond kernels were analysed in batches. This can be very useful when it comes 353 

to the quantification of the amygdalin content of the batches, which makes this tool 354 

extremely useful for managing the industrial destination of these batches. 355 

Validation of the best calibration models developed with in-shell and shelled 356 

almonds and the two instruments tested using MPLS regression was carried out to predict 357 

the external validation sets. The negative NIRS predicted values for the amygdalin 358 

content are shown as zero (Fig. 2). 359 

The models developed with in-shell almonds complied with the protocol from 360 

Windham et al. (1989) in terms of the standard error of prediction corrected for bias (SEP 361 

(c)) and the bias, but neither of them complied with the coefficient of determination for 362 
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prediction (R2
p) and only the model developed with samples analysed with the Aurora 363 

instrument did so for slope. These prediction results indicate a limited predictive capacity 364 

when in-shell almonds are used to develop the model. However, the R2
p, SEP(c), bias and 365 

slope values of the models developed for shelled almonds with both instruments were 366 

within the confidence limits established in the protocol established by these authors. 367 

According to Nicolaï et al. (2007), the RPDp values presented by both models developed 368 

with shelled almonds indicate an excellent predictive capacity, and these equations can 369 

therefore be applied routinely. 370 

As regards amygdalin content parameters, it is common to find groups of almonds 371 

with very different amygdalin contents, which in practice form two very different 372 

populations, sweet almonds and bitter almonds. The LOCAL algorithm was therefore 373 

used only at the feasibility study level, since the number of samples available was small. 374 

However, the methodology was considered eminently suitable for sampling groups of this 375 

type and for facilitating the prediction of amygdalin by the industry. 376 

The best results to predict amygdalin content in shelled almonds using the LOCAL 377 

algorithm are shown in Table 2. When the Aurora instrument was used, the value for R2
p 378 

was improved by 2 % and the SEP was reduced by 16 % as compared to the prediction 379 

results obtained for the MPLS model developed with shelled almonds analysed with this 380 

instrument. These results highlight that the application of the LOCAL algorithm 381 

constitutes an excellent strategy to obtain accurate predictions of the amygdalin content 382 

in shelled almonds. Although Shenk et al. (1997) recommend using the LOCAL 383 

algorithm with large databases, in this research we aimed to give a hint of the potential of 384 

non-linear methods such as LOCAL algorithm to address the problem of 385 

underrepresentation of samples in the 10,000–30,000 mg kg-1 amygdalin range, which 386 
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leads to the presence of two different groups of samples based on their content of this 387 

cyanogenic compound. 388 

 389 

3.2. Exploratory study of the sweet and bitter almond population 390 

 391 

The first and second principal components (PCs) scores plot enabled to evidence 392 

the separation between the sweet and the bitter shelled almonds analysed using the Aurora 393 

instrument (Fig. 3a). The sweet almonds were associated with PC2 negative values, 394 

whereas the bitter ones tended to present positive values for this PC. Seven out of the nine 395 

bitter almonds with slightly negative values for PC2 presented amygdalin reference 396 

values under 7,200 mg kg-1, with the amygdalin range the bitter almonds 922.97-397 

80,980.13 mg kg-1. 398 

The loading plot (Fig. 3b) showed the main regions for differentiating between 399 

the two classes of almond. PC1 showed a peak at 1212 nm, which could be related to the 400 

second overtone of C-H bonds and in turn to the presence of lipids, and a peak at 1390 401 

nm characteristic of C-H combination, probably related to fatty acids and carbohydrates. 402 

Likewise, PC2 exhibited three main peaks at around 1136 nm that might be attributed to 403 

the second overtone of the C-H stretch, 1152 nm, which could correspond to the C-H 404 

links of aromatic compounds, and 1406 nm, which could be linked to the first overtone 405 

of the O-H functional groups (Shenk et al., 2008; Rogel-Castillo et al., 2016; Zhang et 406 

al., 2018; Firmani et al., 2019). 407 

The positive values found in the PC2 axis of the bitter almond samples could be 408 

attributed partly to the peak observed in the 1152 nm wavelength of the loading values 409 

for this PC. As has been mentioned above, the absorption band at around 1152 nm might 410 

be related to the aromatic compounds of almonds, and could associate, therefore, with 411 
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bitter almonds with a higher content of aromatic compounds compared to sweet ones. 412 

Kesen et al. (2018) showed that the amount of aromatic compounds in bitter almond oil 413 

(315,283 μg kg-1) was much higher than the amount of these compounds in sweet almonds 414 

(3,002 μg kg-1), which supports the statement formulated above. 415 

 416 

3.3. Classification of almonds by bitterness  417 

 418 

When the CENTER algorithm was applied to the sweet and bitter almond sets 419 

separately, two samples (GH = 3.61 and 4.76) belonging to the group of bitter almonds 420 

analysed in-shell with the Aurora instrument, plus one sample (G = 3.79) belonging to 421 

the group of bitter samples analysed in-shell using the MicroNIRTM Pro 1700, presented 422 

GH values higher than 3.5. No justifiable reasons were found to eliminate these samples 423 

from the set and these samples were therefore not discarded. 424 

Table 3 shows the results of the classification models obtained, considering a pre-425 

defined threshold value of 1.5 in terms of sensitivity, specificity and NER. The models 426 

correctly classified by cross-validation 74/74 samples of sweet almonds and 44/45 427 

samples of bitter almonds, while in external validation they correctly classified 10/10 428 

sweet samples and 9/10 bitter samples, for the group of in-shell almonds analysed using 429 

the Aurora instrument. When the in-shell almond group was analysed using the 430 

MicroNIRTM Pro 1700, 73/74 sweet and 42/45 bitter samples were well-classified, 431 

respectively, in cross-validation, while in external validation, all were correctly classified. 432 

Although the models developed with both instruments classified the majority of the 433 

samples correctly, the difference in terms of sensitivity and specificity in cross-validation 434 

between the two instruments could be due to the larger window size of the Aurora 435 

spectrophotometer, which allows to obtain a more representative measurement of the 436 
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sample and consequently, greater precision in discriminating between the two types being 437 

studied. 438 

The models developed with shelled almonds showed 100 % of correctly classified 439 

samples in all cases.  440 

However, Naes et al. (2002) and Brereton (2009) have shown that when the types 441 

are unbalanced in terms of number of samples, the PLS-DA prediction boundary will be 442 

biased towards the smaller type, and therefore, a greater number of poorly classified bitter 443 

samples will occur (Fig. 4). 444 

Fig. 5 and Fig. 6 show the sensitivity and specificity values against the threshold 445 

values and the ROC curves, respectively. In all cases, there is a range of threshold values 446 

which maximizes sensitivity and specificity (Fig. 5). The midpoint of this interval was 447 

chosen as the optimal cut-off point and can be seen in the ROC curves (Fig. 6), as it 448 

corresponds to the point of the curve closest to point x = 0 (specificity = 1) and y = 1 ( 449 

sensitivity = 1). 450 

The threshold values calculated were slightly different to the average value of 1.5 451 

previously established as the discriminatory limit. Threshold values of 1.53 and 1.64 were 452 

obtained for the tests in in-shell almonds carried out using the Aurora and MicroNIRTM 453 

Pro 1700 instruments, respectively. For shelled almonds, threshold values of 1.58 and 454 

1.60 were obtained for those tests carried out with the Aurora and MicroNIRTM Pro 1700 455 

instruments, respectively.  456 

Table 3 also shows the results obtained for the best classification models 457 

considering the new threshold values obtained from the ROC curves to classify almonds 458 

by bitterness using the two sample presentations and instruments tested. In this case, the 459 

models correctly classified 74/74 sweet samples and 44/45 bitter samples in cross-460 

validation and 10/10 sweet samples and 9/10 bitter samples in external validation for the 461 
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group of in-shell almonds analysed with the Aurora instrument. When the in-shell 462 

almonds were analysed using the MicroNIRTM Pro 1700, 72/74 sweet samples and 44/45 463 

bitter samples were well-classified in cross validation, while 9/10 sweet samples and 464 

10/10 bitter samples were well-classified in external validation. The models developed 465 

with shelled almonds produced 100 % of correctly classified samples in all cases. 466 

The displacement of threshold values towards the sweet class when using the 467 

optimum threshold value that maximizes the sensitivity and specificity allowed to obtain 468 

a larger number of correctly classified samples in the cross-validation of the model 469 

developed using in-shell almonds analysed with the MicroNIRTM Pro 1700. This, in turn, 470 

enabled to obtain a higher NER value for cross-validation. It is also important to note that 471 

the displacement of the threshold value enabled to minimise the number of poorly-472 

classified bitter samples in this model in cross-validation, where the discrimination 473 

capacity for bitter almonds was worst affected, and therefore, the specificity of the model 474 

improved. In turn, the sensitivity for the external validation collective of in-shell almonds 475 

analysed with MicroNIRTM Pro 1700 was lower when using the threshold value obtained 476 

from the ROC curves: in this case, one sweet sample was classified as bitter, although it 477 

presented a predicted value very close to the established limit. 478 

For both threshold strategies, the results showed that the shape of the in-shell 479 

almonds made the surface of the samples on which the NIRS analysis was carried out less 480 

homogeneous than in the case of the shelled almonds, making it more difficult to analyse 481 

the in-shell almonds, so the discrimination capacity of models developed was inferior for 482 

the in-shell product. 483 

The results obtained are of great importance for the sweet almond processing 484 

industry, which produces almonds for consumption as snacks as well as for making 485 

cakes/desserts, since they allow to eliminate the presence of bitter almonds from the 486 
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marketing channels quickly, and at reduced cost. Further studies could be focused on the 487 

detection of bitter almonds that could be mixed with sweet almonds in response to the 488 

high demand from the almond industry to receive batches of this product which are totally 489 

free of bitter almonds.  490 

The predictive capacity of the models developed in this research work was 491 

superior to that of those carried out by Borrás et al. (2014), who reported 99.2 % and 96.7 492 

% of correctly-classified bitter and sweet shelled intact almonds, respectively, using PLS-493 

DA for the external validation set. These results were the same as in Cortés et al. (2018a), 494 

who also reported 100 % classification accuracy for the external validation sets of sweet 495 

and bitter almonds using PLS-DA. The former worked with a FT-NIR MB160PH 496 

Aridzone instrument in the 1000-2500 nm spectral range, while the latter used a AvaSpec-497 

NIR256-1.7 NIRLine instrument, both of which are adequate instruments for the at-line 498 

analysis of the product. However, it should be noted that both the studies cited above were 499 

conducted using spectral information obtained from representative areas of the almond 500 

kernel when analysed individually, which is not the optimal mode of analysis for the 501 

large-scale control required at the industrial level. 502 

 503 

Conclusions  504 

 505 

The results obtained showed that NIRS technology can be used in routine analysis 506 

in the industry to quantify the amygdalin content of shelled almonds in situ with great 507 

accuracy and precision, which represents a huge advantage for the almond industry in 508 

comparison with the official methods normally used to measure this cyanogenic 509 

compound. However, the presence of the shell in the product makes it difficult to predict 510 
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the amygdalin content, and here, the results reflect a low predictive capacity of the 511 

developed models. 512 

However, the discrimination of sweet and bitter almonds based on qualitative 513 

analysis strategies did allow to accurately detect bitter almonds, both in-shell and shelled. 514 

The non-error rate, together with the sensitivity and specificity obtained in the 515 

classification models developed, confirms the feasibility of using NIRS technology for 516 

the in situ discrimination of these two almond classes in bulk, both in-shell and shelled, 517 

thus allowing to discriminate between batches of sweet and bitter almonds when the 518 

product is received in the industry and during processing. 519 

In addition, it confirms the convenience of using the ROC curves to establish an 520 

optimal discrimination threshold to obtain a larger number of correctly classified samples, 521 

which can help improve the classification ratio for fraudulent products or products that 522 

should never reach the consumer, thus increasing the reliability of safety alert systems for 523 

this product. 524 
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Table 1 696 

Calibration statistics for the best equations obtained to predict the amygdalin content (mg kg-1) in in-shell and shelled almonds. MPLS regression. 697 

Sample presentation Instrument Mathematical treatment a N Range b Mean c SD d R2
cv e SECV f RPDcv 

In-shell Aurora 2,5,5,1 103 2-80980 15884 28366 0.58 18226 1.56 

MicroNIRTM Pro 1700 2,5,5,1 102 2-80980 16013 28476 0.55 19060 1.49 

Shelled Aurora 2,5,5,1 102 2-80980 16013 28476 0.95 6633 4.29 

MicroNIRTM Pro 1700 2,5,5,1 101 2-80980 15857 28574 0.96 5617 5.09 

 698 

a Number of samples. 699 

b Mean of the calibration set. 700 

c Standard deviation of the calibration set.  701 

d Coefficient of determination of cross validation. 702 

d Standard error of cross validation. 703 

f Residual predictive deviation for cross validation. 704 

 705 
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Table 2 706 

Validation statistics for the best models to predict amygdalin content in shelled almonds using the LOCAL algorithm.  707 

Parameter  Instrument Math 

treatment 

Calibration 

samples (k) 

Predicted 

samples 

Factors (l) a SEP b SEP(c) Bias c R2
p d RPDp Slope 

Amygdalin (mg kg-1) Aurora  2,5,5,1 30 35 8 (-3) 5185 4981 1668 0.98 6.12 1.09 

MicroNIRTM Pro 1700 2,5,5,1 30 35 8 (-3) 7449 7400 858 0.95 4.32 1.05 

a Standard error of prediction. 708 

b Standard error of prediction corrected for bias. 709 

c Coefficient of determination of prediction. 710 

d Residual predictive deviation for prediction. 711 

 712 
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Table 3.  713 

Sensitivity, specificity and non-error rate values for the classification models of in-shell 714 

and shelled sweet and bitter intact almonds considering mean and ROC threshold values. 715 

Sample 

presentation 

Instrument   Threshold value 

Mean value  ROC value 

Training 

set 

Prediction 

set 

Training 

set 

Prediction 

set 

In-shell Aurora Sensitivity  100 % 100 % 100 % 100 % 

Specificity 98 % 90 % 98 % 90 % 

Non error rate 99 % 95 % 99 % 95 % 

MicroNIRTM 

Pro 1700 

Sensitivity 99 % 100 % 97 % 90 % 

Specificity 94 % 100 % 98 % 100 % 

Non error rate 97 % 100 % 97 % 95 % 

Shelled Aurora Sensitivity 100 % 100 % 100 % 100 % 

Specificity 100 % 100 % 100 % 100 % 

Non error rate 100 % 100 % 100 % 100 % 

MicroNIRTM 

Pro 1700 

Sensitivity 100 % 100 % 100 % 100 % 

Specificity 100 % 100 % 100 % 100 % 

Non error rate 100 % 100 % 100 % 100 % 

 716 

 717 
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Fig. 1. Flowchart for amygdalin prediction and classification by bitterness of almonds 718 

using NIRS technology 719 

 720 

 721 

  722 
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Fig. 2. Reference and NIR predicted values for the amygdalin content of the samples 723 

analysed in-shell (a) and shelled (b) with the Aurora instrument and of the samples 724 

analysed in-shell (c) and shelled (d) with the MicroNIRTM Pro 1700 instrument. MPLS 725 

regression. 726 

 727 

  

  
a Number of samples for the validation set 728 

b Coefficient of determination of prediction. 729 

c Standard error of prediction. 730 

d Standard error of prediction corrected for bias. 731 

e Residual predictive deviation for prediction. 732 

  733 
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Fig. 3. Scores plot (a) and loading values (b) for the first (PC1) and second (PC2) 734 

principal component of the shelled intact almonds analysed using the Aurora instrument.  735 

 736 

 

 

  737 
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Fig. 4. Cross validation predicted values for the sweet and bitter almonds from the four 738 

sample sets tested: in-shell almonds and Aurora instrument (a), shelled almonds and 739 

Aurora instrument (b), in-shell almonds and MicroNIRTM Pro 1700 instrument (c), 740 

shelled almonds and MicroNIRTM Pro 1700 instrument (d).  741 

  

  

 742 

  743 
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Fig. 5. Sensitivity and specificity versus threshold values for the samples analysed in-744 

shell (a) and shelled (b) with the Aurora instrument and the samples analysed in-shell (c) 745 

and shelled (d) with the MicroNIRTM Pro 1700 instrument.  746 

 747 

  

  

  748 
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Fig. 6. ROC curves and closest points to x = 0 and y = 1 for the samples analysed in-shell 749 

(a) and shelled (b) with the Aurora instrument and the samples analysed in-shell (c) and 750 

shelled (d) with the MicroNIRTM Pro 1700 instrument. 751 

 752 
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