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Abstract 21 

Spanish wine vinegars belonging to Vinagre de Montilla-Moriles protected designation of 22 

origin (PDO) must satisfy some chemical characteristics. These characteristics are mainly 23 

responsible of their high and exceptional quality. This study assessed the potential of near 24 

infrared spectroscopy (NIRS) as a non-destructive technology for characterizing wine vinegars 25 

belonging to this PDO. A total of 107 samples were used to predict major chemical quality 26 

parameters (volumic mass, reducing sugars, total acidity and pH) using a scanning 27 

monochromator (spectral range 400-2500 nm) with the spinning module, working in 28 

transflectance mode. The models developed showed values for the coefficient of regression for 29 

cross-validation between 0.95 and 0.99 for volumic mass, reducing sugars and total acidity. 30 

Therefore, the results confirm that NIRS technology combined with linear regression strategies 31 

such as the modified partial least squares (MPLS) regression can indeed respond to the needs 32 

of the vinegars cellars and help them to measure the commonest chemical quality parameters 33 

of wine vinegars belonging to Vinagre de Montilla-Moriles (PDO), especially in the case of 34 

vinegars with different sugar contents (dry, semi-sweet, sweet and balsamic). However, the 35 

number of samples as well as their variability should be increased in order to obtain more robust 36 

models. 37 

 38 

Keywords: Vinagre de Montilla-Moriles (PDO), NIR spectroscopy, volumic mass, reducing 39 

sugars, total acidity.  40 

 41 
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Introduction 43 

 44 

Wine vinegar is a product of the gastronomic culture of Mediterranean wine-producing 45 

countries. Its versatility as a preservative, acidifier or condiment has meant that it is still widely 46 

used to this day, and it has recently assumed greater importance due to the health benefits 47 

associated with its consumption (Tesfaye et al. 2002; Paneque et al. 2017). 48 

The wide variety of vinegars existing in the market and the rise in their demand call for 49 

a more thorough definition of its main chemical and sensory parameters, in order to set up a 50 

rigorous system of quality control to regulate the quality of the vinegar, the acetification system 51 

used and, in the final step, the wooden barrels used for the aging process (Morales et al. 2001; 52 

De la Haba et al. 2014). 53 

Since the quality of a vinegar is closely linked to its commercial value, it is necessary 54 

to evaluate its main chemical and sensory characteristics in order to guarantee high levels of 55 

quality. Objective quality standards enable vinegar producers to attain high levels of quality, 56 

which, in turn, will increase the profits of the vinegar industry. 57 

In the European Union, several high quality vinegars, generally linked to particular 58 

geographical areas, are protected by a legal framework known as a Protected Designation of 59 

Origin (PDO) (OJEU 2006). Through this scheme, in January 2015, the wine vinegar Vinagre 60 

de Montilla-Moriles was registered in the European Union Register of protected designations 61 

of origin and protected geographical indications (OJEU 2015). This Regulation defines Vinagre 62 

de Montilla-Moriles as either wine vinegar obtained by the acetous fermentation of certified 63 

‘Montilla-Moriles’ PDO wine or, where appropriate, vinegar from wine vinegar obtained by 64 

the acetous fermentation of certified ‘Montilla-Moriles’ PDO wine, with the addition of 65 

certified must of that wine, followed by ageing. 66 

 67 
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In addition, in the Annex to the Commission Implementing Regulation, the protected 68 

products and their characteristics of vinegars belonging to Vinagre de Montilla-Moriles (PDO) 69 

were set down (OJEU 2015). This document establishes the chemical and sensory quality of 70 

the vinegars, guarantees the quality for consumers and protects them against commercial fraud. 71 

Previous studies have employed a range of classic analytical techniques and sensory 72 

measurements to establish the quality of vinegar, such as pyrolysis-mass spectrometry (Anklam 73 

et al. 1998; Xiong et al. 2017), gas chromatography-olfactometry (Corsini et al. 2019), atomic 74 

absorption spectrometry (Ozbek and Akman 2016), the e-nose system (Yin et al. 2017) or 75 

symmetrical chemosensors (Suganya et al. 2014). However, these techniques are all expensive 76 

and slow and cause pollution. 77 

It would therefore be of great interest and use to the vinegar industry to have a non-78 

destructive technology which is fast, accurate, low-cost and environmentally friendly, and 79 

which can be applied directly in the wine cellar, providing real-time data, with the added 80 

possibility of its use for establishing the chemical and sensory quality standards of the product 81 

analysed. 82 

The combination of speed, precision and low cost makes NIRS one of the most suitable 83 

alternative technology to traditional analytical methods for measuring the chemical quality of 84 

vinegars (Saiz-Abajo et al. 2006; Bao et al. 2014; De la Haba et al. 2014; Ríos-Reina et al. 85 

2018). 86 

Saiz-Abajo et al. (2004) used NIRS technology to differentiate between wine vinegars 87 

(white or red) and alcohol vinegar. Casale et al. (2006) used NIRS technology to classify 88 

vinegars according to their aging period, while Shi et al. (2013) predicted the total acid content 89 

and classified the vinegars according to the raw material used. De la Haba et al. (2014), whose 90 

preliminary results look highly promising, evaluated the potential of NIRS technology as a non-91 

destructive method to characterize wine vinegars belonging to Vinagre de Montilla-Moriles 92 
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(PDO) and to classify them according to the manufacturing process used. Rios-Reina et al. 93 

(2018, 2019) used NIRS technology to authenticate Spanish wine vinegars registered with a 94 

PDO and control the authenticity of their commercialized categories. 95 

The objective of this work was to study the industrial application of NIR spectroscopy 96 

to measure the quality parameters of wine vinegars belonging to Vinagre de Montilla-Moriles 97 

(PDO) by analysing the commonest chemical controls performed in the industry, especially in 98 

the case of vinegars with different sugar contents (dry, semi-sweet, sweet and balsamic). 99 

 100 

Materials and Methods 101 

 102 

Reference Samples and Chemical Analysis 103 

 104 

A total of 107 white wine vinegars belonging to Vinagre de Montilla-Moriles (PDO) were 105 

analysed. 106 

Once the vinegars were received in the laboratory, these were stored at 4°C with 85% 107 

relative humidity until the following day, when the NIRS and reference analyses were 108 

performed. Before carrying out the analytical measurements, the samples were kept at room 109 

temperature in order to achieve a stable product temperature of 20°C, the optimum temperature 110 

for carrying out the tests. 111 

Once the NIR spectra were taken, the analytical measurements of the parameters to be 112 

studied (volumic mass, reducing sugars, total acidity and pH), were developed. 113 

The volumic mass was determined by aerometry (ODEC 1990). Reducing sugars were 114 

measured by titration using an automatic titrator (Crison Micro TT 2050, Crison, Alella, 115 

Barcelona, Spain) (Rebelein 1973). Total acidity was measured by titration using an automatic 116 

titrator (Crison Micro TT 2050, Crison, Alella, Barcelona, Spain) following OENO resolution 117 



 
 

6 
 

52-2000 revised by OIV-OENO 597-2018 (IOV 2018). The pH was measured using 118 

potentiometry with an automatic titrator (Crison Micro TT 2050, Crison, Alella, Barcelona, 119 

Spain). All the analytical measurements were made in duplicate and the standard error of 120 

laboratory (SEL) was calculated from these replicates. 121 

 122 

Spectral Data Collection 123 

 124 

The NIR spectra of the vinegars were collected in transflectance mode (log (1/R) using a 125 

dispersive monochromator-based instrument FNS-6500 SY-I (FOSS NIRSystems, Silver 126 

Spring, MD, USA). A folded-transmission gold circular reflector cup, diameter 3.75 cm, with 127 

a path length of 0.1 mm was used. 128 

The FNS-6500 SY-I provides absorbance values between 400 and 2500 nm, every 2 nm, 129 

covering both the visible and the near infrared region and is equipped with a spinning module 130 

that rotates the cup. Two spectra were collected per sample and averaged for subsequent 131 

processing.  132 

 133 

Data Processing and Development of Predictive Models Using Modified Partial Least Squares 134 

Regression 135 

 136 

Data pre-processing and chemometric treatments were performed using the WinISI II software 137 

package version 1.50 (Infrasoft International LLC, Port Matilda, PA, USA) (ISI, 2000). 138 

 Before to carrying out NIRS calibrations, the CENTER algorithm was applied in the 139 

spectral range 400-2500 nm to ensure a structured population selection based solely on spectral 140 

information, in order to establish the calibration and validation sets (Shenk and Westerhaus, 141 

1991). This algorithm performs an initial principal component analysis to calculate the centre 142 



 
 

7 
 

of the population and the distance of samples (spectra) from that centre in an n dimensional 143 

space, using the Mahalanobis distance (GH); samples with a GH value > 3 were considered 144 

spectral outliers. A combination of mathematical pre-treatments, Standard Normal Variate 145 

(SNV) and Detrend (DT) was applied for scatter correction (Barnes et al., 1989), together with 146 

the first derivate treatment ‘1,5,5,1’ (the first digit being the number of the derivative, the 147 

second the gap over which the derivative is calculated, the third the number of data points in a 148 

running average or smoothing, and the fourth the second smoothing) (Shenk and Westerhaus, 149 

1995b; ISI, 2000). Once the samples were ordered by distance from the centre of the population, 150 

3 out of every 4 samples were selected to be part of the calibration set, while the remaining 151 

samples formed the validation set (Table 1). 152 

 NIRS calibration models for the parameters tested were developed using modified 153 

partial least squares (MPLS) regression (Shenk and Westerhaus, 1995a). Four cross-validation 154 

steps were included in the process in order to avoid overfitting (Shenk and Westerhaus, 1995a). 155 

For scatter correction, SNV and DT methods were applied (Barnes et al., 1989). Additionally, 156 

first (‘1,5,5,1’) and second (‘2,5,5,1’) derivate treatments were tested (Shenk and Westerhaus, 157 

1995b; ISI, 2000). Finally, 2 spectral regions were also studied to develop these models: 158 

Vis/NIR: 400-2500 nm and only NIR: 1100-2500 nm. 159 

The statistics used to select the best equations were: standard error of calibration (SEC), 160 

coefficient of determination for calibration (r2
c), standard error of cross-validation (SECV), 161 

coefficient of determination for cross-validation (r2
cv). In addition, the Residual Predictive 162 

Deviation statistic for cross-validation (RPDcv) was calculated as the ratio of the standard 163 

deviation of the original data (SD) to SECV. This latter statistic enables SECV to be 164 

standardized, facilitating the comparison of the results obtained with sets of different means 165 

(Williams 2001). 166 
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 The SECV values for the best equations obtained for the two spectral ranges selected 167 

were compared using Fisher’s F test (Massart et al., 1988; Naes et al., 2002). Values for F were 168 

calculated as: 169 

𝐹 =
(𝑆𝐸𝐶𝑉ଶ)

ଶ

(𝑆𝐸𝐶𝑉ଵ)
ଶ
 170 

where SECV1 and SECV2 are the standard error of cross validation of two different 171 

models and SECV1 < SECV2. F is compared to Fcritical (1-P, n1-1, n2-1), as read from the table, with 172 

P = 0.05 and n1 is the number of times the measurement is repeated with method 1, while n2 is 173 

the number of times the measurement is repeated with method 2. If F is higher than Fcritical, the 174 

two SECV values are significantly different. 175 

Once the best spectral region of the instrument was selected, the best equations obtained 176 

for this region were subjected to an external validation process following the protocol 177 

established by Windham et al. (1989). 178 

 179 

Results and Discussion 180 

 181 

Descriptive Data for NIRS Calibrations and Validations Sets 182 

 183 

Values for number of samples, range, mean, standard deviation and coefficient of variation for 184 

each of the parameters analysed for the calibration and validation sets obtained after application 185 

of the CENTER algorithm (no sample was considered as spectral outlier) are shown in Table 186 

1. Structured selection using only spectral information treatment algorithms such as CENTER 187 

proved adequate, since the calibration and validation sets displayed similar values for mean, 188 

range and standard deviation for all study parameters, and ranges for the validation set lay 189 

within the range recorded for the calibration set. 190 
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 The parameter which presented the greatest variability was the reducing sugars content 191 

(CVcalibration = 89.66%; CVprediction = 82.65%), since both groups were composed of dry vinegars 192 

(with a content in reducing sugars of below 5 g/L ), semi-sweet vinegars (5–69 g/L), sweet 193 

vinegars (over 70 g/L) and balsamic vinegars with reducing sugar content of over 150 g/L 194 

(BOE, 2012; OJEU 2015).  195 

+The parameter with the lowest variability was volumic mass (CVcalibration = 4.15%; CVprediction 196 

= 4.28%), since all the vinegars were originated from wines and musts qualified by ‘Montilla-197 

Moriles’ PDO wine, which mean that all of them had completed the fermentation process. 198 

As regards the total acidity parameter, the calibration and validation sets varied between 199 

37.53% and 39.57%, respectively. The reason for this was that among the samples analysed, 200 

there were vinegars with a content slightly less than 6 g acetic acid/100 mL vinegar, as was the 201 

case of sweet vinegars obtained by adding grape musts at different stages of aging; on the other 202 

hand, there was another group of samples with a fairly high acetic acid content (14-19 g acetic 203 

acid/100 mL vinegar) as a result of prolonged aging in wooden barrels, which causes the water 204 

to evaporate and a higher concentration in the acetic acid. 205 

The pH parameter has a low variability (CVcalibration = 14.70%; CVprediction = 7.45%), 206 

albeit greater than the volumic mass. This is because, among the samples analysed, there are 207 

vinegars with a high acetic acid content (18.6 g/100 mL) and a consequently low pH (pH = 208 

2.40), while, at the other end of the scale, there are vinegars with a high concentration of 209 

reducing sugars (over 300 g/L) and low acetic acid content (5.1 g/100 mL) with a pH = 5.77. 210 

The pH value is not mentioned in the regulations. 211 

 212 

Construction of Calibration Models for Predicting Chemical Quality parameters in Wine 213 

Vinegars of Vinagre de Montilla-Moriles (PDO) 214 

 215 
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Table 2 shows the statistics for the best equations obtained for the chemical quality parameters 216 

predicted with the NIR instrument, for the two spectral ranges studied.  217 

For the parameter of volumic mass, the models obtained display an excellent predictive 218 

capacity, according to Shenk and Westerhaus (1996) and Williams (2001). Likewise, Nicolaï 219 

et al. (2007) showed that RPDcv values over 3 confirm that the model has an excellent 220 

predictive capacity. 221 

 No research articles have been found in the scientific literature related with measuring 222 

volumic mass in wine vinegar using NIRS technology. However, it is important to measure this 223 

parameter, which is related to the soluble solid content (mainly polyphenols and reducing 224 

sugars), in vinegars with a strong colour or a high sugar content, which are characterized by 225 

having higher values of this parameter. Incidentally, this parameter is also used in wine cellars 226 

to convert weight to volume in both sales and purchases. 227 

 As regards the parameter of reducing sugars, if the values of r2
cv and RPDcv are taken 228 

into account, the predictive capacity of the models developed can be considered to be excellent, 229 

according to the values indicated by Shenk and Westerhaus (1996), Williams (2001) and 230 

Nicolaï et al. (2007) for these statistics. 231 

 No scientific articles have been published which deal with measuring this parameter in 232 

wine vinegar using NIRS technology. However, it is extremely important to measure this 233 

parameter in a non-destructive way in the wine cellars when carrying out vinegar qualification. 234 

Moreover, currently there is huge interest in Montilla-Moriles (PDO) in the production of sweet 235 

vinegars, in order to compete with other leading European producers for its high quality and 236 

organoleptic.  237 

In relation to the high values of the coefficient of determination for cross-validation 238 

obtained for this parameter, it is important to consider the observations made by Fearn (2014), 239 

who noted that, although the r2
cv statistic can be useful in establishing the predictive capacity 240 
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of a particular model, this statistic has its limitations, mainly that it depends on the range and 241 

the standard deviation of the calibration group. In this specific case, the calibration group is 242 

made up of dry, semi-sweet and sweet vinegars with different levels of aging; for this reason 243 

the standard deviation is practically equal to the average, with a very wide parameter range. 244 

 As regards the parameter of total acidity, the predictive capacity of the model used is 245 

also excellent when considering the values of r2
cv and RPDcv (Shenk and Westerhaus 1996; 246 

Williams 2001; Nicolaï et al. 2007). 247 

 The non-destructive measurement of this parameter is extremely important for the 248 

industry: vinegars which stand out for their high total acidity correspond to vinegars with long 249 

aging periods, such as Reserve vinegars, where a large amount of water was evaporated. 250 

However, there are other vinegars which do not appear to reach the minimum total acidity 251 

established by the quality standard for Spanish vinegars (BOE 2012). These low acetic levels 252 

are due either to the fact that the acetification process has not finished, or to the recent addition 253 

of fresh wine to the barrels, which thereby dilutes its acetic acid content (López et al. 2003). 254 

 The results obtained are lower than those obtained by De la Haba et al. (2014) (RPDcv 255 

= 8.35), using the same monochromator technology with the spinning module. However, it must 256 

be highlighted that although the calibration set of those authors displayed a lower variability, 257 

the distribution of the samples was more uniform along the range of values for this parameter, 258 

which can be appreciated in the frequency histogram of the calibration set. 259 

As for the pH parameter, the predictive capacity of the model allows to differentiate 260 

between high, medium and low values for this parameter (Shenk and Westerhaus 1996; 261 

Williams 2001). If the RPDcv value obtained is taken into account, according to Nicolaï et al. 262 

(2007), the model should allow to differentiate between high and low values of this parameter. 263 

It is important to note that during the vinegar aging process, the initial pH usually decreases, 264 

and that pH values below 3 hinder the development of acetic bacteria. It should also be 265 
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considered that ‘Pedro Ximénez’ or ‘Moscatel’ musts are added to the sweet vinegars included 266 

in this PDO, thus causing the initial pH to rise.  267 

The results of the predictive models in this work are similar to those obtained by Bao et 268 

al. (2014) and De la Haba et al. (2014). 269 

 Dardenne (2010) and Fearn (2014) showed that the RPDcv statistic used in most NIR 270 

research articles is equal to 1 / √ (1 - r2
cv) and depends to the same extent, as with r2

cv, on the 271 

range existing in the calibration set. Here, Table 2 shows the correlation between the high and 272 

low r2
cv and RPDcv values for the parameters analysed. It can be seen that for the parameters of 273 

volumic mass, reducing sugars and total acidity, models with r2
cv values between 0.95 and 0.99 274 

and RPDcv between 4.64 and 14.14 are obtained, while for the pH parameter, values are 275 

obtained of r2
cv = 0.59 and 0.60 and RPDcv = 1.50 and 1.55 for models developed in the spectral 276 

regions of 1100 to 2500 nm and 400-2500 nm, respectively. 277 

Lastly, the best spectral working region of the FNS-6500 SY-I instrument for the 278 

parameters analysed was established. The results of the Fisher’s F tests performed are shown 279 

in Table 2. For all the parameters analysed, no significant differences (P < 0.05) were detected 280 

between the SECV values obtained in the two spectral regions considered. As it would be of 281 

interest in the future to incorporate analytical parameters related to the colour of the vinegar, it 282 

was decided to work with the full spectral range of the instrument, i.e., 400-2500 nm. 283 

 284 

External Validation 285 

 286 

Table 3 shows the external validation statistics of the best models obtained to predict the 287 

chemical quality parameters in white wine vinegars belonging to Vinagre de Montilla-Moriles 288 

(PDO), in the spectral range between 400 and 2500 nm. 289 
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Windham et al. (1989) established the conditions which must be met by the models to 290 

be used in the routine prediction of quality parameters. Following this protocol, the models 291 

constructed for predicting volumic mass met the validation requirements in terms of the 292 

coefficient of determination for prediction, r2
p (r2

p >0.6), and the standard error of prediction 293 

corrected for bias (SEP(c)), the bias and the slope were within confidence limits: the models thus 294 

ensure accurate prediction and can be applied routinely. For the reducing sugar the r2
p, bias and 295 

slope lay within the confidence limits, however, SEP(c) value did not attain the recommended 296 

value. The total acidity parameter has higher value of SEP(c) compared with the control value. 297 

In addition, the slope for total acidity (0.85) is lower than that established in the protocol (0.9-298 

1.1) and only r2
p and bias met the validation requirements. Finally, the pH parameter did not 299 

meet any of the four established limits (SEP(c), bias, r2
p and slope) under this protocol. 300 

In addition, comparing the values of the SEL (Table 1) and SEP (Table 3) statistics for 301 

each of the parameters analysed, it can be confirmed that the models developed cannot be used 302 

routinely because the SEP values exceed more than 5 times the values of the calculated SELs 303 

(Westerhaus 1989; Williams 2001). 304 

This research constitutes, therefore, an initial approach to the use of NIRS technology 305 

for the quality control of wine vinegars of Vinegar of Montilla-Moriles (PDO). Larger 306 

calibration groups which would reflect the variability of the product, are needed in order to 307 

obtain more robust models which can be used routinely. 308 

 309 

Main Wavelengths for Predicting the Quality Parameters Analysed in Wine Vinegars of 310 

Vinagre de Montilla-Moriles (PDO)  311 

 312 

The loading plots corresponding to the best models obtained for predicting the quality 313 

parameters (volumic mass, reducing sugars, total acidity and pH) in white wine vinegars of the 314 



 
 

14 
 

Vinagre de Montilla-Moriles (PDO) are show in Fig. 1. These plots show the areas across the 315 

spectral range where variance has influenced computing of the model to a greater or lesser 316 

degree, and the direction (positive or negative). 317 

 For the parameter of volumic mass, the representation of the first 4 latent variables used 318 

in the development of the calibration model showed that the areas of the spectrum which exert 319 

the greatest influence on the model fit were 468, 494, 948, 1448, 1664, 1930, 2234, 2282, and 320 

2458 nm, which are linked to the presence of anthocyanins and chlorophyll in the visible region 321 

and with water and carbohydrates in the near-infrared region (Williams 2001; Shenk et al. 322 

2008). 323 

 For the parameter of reducing sugars, the areas of the spectrum with the greatest 324 

influence were: 436, 494, 946, 1436, 1660, 1898, 2130, 2234, 2284, 2332 and 2456 nm, related 325 

to pigments (anthocyanins and chlorophyll) in the visible region and with water, carbohydrates 326 

and proteins in the NIR region (Williams 2001; Shenk et al. 2008). It is important to note that 327 

the wavelengths which influence this parameter also have the same effect in the case of the 328 

parameter of volumic mass. 329 

For the parameter of total acidity, the main wavelengths detected were: 476, 634, 926, 330 

1382, 1876, 2042, 2266 and 2458 nm, related to orange and green pigments and water, 331 

carbohydrates and proteins (Williams 2001; Shenk et al. 2008), very similar to those of pH, 332 

since these two parameters are closely related. 333 

 334 

Conclusions 335 

 336 

The results obtained show that NIR spectroscopy, combined with suitable chemometric 337 

methods, could be used to measure volumic mass, reducing sugars and total acidity in vinegar. 338 

These parameters are of great importance in monitoring the fermentation process of this 339 
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product, as well as in detecting commercial fraud in the vinegar industries. These measurements 340 

will facilitate real-time decision-making throughout the production process and when the 341 

vinegars are later aged. However, the results obtained should be considered as preliminary, 342 

being necessary in the future to increase the robustness of the models obtained, thus permitting 343 

the routine use of this technology in the vinegar industries. 344 
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Table 1 Calibration and validation sample sets and standard error of laboratory 494 

Parameter Statistics Calibration set Validation set 

Volumic mass (g/L) Na 80 27 

Range 1012-1137 1013-1126 

Mean 1063.10 1065.11 

SDb 44.16 45.61 

CVc (%) 4.15 4.28 

SELd  0.27  

Reducing sugars (g/L) N 80 27 

Range 8.25-358.5 16.30-314.45 

Mean 132.64 147.72 

SD 118.92 122.09 

CV (%) 89.66 82.65 

SEL 1.26  

Total acidity (g acetic 
acid/100 mL vinegar) 

N 80 27 

Range 4.20-19.0 5.05-17.1 

Mean 7.70 7.53 

SD 2.89 2.98 

CV (%) 37.53 39.57 

SEL 0.10  

pH N 80 27 

Range 2.40-5.77 2.54-3.36 

Mean 2.79 2.82 

SD 0.41 0.21 

CV (%) 14.70 7.45 

SEL 0.01  

a Number of samples 495 
b Standard deviation 496 
c Coefficient of variation 497 
d Standard error of laboratory   498 
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Table 2 Calibration statistics of the best models obtained for the prediction of chemical quality 499 

in wine vinegars belonging to Vinagre de Montilla Moriles (PDO) 500 

Parameter Spectral range 
(nm) 

Math 
treatmen
t 

Na Range SECb r2
c
c SECVd r2

cv
e RPDcv

f F Fcritical 

Volumic mass 
(g/L) 

400-2500 2,5,5,1 73 1112-1137 3.66 0.99 4.09 0.99 10.69 1.10 1.47 

1100-2500 1,5,5,1 74 1112-1137 3.99 0.99 4.30 0.99 10.11   

Reducing 
sugars (g/L) 

400-2500 2,5,5,1 72 8.25-332.50 7.25 0.99 8.03 0.99 14.05 1.01 1.48 

1100-2500 1,5,5,1 72 8.25-332.50 7.32 0.99 7.98 0.99 14.14   

Total acidity 
(g acetic acid/ 
100 mL 
vinegar) 

400-2500 1,5,5,1 74 4.20-12.60 0.38 0.97 0.50 0.95 4.50 1.13 1.47 

1100-2500 2,5,5,1 73 4.20-12.60 0.31 0.98 0.47 0.95 4.64   

pH 400-2500 1,5,5,1 72 2.43-3.10 0.10 0.68 0.11 0.60 1.55 1.19 1.47 

1100-2500 1,5,5,1 74 2.43-3.25 0.11 0.66 0.12 0.59 1.50   

a Number of samples. 501 
b Standard error of calibration. 502 
c Coefficient of determination of calibration. 503 
d Standard error of cross-validation. 504 
e Coefficient of determination of cross-validation. 505 
f Residual predictive deviation for cross-validation. 506 
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Table 3 Validation statistics for the best equations for the prediction of chemical quality for 508 

Vinagre Montilla-Moriles (PDO). Spectral range 400-2500 nm 509 

Parameter N a SEP b SEP(c) 
c Bias r2

p 
d Slope Limits e 

SEP(c) = 1,3 ‧ SEC Bias = ± 0,6 ‧ SEC 

Volumic mass (g/L) 27 3.23 2.96 -1.42 0.99 1.00 4.76 ± 2.20 

Reducing sugars (g/L) 27 13.97 14.17 1.31 0.99 1.01 9.43 ± 4.35 

Total acidity (g acetic 
acid/100 mL vinegar) 

27 1.42 1.43 -0.20 0.80 0.85 0.49 ± 0.23 

pH 27 0.22 0.20 0.11 0.22 0.75 0.13 ± 0.06 

a Number of samples for the validation set. 510 

b Standard error of prediction. 511 
c Standard error of prediction bias-corrected. 512 
d Coefficient of determination of prediction 513 
e Control limits established in the protocol of Windham et al. (1989) 514 
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Fig. 1 Loadings for the parameters volumic mass. reducing sugars. total acidity and pH 516 
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