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Conversion to organic farming: Does it change the economic and 
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A B S T R A C T   

This paper compares the performance of conventional and organic fruit farms in Spain, using a set of base in
dicators to assess their economic and environmental performance on a per hectare basis. Composite indicators 
are also calculated to measure the overall economic and environmental performance of both production systems. 
Comparisons are made using propensity score matching to minimize the non-randomization biases caused by 
structural differences between the samples of conventional (n = 552) and organic (n = 127) fruit farms sourced 
from the Spanish Farm Accountancy Data Network (RECAN). The results based on per hectare metrics point to 
modest changes in the performance of farms that converted to organic farming. This is mainly because most 
converted farms were former conventional farms characterized by lower profitability and less intensive input 
use, consequently minimizing the effects of the conversion process. Nevertheless, the conversion outcomes 
exhibit a degree of variability depending on the specific type of fruit production. Economic gains are only 
discernible in the case of nut farms, whereas fruit and tropical fruit farms tend to yield the most favorable results 
per hectare from an environmental perspective.   

1. Introduction 

Business-as-usual practices implemented to increase productivity in 
the agricultural sector make a major contribution to the negative envi
ronmental impacts of farming on biodiversity, soil, and water resources 
worldwide (FAO (Food and Agriculture Organization of the United 
Nations), 2022). In response to the social concerns about these negative 
externalities generated by “conventional” agriculture, governments 
have promoted more eco-friendly alternative production regimes. Of 
these, organic farming stands out as the most popular (European Com
mission, 2023). 

At the international level, the European Union (EU) is leading the 
charge on efforts to mitigate the negative environmental impacts of 
agriculture, fostering the development of more sustainable and resilient 
agricultural systems. For this purpose, as part of the European Green 
Deal, the EU approved two policy strategies: the Farm to Fork Strategy 
and the Biodiversity Strategy. Among other specific objectives to be 
achieved by 2030, these strategies establish the target of at least 25% of 
agricultural land in the EU managed under organic farming. Considering 
that the latest official statistics from Eurostat show that in 2021 only 
9.9% of the EU utilized agricultural area (UAA) was under organic 

farming, meeting this objective will require the proactive involvement 
of policymakers to promote this agroecological production system. 

Compared to conventional agriculture, organic farming relies on 
more extensive resource use, which offers several benefits from an 
environmental perspective. However, from an economic perspective, 
the reduced use of inputs usually results in lower yields (Meemken and 
Qaim, 2018). This is the reason why the new environmental objectives 
established for European agriculture have been criticized for lacking a 
necessary ex-ante impact assessment (e.g., Guyomard et al., 2020; Mérel 
et al., 2023), especially considering the potential high trade-offs be
tween the environmental benefits to be achieved and the economic 
performance of the agricultural sector. 

Previous studies have used meta-analyses to examine the environ
mental and economic performance of organic farming (e.g., Tuomisto 
et al., 2012; Reganold and Wachter, 2016; Clark and Tilman, 2017; 
Seufert and Ramankutty, 2017; Rosa-Schleich et al., 2019). The existing 
literature agrees that organic farming has a better environmental per
formance than conventional production systems when performance is 
expressed on a per hectare basis. Similarly, there is a broad consensus 
that conversion to organic farming leads to short-term yield decline. 
However, accounting for its lower yields, the environmental 
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performance of organic farming is generally found to be comparable to 
conventional farming when expressed on a per kg basis. On the other 
hand, the overall economic performance of organic farming compared to 
conventional agriculture is still under debate considering: (a) produc
tivity, with the possibility of achieving comparable yields to conven
tional agriculture over the long term; (b) lower input costs; (c) new 
market opportunities (niche markets, local markets, or direct sales 
channels) and higher prices for farmers; and (d) lower risk exposure due 
to more stable yields (i.e., reduced impacts of extreme weather events) 
and lower volatility of prices (output and inputs) over time, leading to 
more resilient farms. 

Considering this framework, the primary objective of this paper is to 
further contribute to the ongoing debate surrounding organic and con
ventional agriculture by comparing the economic and environmental 
performance of farms operating under these two production regimes on 
a per hectare basis. To do so, the fruit production sector in Spain is taken 
as the case study. 

Although many previous studies have had similar objectives, this 
paper contributes to the existing literature in two ways. First, the eco
nomic and environmental performance of organic and conventional 
farms is measured using a comprehensive set of base indicators and 
composite indicators built by aggregating all the base indicators 
considered in each sustainability dimension. Second, the study employs 
matching methods to conduct comparative analyses of organic and 
conventional farms. This is the most innovative feature of the paper 
since this methodological option makes it possible to minimize non- 
randomization biases when assessing differences in base/composite in
dicators to measure changes in farms' environmental and economic 
performance (i.e., changes occurring when farms convert to organic 
farming). Hence, the results obtained provide more valuable informa
tion than most of the analyses found in the literature, which only mea
sure observational differences between the two production systems 
without considering structural differences between conventional and 
organic farms. 

The combination of these methodological options has allowed a 
thorough and innovative assessment of farms' economic and environ
mental performance on a per hectare basis, expanding the state-of-the- 
art in this field. In fact, to the best of the authors' knowledge, only 
two previous studies have conducted farm-level comparative analyses 
using matching methods to assess differences in composite indicators 
(Bartolini et al., 2021; Dompreh et al., 2021), but neither of them is 
related to organic farming or farms' overall economic and environmental 
performance. Moreover, the above-mentioned methodological approach 
has been implemented to analyze the performance of organic fruit 
farming in Spain, a sector which has rarely been analyzed in the liter
ature (see the studies by Beltrán-Esteve and Reig-Martínez, 2014; Nicolò 
et al., 2018 as notable exceptions). 

2. Case study and data source 

2.1. The Spanish fruit production sector and its performance 

According to the data published by the Spanish Ministry of Agri
culture, Fisheries, and Food (MAPA (Ministerio de Agricultura, Pesca y 
Alimentación), 2022a), the fruit production sector occupies 1.41 million 
hectares. The largest share of this area is covered by nuts (0.87 million 
ha), followed by citrus fruits (0.30 million ha), fruits other than citrus, 
tropical, and nuts (0.19 million ha), and tropical fruits (0.05 million ha). 
From an economic perspective, the fruit production sector in Spain 
makes a substantial contribution to total crop production value, ac
counting for 9253 million euros in 2022, which represents 25.5% of the 
Spanish crop output and 28.6% of the fruit production value in the EU. 

According to the last agricultural census (year 2020), the whole fruit 
production sector in Spain is made up of 137,359 farms. At the farm 
level, the Spanish fruit production sector is highly heterogeneous 
depending on the type of farming (TF). In this sense, according to the 

European farm typology, fruit farms can be classified into four TFs: fruits 
other than citrus, tropical, and nuts (TF 361), citrus fruits (TF 362), nuts 
(TF 363), and tropical fruits (TF 364). Table 1 summarizes the main 
descriptive variables of the fruit farms in Spain by TF, based on the data 
provided by the Spanish Farm Accountancy Data Network (Red Contable 
Agraria Nacional, RECAN, the Spanish branch of the European Farm 
Accountancy Data Network, FADN). These data show the heterogeneity 
pointed out above in structural, economic, and environmental (e.g., 
fertilizers and pesticides use) terms. This heterogeneity justifies a 
separate analysis for each analyzed TF, as proposed in this study. 

Regarding the production system, most fruits produced in Spain are 
grown under a conventional system. Nonetheless, the organic fruit 
production sector has been experiencing substantial growth in recent 
years. In fact, in 2021, there were 18,583 organic fruit farms (13.5% of 
total fruit farms), together operating 304,144 ha (21.6% of the Spanish 
fruit area) (MAPA (Ministerio de Agricultura, Pesca y Alimentación), 
2022b). 

2.2. Data source: The Spanish farm accountancy data network (RECAN) 

The FADN is the only source of harmonized and representative farm 

Table 1 
Main structural, economic, and environmental variables of the Spanish fruit 
farms by TF (average values for the year 2020).  

Variable RECAN 
code 

Fruits 
(TF 
361) 

Citrus 
(TF 362) 

Nuts 
(TF 
363) 

Tropical 
(TF 364) 

RECAN sampled 
farms 

SYS03 298 275 139 106  

Structure 
Total Utilized 

Agricultural Area 
(UAA) (ha) 

SE025 18.1 11.8 42.6 3.9 

Total labor input 
(AWU)a SE010 3.9 1.6 1.0 2.2 

Unpaid labor input 
(AWU) 

SE015 1.1 0.7 0.7 1.2 

Paid labor input 
(AWU) SE020 2.7 1.0 0.2 1.0  

Revenues 
Total output (€/ha) SE131 8649 7027 1028 17,531 
Total subsidies 

(€/ha) 
SE605 265 298 317 4339  

Costs 
Total inputs (€/ha) SE270 5621 4360 496 11,744 
Specific costs (€/ha) SE281 1068 1165 135 1954 
Farming overheads 

(€/ha) SE336 1328 1376 177 3880 

Depreciation (€/ha) SE360 411 231 88 935 
Wages paid (€/ha) SE370 2582 1370 83 4499 
Rent paid (€/ha) SE375 199 203 12 465 
Interest paid (€/ha) SE380 33 14 0 12  

Profit 
Farm Net Income 

(€/ha) SE420 3469 3028 833 10,257  

Environmental performance 
Fertilizers (€/ha) SE295 330 527 64 1179 
Nitrogen (kg/ha) SE296 70.8 136 20.2 197 
Phosphorus (kg/ha) SE297 48.5 68.0 6.7 202 
Potassium (kg/ha) SE298 89.2 97.8 9.1 265 
Crop protection 

costs (€/ha) SE300 605 586 58 672 

Source: Own elaboration based on RECAN microdata. 
a Annual Work Unit, equivalent to one full-time job. 
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microdata at the EU level, making any empirical study based on these 
data fully reproducible elsewhere in the EU. However, using the FADN 
as the data source for assessing farms' sustainability performance is 
challenging and entails some limitations regarding the environmental 
information provided, which may hinder the assessment of farms' per
formance in this field (Kelly et al., 2018). Nevertheless, there are several 
FADN variables that facilitate this evaluation through environmental 
impact proxies and indicators, as demonstrated in previous studies (e.g., 
Petsakos et al., 2023; Robling et al., 2023). 

The empirical analysis performed in this study is based on a three- 
year (2018–2020) panel sample of fruit farms provided by the RECAN, 
including 679 farms classified as TF 361 (fruits, 245 farms), TF 362 
(citrus, 230 farms), TF 363 (nuts, 121 farms), or TF 364 (tropical, 83 
farms). 127 out of the 679 farms in the complete sample are organic. 
Table 2 shows the composition of each RECAN subsample by TF 
considering the farms' production system (i.e., conventional and 
organic). As can be checked, the number of organic farms in these 
subsamples ranges from 14 in the TF 364 (17% of tropical fruit farms 
sampled) to 63 in the TF 363 (52% of nut farms sampled). Overall, 
organic farms represent 18.7% of the total RECAN sample used in the 
analysis, covering 25.2% of the sampled area. According to the sector 
data introduced in the previous section, it is evident that organic farms 
are overrepresented in the RECAN fruit farm subsamples. However, this 
relatively high number of organic farms in the subsamples allows for a 
better representation of organic fruit production, enabling a more ac
curate and robust comparative analysis of fruit farms' performance. 

Moreover, Table 2 also shows the average yields for the main fruit 
crops produced under conventional and organic farming. Overall, 
average yield comparisons highlight the aforementioned productivity 
gap between these two production systems, showing the generalized 
lower production per hectare for organic production. However, it is 
worth noting that average yields and their differences must be consid
ered just for explorative purposes for two main reasons. First, the dif
ferences observed are not randomized (i.e., these differences are 
influenced by other underlying variables beyond the production sys
tem); thus, any test comparing conventional and organic yield averages 
would make little sense. Nevertheless, the small sample sizes at the crop 
level preclude the implementation of matching methods to minimize the 
existing non-randomization biases. Second, the observed yield differ
ences at the TF level to be analyzed in this paper (i.e., TFs 361, 362, 363, 
and 364) are the results of aggregating diverse crop productions (e.g., 
adding kilograms of peaches, apples, pears, and many other fruits in the 
case of TF 361). This raises doubts about the suitability of grouping them 
in kilogram terms for the analysis since they have different biophysical 
attributes (e.g., moisture levels or nutrient contents) and economic 

values. Both facts led us to emulate randomized comparisons of con
ventional and organic farms' economic performance using monetary- 
based metrics (e.g., profitability, viability, or resilience), considering 
the euro as a functional unit for the comparative analyses, circum
venting any potential biases resulting from the outputs' heterogeneity. 

3. Methodology 

We employed a three-step methodology. In the first stage, base in
dicators of farms' performance in the two sustainability dimensions 
considered (i.e., economic and environmental) were chosen and calcu
lated for every farm included in the three-year panel sample collected by 
the RECAN. The scores of these indicators were calculated as average 
values for the three years (2018–2020) to better reflect farm perfor
mance as a structural feature, thus minimizing potential biases due to 
abnormal agricultural years. In the second stage, composite indicators of 
farms' performance were calculated for each dimension. Lastly, in the 
third stage, we employed propensity score matching to estimate the 
Average Treatment Effect (ATE) for the sample, thus quantifying the 
changes in base and composite performance indicators due to farms' 
conversion to organic farming. These stages are explained in more detail 
below. 

3.1. Economic performance indicators 

The assessment of farms' economic performance has been addressed 
by multiple authors, with different theoretical and quantitative ap
proaches used to measure its multidimensional nature (e.g., Spicka 
et al., 2019; Loughrey et al., 2022). Hence, following the existing liter
ature, we calculated seven indicators capturing four of the most relevant 
dimensions of farms' economic performance: profitability, viability, 
resilience, and independence. 

Profitability is calculated as the relationship between farms' profits 
and the investments allocated by the farmer to run the agricultural 
business. We chose two indicators to quantify this dimension of eco
nomic performance (see Table 3). The first one is Farm Net Income (FNI) 
expressed in euros per hectare, which provides information on farms' 
accounting profit (i.e., total revenues minus total expenses). The second 
indicator is Return on Assets (ROA), calculated as Earnings Before In
terest and Taxes (EBIT) divided by the value of total farm assets and 
expressed as a percentage. 

Following the existing literature (e.g., Spicka and Derenik, 2021; 
Gómez-Limón et al., 2023), farms can be considered economically viable 
only when they achieve a level of income that is enough to cover all farm 
operating costs while also ensuring an appropriate return to production 

Table 2 
Composition of the RECAN subsamples by TF and main crops and average yields for conventional and organic farming (year 2020).  

Farm/crop (observations) Average yields Observed difference Org.-Conv. (%) 

Organic farms (kg/ha) Conventional farms (kg/ha) 

TF 361 Fruits (organic = 32, conventional = 213) 17,220 18,991 − 9.3 
Peach (organic = 14, conventional = 128) 17,678 22,868 − 22.7 
Pear (organic = 16, conventional = 61) 19,181 21,884 − 12.4 
Apple (organic = 18, conventional = 41) 27,426 29,921 − 8.3 
Other fruits (organic = 15, conventional = 100) 10,966 11,501 − 4.7 

TF 362 Citrus (organic = 18, conventional = 212) 24,701 27,552 − 10.3 
Orange (organic = 10, conventional = 173) 25,313 28,420 − 10.9 
Lemon (organic = 10, conventional = 30) 27,038 21,940 23.2 
Other citrus (organic = 6, conventional = 88) 18,709 24,281 − 23.0 

TF 363 Nuts (organic = 63, conventional = 58) 682 752 − 9.4 
TF 364 Tropical fruits (organic = 14, conventional = 69) 34,257 37,772 − 9.3 

Source: Own elaboration based on RECAN microdata. 
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factors owned by the farmer. Thus, as proposed in previous studies based 
on FADN data (e.g., Coppola et al., 2022), viability indicators relate the 
FNI with the opportunity costs of the different factors provided by the 
farmer. We computed two indicators of farms' viability (see Table 3). For 
the first one, named long-term viability (LT_VB), the FNI of each farm is 
divided by its total opportunity costs (i.e., land, labor, and non-land 
assets).1 Only farms with a value of LT_VB greater than or equal to 
one can be considered viable in the long term since their FNI (i.e., ac
counting profit) is enough to adequately remunerate all the opportunity 
costs of factors provided by the farmer, allowing the generation of an 
economic surplus (i.e., economic profit). The second indicator refers to 
short-term viability (ST_VB) and is calculated in the same way as the first 
indicator but includes only the opportunity cost of unpaid labor. Only 
farms scoring a value greater than or equal to one in this indicator can be 
considered viable in the short term, since they generate an appropriate 
remuneration for the unpaid labor, ensuring the short-term continuity of 
farming. 

According to Urruty et al. (2016) and Sneessens et al. (2019), resil
ience can be understood as the structural capacity of farms to minimize 
the impacts and changes associated with external pressures (e.g., climate 
events or market shocks) over time. The assessment of farms' resilience 
encompasses three capacities (Meuwissen et al., 2019): robustness 
(stability of net income over time), adaptability (capacity to slightly 
change the form of production–e.g., by adjusting production factors), 
and transformability (capacity to significantly modify the internal pro
duction structure–e.g., by changing the production technology). Due to 
limitations relating to the nature of RECAN data, our analysis only 
focused on robustness as a single subdimension of farms' resilience 
performance. Thus, two indicators were calculated to measure the sta
bility of farms' income over the three years considered (Harkness et al., 
2021; Slijper et al., 2022) (see Table 3). The first one is the coefficient of 

variation of FNI during the period 2018–2020 (CV_FNI, expressed as a 
percentage).2 Hence, the greater its value (i.e., the higher the variability 
of FNI over time), the lower the robustness of the farm. The second in
dicator, FNI resistance (RES_FNI), refers to the greatest decrease in FNI 
with respect to its period average (the greatest downward deviation), 
also expressed as a percentage. 

Finally, independence refers to farms' autonomy in terms of their 
ability to generate sufficient income without relying on public subsidies 
(i.e., CAP dependence). The only indicator in this dimension (see 
Table 3) relates the amount of these public payments received to the 
farms' total revenue (REV_DEP). 

3.2. Environmental performance indicators 

Considering the limited environmental information included in the 
RECAN database, we conducted a comprehensive literature review of 
previous studies that use FADN data (e.g., Volkov et al., 2022; Robling 
et al., 2023) in order to identify the most suitable environmental in
dicators based on per hectare metrics that can be calculated using this 
source. As with the assessment of economic performance, we adopted a 
comprehensive approach for assessing the fruit farms' environmental 
performance, considering three dimensions drawn from the specific CAP 
environmental objectives: biodiversity, greenhouse gas (GHG) emis
sions, and pollution emissions. As a result, we selected five indicators 
(see Table 4). 

Two indicators were chosen to quantify farms' contribution to 
biodiversity using RECAN data. The first indicator is the Shannon Di
versity Index (SDI), which measures the number of crops and other land 
uses (e.g., grassland, non-cultivated land, or forest) on the farm, based 
on their shares in total farm area (pi). This indicator accounts for the 
landscape heterogeneity (i.e., land use) at the farm level, which is 
positively related to farms' biodiversity to the extent that it generates 
diverse habitats for many organisms (Belfrage et al., 2015). This 

Table 3 
Description of farms' economic performance indicators.  

Indicator (acronym) Formula Formula based on RECAN data Units 

Profitability 

Farm Net Income (FNI) FNI
UAA 

SE420
SE025 

€/ha 

Return On Assets (ROA) EBIT
Total assets 

EBIT
SE436 

%  

Viability 

Long-term viability (LT_VB) FNI
Total Opportunity Costs 

SE420
OCland + OClabor + OCnon− land assets 

Dimensionless 

Short-term viability (ST_VB) FNI
OClabor 

SE420
OClabor 

Dimensionless  

Resilience 

Coeff. Variation of FNI (CV_FNI) σFNIt

FNIt 

σSE420t

SE420t 
% 

FNI resistance (RES_FNI) Min
[

FNIt − FNIt

FNIt
∀t
]

Min
[

SE420t − SE420t

SE420t
∀t
]

%  

Independence 

Revenue dependency (REV_DEP) 
Total CAP subsidies

Total revenue  
SE605

SE131 + SE605  %  

1 The opportunity cost of land (OCland) was calculated by multiplying the 
farm's owned area by the annual regional rental fee for cropland based on 
official statistics from MAPA (MAPA, 2022a). The opportunity cost of unpaid 
labor (OClabor) was estimated by multiplying this labor input by the average 
annual wage paid for labor in each RECAN subsample used for the analysis (i.e., 
TFs 361, 362, 363, and 364). To calculate the opportunity cost of non-land 
assets provided by the farmers (OCnon-land), the value of these assets was 
multiplied by the annual interest rate corresponding to the 10-year Spanish 
government bonds. 

2 This indicator was computed using only three observations, given the 
existing data constraints (increasing the length of the period considered would 
greatly reduce subsample sizes). The authors are aware that the relatively short 
period used for its calculation could make this indicator very sensitive to the 
presence of outliers. As a way to minimize potential biases from outliers, all FNI 
annual data were winsorized at the 5% level. In any case, the resulting CV_FNI 
estimates should be interpreted with caution. 
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relationship allows for a proxy assessment of farms' biodiversity through 
land use information provided by the RECAN (e.g., Uthes et al., 2020; 
Dabkiene et al., 2021), providing dimensionless values for each farm 
analyzed, where the higher the score, the greater the level of biodiver
sity on the farm. 

In the EU, the Farm to Fork Strategy established the objective of a 
50% reduction in the use of agrochemical pesticides by 2030 to preserve 
farmland biodiversity. This goal justifies the second indicator chosen to 
capture farms' biodiversity (CROP_PRO), which quantifies crop protec
tion costs (i.e., use of biocide products) measured in euros per hectare 
(Grzelak et al., 2019). Thus, this indicator gives information on farms' 
potential capacity to kill living organisms. However, it should be borne 
in mind that the plant protection products used in conventional and 
organic farms are different, with the former (i.e., synthetic pesticides) 
being much more environmentally harmful than the latter (i.e., ‘natural’ 
protection products). Experts on organic fruit production were consulted 
about the biocide potential of both kinds of crop protection products, 
and they agreed that it is reasonable to assume that one euro spent on 
crop protection in organic farms causes half as much biodiversity 
damage as one euro spent for the same purpose in conventional farms. 
This justifies the inclusion of a correction weight of 0.5 for crop pro
tection costs in the case of organic farms, as shown in Table 3. This 
adjustment makes the values of the CROP_PRO indicator comparable 
across fruit farms in terms of farms' biocide potential. 

The second dimension of farms' environmental performance is linked 
to climate change mitigation, especially to farms' contribution to GHG 
emissions. The RECAN does not provide information about this envi
ronmental impact. However, these emissions can be estimated by 
adapting the Intergovernmental Panel on Climate Change methodology 
(IPCC (Intergovernmental Panel on Climate Change), 2006) and 
applying it to this data source, as done by Baldoni et al. (2017) or Stetter 
and Sauer (2022). For this purpose, system boundaries are fixed at the 
farm-gate. By so doing, the only emissions accounted for are those that 
can be directly attributed to farmers' decision-making (i.e., reflecting 
farms' performance). At this micro level, in the case of fruit farms, most 
of the GHG emissions are related to the use of energy (CO2 emissions 
from fuel for field operations and energy for irrigation) and fertilizers 
(N2O emissions) (Aguilera et al., 2015).3 Thus, aggregate GHG 

emissions at the farm level can be estimated as the sum of the emissions 
generated by the energy and fertilizer inputs, all expressed in CO2 
equivalent (CO2e). The data regarding the Global Warming Potential 
(GWP) updated by the IPCC Sixth Assessment Report (Smith et al., 2021) 
were used to convert the different GHG emissions into CO2e. 

Mathematically, farm-level GHG emissions were calculated as fol
lows: 

GHG emissions =
∑

i
AIi ×EFi =

∑

i

CIi

pi
×EFi (1)  

where AIi is the amount used of the input i (liters of fuel, kWh of elec
tricity, and kg of nitrogen in mineral and organic fertilizers) and EFi is 
the emission factor of the input i (i.e., kg CO2e per unit). However, the 
data provided by the RECAN only report the input costs measured in 
euros (CIi).4 For this reason, the AIi needs to be estimated considering 
the average prices paid for each input (pi), as shown in expression (1). 
Specifically, the RECAN data taken for the estimation of farms' GHG 
emissions were: cost of fuels and lubricants (RECAN code 1040), cost of 
electricity (5020), amount of nitrogen in mineral fertilizers (SE296), and 
cost of organic fertilizers such as manure, slurry, or compost (3034). 
Data about input prices were obtained from MAPA (Ministerio de 
Agricultura, Pesca y Alimentación) (2023). Emission factors were 
gathered from MITECO (Ministerio para la Transición Ecológica y el 
Reto Demográfico) (2023) for fuels and electricity and Aguilera et al. 
(2015) for nitrogen in mineral and organic fertilizers under Spanish 
Mediterranean conditions. 

Thus, the indicator chosen for assessing farms' contribution to GHG 
emissions (GHG_EM) is the value of the individual estimated emissions 
expressed in kg CO2e per hectare. 

The remaining environmental indicators are associated with the 
pressure on natural resources, particularly on water (quality deteriora
tion due to diffuse pollution), because of the use of fertilizers. In fact, the 
Farm to Fork Strategy also established the objective of a 20% reduction 
in fertilizer use plus a decrease in nutrient losses by at least 50% by 
2030. Thus, following previous empirical approaches (e.g., Dabkiene 
et al., 2021), the last two indicators provide information on the physical 
quantity of fertilizers (i.e., nitrogen -N- and phosphorus -P) used in the 
farm (NITROG and PHOSP), all expressed in kilograms per hectare (see 

Table 4 
Description of farms' environmental performance indicators.  

Indicator (acronym) Formula Formula based on RECAN data Units 

Biodiversity 
Shannon Diversity Index (SDI) −

∑
pi × ln(pi) pi based on SE035, SE041, SE046, SE050, SE055, SE060, SE065, SE071, SE075a Dimensionless 

Crop protection costs (CROP_PRO) Crop protection costs
UAA 

SE300conv.

SE025 
or 0.5 × SE300org.

SE025 
€/ha  

GHG emissions 
GHG emissions 

(GHG_EM) 
GHG emissions

UAA 

∑
iInputi × CO2e per uniti

SE025 
kg CO2e/ha  

Pollution emissions 

Nitrogen use (NITROG) Nitrogen input quantity
UAA 

(SE296 × 100) + Norganic

SE025 
kg N/ha 

Phosphorus use (PHOSP) 
Phosphorus input quantity

UAA  
(SE297 × 100) + Porganic

SE025  kg P/ha  

a In order: cereals, other field crops, vegetables and flowers, vineyards, orchards, olive groves, other permanent crops, forage crops, and forest land. 

3 Although these authors also point to changes in soil carbon sequestration as 
another relevant potential source (or sink) of GHG emissions, this impact was 
not included in the proposed GHG emissions indicator. The reason for this 
omission was the lack of appropriate data at the farm level to reasonably es
timate changes in soil organic carbon stocks, mainly those related to manage
ment practices such as using cover cropping and incorporating pruning 
residues. 

4 As exceptions, the RECAN provides data about the amount of macronutri
ents (N, P, and K) in mineral fertilizers. Thus, in this case, the data of the AIi 
reported by this source were directly used in expression (1). 
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Table 3). Consequently, higher values in either of them indicate poorer 
environmental performance by farms, as they can be directly associated 
with a more significant negative impact on water quality (i.e., pollution 
emission leading to freshwater eutrophication). Synthetic and organic 
fertilizers have been considered in the calculation of these two in
dicators. RECAN data provide information about the amount of N and P 
in mineral fertilizers (RECAN codes SE296 and SE297, respectively). 
However, the RECAN data only report the costs of organic fertilizers 
(code 3034). Thus, the amount of N and P in organic fertilizers was 
estimated based on the average prices paid (MAPA (Ministerio de 
Agricultura, Pesca y Alimentación), 2023) and the content of N and P in 
this input. 

3.3. Constructing composite indicators 

The main complication when using sets of indicators to assess com
plex multidimensional concepts is the difficulty of interpreting them 
jointly. This issue, which affects analyses of the different dimensions of 
farms' sustainability (e.g., economic or environmental performance), 
can be addressed by aggregating the multidimensional sets of indicators 
into a single index or composite indicator (e.g., Sébastien and Bauler, 
2013; Greco et al., 2019). The resulting indices are useful for public 
communication of complex concepts (as they are easier to understand by 
policymakers and mass media) and help make these concepts measur
able (allowing comparability across analyzed units—for example, 
through ranking—and the assessment of trends over time). Conse
quently, composite indicators have become key informative support 
tools to guide policy decision-making in the agricultural sector (e.g., 
Gómez-Limón and Sanchez-Fernandez, 2010; Talukder et al., 2018). 
These advantages make composite indicators a useful tool for the pre
sent study since their calculation enables a comprehensive assessment of 
farms' economic and environmental performance, effectively contrib
uting to the ongoing debate on the promotion of organic farming. The 
composite indicators proposed in this study were constructed following 
the guidelines provided for this purpose by the OECD (Organisation for 
Economic Co-operations and Development), JRC (Joint Research 
Centre) (2008). 

First, it must be noted that the base indicators chosen are measured 
in different units. To make them comparable and mathematically 
operational, they must be converted into dimensionless variables using 
the same measurement scale before moving on to the weighting and 
aggregation. For this reason, the base indicator values need to be 
normalized, transforming them into the same dimensionless scale. We 
employed the “min-max” normalization procedure, as is usually done for 
agricultural sustainability assessment (e.g., Yildirim et al., 2022). The 
min-max normalization procedure is sensitive to the presence of out
liers. To minimize the influence of these potential extreme values, the 
original values of the indicators in each subsample (i.e., TFs 361, 362, 
363, and 364) were winsorized at the 5% level. 

Weighting and aggregation are the most critical steps when building 
composite indicators, as choices directly influence the final values of the 
constructed indexes. The weights of the base indicators refer to their 
relative importance in the construction of the composite indicator, thus 
determining the trade-offs between them. Two groups of weighting 
techniques can be broadly distinguished (OECD (Organisation for Eco
nomic Co-operations and Development), JRC (Joint Research Centre), 
2008). On the one hand, positive or data-driven methods are those that 
obtain the weights endogenously employing statistical techniques. 
Conversely, normative or participatory methods rely on subjective 
judgments (e.g., opinions from experts, stakeholders, or policymakers 
collected through questionnaires) to derive the weights associated with 
each base indicator. We implemented the Best-Worst Method (BWM) to 
elicit the weights of the indicators based on the opinions provided by a 

panel of experts in fruit farming, who were asked to answer the BWM 
questionnaire considering the specific context of this case study.5 This 
participatory method was developed by Rezaei (2015) and has already 
been widely used in constructing composite indicators, as shown by 
Wang and Fu (2020). For the implementation of the BWM in the case 
study considered, 27 experts were interviewed. The expert panel was 
primarily composed of scholars from universities (12) and research 
centers (9), but also contained specialists from the Regional Adminis
tration (4) and technical services firms (2). Appendix A, included as 
supplementary material, provides detailed information about the 
implementation of this weighting method. 

When aggregating base indicators into a single index, commensu
rability becomes a key issue (Rowley et al., 2012). This concept de
termines the extent to which low values in one base indicator can be 
compensated for by higher values in another indicator when calculating 
the composite indicator. After reviewing the variety of aggregation 
procedures available (see OECD (Organisation for Economic Co- 
operations and Development), JRC (Joint Research Centre), 2008; 
Greco et al., 2019), the weighted sum of base indicators (i.e., an additive 
procedure) was finally chosen. This method allows for total compensa
tion among indicator values. Mathematically, the resulting additive 
Farm Performance Composite Indicator (FPCI) for farm i can be 
expressed as follows: 

FPCIi =
∑k=K

k=1
wk⋅xk,i (2)  

where wk represents the weight assigned to the indicator k, and xk,i is the 
normalized value of indicator k for farm i. 

To assess the robustness of the proposed composite indicator, con
structed using the BWM method and the additive aggregation proced
ure, additional economic and environmental performance indexes were 
computed. These additional indexes were derived using combinations of 
alternative methodological approaches. Appendix B in the supplemen
tary material shows detailed information on how the Principal Compo
nent Analysis (PCA) was implemented as an alternative weighting 
method. Similarly, Appendix C describes the application of the multi- 
criteria procedure proposed by Diaz-Balteiro and Romero (2004) as an 
alternative aggregation method. Thus, four different composite in
dicators (2 weighting methods × 2 aggregation procedures) were actu
ally built to comprehensively assess farms' economic and environmental 
performance. The Pearson and Spearman correlation matrixes for all 
composite indicators calculated are shown in Appendix D in the sup
plementary material. In this sense, extremely high positive correlations 
between the proposed FPCI (i.e., constructed using the BWM weighting 
and additive aggregation procedure) and the alternative indexes based 
on different weighting and aggregation methods indicate that all these 
composite indicators provide similar measurements of the same multi
dimensional concepts (i.e., farm economic and environmental perfor
mance). Therefore, since the farm performance indexes calculated are 
not sensitive to the choice of weighting/aggregation procedure, the 
quantitative analysis reported here focuses solely on the proposed FPCI, 
for both the economic and environmental dimensions (ECO FPCI and 
ENV FPCI, respectively). 

5 Preferences expressed by policymakers could also be considered an alter
native way to obtain normative weights. One example of this is the Product 
Environmental Footprint (PEF) method proposed by the European Commission 
(see European Commission, 2018), where weighting factors are proposed to 
homogenize Life Cycle Assessment (LCA) based on product declarations 
regarding the environmental impacts of the products and services sold within 
the EU. However, considering the objective of this research, a sector- and site- 
specific approach for the assessment was deemed more suitable than the gen
eral framework proposed by the PEF. 

J. Martín-García et al.                                                                                                                                                                                                                         



Ecological Economics 220 (2024) 108178

7

3.4. Matching and average treatment effects estimation 

The main purpose of this study is to assess the impact on fruit farms' 
economic and environmental performance caused by their conversion to 
organic production. This impact is quantified by both the base and 
composite indicators described in the previous sections. Following the 
seminal work of Rubin (1974) on causal effect estimation, we can 
consider the conversion to organic farming as a “treatment”, thus 
dividing our farm samples into two subsamples: the “treated” group 
(organic farms) and the “control” group (conventional farms). Accord
ing to Rosenbaum (2010), results from a direct comparative analysis 
between organic and conventional farms' performance might not be 
exclusively caused by the farms' production system, which is actually the 
treatment effect we want to calculate. Hence, to address this problem 
raised by non-randomization, we employed a “quasi-experimental” 
approach by utilizing matching methods, as proposed in other farm- 
level comparative assessments (e.g., Froehlich et al., 2018; Hansen 
et al., 2021; Lambotte et al., 2023). 

Matching methods are used to match similar subjects from the con
trol and the treated group based on a set of control variables (e.g., farms' 
structural and productive characteristics or farmers' demographic 
characteristics), commonly referred to as covariates (Rosenbaum, 
2010). The key objective of matching methods is to replicate a ran
domized study by achieving a covariate balance between groups in the 
final matched sample, trying to make the treatment assignment 
“strongly ignorable” and thus allowing the researcher to isolate the 
causal effect of interest (Stuart, 2010). A total of 15 covariates (see 
Appendix E of supplementary material) were finally chosen related to 
fruit growers' demographic characteristics, farms' characteristics, farms' 
resources, and characteristics of the region where the farms are located. 
Table E1 shows the average values of all covariates for organic and 
conventional farms by TF. 

The chosen covariates were used as explanatory variables in a lo
gistic regression to estimate the propensity score of each subject (i.e., the 
probability of being organic for each farm). Subsequently, we applied 
the full matching method (Hansen, 2004; Austin and Stuart, 2015) to 
each analyzed TF sample, specifying the propensity scores as the mea
sure of the distance between farms to be matched. The weights assigned 
by the full matching procedure enabled us to estimate the Average 
Treatment Effect (ATE) (Austin and Stuart, 2017a, 2017b), allowing us 
to obtain accurate and unbiased estimators of the impact of conversion 
to organic production on fruit farms' base/composite indicators of eco
nomic and environmental performance. 

The unbiasedness of the estimated effects from the matching method 
hinges on two factors. First, from a general perspective, there is evidence 
that matching techniques produce less biased results than alternative 
approaches applied to unmatched data, such as ordinary least squares 
(OLS) regressions (Vable et al., 2019). Second, a diagnostic analysis of 
the covariate balance between the two groups of matched farms (i.e., 
conventional and organic) was conducted to assess the validity of the 
estimated effects for our case study. Matching outcomes for each TF 
subsample are presented in Appendix F in the supplementary material. 
This information makes it possible to check the covariate and propensity 
score balance achieved within each matched sample (i.e., ignorability of 
treatment assignment), ensuring that the ATE estimates shown in Ta
bles 7 and 8 are unbiased. 

4. Results 

4.1. Organic vs. conventional average performance 

This section presents an overview of the fruit farms' performance 
based on the pre-matching values obtained for both the base and the 
composite indicators in each analyzed TF. These outcomes provide some 
insights into the heterogeneity between and within the different TFs, 
further justifying the separate analysis proposed for each of them. The Ta
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means of each base/composite indicator calculated for organic and 
conventional farms in all four TF samples are shown in Table 5 (eco
nomic performance indicators) and Table 6 (environmental perfor
mance indicators). 

As noted above, the descriptive statistics of the indicators shown in 
Table 5 give us information about the substantial heterogeneity in fruit 
farms' economic performance across the different TFs. In this sense, 
average differences between economic base indicators are striking. The 
tropical fruit farms (TF 364) case is particularly noteworthy, showing 
the highest values of profitability indicators (FNI and ROA). Conversely, 
nut farms (TF 363) exhibit the worst economic performance among all 
the analyzed TFs, as indicated by the lowest values in the FNI profit
ability indicator, and the highest dependency on CAP subsidies (i.e., 
worst values in REV_DEP). Moreover, this table also shows apparent 
differences between organic and conventional farms in terms of the 
average values of base indicators. However, the results obtained are 
mixed. Similar results for all four TFs are found only in the case of 
revenue dependency (REV_DEP), as organic farms generally receive 
more CAP subsidies than conventional ones. 

However, the absolute differences in the economic composite indi
cator between TFs are not that sizeable. This can be explained by the 
normalization method adopted, which was implemented separately by 
TF, meaning that the composite indicators are measured in different 
metrics that cannot be directly compared. However, these results are 
helpful in pointing out disparities between organic and conventional 
farms' economic performance within each analyzed TF. In this respect, 
while conventional farming seems to have a better overall economic 
performance than organic farming in the fruit farms (TF 361), the 
organic farms included in the other TFs (TFs 362, 363, and 364) show 
apparent higher average values for the economic composite indicator 
than conventional farms do. 

Similar to the economic dimension, the descriptive statistics of 
environmental base indicators shown in Table 6 also evidence hetero
geneity between the TFs, especially for indicators related to input use (e. 
g., differences in average values for CROP_PRO, GHG_EM, NITROG, and 
PHOSP). Average values of base environmental performance indicators 
suggest that nut farms (TF 363) exhibit the best environmental perfor
mance, in contrast to having the worst economic performance, as 
described above. Regarding the results shown in this table, the differ
ences in environmental performance between organic and conventional 
farms within each TF are also worth noting. Organic farming appears to 
outperform conventional agriculture in every TF in three of the base 
indicators assessed (CROP_PRO, NITROG, and PHOSP). However, con
trary to what was expected, the results obtained are mixed for the other 
two indicators (SDI and GHG_EM). 

Regarding the environmental composite indicator, we observe slight 
variability in average values between TF samples; the reason for this is 
the same as the one given for the economic composite indicator. Despite 
this, the average values obtained seem to confirm the assumption that 
organic farming is a more environmentally friendly production system 
than conventional agriculture for every TF. 

In any case, all these preliminary comparisons must be taken with 
caution. As commented in Section 3.4, these results are not accurate 
enough, as they are influenced by several underlying factors that 
introduce non-randomization biases. Therefore, results from this pre- 
matching analysis regarding organic vs. conventional fruit farms' per
formance can be understood as initial hypotheses to be tested with the 
unbiased ATE estimators shown in the following section. 
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4.2. Fruit farms' organic conversion: Changes in economic performance 

Table 7 shows the ATE estimates of the unbiased impact of organic 
farming adoption on each base/composite indicator of economic per
formance by TF, including Cohen's d to account for the effect size.6 As 
can be observed, the differences in farms' economic performance be
tween organic and conventional farming (ATE estimates) contrast with 
those shown in the pre-matching analysis (Table 5). This can be 
explained by the fact that ATE estimators effectively isolate the effect of 
the organic production regime on farms' economic performance, 
removing the impact of other underlying factors through the matching 
procedure. 

At a glance, it can be observed that the ATE estimates shown in 
Table 7 are highly heterogeneous between TFs. In the case of fruit farms 
(TF 361), the higher CAP subsidies after converting to organic farming 
(+3.89% in REV_DEP) lead to the ATE estimates for the rest of the base 
economic performance indicators not being statistically significant. 
Accordingly, we can conclude that the overall economic performance of 
fruit farms which converted to organic farming is similar to that of 
conventional farms (no significant differences are found for the eco
nomic composite indicator calculated). 

The implementation of the organic production in the case of citrus 
farms (TF 362) leads to less profitability (− 3.02% in ROA indicator) and 
less resilience, as the variability of the FNI is higher (+31.4% in CV_FNI) 
and it also has worse resistance (− 50.6% in RES_FNI). Moreover, the 
conversion of citrus farms to organic makes them 4.64% more depen
dent on CAP subsidies than under conventional production. In fact, 
Cohen's d values clearly support ATE estimates on CV_FNI, RES_FNI, and 
REV_DEP base indicators since their effect size can be categorized as 
large or very large. All these facts explain why the ATE estimator for 
ECO_FPCI (− 0.131) reflects the worse overall economic performance of 
organic citrus farming compared to conventional production. 

On the contrary, the conversion from conventional to organic nut 
farming (TF 363) improves economic performance in almost all base 
indicators. The ATE estimators show that nut farms are more profitable 
(+188 €/ha and + 3.28% in FNI and ROA, respectively) and viable 
(+0.49 in LT_VB and + 2.10 in ST_VB) once they convert to organic. 
However, organic farming adoption in nut farms also involves a statis
tically significant higher revenue dependency on CAP subsidies 
(+9.69% in REV_DEP). In sum, according to the ATE estimator for 
ECO_FPCI (+0.062), the conversion of nut farms to organic production 
leads to better overall economic performance. 

Lastly, regarding tropical fruit (TF 364), no statistically significant 
differences in economic performance were found for farms that had 
converted to organic. 

The heterogeneity of the results obtained across the different fruit 
TFs makes it challenging to report general conclusions about the eco
nomic impact of organic conversion at the farm level. However, it is 
worth noting that the decrease in fruit production yields because of the 
adoption of organic farming is usually fully compensated for by the 
higher prices received by organic farmers (price premiums over con
ventional products),7 as revealed by the widespread good performance 
of organic fruit farming in terms of profitability. In this sense, ATE es
timates only show a significant negative difference for the ROA indicator 
in citrus farms (TF 362). For all other TFs and indicators, the profit
ability ATE estimates are either not statistically significant or signifi
cantly positive (for example, in nut farms, TF 363). These results 
contradict the widespread perception that organic farming is less 
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6 According to Cohen (1988), absolute Cohen's d values of around 0.20 
identify a ‘small’ effect size, around 0.50 a ‘medium’ effect size, around 0.80 a 
‘large’ effect size, and around 1.20 a ‘very large’ effect size.  

7 Lin et al. (2008) estimated price premiums for the organic attribute for five 
major fresh fruits in the USA, with these premiums found to range from 13% to 
86%, depending on the product. 
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profitable than conventional farming (Trewavas, 2001), raising doubts 
about the efficiency of the subsidies granted to organic fruit farmers as a 
way to promote the expansion of organic farming. For instance, the 
results show that subsidies granted to organic nut farmers might not be 
justified since the conversion to organic farming does not lead to any 
decrease in profitability; therefore, no public compensation is needed to 
promote this conversion. In fact, in the case of nut farms, the additional 
income provided through these subsidies makes this alternative unnec
essarily more profitable than conventional agriculture. Conversely, the 
ATE estimates indicate that subsidies received by organic citrus farmers 
are insufficient to compensate for their lower profitability after the 
conversion. Only in the case of fruit farms (TF 361) can it be concluded 
that subsidies are set at the appropriate level to compensate for the drop 
in yields after organic conversion, ensuring their economic performance 
is similar to that of conventional production. 

4.3. Fruit farms' organic conversion: Changes in environmental 
performance 

Table 8 shows the ATE estimates quantifying the impact of the 
conversion to organic farming on each base/composite indicator of 
environmental performance by TF, along with their corresponding 
Cohen's d values (i.e., effect size). Similar to the analysis focused on 
economic performance, the unbiased differences (ATE estimates) in 
environmental performance found between organic and conventional 
farms are fairly different compared to those observed in the pre- 
matching analysis (Table 6). 

In the case of fruit farms (TF 361), implementing the organic farming 
production system results in a statistically significant improvement in 
farms' biodiversity, as shown by the ATE estimate of +0.123 in the 
Shannon diversity index (SDI), as well as − 337.9 €/ha in crop protection 
costs (CROP_PRO), which ultimately reflect the use of biocide products 
on farms. For the latter indicator, it is worth mentioning that the Cohen's 
d also identified a large effect size. However, no statistically significant 
difference was found regarding GHG or water pollutant (i.e., N and P) 
emissions. When jointly considering all these performance indicators, a 
significant difference was identified in the environmental composite 
indicator (+0.120 in ENV_FPCI), indicating a positive change in the 
overall environmental performance per hectare after adopting organic 
farming, mainly due to improved biodiversity. 

The implementation of organic farming in citrus farms (TF 362) 
implies a statistically significant improvement in biodiversity perfor
mance (− 139.6 €/ha in CROP_PRO) and pollution emissions (− 22.9 kg 
N/ha in PHOSP); the latter been identified as a large effect size. How
ever, after adopting the organic production regime, these farms have 
statistically significantly higher GHG emissions (+457.4 kg CO2e/ha in 
GHG_EM). Since citrus organic farms' worse performance in GHG 
emissions counterbalances their better performance in biodiversity and 
pollution emissions, the ATE estimator shows no statistically significant 
difference for ENV_FPCI. Thus, overall environmental performance per 
hectare remains similar when converting conventional citrus farms to 
organic farming. 

Regarding nut farms (TF 363), the results reveal two statistically 
significant differences in environmental base indicators arising from 
organic adoption. These differences indicate an improvement in organic 
nut farms' environmental performance in terms of biodiversity 
compared to their conventional counterparts, spending 18.3 €/ha less on 
biocide products (CROP_PRO) and using lower levels of N inputs (− 15.8 
kg N/ha in NITROG). In light of these relatively small differences, we 
can conclude that nut farms which converted to organic perform simi
larly in the environmental dimension to conventional nut farms. Hence, 
the overall environmental benefit per hectare derived from the imple
mentation of organic farming is almost negligible (i.e., the ATE estimate 
for ENV_FPCI is not statistically significant). 

The opposite is true for the case of tropical fruit farms (TF 364), 
where the adoption of organic farming entails less use of biocide Ta
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products (− 610.4 €/ha in CROP_PRO), increasing farms' biodiversity. 
Additionally, the conversion to organic farming in tropical fruit farms 
involves a reduction of pollution emissions, with a substantial decrease 
in the use of fertilizers compared to conventional farming (− 207.7 kg N/ 
ha in NITROG, − 325.8 kg P/ha in PHOSP). Hence, the ATE estimate for 
ENV_FPCI is positive and statistically significant (+0.182). In this case, 
the Cohen's d values detect large effect sizes for all significant ATE es
timates, thus reinforcing the findings. Consequently, the results allow us 
to conclude that organic farming conversion in tropical fruit farms 
significantly increases the overall environmental performance per 
hectare compared to conventional production. 

To summarize this section, it is worth noting that, contrary to what 
was expected (Trewavas, 2001), the conversion to organic farming does 
not generally lead to better overall environmental performance at the 
farm level. Indeed, the enhanced environmental performance observed 
was statistically significant in only half of the analyzed TFs (fruit and 
tropical fruit farms). However, it is worth noting that the observed 
improvement exhibited only a medium effect size. Moreover, similar to 
the economic performance assessment, there is considerable heteroge
neity regarding the ATE estimates for the various indicators analyzed. 
Only the indicator measuring the use of biocide products (CROP_PRO) 
showed significant differences in ATE estimates across all TFs, indicating 
a widespread good performance of organic fruit farming in terms of 
biodiversity. These findings also challenge the prevailing notion that 
organic farming is inherently more environment-friendly than conven
tional farming. This raises doubts about the efficiency of subsidies pro
vided to organic fruit farmers to compensate them for the provision of 
environmental public goods. Only in the fruit and tropical fruit sub
sectors, where the overall environmental performance on a per hectare 
basis of organic farming is superior to that of conventional agriculture, 
can these subsidies be deemed an appropriate instrument to implement 
the “provider gets” principle in organic farming. 

5. Discussion and concluding remarks 

This paper provides methodological insights and practical implica
tions that could help to achieve the policy objective of having 25% of the 
EU's agricultural land under organic farming by 2030, while minimizing 
the trade-off between the expected environmental benefits and eco
nomic losses. 

First, from a methodological point of view, the results suggest that 
matching methods can effectively isolate the differences in farms' per
formance exclusively associated with the “treatment” analyzed, such as 
the conversion from conventional to organic farming. This study has 
applied a propensity score matching procedure to successfully estimate 
the changes in farms' per hectare economic and environmental perfor
mance resulting from the conversion to organic farming, ensuring a 
comprehensive and unbiased assessment. Moreover, the study also evi
dences the usefulness of composite indicators for comprehensively 
assessing farms' economic and environmental performance. In this 
sense, the results obtained show that the constructed indexes are not 
sensitive to the choice of the weighting or aggregation procedures, 
confirming their robustness. 

Second, from a policy point of view, the empirical results obtained 
have relevant implications that can support policy decision-makers in 
the design of instruments to facilitate the organic transition at the pace 
stipulated by the European Green Deal, while minimizing the adverse 
effects arising from the loss of production. The results show that the 
impact of the conversion to organic farming on farms' economic and 
environmental performance per hectare is widely heterogeneous across 
types of fruit farming. These findings are aligned with those obtained by 
Reganold and Wachter (2016) and Seufert and Ramankutty (2017) in 
their meta-analyses of numerous studies comparing the two agricultural 
systems. Consequently, as pointed out in several policy reports (e.g., 
Beckman et al., 2020; Guyomard et al., 2020; Barreiro-Hurle et al., 
2021), the promotion of organic farming through agricultural policy 

should be handled with caution, since overlooking the impacts on farms' 
performance could lead to economic inefficiencies (i.e., environmental 
benefits lower than production losses). Furthermore, the results show 
that differences in fruit farms' economic and environmental perfor
mance caused by the conversion to organic farming are somewhat more 
modest than the expectations from non-randomized average compari
sons. In this sense, the relatively small changes found suggest that the 
expansion of organic farming is concentrated in farms that are less 
profitable (i.e., poorer economic performance) and less intensive (i.e., 
better environmental performance per hectare) than the average con
ventional farm. This fact calls for political attention to efficiently pro
mote organic agriculture, accounting for the different gains/losses in 
farms' performance within each production subsector. 

On the one hand, the results indicate that the impact of organic 
farming adoption on the fruit farms' economic performance is hetero
geneous between types of fruit farming: positive for nut farms, negative 
for citrus farms, and non-significant for other fruit and tropical fruit 
farms. Methodological issues could explain the differences with the 
mixed results reported in previous comparative assessments (e.g., 
Nemes, 2009; Crowder and Reganold, 2015; Hansen et al., 2021): first, 
we adopted a broader multidimensional conceptualization of farms' 
economic performance beyond profitability; and second, we applied a 
matching method to minimize non-randomization biases in the assess
ment of treatment effects, instead of the observational average differ
ences usually reported. Thus, the proposed innovative methodological 
approach led to more accurate and reliable results, which can help to 
fine-tune the design of agri-environmental instruments to promote 
organic farming through compensation payments. For instance, ATE 
estimates indicate that converting nut farms to organic farming implies 
receiving more CAP subsidies while improving overall economic per
formance. These results suggest that organic nut farmers might be 
overcompensated, highlighting inefficiencies in the current flat-rate 
allocation of subsidies. Even for the case of organic citrus farms (TF 
362), where subsidies make it possible to reduce the economic perfor
mance gap with their conventional counterparts, the efficiency of the 
current subsidy allocation is questionable since the conversion to 
organic agriculture does not provide significant environmental benefits. 
This evidence calls for a change in the design of subsidies to promote 
organic farming: rather than the current flat-rate system (i.e., a crop- 
specific payment per hectare converted to organic farming), it would 
be advisable to link the amount of these subsidies to potential produc
tivity/profitability losses and environmental benefits resulting from 
conversion to organic. 

On the other hand, changes in fruit farms' environmental perfor
mance per hectare resulting from organic farming conversion have also 
turned out to differ by type of fruit farming: changes are positive for 
fruits and tropical fruit farms and non-significant for all other TFs. 
Therefore, the results obtained do not fully support the assumption that 
the conversion to organic farming generally enhances farms' environ
mental performance. These conclusions further contribute to the 
ongoing debate about this topic raised by several authors (e.g., Seufert 
and Ramankutty, 2017; Meemken and Qaim, 2018). The expansion of 
organic agriculture could contribute to a more sustainable food system, 
as its negative impacts on the environment at the local level (i.e., 
pressures on the ecosystems measured on a per hectare basis) are 
generally lower than those exerted by the average conventional agri
culture. However, as the results suggest, the contribution of organic 
conversion to farms' environmental performance per hectare should be 
carefully evaluated within each context, keeping in mind that conven
tional agriculture can also be done without significant negative impacts 
on the environment (e.g., extensive agricultural systems). 

It is worth noting that this study is not free of limitations. The first 
one is related to the source of data employed for the analysis. In this 
sense, it should be pointed out that there is relatively little environ
mental information included in the RECAN database (Kelly et al., 2018). 
In fact, this study could be improved if additional relevant 
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environmental information were available; for example, farm-level data 
regarding the presence of potential high natural value areas and the 
biocide potential of the agrochemical used (biodiversity), soil manage
ment practices (soil functionality), GHG emissions (climate change), 
nutrient balances (pollution emissions), or water consumption (water 
withdrawals). Moreover, the study could also benefit if the RECAN 
collected valuable data to further characterize organic and conventional 
production for a more precise matching between farms (e.g., covariates 
such as planting density or farm slope). Nonetheless, many of these data 
limitations might be solved by the future Farm Sustainability Data 
Network (FSDN), which will upgrade the current FADN. 

It is also worth acknowledging that the methodological approach 
used to assess the environmental impacts of farming relies on area-based 
indicators, which give a partial view of the topic under analysis. While 
this approach allows the measurement of differential pressures on the 
environment of farming systems at the local or regional level, this kind 
of analysis should be complemented with other studies that use product- 
based indicators (e.g., on a per ton or kg basis), thus offering a broader 
view of the environmental impact. Such a complementary approach 
would allow for an assessment of the environmental impacts of the 
transition to organic farming at a global level, properly relating farm 
productivity (i.e., differentiated yields) with the pressures exerted on the 
environment by different farming systems. This limitation could also be 
addressed through further research relating food production to envi
ronmental impacts, using farm microdata to compare the total factor 
productivity of farms under different production systems, considering 
production variables measured in both monetary and physical terms. 
The results from such new assessments might support the design of more 
efficient policy instruments in the context of the organic transition of 
agriculture, by giving more accurate insights regarding farms' capacity 
to provide food under alternative production systems. 

Lastly, the static nature of the analysis performed must be pointed 
out, as the matching procedure implemented just compared average 
conventional and organic farms at the current time. This could be 
considered another limitation of this study since it ignores the dynamics 
of ecological transition processes in farm performance. We thus call for 
new research that specifically analyzes how farms' economic and envi
ronmental performance evolve over the course of the conversion process 
from conventional to organic production, considering the particular case 
of farms that are in the process of converting to organic farming (but that 
still appear as conventional farms) and the learning-by-doing effect. 
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Yildirim, Ç., Türkten, H., Boz, İ., 2022. Assessing the sustainability index of part-time and 
full-time hazelnut farms in Giresun and Ordu Province, Turkey. Environ. Sci. Pollut. 
Res. 29, 79225–79240. https://doi.org/10.1007/s11356-022-20966-9. 

J. Martín-García et al.                                                                                                                                                                                                                         

https://doi.org/10.1016/j.ecolecon.2018.04.022
https://doi.org/10.1016/j.ecolecon.2009.11.027
https://doi.org/10.1016/j.ecolecon.2009.11.027
https://doi.org/10.1002/agr.21822
https://doi.org/10.1002/agr.21822
https://doi.org/10.1007/s11205-017-1832-9
https://doi.org/10.1016/j.jclepro.2019.118304
https://doi.org/10.1016/j.jclepro.2019.118304
https://doi.org/10.2861/836202
https://doi.org/10.1198/016214504000000647
https://doi.org/10.1007/s13165-020-00336-w
https://doi.org/10.1007/s13165-020-00336-w
https://doi.org/10.1016/j.agsy.2020.103009
https://doi.org/10.1016/j.agsy.2020.103009
http://refhub.elsevier.com/S0921-8009(24)00075-2/rf0150
http://refhub.elsevier.com/S0921-8009(24)00075-2/rf0150
http://refhub.elsevier.com/S0921-8009(24)00075-2/rf0150
https://doi.org/10.1016/j.ecolind.2017.12.053
https://doi.org/10.1016/j.jenvman.2023.117405
https://doi.org/10.1016/j.jenvman.2023.117405
https://doi.org/10.1017/S1742170508002238
https://doi.org/10.1017/S1742170508002238
https://doi.org/10.1016/j.jrurstud.2021.11.022
https://doi.org/10.1016/j.jrurstud.2021.11.022
http://refhub.elsevier.com/S0921-8009(24)00075-2/rf0175
http://refhub.elsevier.com/S0921-8009(24)00075-2/rf0175
http://refhub.elsevier.com/S0921-8009(24)00075-2/rf0180
http://refhub.elsevier.com/S0921-8009(24)00075-2/rf0180
http://refhub.elsevier.com/S0921-8009(24)00075-2/rf0185
http://refhub.elsevier.com/S0921-8009(24)00075-2/rf0185
https://doi.org/10.1146/annurev-resource-100517-023252
https://doi.org/10.1146/annurev-resource-100517-023252
https://doi.org/10.1093/erae/jbad024
https://doi.org/10.1016/j.agsy.2019.102656
http://refhub.elsevier.com/S0921-8009(24)00075-2/rf0205
http://refhub.elsevier.com/S0921-8009(24)00075-2/rf0205
http://refhub.elsevier.com/S0921-8009(24)00075-2/rf0205
http://refhub.elsevier.com/S0921-8009(24)00075-2/rf0210
http://refhub.elsevier.com/S0921-8009(24)00075-2/rf0210
http://refhub.elsevier.com/S0921-8009(24)00075-2/rf0210
https://doi.org/10.1080/21683565.2018.1490942
https://doi.org/10.1080/21683565.2018.1490942
https://doi.org/10.1787/9789264043466-en
https://doi.org/10.1787/9789264043466-en
https://doi.org/10.1002/aepp.13257
https://doi.org/10.1038/nplants.2015.221
https://doi.org/10.1016/j.omega.2014.11.009
https://doi.org/10.1016/j.indic.2023.100258
https://doi.org/10.1016/j.ecolecon.2019.03.002
https://doi.org/10.1016/j.ecolecon.2019.03.002
https://doi.org/10.1007/978-1-4419-1213-8
https://doi.org/10.1007/978-1-4419-1213-8
https://doi.org/10.1016/j.jenvman.2012.05.004
https://doi.org/10.1016/j.jenvman.2012.05.004
https://doi.org/10.1037/h0037350
https://doi.org/10.1037/h0037350
https://doi.org/10.1016/j.ecolind.2013.04.014
https://doi.org/10.1016/j.ecolind.2013.04.014
https://doi.org/10.1126/sciadv.1602638
https://doi.org/10.1126/sciadv.1602638
https://doi.org/10.1093/erae/jbab042
https://doi.org/10.1017/9781009157896
https://doi.org/10.1016/j.agsy.2019.102658
https://doi.org/10.1016/j.agsy.2019.102658
https://doi.org/10.17221/412/2020-AGRICECON
https://doi.org/10.17221/412/2020-AGRICECON
https://doi.org/10.17221/269/2018-AGRICECON
https://doi.org/10.1007/s10640-021-00642-1
https://doi.org/10.1007/s10640-021-00642-1
https://doi.org/10.1214/09-STS313
https://doi.org/10.1002/sd.1848
https://doi.org/10.1002/sd.1848
https://doi.org/10.1038/35068639
https://doi.org/10.1038/35068639
https://doi.org/10.1016/j.jenvman.2012.08.018
https://doi.org/10.1007/s13593-015-0347-5
https://doi.org/10.1007/s13593-015-0347-5
https://doi.org/10.1016/j.ecolind.2019.105725
https://doi.org/10.1093/aje/kwz093
https://doi.org/10.1016/j.landusepol.2021.105791
https://doi.org/10.1016/j.landusepol.2021.105791
https://doi.org/10.1007/s11205-019-02236-3
https://doi.org/10.1007/s11356-022-20966-9

	Conversion to organic farming: Does it change the economic and environmental performance of fruit farms?
	1 Introduction
	2 Case study and data source
	2.1 The Spanish fruit production sector and its performance
	2.2 Data source: The Spanish farm accountancy data network (RECAN)

	3 Methodology
	3.1 Economic performance indicators
	3.2 Environmental performance indicators
	3.3 Constructing composite indicators
	3.4 Matching and average treatment effects estimation

	4 Results
	4.1 Organic vs. conventional average performance
	4.2 Fruit farms' organic conversion: Changes in economic performance
	4.3 Fruit farms' organic conversion: Changes in environmental performance

	5 Discussion and concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A Supplementary data
	References


