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Abstract

During the drug development process, it is common to carry out toxicity tests and

adverse effects studies, which are essential to guarantee patient safety and the success

of the research. The use of in silico QSAR approaches for this task involves processing

a huge amount of data that in many cases has an imbalanced distribution of active and

inactive samples. This is usually termed the class-imbalance problem and may have a

significant negative effect on the performance of the learned models.

The performance of feature selection for QSAR models is usually damaged by the

class-imbalance nature of the involved datasets. This paper proposes the use of a feature

selection method focused on dealing with the class-imbalance problems. The method

is based on the use of feature selection ensembles constructed by boosting and using

two well-known feature selection methods, fast clustering-based feature selection and
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the fast correlation-based filter. The experimental results demonstrate the efficiency of

the proposal in terms of the classification performance compared to standard methods.

The proposal can be extended to other feature selection methods and applied to other

problems in cheminformatics.

1 Introduction

In the construction of Quantitative Structure-Activity Relationship (QSAR) models based on

classification or regression techniques, preprocessing of the data is a fundamental component.

One of the most widely used preprocessing tasks is feature selection, which is carried out to

avoid the use of data that has an identical effect, has no effect or has a deceptive effect.1

The objective of feature selection is to eliminate as many irrelevant and redundant features

as possible to improve the performance of the prediction algorithms, reducing the problem

of high dimensionality, accelerating the learning process and improving the generalization

and interpretability of the models.

As a consequence of research activity in recent years, there is an enormous amount of

high-throughput screening (HTS) data. Unfortunately, one of the main drawbacks of these

HTS data lies in their inherent class-imbalance nature. In most cases, we find very few active

compounds (positive class) among a large number of inactive compounds (negative class).2

Feature selection as well as other machine learning tasks such as classification achieve good

results when the datasets present a balanced distribution of the classes but may show poor

performances with class-imbalance data.

The processing of class-imbalance datasets continues to be a challenge today, which has

been explored and discussed in many works3–6 to find new methods to avoid obscuring

information and increase the ability to extract useful information from the dataset. Com-

putational solutions for class-imbalance problems can be divided into two major groups:

solutions based on developing new, more efficient algorithms and data-based solutions that

modify the dataset. Within the former group in the field of cheminformatics, Li et al.7
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proposed a support vector machine (SVM)-based method that selects a subset of inactive

samples of interest and uses all active samples to build the SVM model. Chen et al.8 pro-

posed an algorithm based on random forests (RFs) that assigns a greater weight to the

minority class. A similar idea using an SVM was developed by Chang et al.9 Joachims10

proposed another SVM modification based on the optimization of performance measures

such as the area under the receiver operating characteristic (ROC) curve. The quantitative

toxicity analysis is another important issue. Recently Jiang et al.11 proposed a boosting

tree-assisted multitask deep learning architecture that integrates gradient boosting decision

trees and multitask deep learning to predict several toxicity values (oral rat LD50, 40h

Tetrahymena pyriformis IGC50, 96h fathead minnow LC50, 48h Daphnia magna LC50).

On the other hand, data-based methods are aimed at modifying the imbalanced distri-

bution of class samples in the dataset to make both classes more balanced. In this group of

methods, the two best-known techniques are oversampling, where repeated copies of minority

class samples are added to the training set or new synthetic minority samples are created by

interpolating already existing samples,12 and undersampling, where the number of samples

of the majority class is reduced.

In general, data-based methods are the most widely used in cheminformatics due to

their independence from any machine learning algorithm. For example, the undersampling

method has been used by Newby et al.13 in the construction of QSAR models with imbal-

anced oral absorption datasets and by Chen et al.14 in the construction of a toxicity model

for tetrahymena pyriformis. To compensate for the reduction in the number of instances

due to undersampling, many authors apply ensemble algorithms using multiple undersam-

pling methods. For example, Kondratovich et al.15 used undersampling ensemble methods

for predicting the assignment of organic compounds to different pharmacological groups.

Zakharovet al.16 used a method that included undersampling approaches and cost-sensitive

learning to construct QSAR models for different HTS datasets.

The oversampling approach has also been used in cheminformatics. Imrie et al.17 used
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convolutional neural networks and oversampling for structure-based virtual screening. Ezzat

et al.5 proposed an ensemble learning method that incorporates oversampling techniques to

address the class-imbalance problem.

Other proposals combine undersampling and oversampling to improve classification per-

formance, this group was known as hybrid-sampling methods.18 In a recent work Korkmaz19

evaluated the performance of undersampling, oversampling and hybrid methods in the perfor-

mance of a classifier based on Deep Learning. Moreover, in a paper on predicting bioactivity

in imbalanced data sets, Sun et al.20 used the conformal prediction method to create a pre-

diction region potentially with multiple predicted labels instead of creating single-value or

single-label output predictions as occurs in regression or classification.

Feature selection methods have been adapted to address the problem of class-imbalanced

datasets. Al-Shahib et al.21 proposed a combination of feature selection and undersampling

algorithms to predict the protein function from sequences using an SVM classifier. Maldon-

ado et al.22 proposed a backward elimination feature selection approach based on successive

holdout steps applied to DNA microarray analysis. Han et al.23 made an imbalanced feature

selection proposal based on the passive-aggressive (PA) algorithm as a truncated gradient

(TG) method.

In this paper, we propose the application of a feature selection method for the prediction

of toxicity that is focused on solving class-imbalance problems. This method is based on

the use of boosting feature selection ensembles constructed using two well-known feature

selection methods, fast clustering-based (FAST)24 and fast correlation-based filter (FCBF).25

It also allows the use of other feature selection methods. Although there are feature selection

methods that have been developed for class-imbalanced datasets,22,23 the use of a general

framework for enabling any feature selection method to address class-imbalance problems

has the advantage of being more generally applicable.

The use of ensembles of feature selectors introduces the advantages of boosting feature

selection for class-imbalanced datasets for QSAR models. The fact that boosting has been
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proven an efficient way to address class-imbalanced dataset learning in classification3 makes

our approach a useful contribution. The methodology opens the possibility of extending

many previously validated methods in classification to the problem of feature selection in

class-imbalanced datasets, which are common in cheminformatics.

The rest of the paper is organized as follows: section 2 describes the dataset characteristics

and molecular representation, the ensemble algorithm for feature selection in imbalance

datasets, and the experimental setup; Section 3 describes the experimental results; and

finally, Section 4 provides a summary of the conclusions of this work.

2 Material and Methods

In this section, we discuss the methdology used in this work, the dataset and the algorithms

used.

2.1 Datasets Characteristics and Molecular Representation

Tox21 Data Challenge26 helps researchers understand the chemical toxicology that can dis-

rupt biological pathways so that may result in toxic effects. It is an open project where

the challenger must predict compound interventions in biochemical pathways by using only

physicochemical structure data. The active molecules (drugs) in the dataset are those that

can bind to one or more biochemical pathway assays and create some toxic effects in human

bodies.

The toxic effects included in the Tox21 dataset refer to the stress response (SR) and

the effects of the nuclear receptor (NR). Both effects are highly relevant in human health

since the activation of the stress response pathways can cause liver damage or cancer and

activation of nuclear receptors can disrupt the function of the endocrine system.

Table 1 shows the datasets included in the Tox21 challenge. Of the twelve datasets,

eight correspond to NR effects and four to SR effects. The information shown in the table
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includes a unique identifier for each dataset, the number of total molecules, the number of

active elements (positive or minority class), the percentage of elements of the minority class

and a description of the molecular pathway endpoint.

Figure 1(a) shows that these datasets are highly imbalanced. The percentage of the

minority class, active drug molecules, ranges from 2.6% to 12.6%. Furthermore, Figure

1 (b) shows the Similarity Cumulative Distribution Function using the pairwise Tanimoto

similarity with the ECFP4 fingerprint. Ninety percent of the pairwise similarity values are

less than 0.2, showing the high structural diversity of the molecular structures. In a first

step, each compound in the twelve datasets was represented in two different ways: i) using

basis molecular fragments (GSFrag) and ii) using the Extended-Connectivity Fingerprint

(ECFP). ECFP is one of the most popular fingerprint approaches.27 Boyle and Sayle28

showed that extended connectivity fingerprints of diameter 4 (ECFP4) and 6 (ECFP6) are

among the best performing fingerprints whether separating actives from decoys in a virtual

screen or ranking diverse structures by similarity. On the other hand, GS-Frag has been

widely used in challenging tasks in toxicology as the identification of a potential toxicity via

high-throughput screening.29–31

GSFrag32,33 considers 1138 molecular fragments (247 GSFrag + 891 GSFragl), with the

fragments consisting of one or more disconnected components. Each component considers,

among others, paths of length n, cycles on m vertices or paths (cycles) with a number of

attached chains of unit length. ECFP427 is a circular fingerprint generated by exhaustively

enumerating circular fragments containing all atoms within a radius of 4 from each heavy

atom of the molecule and then hashing these fragments into a 1024 bitstring. Finally, the

results were extended to include an additional molecular representation model based on

molecular descriptors (OCHEM34 CDK Descriptors35 implementation).

Chemaxon Standardizer36 was used to perform a dataset curation process before calcu-

lating GSFrag or ECFP4. This step included standardization, neutralization, removing salts

and cleaning the structure. For a more detailed description of these preprocessing options,
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please refer to the Chemaxon Standardizer in the official Chemaxon documentation.37 The

Chemistry Development Kit (CDK) library35 was used to calculate the ECFP4 fingerprint,

and OCHEM environment34 was used to calculate the GSFrag and CDK Descriptors. Dur-

ing the curation and molecular representation processes all the molecules with errors were

eliminated from the dataset.

Table 1: Toxicity Datasets

Dataset # Molecules Class− Class+ Balancea Molecular pathway endpoint

DS1 7044 6743 301 4.3 Androgen receptor MDA-kb2 AR-luc cell line (NR-AR)

DS2 6572 6349 223 3.4 Androgen receptor GeneBLAzer AR-UAS-bla-GripTite cell line (NR-AR-LBD)

DS3 6358 5601 757 11.9 Aryl hydrocarbon receptor (NR-AhR)

DS4 5661 5368 293 5.2 Aromatase enzyme (NR-Aromatase)

DS5 6013 5247 766 12.7 Estrogen receptor alpha BG1-Luc-4E2 cell line (NR-ER)

DS6 6752 6426 326 4.8 Estrogen receptor alpha ER-alpha-UAS-bla GripTiteTM cell line (NR-ER-LBD)

DS7 6273 6110 163 2.6 Peroxisome proliferator-activated receptor gamma (NR-PPAR-gamma)

DS8 5684 4784 900 15.8 Nuclear factor (erythroid-derived 2)-like 2/antioxidant responsive element (NR-ARE) (SR-ARE)

DS9 6880 6633 247 3.6 ATAD5 receptor (SR-ATAD5)

DS10 6294 5957 337 5.4 Heat shock factor response element (SR-HSE)

DS11 5634 4753 881 15.6 Mitochondrial membrane potential (SR-MMP)

DS12 6586 6191 395 6.0 p53 signaling pathway (SR-p53)
a The balance has been measured as the percentage of the minority class
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2.2 Boosting-Based Ensemble Algorithm for Feature Selection for

Class-Imbalance Datasets

The algorithm used in this work is based on the construction of a combination of feature

selectors following a similar approach used for the construction of classifier ensembles with

boosting.38 In this way, feature selection rounds are applied in order to focus on the instances

that have been considered the most problematic. Each one of the executed rounds obtains

a subset of suitable features to classify the most problematic instances. As minority class

instances are often ignored by the learning algorithm, boosting is an efficient method to deal

with the class-imbalance problem. A voting process is applied to combine the solutions of

the different rounds.4

Figure 2 shows the ensemble algorithm for feature selection. Initially, the weights of all

instances are initialized using a uniform distribution wi = 1/N , choosing the original dataset

S ′ = S as the initial sample. Then, for the fixed number of iterations, T , the following steps

are performed: i) using a specific feature selection algorithm and the sampled subset S ′ ⊂ S,

a feature selection process is carried out, ii) the obtained mt subset of selected features is

stored in vector v, and iii) a classifier is trained using mt, and the weights associated with

each instance, wi, and αt are updated for this classifier. The way to update w and αt depends

on the boosting algorithm used.

The approach has two main elements, the boosting scheme and the feature selection

(FS) algorithm. In this work, we have chosen two FS algorithms, fast clustering-based

feature selection (FAST) and fast correlation-based filter (FCBF). FAST24 operates in two

steps. In the first step, the features are divided into clusters via graph-theoretic clustering

methods. In the second step, the most representative feature that is strongly related to

target classes is selected from each cluster to form a subset of features. Features that belong

to different clusters are relatively independent; the clustering-based strategy of FAST has

a high probability of producing a subset of useful and independent features. To ensure the

efficiency of FAST, the efficient minimum-spanning tree (MST) clustering method is used.
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Figure 2: Boosting Ensemble Algorithm for Feature Selection

FCBF25 is a multivariate subset selection algorithm that utilizes the concept of feature

redundancy to perform explicit redundancy analysis in feature selection. FCBF authors

propose a framework that decouples relevance analysis and redundancy analysis.

Different boosting algorithms can be used for the proposed algorithm, and in this work

we evaluate two approaches: MadaBoost and CSB2. MadaBoost is a standard boosting algo-

rithm, and CSB2 is a boosting algorithm specifically designed for class-imbalance datasets.

MadaBoost39 is a modification of the well-known AdaBoost40 algorithm where the weight

updating of the instances is made in a more conservative way. Although MadaBoost was

not specifically developed for imbalance datasets we also consider it because, in general,
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Figure 3: Boosting Ensembles Methods

all boosting algorithms are effective for dealing with class-imbalance problems.3,41 Figure 3

shows these two algorithms.

CSB2 was developed to specifically address the class-imbalance problem. CSB0, CSB1

and CSB242 comprise a group of boosting methods developed to cope with the unbalanced

distribution of positive and negative samples by modifying the AdaBoost method. The

CSBX methods use two values C+ = 1 and C− = Ci ≥ 1, which are the costs of cor-

rectly classifying an instance and misclassifying an instance, respectively. CSB0 modifies

the standard AdaBoost update rule using wt+1(i) = Cyi=ht(xi)wt, and CSB1 uses wt+1(i) =

Cyi=ht(xi)wte
−ht(xi)yi . Both methods use αt = 1. CSB2 uses for αt the same values as stan-

dard AdaBoost and modifies the weight update as wt+1(i) = Cyi=ht(xi)wte
−αtht(xi)yi , which is

the same formula of CSB1 with the introduction of αt.

As the result of repeatedly applying a certain feature selection algorithm using boosting,

a vector of votes is obtained. For every feature, the results of each round of the feature
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selection process are stored. This vector of votes will be used to obtain the final selection

of features that is the algorithm outcome. In ensembles of classifiers it is common to use

the majority voting approach to obtain the class of a new instance. In our case, we would

select features whose count of votes indicated that they had been selected more often than

not. Although this method is simple and fast, it does not achieve good results, as it is very

unlikely that this static threshold would be appropriate for all datasets. Therefore, we use

an adaptive model where the decision to maintain a feature is established by evaluating all

the thresholds. This process has a low computational cost since the number of different

thresholds is limited by the number of T rounds.

In the proposed algorithm (see Figure 2), the optimal threshold, (Θ), is obtained using

the vector of votes v, which records the votes obtained for every feature. Thus, a certain

threshold, θ, selects the features whose records of votes are above this threshold: vi > θ.

To obtain the best threshold a J(θ) criterion was defined, and all of the possible thresholds

were evaluated. In each threshold θ evaluation, the subset, mθ ⊂ M , of features using θ:

mθ = {φi ∈ M : vi > θ} was selected, evaluating the criterion J(θ) with mθ to learn the

selected classifier.

We have defined J based on two fundamental criteria in feature selection, the classification

performance and the reduction capacity. In addition, a parameter β has been added in order

to weigh the relative importance of both criteria. In the experiments, a value of β = 0.5 was

used. In this way J was formulated as follows: J(θ) = β(G-mean + auPRC + auROC) +

(1 − β)r. The terms G-mean, auROC and auPRC define the classification performance,

G-mean is the geometric mean of the sensitivity (Sn) and specificity (Sp) metrics as defined

in equation 1, auPRC is the area under the precision recall curve (PRC), and auROC is the

area under the ROC. The reduction capacity, r (see eq. 3), is measured as the percentage

of features removed by any algorithm.
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2.3 Experimental Methodology

For each of the twelve datasets studied in this work, two matrices with M rows (number

of molecular compounds) have been constructed, with the cardinality of the columns (fea-

tures) being 1138 for the GSFrag representation and 1024 for the ECFP4 representation.

For comparison against the proposed methods, the standard feature selection algorithms

(FAST and FCBF) were run using random undersampling. This is a fast and simple method

that generally achieves similar results to other more complex methods. FAST and FCBF

were compared against our proposal using the two boosting algorithms described above:

CSB2.FAST, CSB2.FCBF, MadaBoost.FAST, MadaBoost.FCBF.

For testing the classification performance of the FS methods, three different classifiers

were used: a decision tree (DT), an SVM and an RF. Each model was tested following the

procedure described in Figure 4. Each dataset was split into inner and outer (test) sets

using a nested 5-fold cross validation split scheme. Inner cross validation sets were used

to train the models based on feature selection algorithms by fixing the hyperparameters.

The resulting model was validated with the test set not previously considered for model

construction. The entire external validation process was repeated five times to construct

and evaluate five different independent external test sets. In the experimental results, we

show the average test values over the five folds.

As we mentioned, external validation was tested with three classifiers, DTs, SVMs and

RFs. For SVMs, three hyperparameters were set: the kernel type, the C value, and for

the Gaussian kernel, the γ value. Thus, we tested a linear kernel with C ∈ {0.1, 1, 10}

and a Gaussian kernel with C ∈ {0.1, 1, 10} and γ ∈ {0.0001, 0.001, 0.01, 0.1, 1, 10} . All

21 possible combinations were evaluated. For random forests we used a size of 100 trees

and the Gini impurity criterion to measure the quality of a split, the nodes were expanded

until all leaves were pure or until all leaves contained less than two samples, and bootstrap

samples were used for building the trees. DTs have no relevant hyperparameters.Table S1 of

the supplementary material summarizes all hyperparameters, the source code licensed under
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Figure 4: Experimental setup

the GNU General Public License is freely available from the authors using the following link:

http://cib.uco.es/source-code/. The data sets employed in the work have been included as

supplemental material (SupMaterial_File-2.xlsx)

To measure the performance achieved by classifiers, two well-known metrics were used:

the geometric mean (G-Mean) of sensitivity and specificity and Mathews correlation coef-

ficient (MCC ).43 These metrics are usually used for class-imbalance datasets because they

take into account the uneven distribution of class samples.

The G-Mean 44 of sensitivity and specificity can be defined as follows:

G-Mean =

√
TP

TP +N
× TN

TN + FP
(1)

Mathews correlation coefficient (MCC )44 can be defined as follows:

MCC =
(TP × TN)− (FP × FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
. (2)

In the equations, TP , TN , FP , and FN are the numbers of true positives, true negatives,
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false positives and false negatives, respectively.

The reduction capacity r can be defined as follows:

r = 1−m/|M | (3)

Where m is the number of selected features and M the set of all of features.

2.3.1 Multiple Comparison Statistical Tests

When several algorithms are compared on different datasets, it is recommended to use sta-

tistical tests that support the conclusions. Moreover, before using the multiple comparison

statistical tests it is necessary to apply the Iman–Davenport test45 to determine whether

there are significant differences among the methods. It is based on the χ2
F Friedman test,

which compares the average ranks of different algorithms, but it is more powerful than the

Friedman test.45,46

TheWilcoxon test is especially recommended for the pairwise comparison of algorithms.46

Its definition is as follows: consider di the difference between the values of a metric of the

evaluated algorithms for the i-th dataset. Let R+ be the sum of the ranks for the datasets

for which the second algorithm outperformed the first and R− the sum of ranks for which

the first algorithm outperformed the second. Ranks of di = 0 are split evenly among the

sums:

R+ =
∑
di>0

rank (di) +
1

2

∑
di=0

rank (di) (4)

R− =
∑
di<0

rank (di) +
1

2

∑
di=0

rank (di) (5)

Considering T be the smaller of the two sums and N be the number of datasets, there

are tables with the exact critical values for small N values. Moreover, for larger N values,

the z statistic is calculated to find the corresponding probability (p-value) from the table of
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normal distributions:47

z =
T − 1

4
N (N + 1)√

1
24
N (N + 1) (2N + 1)

(6)

When comparing multiple models simultaneously, the Nemenyi test46,48 was used. In

this case, the performance between two algorithms to be compared is considered significantly

different if the corresponding average Friedman’s ranks differ by at least the critical difference

(CD), calculated as follows:

CD = q∝

√
k (k + 1)

6N
, (7)

where N is the number of datasets and k the number of algorithms to be compared. For all

test we used a significance level α = 0.05.

3 Results and Discussion

In this section, we present and discuss the experimental results carried out by following

the experimental setup described above. First, the proposals for feature selection based on

boosting (CSB2.FAST, CSB2.FCBF, MadaBoost.FAST, MadaBoost.FCBF) were compared

with the corresponding FS base algorithms (FAST and FCBF) independently for each repre-

sentation. Then, the boosting-based feature selection proposals were compared against the

corresponding FS base algorithms considering all the representation models and using the

statistical tests with the aim of studying the global behavior of the proposals. Finally, the

reduction capacity of the proposals was analyzed.

The experimental results for the selected metrics are shown in Table S2 - S7 of the

supplemental material (SupMaterial_File-1.pdf). In this section, we include a graphical

representation of the results for easy presentation and discussion. The graphics are based

on the relative movement diagrams proposed by Maudes et al.,49 but in this case, instead of
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the κ-error difference values, we use G-Mean and MCC to evaluate the performance results

of the three classifiers tested. In a simple way, the graphs allow both metrics to be plotted

at the same time, where each axis represents the difference of a given metric between two

different algorithms compared for the same dataset. Every arrow starts at the coordinate

origin, and the coordinates of the tip are calculated as the difference between the two chosen

metrics in the two compared algorithms. In all the figures, the values of the differences are

represented as percentages.

We have set a rule to assign the result of our proposal as minuend and the result of the

base FS algorithm as subtrahend. In this way, taking Figure 5 (a) as a reference, the arrows

pointing downward-left represent the datasets for which the base FS algorithm outperformed

our proposal in both the G-Mean and MCC, the arrows pointing upward-left indicate that

our proposal improved the G-Mean but had an inferior MCC, the arrows pointing upward-

right shows datasets for which our proposal outperformed the base FS algorithm in both

G-Mean and MCC, and arrows pointing downward-right show the datasets for which our

proposal improved the MCC but resulted in a worse G-mean.

Figures 5 - 7 show the results obtained using the FAST FS base algorithm compared

to those obtained by the proposed algorithms CSB2.FAST and MadaBoost.FAST. For DTs,

Figure 5 shows in terms of G-Mean that our proposals improved the performance for all

datasets. In terms of MCC, it occurred similarly, except for the DS1 dataset for GSFrag rep-

resentation and the datasets GS8 and GS12 for ECFP4 representation. For SVM classifier

(Figure 6), the results for performance for algorithms CSB2.FAST and MadaBoost.FAST

were superior in most datasets, reaching increases up to 12% in terms of G-Mean and MCC

compared to the use of FAST. Overall, the classifiers DTs and SVM showed the same be-

havior.

The results for RFs were different, with a marked dependence on the method of rep-

resentation. GSFrag representation, Figure 7 (a,b), showed the same behavior as the one

described above, and for all datasets the performance of CSB2.FAST and MadaBoost.FAST
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was better in terms of G-Mean with increases up to 11% in the best case. Additionally, there

were better results in terms of MCC except for datasets DS1 and DS2 where the opposite

occurred. The ECFP4 representation, Figure 7 (c,d), showed a lower performance. There

are four datasets (DS4, DS8, DS11, DS12) that appear in the lower left quadrant, showing

for them a worse performance of CSB2.FAST or MadaBoost.FAST compared to FAST.

Figures 8 to 10 show the comparison for the approaches FCBF, CSB2.FCBF and Mad-

aBoost.FCBF. For DT classifier (Figure 8), CSB2.FCBF and MadaBoost.FCBF did not

outperform FCBF for the datasets, DS1, DS2, and DS5. However, taking into account the

results for the rest of the datasets, we can affirm that CSB2.FCBF and MadaBoost.FCBF

were better than FCBF in terms of G-Mean and MCC. Figure 9 shows results for SVM clas-

sifier and again points the superiority of CSB2.FCBF and MadaBoost.FCBF with respect

to FCBF, and the datasets DS1 and DS2 had the worst performance results.

The behavior of RF classifier for FCBF was similar to that described above for FAST, with

a great influence of the representation model used. Using CSB2.FCBF and MadaBoost.FCBF

on the GSFrag representation increased the performance on almost all datasets compared to

FCBF, while its application on ECFP4 representation showed worse results.

3.1 Statistical Test Analysis

To perform a robust analysis when comparing algorithms over multiple datasets we evaluate

the performance of our proposal using the statistical tests described above. In this case, we

considered all the datasets regardless of differences between the representation models, taking

on different molecular representations on the same dataset as different datasets. Thus, in

the tests N = 24 datasets (12 datasets × 2 representation models) were used. In accordance

with Demšar’s46 recommendations, this value must be greater than 20 for it to be considered

significant.

The Iman-Davenport test comparing the proposals CSB2.FAST, CSB2.FCBF, MADA.FAST,

MADA.FCBF and the base methods, FAST and FCBF, using undersampling found signifi-
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Figure 5: Performance Results for FAST FS algorithm for DT classifier
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Figure 6: Performance Results for FAST FS algorithm for SVM classifier
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Figure 7: Performance Results for FAST FS algorithm for RF classifier
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Figure 8: Performance Results for FCBF FS algorithm for DT classifier
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Figure 9: Performance Results for FCBF FS algorithm for SVM classifier
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Figure 10: Performance Results for FCBF FS algorithm for RF classifier
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cant differences for all cases. Tables 2 - 4 show the results of Wilcoxon and Nemenyi tests.

To facilitate results analysis in the tables for the Wilcoxon test, we included a tag "Yes/No"

to indicate if Wilcoxon test p-value is below the critical level of 0.05, which indicates that

there were significant differences between the performance of both algorithms at a confi-

dence level of 95%. Moreover, when there were significant differences, a ‘+’ was added when

the algorithm in the column was better than the algorithm in the row and a ‘−’ when the

algorithm of the column was worse.

For the Nemenyi test, a tag "Yes/No" was included to indicate if the absolute value of

the range difference is greater than CD and the symbols ‘+’ and ‘−’ as in the previous case

for the Wilcoxon test. Additionally, in order to facilitate comparisons, we use the Nemenyi

graphs of results proposed by Demšar46 (Figures 11 to 13). In the Figures, we connect with

a line the groups of algorithms that were not significantly different. We also show the critical

difference in the upper left corner of the graph.

The Wilcoson and Nemenyi test results for DTs are shown in Table 2. In terms of

G-Mean, the ensemble proposals (CSB2.FAST, MadaBoost.FAST, CSB2.FCBF and Mad-

aBoost.FCBF) were better than the corresponding FS base algorithms (FAST and FCB)

according to Wilcoxon test. The Nemenyi test results were consistent with these differences;

Figure 11 (b,d) graphically shows these differences, highlighting that the increase in perfor-

mance for ensemble proposals is significant compared to the FS base methods and showing

that all ensemble proposals have a very similar behavior as there is no significant differ-

ence between them. In terms of MCC, Figure 11 (a,c), the performance was very similar as

described above, with the exception of FCBF-based algorithms where MadaBoost.FCBF per-

formed better but the difference with others (FCBF and CSB2.FCBF) was not statistically

significant.

Table 3 shows the results for the SVM classifier. The ensemble proposals were bet-

ter than the corresponding FS base algorithms both in terms of G-Mean and MCC ac-

cording to the Wilcoxon and Nemenyi tests. Figure 12 shows the existence of significant
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differences, with better performance for the ensemble proposals. MadaBoost.FAST and

MadaBoost.FCBF achieved the best performance although without significant differences

compared to CSB2.FAST and CSB2.FCBF. The Wilcoson and Nemenyi test results for RF

are in Table 4 and Figure 13. The results obtained were similar to the DT and SVM, and

ensemble proposals were better than the corresponding FS base algorithms, with the only

exception of FAST-based algorithms where there was no significant difference between the

algorithms FAST, MadaBoost.FAST and CSB2.FAST in terms of MCC.

Table 2: Statistical test results using DT

MCC G-Mean

FAST CSB2.FAST MadaBoost.FAST FAST CSB2.FAST MadaBoost.FAST

Mean 0.1935 0.2038 0.2114 Mean 0.5982 0.6490 0.6490

Ranks 2.6250 1.8750 1.5000 Ranks 3.0000 1.4167 1.5833

Nemenyi CD 0.6767 Nemenyi CD 0.6767

Win/draw/loss 18/0/6 21/0/3 Win/draw/loss 24/0/0 24/0/0

Wilcoxon p-value 0.0086 0.0014 Wilcoxon p-value 0.00002 0.00002

R+/R- 242.0/58.0 262.0/38.0 R+/R- 300.0/0.0 300.0/0.0

Wilcoxon test YES(+) YES(+) Wilcoxon test YES(+) YES(+)

Ranks difference 0.7500 1.1250 Ranks difference 1.5833 1.4167

Nememyi test YES(+) YES(+) Nememyi test YES(+) YES(+)

MCC G-Mean

FCBF CSB2.FCBF MadaBoost.FCBF FCBF CSB2.FCBF MadaBoost.FCBF

Mean 0.1981 0.2019 0.2032 Mean 0.6153 0.6500 0.6498

Ranks 2.2083 1.9583 1.8333 Ranks 2.6667 1.7500 1.5833

Nemenyi CD 0.6767 Nemenyi CD 0.6767

Win/draw/loss 14/0/10 15/0/9 Win/draw/loss 19/0/5 21/0/3

Wilcoxon p-value 0.3037 0.3458 Wilcoxon p-value 0.0004 0.0002

R+/R- 186.0/114.0 183.0/117.0 R+/R- 274.0/26.0 279.0/21.0

Wilcoxon test No No Wilcoxon test YES(+) YES(+)

Ranks difference 0.2500 0.3750 Ranks difference 0.9167 1.0833

Nememyi test No No Nememyi test YES(+) YES(+)
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Table 3: Statistical test results using SVM

MCC G-Mean

FAST CSB2.FAST MadaBoost.FAST FAST CSB2.FAST MadaBoost.FAST

Mean 0.2104 0.2382 0.2404 Mean 0.6347 0.6894 0.6892

Ranks 2.7500 1.6667 1.5833 Ranks 3.0000 1.3750 1.6250

Nemenyi CD 0.6767 Nemenyi CD 0.6767

Win/draw/loss 19/0/5 23/0/1 Win/draw/loss 24/0/0 24/0/0

Wilcoxon p-value 0.0012 0.00006 Wilcoxon p-value 0.00002 0.00002

R+/R- 263.0/37.0 291.0/9.0 R+/R- 300.0/0.0 300.0/0.0

Wilcoxon test YES(+) YES(+) Wilcoxon test YES(+) YES(+)

Ranks difference 1.0833 1.1667 Ranks difference 1.6250 1.3750

Nememyi test YES(+) YES(+) Nememyi test YES(+) YES(+)

MCC G-Mean

FCBF CSB2.FCBF MadaBoost.FCBF FCBF CSB2.FCBF MadaBoost.FCBF

Mean 0.1777 0.2240 0.2250 Mean 0.6369 0.6849 0.6860

Ranks 2.8333 1.6250 1.5417 Ranks 2.9167 1.6667 1.4167

Nemenyi CD 0.6767 Nemenyi CD 0.6767

Win/draw/loss 22/0/2 22/0/2 Win/draw/loss 22/0/2 24/0/0

Wilcoxon p-value 0.00006 0.00004 Wilcoxon p-value 0.00004 0.00002

R+/R- 291.0/9.0 293.0/7.0 R+/R- 294.0/6.0 300.0/0.0

Wilcoxon test YES(+) YES(+) Wilcoxon test YES(+) YES(+)

Ranks difference 1.2083 1.2917 Ranks difference 1.2500 1.5000

Nememyi test YES(+) YES(+) Nememyi test YES(+) YES(+)

Table 4: Statistical test results using RF

MCC G-Mean

FAST CSB2.FAST MadaBoost.FAST FAST CSB2.FAST MadaBoost.FAST

Mean 0.1932 0.2057 0.1941 Mean 0.6295 0.6763 0.6675

Ranks 2.2917 1.6667 2.0417 Ranks 2.7500 1.4167 1.8333

Nemenyi CD 0.6767 Nemenyi CD 0.6767

Win/draw/loss 16/0/8 15/0/9 Win/draw/loss 21/0/3 21/0/3

Wilcoxon p-value 0.1451 0.5677 Wilcoxon p-value 0.0001 0.0002

R+/R- 201.0/99.0 170.0/130.0 R+/R- 285.0/15.0 279.0/21.0

Wilcoxon test No No Wilcoxon test YES(+) YES(+)

Ranks difference 0.62500 0.25000 Ranks difference 1.3333 0.9167

Nememyi test No No Nememyi test YES(+) YES(+)

MCC G-Mean

FCBF CSB2.FCBF MadaBoost.FCBF FCBF CSB2.FCBF MadaBoost.FCBF

Mean 0.1713 0.2092 0.2079 Mean 0.6347 0.6682 0.6690

Ranks 2.5833 1.7917 1.6250 Ranks 2.5000 1.7083 1.7917

Nemenyi CD 0.6767 Nemenyi CD 0.6767

Win/draw/loss 19/0/5 19/0/5 Win/draw/loss 18/0/6 18/0/6

Wilcoxon p-value 0.0007 0.0005 Wilcoxon p-value 0.0022 0.0033

R+/R- 269.0/31.0 271.0/29.0 R+/R- 257.0/43.0 253.0/47.0

Wilcoxon test YES(+) YES(+) Wilcoxon test YES(+) YES(+)

Ranks difference 0.7917 0.9583 Ranks difference 0.7917 0.7083

Nememyi test YES(+) YES(+) Nememyi test YES(+) YES(+)

The ability to reduce features was another factor under study in the evaluation of our

proposal. From this perspective we present the Nemenyi graphs (Figure 14), and the Table

S8 of the supplementary material (SupMaterial_File-1.pdf) provides all the values for the

Wilcoxon and Nemenyi tests. We can conclude that the impact on the ability to reduce fea-
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Figure 11: Nemenyi test results for all datasets and representation models using the DT
classifier
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Figure 12: Nemenyi test results for all datasets and representation models using the SVM
classifier
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Figure 13: Nemenyi test results for all datasets and representation models using the RF
classifier

tures of the proposals depended on the FS base method chosen. As shown in Figure 14 (a,b,c)

for the approaches based on FAST, a similar behavior was observed, with no significant dif-

ferences between FAST, CSB2.FAST and MadaBoost.FAST in terms of reduction. However,

for the FCBF-based approaches (Figure 14 (d,e,f) ) a penalty in the reduction of features

was observed, however, this behavior was compensated by an increase in performance for

the CSB2.FCBF and MadaBoost.FCBF approaches as described above.

3.2 Comparison against SMOTE Method

In the previous seciton our proposals CSB2.FAST, CSB2.FCBF, MADA.FAST, MADA.FCBF

were compared with the respective base methods, FAST or FCBF, using undersampling to

deal with the class-imbalance problem. In this section we extend the study using SMOTE

(Synthetic Minority Oversampling Technique), another well-known method for class-imbalance

problems, and including a new model to represent molecular structures based on molecular

descriptors. To simplify the comparisons we only use G-Mean to evaluate the performance
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Figure 14: Nemenyi test results for all datasets and representation models in terms of re-
duction
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of the classifiers.

Figure 15 shows the Nemenyi test for the classifier performance results when compar-

ing the base methods FAST and FCBF using undersampling and SMOTE against the

proposals CSB2.FAST, MADA.FAST, CSB2.FCBF and MADA.FCBF for the three classi-

fiers (DT,SVM, RF), evaluating 36 datasets (12 datasets × 3 representation models, GS-

Frag, ECFP4, and CDK Descriptors). Tables S9 - S12 of the supplementary material

(SupMaterial_File-1.pdf) provides all the results for the extended methods and the Nemenyi

tests.

As shown in the Nemenyi graphs, the superior performance of our proposal was confirmed

when compared to the base methods. The proposals based on FAST showed a statistically

significant improvement for all classifiers. The same results were observer for FCBF, with

the exception of the RF classifier where the results of CSB2.FCBF and MADA.FCBF were

significantly better than SMOTE.FCBF but not significantly better than those obtained by

FCBF.

Figure 16 shows the results of the Nemenyi test in terms of reduction. The FAST based

proposals showed similar behavior for DTs and RFs. The best results were obtained with

MADA.FAST and FAST, without significant differences between them.

The FCBF based proposals also showed a similar behavior for the DT and RF classi-

fiers. In this case, FCBF achieved the best results, and no significant differences were found

between SMOTE.FCBF, CSB2.FCBF and MADA.FCBF.

4 Conclusions

In this work, we have demonstrated the usefulness of approaching the problem of feature

selection for class-imbalance datasets based on the construction of boosting feature selection

ensembles. We addressed the toxicity prediction problem and achieved better results with our

proposal compared with the use of standard FS methods using undersampling and SMOTE.
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Figure 15: Nemenyi test results in terms of G-Mean, extended to include the CDK Descriptor
representation model and the SMOTE algorithm
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Figure 16: Nemenyi test results in terms of reduction (r), extended to include the CDK
Descriptor representation model and the SMOTE algorithm
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We have shown a superior performance using different feature selection methods and three

models to represent the molecular structures.

An important characteristic of the proposal is its general applicability, allowing the choice

of two elements, the FS method and the ensemble method. For the ensembles used (CSB2,

MadaBoost), the behavior was similar, and no significant differences were detected between

them. For FS methods (FAST, FCBF), the proposals (CSB2.FAST, MadaBoost.FAST,

CSB2.FCBF and MadaBoost.FCBF) improved the results in terms of classifier performance.

In terms of reduction, the results obtained for FAST-based approaches were superior to

those obtained with FCBF. Thus, CSB2.FAST and MadaBoost.FAST achieved a significant

increase in performance without damaging the ability to reduce features compared to the

base method.

Although this work focuses on the application for toxicity prediction, the results are

encouraging for developing this research in the direction of obtaining improvements for other

problems in cheminformatics. Moreover, the proposal offers the possibility to use different

feature selection algorithms and other ensemble methods.
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