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Simple Summary: Salmonella spp. of both human and animal origin have a high resistance per-
centage to tetracyclines. Essential oils, including cinnamon, clove, oregano, and red thyme, have
demonstrated bactericidal activity against this bacterium. However, in many cases, the minimum
inhibitory concentration (MIC) exceeds the cytotoxicity limits. The aim of this study was to evaluate
the in vitro effectiveness of combining oxytetracycline with essential oils against multidrug-resistant
Salmonella enterica strains. The results indicated a positive interaction (synergy and additivity) be-
tween oxytetracycline and the four oils that were tested. This led to a reduction in the MIC of both
the oils and the antibiotic. The reduction was between 2 and 4 times the initial value for the oils and
between 2 and 1024 times for the antibiotic. The best results were achieved with the combination
of oxytetracycline and cinnamon, which decreased the effective concentration of this antibiotic to
below the sensitivity threshold. Although differences in response were observed depending on the
bacterial strain, there was no antagonistic effect in any case. The study suggests that combining
oxytetracycline with cinnamon oil may be an effective alternative for controlling tetracycline-resistant
strains of Salmonella, although further studies would be advisable.

Abstract: Tetracyclines have a high resistance percentage in Salmonella spp. of both human and
animal origin. Essential oils, such as cinnamon (Cinnamomum zeylanicum), clove (Eugenia caryophyllata),
oregano (Origanum vulgare), and red thyme (Thymus zygis), have shown bactericidal activity against
this bacterium. However, in many cases, the minimum inhibitory concentration (MIC) exceeds
the cytotoxicity limits. The objective of this study was to assess the in vitro efficacy of combining
oxytetracycline with essential these oils against field multidrug-resistant (MDR) Salmonella enterica
strains. The MIC of each product was determined using the broth microdilution method. The
interaction was evaluated using the checkerboard method, by means of the fractional inhibitory
concentration index (FICindex) determination. The results showed a positive interaction (synergy
and additivity) between oxytetracycline and the four oils tested, resulting in a reduction in both
products’ MICs by 2 to 4 times their initial value, in the case of oils, and by 2 to 1024 times in
the case of the antibiotic. The combination of oxytetracycline and cinnamon achieved the best
results (FICindex 0.5), with a decrease in the antibiotic effective concentration to below the sensitivity
threshold (MIC of the combined oxytetracycline 0.5 µg/mL). There was no antagonistic effect in
any case, although differences in response were observed depending on the bacterial strain. The
results of this study suggest that combining oxytetracycline with cinnamon oil could be an effective
alternative for controlling tetracycline-resistant strains of Salmonella. However, its individual use
should be further evaluated through in vitro susceptibility tests.
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1. Introduction

Salmonella is one of the main bacteria responsible for foodborne illnesses, and it is
considered a zoonotic agent with a significant impact on public health [1]. Traditionally,
controlling this infection in humans and animals has relied on broad-spectrum antibiotic
therapies. However, the irrational use or overuse of these drugs in veterinary and human
medicine has led to the development of antibiotic resistance in pathogenic bacteria, includ-
ing Salmonella [2,3]. As a consequence, in 2006, the EU banned the use of antimicrobials as
growth promoters in animals. Despite these limitations, recent reports from the European
Food Safety Authority (EFSA) and the European Centre for Disease Prevention and Con-
trol (ECDC) show high resistance of Salmonella spp. to ampicillin, sulfamethoxazole, and
tetracyclines, with resistance rates for the latter reaching 26.4% in humans and 32.9% in
animals [4]. Unfortunately, the rate at which antibiotic-resistant bacteria evolve is much
faster than the rate at which new antibiotics are discovered [5]. Despite significant efforts,
no new class of antibiotics has been discovered in the past 20 years. It is important to
consider a practical approach to the use of currently available antibiotics, with a focus on
inhibiting or reversing the development of resistance in pathogenic bacteria, given the lack
of effective antibiotic alternatives [6].

In the last decade, research has focused on the possibility of combining traditional
antibiotics with natural antimicrobials, such as essential oils, to increase or restore their
effectiveness against MDR bacteria [7]. The studies conducted showed varying results
depending on the bacterial species and products used. However, in general, they describe
an increase in bacterial susceptibility [8–11].

Essential oils (EOs) are a complex mixture of between 20 and 60 chemical compounds,
with two or three accounting for the majority (>70–80%) and the rest present in trace
amounts. The proportion of each substance can vary depending on the season, geograph-
ical origin, botanical variety, plant genetics, or extraction method, resulting in different
chemotypes [12]. The main components can be divided into two groups based on their
biosynthetic origin: terpenoid hydrocarbons (terpenes and terpenoids) and aromatic and
aliphatic compounds. Among the terpenes, the most important active principles are the
monoterpenes and sesquiterpenes [13,14]. Most EOs are products Generally Recognized
as Safe (GRAS) by the United States Food and Drug Administration (FDA) and are cur-
rently authorized for use in food as food additives [15]. Nevertheless, they can have a
dose-dependent cytotoxic effect [16].

In vitro studies have shown that oregano (main active component: carvacrol), thyme
(thymol), clove (eugenol), cinnamon (eugenol, cinnamaldehyde), and EOs are remark-
ably effective against Gram-negative bacteria [17,18]. The antimicrobial effect is due to the
combined action of several mechanisms on different cell locations: (i) disruption and perme-
abilization of the cell membrane, (ii) aging of ATP and potassium/hydrogen ions, (iii) inhibi-
tion of enzymatic activity, among others. This also makes it difficult for bacterial resistance
to develop [19–21]. Furthermore, previous studies have demonstrated that the combination
of cinnamon and thyme has an additive effect against Gram-positive and Gram-negative
bacteria (Bacillus spp., Staphylococcus aureus, E. coli, and S. Typhimurium) [22]. The combi-
nation of cinnamon, clove, oregano, and red thyme EOs with enrofloxacin, ceftiofur, and
trimethoprim-sulfamethoxazole demonstrated a synergistic effect against multi-resistant
strains of Salmonella enterica [11].

The aim of this study was to evaluate the in vitro antimicrobial potential of the combi-
nation of oxytetracycline (OT) with cinnamon, clove, oregano, and red thyme EOs against
multidrug-resistant field strains of Salmonella enterica.

2. Materials and Methods
2.1. Bacterial Isolates

Five isolates of Salmonella enterica subspecies enterica that were multiresistant and
not susceptible to OT (determined by antibiogram [23]) were used. These isolates were
obtained from the Collection of Cultures of the Animal Health Department of the University
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of Cordoba and from the National Reference Laboratory for Salmonella and Shigella (Madrid,
Spain). The reference strain of Salmonella Typhimurium ATCC14028 was included as a
quality control. All strains were stored in frozen cryoballs at −20 ◦C (CRYOBANK™,
London, UK) until use.

Table 1 provides information on the origin, serotyping, phage typing, and antimicrobial
resistance profile of the isolates used in this study [11].

Table 1. Description of Salmonella enterica strains used in this study.

Strain Ref. Serotype Phage Type Origin Related Pathology Antibiogram

1 S. Typhimurium 204 Partridge Digestive syndrome A C S Su OT Cf
2 S. Typhimurium U302 Swine Septicaemia A C S SxT OT Cf
3 S. Typhimurium 193 Partridge Acute death A C S SxT OT G Enr
4 S. London - Turkey Carrier animal A OT Cip Sxt Enr
5 S. Enteritidis - Laying hens Carrier animal OT Cip Nx Sxt Enr

A: ampicillin, C: chloramphenicol, S: streptomycin, Su: sulphonamide, SxT: trimetoprim-sulfamethoxazole,
OT: tetracycline, Cf: cefalexin, G: gentamicin, Enr: enrofloxacina, Cip: ciprofloxacin, Nx: nalidixic acid.

2.2. Antimicrobial Agents

OT hydrochloride VETRANAL from Sigma-Aldrich Laboratories (USA) was used for
antimicrobial sensitivity analysis. The solution was prepared by diluting OT hydrochloride
in sterile distilled water to obtain a concentration of 4096 µg/mL [23].

Cinnamon, oregano, clove, and red thyme EOs (purity ≥ 95%) were purchased from
Aromium™ (Barcelona, Spain). The chemotype of each EO, determined by manufacturer
using Gas-Chromatography analysis, is listed in Table 2. All the products were stored at
room temperature in the dark prior to testing, following the manufacturer’s instructions.

Table 2. Botanical and chemical characteristics of the essential oils tested in this work.

Essential Oil Common Name Origin Main Components

Cinnamomum zeylanicum Cinnamon Bark Cinnamaldehyde (69.18%), linalool (3.19%), eugenol
(3.03%)

Eugenia caryophyllata Clove Bud Eugenol (85–90%), eugenyl acetate (5–10%),
β-caryophyllene (0–5%)

Origanum vulgare Oregano Flowersand stems Carvacrol (63.01%), thymol (10.56%), γ-terpinene
(8.11%)

Thymus zygis Red thyme Air part Thymol (46.9%), p-cymene (21.72%), γ-terpinene
(9.32%), linalool (4.8%)

2.3. Susceptibility Test of OT and EOs

Following the broth microdilution method [23], double serial dilutions of OT in sterile
distilled water (2–2048 µg/mL) were prepared and challenged with an equal volume of
bacterial inoculum of 106 CFU/mL. For EOs, double serial dilutions (156.25–20,000 µg/mL)
were prepared in Müller–Hinton broth supplemented with 0.15% agar (MHB) (Oxoid
Ltd., Wade Road, Basingstoke, Hampshire, RG24 8PW, United Kingdom). The essay was
conducted in triplicate with different inocula, including every time there was a positive
control for plate counting (MHB with bacterial inoculum and no product), and a negative
control (MHB without inoculum and no product). After incubation at 37 ◦C for 24 h, the
individual minimum inhibitory concentration (MIC) was estimated as the lowest product
concentration capable of inhibiting visible bacterial growth in the plate wells, determined
by visual comparation with the positive and negative controls. The final value was taken
as the median of the three assays.
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2.4. Antimicrobial Interaction Test

The combined effect of OT with each EO was evaluated using the checkerboard
method described by Si et al. [24]. A volume of 50 µL of each one of the eleven serial double
dilutions of OT was tested against the same volume of the seven serial double dilutions
of EOs (50 µL) in a 96-well microtiter plate. Thus, the dilutions ranged from 4× MICI to
0.0039× MICI for OT, and from 4× MICI to 0.062× MICI for Eos, as shown in the schedule
below.

Antimicrobial Dilution with Respect to MICI (µg/mL)
4× 2× 1× 0.5× 0.25× 0.125× 0.0625× 0.03125× 0.0078125× 0.0039×

C+

N
at

ur
al

pr
od

uc
t

di
lu

ti
on

w
it

h
re

sp
ec

tt
o

M
IC

I
(µ

g/
m

L)

4×

2×

1×

0.5×

0.25×

0.125×

0.0625×

Subsequently, 100 µL of bacterial inoculum at a concentration of 106 CFU/mL was
added to each well. Each well contained 100 µL of dilution and 100 µL of bacterial inoculum.
As a consequence of this test, the MIC of each product was again determined. From this
point forward, this MIC determined in the interaction test will be referred to as individual
MIC (MICI). The MICI of each product (OT: MICOT and EOs: MICEO) against the tested
inoculum was determined using the first row and first column of each plate. All tests were
conducted in duplicate and included positive and negative growth controls. The plates
were incubated at 37 ◦C for 24 h. As a result of combining the products, a new concept
arises: the combined minimum inhibitory concentration (MICC). This is defined as the
concentration of the compound (OT or EO) necessary to inhibit the growth of the strain in
the presence of the other compound.

The in vitro effect of each OT–EO combination was determined by calculation of
the fractional inhibitory concentration (FIC) and fractional inhibitory concentration in-
dex (FICindex) according to the following formulas [25,26]: FICindex = FICOT + FICEO;
FIC = MICC/MICI.

According to [27] and the European Society of Clinical Microbiology and Infectious
Diseases (ESCMID, Basel, Switzerland, 2023), a synergistic effect was considered when
FICindex ≤ 0.5; additive when 0.5 < FICindex ≤ 1; indifferent when 1 < FICindex < 2; and
antagonism when FICindex ≥ 2 [26].

3. Results
3.1. Susceptibility Test

The MICOT values obtained ranged from 256 to 512 µg/mL, confirming the resistance
of all strains to this antimicrobial agent (≥16 µg/mL) [27]. The MICEO ranged from 312.5
to 1250 µg/mL, depending on the EO and the strain.

3.2. Antimicrobial Interaction Test

Table 3 shows the results of the interaction test of OT with the selected essential oils.
A total of 80 OT and EO combinations were studied. We observed some variations in the
MICI values when studying the products separately before the interaction test, which did
not influence the results, since the calculation of the FIC and FICindex was performed with
the MICI and MICC obtained in the interaction test [26].
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Table 3. Interaction assay of oxytetracycline (OT) and essential oils against multiresistant Salmonella
enterica strains.

S. Typhimurium 1 S. Typhimurium 2 S. Typhimurium 3 S. Enteritidis 5 S. London 4

Interaction MICI MICC
FICindex

FIC MICI MICC
FICindex

FIC MICI MICC
FICindex

FIC MICI MICC
FICindex

FIC MICI MICC
FICindex

FIC

OT + Cin 0.625 0.5 1 0.625 0.625
OT 1024 512 0.5 512 0.5 0 512 256 0.5 512 64 0.125 512 64 0.125

Cinnamon 312.5 39.062 0.125 625 312.5 0.5 312.5 156.25 0.5 1250 625 0.5 1250 625 0.5

OT + Clove 0.625 0.75 1 1 0.625
OT 512 64 0.125 512 256 0.5 256 128 0.5 256 128 0.5 512 64 0.125

Clove 1250 625 0.5 1250 312.5 0.25 1250 625 0.5 2500 1250 0.5 2500 1250 0.5
OT + Ore 0.562 0.75 0.75 1.001 1

OT 512 32 0.062 512 128 0.25 512 128 0.25 256 0.5 0.001 256 128 0.5
Oregano 625 312.5 0.5 625 312.5 0.5 625 312.5 0.5 625 625 1 625 312.5 0.5

OT + Red th 1 1 0.75 0.75 1
OT 512 256 0.5 512 256 0.5 512 256 0.5 512 128 0.25 256 128 0.5

Red thyme 625 312.5 0.5 625 312.5 0.5 1250 312.5 0.25 625 312.5 0.5 1250 625 0.5

OT: oxytetracycline; Cin: cinnamon; Red th: red thyme; MICI: individual minimum inhibitory concentration;
MICC: combined minimum inhibitory concentration; FIC: fractional inhibitory concentration; FICindex: fractional
inhibitory concentration index.

According to EUCAST guidelines (2000), a positive potentiation (FICindex < 1) was
observed between OT and the four EOs tested for at least one of the strains. This resulted
in a reduction in the effective concentration of both products by 2 to 4 times their initial
value in the case of oils and between 2 and 1000 times in the case of the antibiotic. No
antagonistic effect was observed. The best results were obtained with cinnamon, since
synergistic (FICindex = 0.5) and additive effects (FICindex = 0.625–1) were detected for all the
strains. These effects were associated in three cases with a notable reduction (between 8
and 1024 times) in the effective concentration of OT: from 512 µg/mL to 0.5 µg/mL for the
synergistic effect and to 64 µg/mL for the additive effect. In all these assays, the MIC of
cinnamon was reduced by half, remaining between 39.062 and 625 µg/mL.

The combination of OT with clove and red thyme resulted in an additive effect in all
cases (FICindex = 0.625–1). Clove reduced the effective concentration of OT by 2–8 times and
its own concentration by 2–4 times. Red thyme decreased the initial MIC of both products
up to fourfold.

Finally, an additive effect was observed for oregano in four out of the five strains tested
(FICindex = 0.562–1), while the remaining strain showed indifference (FICindex = 1.001). In
the best assay (FICindex = 0.562), the effective concentration of OT was reduced by 16-fold
(from 512 µg/mL to 32 µg/mL) and that of oregano by two-fold (from 625 µg/mL to
312.5 µg/mL).

4. Discussion

Early research on the antimicrobial power against Salmonella of the active components
present in the majority of the EOs included in this work [28] demonstrated that exposing
multi-resistant strains of S. Typhimurium DT104, isolated from both pigs and humans, to
sub-therapeutic doses of cinnamaldehyde (cinnamon EO) increased the sensitivity of both
isolates to ampicillin, tetracycline, chloramphenicol, streptomycin, and sulfamethoxazole,
making them susceptible to these antimicrobials. Thymol (oregano and red thyme EOs)
increased the sensitivity of the bacteria to all antimicrobials tested except ampicillin. Car-
vacrol (oregano EO) increased the sensitivity of the human strain to chloramphenicol and
sulfamethoxazole, and of the porcine strain to streptomycin and sulfamethoxazole.

Furthermore, Palaniappan and Holley [29] demonstrated a synergistic effect in the
antimicrobial activity of tetracycline against S. Typhimurium when combined with cin-
namaldehyde, carvacrol, and thymol (FICindex = 0.1–0.37).

The precise mechanism by which natural antimicrobials reduce bacterial resistance
to antibiotics is unknown. However, it is likely due to a structural change in the bacteria.
Some studies suggest that these compounds may facilitate drug penetration through the
outer layers of the cell wall, block the inhibitory effect of protective enzymes, or interfere
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with metabolic targets of the antibiotic [30–32]. Many authors suggest that whole EOs have
greater antimicrobial potential than their single active ingredients due to the synergism
between their molecules and the diversity of their mechanisms of action [25]. Another study
conducted by Lauteri et al. [33] on tetracycline-resistant Salmonella strains demonstrated
that combining this antibiotic with EOs from Coridothymus capitatus (olive thyme), Eugenia
caryophyllata (clove), and Thymus vulgaris (common thyme) reduced the MIC of tetracycline
from 256 to 4 µg/mL due to an increase in the sensitivity of all strains. However, the MIC
of the EOs remained largely unchanged from their individual values, and in some cases,
even increased.

In our study, the combination of OT with clove and red thyme only produced an
additive effect, which contrasts with the results found elsewhere. Although the MICOT
and MIC of EOs was reduced by 2 to 8-fold, the strains remained resistant to the antibiotic
and the effective concentration of the EOs continued above the cytotoxicity threshold
(500 µg/mL) [16]. However, it should be noted that the initial MIC of these EOs in our
study (1250–5000 µg/mL and 625–1250 µg/mL for clove and red thyme, respectively)
was significantly higher than that obtained by Lauteri et al. [33] for olive thyme, common
thyme, and clove (<0.31–10 µg/mL, <0.31–5 µg/mL, and 0.31–20 µg/mL, respectively).
This variation in antimicrobial activity may be attributed to differences in the origin, species,
organ, and maturity of the plant, as well as the climatic and growing conditions, extraction
method, and storage [34]. Some authors have reported differences in the activity of EOs,
such as cinnamon, depending on the bacterial strain [34]. Previous work conducted to
determine the in vitro susceptibility of the Salmonella strains included in our study revealed
significantly (p < 0.05) higher susceptibility of S. Typhimurium to clove and S. Enteritidis to
cinnamon. Additionally, S. Typhimurium isolates exhibited significantly higher MIC values
for all the EOs tested (cinnamon, clove, oregano, red thyme, and common thyme). This
indicates the presence of strains with reduced susceptibility to these compounds, which
could explain the observed variability in the MIC of the AEs against the different strains in
the present work [11].

Although cinnamon, which contains 69.8% cinnamaldehyde, showed the greatest
potential to increase the antimicrobial activity of OT, it only managed to reduce its MIC
to the sensitivity threshold (≤4 µg/mL) in one of the five strains tested (FICindex = 0.5).
However, this synergistic effect did not lead to a significant change in the MIC of cinnamon,
which remained above the non-cytotoxic minimum concentration described by Fabio
et al. [35] (0.05 µg/mL). The OT–oregano combination showed varying results, with a
strong additive effect (FICindex = 0.562) in some strains and no effect (FICindex = 1.001)
in others.

Essential oils, including oregano, cinnamon, and thyme, are commonly used in animal
feed as feed additives and in the food industry for the development of new active packaging
systems [36]. There is a paucity of genotoxicity studies of EOs and their components [37].
The results obtained by Llana-Ruiz-Cabello et al. [38] indicate that oregano essential oil
(Origanum vulgare) does not have genotoxic effects in rats exposed to up to 200 mg/kg body
weight (bw). Furthermore, the 90-day repeated-dose oral assay in rodents revealed no mor-
tality or treatment-related adverse effects of the oregano EO in food/water consumption,
body weight, hematology, biochemistry, necropsy, organ weight, and histopathology at a
dose of 200 mg/kg body weight [39]. The limit value for lethal doses 50 (LD50) established
by the OECD Test Guidelines for Chemicals is 2000 mg/kg (Organisation for Economic
Co-operation and Development, 2008).

Previous studies have demonstrated that Thymus vulgaris essential oil has the potential
to cause moderate acute oral toxicity in rats. After a single dose of 2000 mg/kg body
weight, the lungs showed polymorphous nuclear infiltrates, hemosiderin macrophages,
and thickening of the interstitial space [40]. In the repeated 28-day oral-dose toxicity studies
conducted by the same authors, all rats treated with doses ≤ 250 mg/kg bw/day survived
without organic, histopathological, and biochemical alterations. In the case of cinnamon
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essential oil (Cinnamomum zeylanicum), the in vitro cytotoxicity in the BSL (brine shrimp
larvae) assay demonstrated a 50% lethal concentration (LC50 value of 0.03 µg/mL) [41].

With regard to in vivo tests, the EFSA expert panel recently conducted a study on
the safety of oregano essential oil (Origanum vulgare) on various animal species (broilers,
weaned piglets, and dairy cows), the consumer, the user, and the environment [42]. The
results demonstrated that at the recommended use level (150 mg additive/kg feed), the
product was safe for poultry and swine species reared for meat production. Additionally,
doses of 500 mg additive/head/day (equivalent to ~25 mg/kg of complete feed) were also
shown to be safe for dairy cows. The residue study demonstrated that the consumption of
meat, liver, fatty milk, and eggs from these animals would not pose a safety concern for
consumers. However, direct contact with the pure additive may cause skin and mucosal
irritation and has the potential to cause sensitization in susceptible individuals. Its use in
animal production is not expected to pose a risk to the environment [42].

5. Conclusions

Based on the study results, we consider combining EOs with OT to be an interesting
alternative for controlling the development of Salmonella spp. strains resistant to this
antibiotic. The results of this work enable a reduction in antibiotic use, thereby reducing
the likelihood of creating new resistance and releasing antimicrobials into the environment.
The synergies of essential oils and antimicrobials could be applied in both animals and
humans, following the One Health approach. It is important to overcome limitations
resulting from variations in chemical composition, expand in vitro studies to include more
strains, determine the mechanisms of action of the combination of oxytetracycline and
essential oils against multiresistant strains of Salmonella enterica, and conduct field tests to
evaluate efficacy in animal models.
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