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Abstract

Multilabel classification as a data mining task has recently attracted greater
research interest. Many current data mining applications address problems
having instances that belong to more than one class, which requires the
development of new efficient methods. Advantageously using the correlation
among different labels can provide better performance than methods that
deal with each label separately.

Instance-based classification models, such as k-nearest neighbors for mul-
tilabel datasets, ML-kNN, are among the best performing methods on any
classification task and have also been successfully applied to multilabel prob-
lems. Despite their simplicity, they achieve comparable performance to con-
siderably more complex methods. One of the challenges associated with
instance-based classification models is their requirement for storing all the
training instances in memory. To ameliorate this problem, instance selec-
tion methods have been proposed. However, their application to multilabel
problems is problematic because the adaptation of most of their concepts to
multilabel problems is difficult.

In this paper, we propose a cooperative coevolutionary algorithm for in-
stance selection for multilabel problems. Two different populations evolve
together cooperatively. One of the populations is devoted to obtaining solu-
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tions for each label, whereas the other population combines these results into
solutions for the instance selection for multilabel dataset tasks. On a large
set of 70 real-world problems, our approach improves the results of both the
ML-kNN method with the whole dataset and an instance selection method
using a standard evolutionary algorithm.

Keywords: Multilabel learning, instance selection, cooperative coevolution,
instance-based learning.

1. Introduction

Many modern applications involve vast amounts of data for classification
and increasingly complex categorization schemes where one instance of data
may simultaneously belong to several topics. This task is typically termed
multilabel learning [1]. In contrast with single label classification, where
each instance is associated with only one class, multilabel classification is
concerned with learning from instances where each instance can be associated
with multiple labels. The generality of multilabel problems makes them more
difficult to solve than their single label binary or multiclass counterparts.

Multilabel learning is a special case of the more general multioutput learn-
ing [2]. In multioutput learning, we have a set of discrete labels that are not
necessarily binary, while in multilabel learning, all labels have only binary
values. Although this paper is devoted to multilabel problems, the proposed
work could be easily extended to multioutput data. As a result of the grow-
ing interest multilabel classification has received over the past few years, a
variety of multilabel learning methods have been developed and applied to
diverse problems, including the following: text categorization, the automatic
annotation of multimedia contents, web mining, rule mining, cheminformat-
ics, bioinformatics, information retrieval, etc.

Formally, we can define a multilabel problem as follows [1]: Let T be a
multilabel evaluation dataset consisting of p multilabel instances xi and their
associated label set yi, where T = {(xi, yi)}, 1 ≤ i ≤ p, (xi ∈ X, yi ∈ Y =
{0, 1}q) with a label set L, where |L| = q. Let h be a multilabel classifier
and h(xi) = {0, 1}q be the set of labels predicted by h for the instance xi.
Let f(xi, yi), xi ∈ X, yi ∈ Y be a real-valued function f : X × Y → R. A
successful learning system would tend to output larger values for function f
for the labels in yi versus those not in yi. The real-valued function f can be
easily transformed to a ranking function, rankf (xi, yi), where rankf is the
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predicted rank of label yi for instance xi. h(xi) can be obtained from f(xi)
when an appropriate threshold is set.

The key challenge of multilabel learning is taking advantage of the cor-
relations among labels to address the exponential growth of the label space
with the number of distinct labels, 2q, for q different labels. Methods that
deal with multilabel datasets without considering the relationships between
labels are just solving a group of independent binary problems. There are two
broad categories of methods to deal with multilabel problems [1]: problem
transformation methods and algorithm adaptation methods. Problem trans-
formation methods tackle the multilabel learning problem by transforming it
into other well-established learning scenarios. Algorithm adaptation meth-
ods tackle the multilabel learning problem by adapting well known learning
techniques to deal with multilabel data directly. Among the best performing
methods in multilabel learning is the adaptation of the k-nearest neighbors
to multilabel datasets, the Multilabel k-Nearest Neighbors (ML-kNN) [3]
method. However, as in the single label case, the method has the drawback
of needing all the training set stored in memory, thus increasing the runtime
of the algorithm and increasing the needed resources. Instance selection is a
way to address this problem and improve the performance of instance-based
classifiers [4].

Cooperative coevolution [5, 6] is a paradigm in the area of evolutionary
computation based on the evolution of coadapted subcomponents without
external interaction. In cooperative coevolution, a number of species evolve
together. Cooperation among individuals is encouraged by rewarding the
individuals for their joint efforts to solve a target problem. The work in
this area has shown that cooperative coevolutionary models present many
interesting features, such as specialization through genetic isolation, general-
ization and efficiency [7]. Cooperative coevolution approaches the design of
modular systems in a natural way since the modularity is part of the model.
Other models need some a priori knowledge to decompose the problem by

hand. In many cases, either this knowledge is not available or it is not clear
how to decompose the problem.

The advantage of cooperative coevolution over a traditional evolutionary
algorithm is mainly because of its divide-and-conquer decomposition strat-
egy [6]. Ma et al. [6] identified four main advantages: i) the decomposition of
the problem allows parallelism to speed up the optimization process; ii) each
subproblem is solved with a separate subpopulation, which maintains good
solution diversity; iii) decomposing a system into submodules increases the
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robustness against the modules’ errors and failures and thus enhances the
reusability in dynamic environments; and iv) in the field of function opti-
mization, it reduces the “curse of dimensionality”. Cooperative coevolution
has been successfully adapted to optimization tasks both in standard sin-
gle objective optimization [8] and multiobjective optimization [9]. Its ability
to decompose a difficult problem into smaller easier problems is very useful
for complex optimization problems with many variables. This decomposi-
tion ability can also be of great help in multilabel learning. Cooperative
coevolution can also be coupled with memetic algorithms [10] and culture-
based learning [11] to deal with the complex problems posed by multilabel
classification.

In this paper, we propose a cooperative coevolutionary model applied to
instance selection for multilabel datasets. The proposed model combines a
local and a global approach that cooperate via a coevolutionary model. This
model is implemented using two separate populations. A low level population
is divided into subpopulations, each of which is devoted to exclusively one
label. A higher level population combines individuals from this low level pop-
ulation to obtain a selection of instances for the global multilabel problem.
The locality of cooperative coevolution allows the exploration of higher-order
correlations without exponentially increasing the computational complexity.
Furthermore, the inherent distributive nature of cooperative coevolution of-
fers a flexible approach that can handle complex problems with a feasible
computational cost.

The model allows the decomposition of the multilabel problem in simpler
single label problems while keeping the global approach through the pop-
ulation of combinations of subindividuals. The methods can be efficiently
implemented since much of the evolution can be parallelized. To the best
of our knowledge, this is the first cooperative approach to instance selection
using instance-based learners for multilabel problems.

The remainder of this paper is organized as follows: Section 2 describes
the scarce existing related work; Section 3 describes our proposal in depth;
Section 4 explains the experimental setup; Section 5 shows the experimental
results and their discussion and, finally, Section 6 summarizes the conclusions
of our work.
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2. Related work

Very few works have been devoted to instance selection for multilabel
problems. Arnáiz-González et al. [12] extended the concept of local sets used
for single label instance selection to the multilabel case [4]. The developed
method achieved good performance in a set of 11 problems. Kordos et al. [13]
developed an evolutionary method for a multioutput regression.

Cooperative coevolution has been extensively used for large scale opti-
mization [14, 15, 16, 17]. However, there are very few attempts that use the
properties of cooperative coevolution for multilabel problems. Sun et al. [18]
proposed a coevolutionary multilabel hypernetwork to address the learning
of higher-order relationships among labels. Rosales-Pérez et al. [19] proposed
a cooperative coevolutionary method for hyperheuristic design for multilabel
problems. Park et al. [20] developed a multipopulation genetic algorithm for
multilabel feature selection. Although there is no cooperative approach, the
use of multiple populations shares part of the philosophy of our proposal.

3. Cooperative coevolution for instance selection in multilabel datasets

In cooperative coevolution [7], instead of evolving individuals to solve
the whole task, subcomponents that represent a partial solution are evolved.
These subcomponents may be evolved independently. Then, collaboration
among the subcomponents must be established to obtain whole solutions.
There may be various types of collaboration, such as combining the best
subcomponent from different subpopulations or using a population of com-
binations [21]. Cooperative coevolution has been proved to be efficient at
dealing with large scale optimization problems [22] and Big Data [10]. Fur-
thermore, the possibility of running concurrently [23] is a major advantage
for large and enormous problems.

The original cooperative coevolution framework can be generally defined
as follows [24]:

1. Problem decomposition: Decompose a complex problem into smaller
subcomponents that can be solved using evolutionary computations.
These subcomponents can be heterogeneous and are evolved using sub-
populations.

2. Subcomponent optimization: Evolve each subpopulation using a suit-
able evolutionary computation algorithm. Usually, subpopulations are
evolved independently.
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3. Fitness evaluation: The fitness of the subcomponents is evaluated co-
operatively.

Additionally, a second level of evolution where subcomponents are com-
bined using another population that is evolved concurrently can be imple-
mented [25]. In this case, we have a global and a local evolution that evolve
together. The global evolution represents the solution to the problem and
the local evolution represents the partial solution to different aspects. In that
case, there is also local and global interrelated fitness values [26]. This is the
model used in this paper.

The key of cooperative coevolution is decomposing the optimization prob-
lem into smaller subproblems that can be independently addressed. Each
subpopulation seeks the optimal solutions for a subproblem in the corre-
sponding search space [9]. A complete solution can be obtained by combining
the best individuals of every subpopulation or by means of another popula-
tion of combinations [21]. Decomposing the problem into subproblems is one
of the most important tasks in the design of a cooperative algorithm. For the
multilabel problem, an intuitive and straightforward approach is considering
only one of the labels for each subpopulation. This is the basic approach
that we use in this paper. Cooperation mechanisms are provided to account
for the higher level relationships among the labels.

The success of any cooperative algorithm depends on two key aspects:
the problem decomposition and collaboration. First, the subindividual must
be designed to solve meaningful subproblems; and second, they must col-
laborate effectively to solve the overall problem. Usually, collaboration is
carried out using one of two strategies [27]: collaborator selection pressure,
i.e., the degree of greediness in choosing a representative member from a sub-
population to form the complete solution(s) of the original problem; or the
collaborator pool size, i.e., the numbers of the complete problem solutions
used to evaluate the fitness of an individual in a particular subpopulation.

Our cooperative model is based on the use of two separate populations
that evolve cooperatively: a global population PML whose target is the mul-
tilabel problem; and a local population PSL that is made up of as many
subpopulations, SPi, as labels in the dataset, q = |L|. The subpopulation
SPi ∈ PSL evolves considering only label i using a CHC evolutionary algo-
rithm. Since the different subpopulations evolve independently, a parallel
implementation is possible.

The global population is used to obtain the global selection, which is
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a population of size 2 × Sp. The crossover operator is based on the HUX
operator. To match the two pi parts of the individual, each offspring inherits
one of the parents in turn. The ki and qsi parts are matched using a BLX-α
crossover. After matching, the best Np individuals are chosen to survive.
Mutation is not used within the standard CHC algorithm, however in order
to improve the performance we use three different mutation operators, one
of them including a local search algorithm. These three operators are:

1. Local search mutation. This operator is a local search used to improve
the fitness of the mutated individual. For the individual Pi, using
a random order, all the members of pi flip their sign. This means
that if pij was positive, the mutated individual does not consider any
member of subpopulation j; and if it was negative, then a member from
population j is added to Pi. After each modification, the individual is
reevaluated and the mutation is kept if its fitness is improved. This
operator is applied with a probability pls.

2. Bit mutation. This operator works as a standard random bit mutation,
but it affects all subindividuals that are members of the mutated in-
dividual. First, the selection represented by the individual is obtained
using the method explained in Section 3.1. Then, a bit mutation is
applied with a probability pbit to a randomly selected bit. There are
two differences with standard bit mutation: the mutation is only kept
if the fitness of the individual is improved, and the mutation of the bit
is inherited by all the subindividuals that participate in the mutated
individual. This mutation is applied with probability pbm.

3. Random mutation. This mutation modifies a randomly selected indi-
vidual, which is assigned a new member of the corresponding subpop-
ulation. This mutation is applied with probability prm.

To avoid removing the best individuals, we also use elitism. The best pelite
percentage of the population is not subject to mutation. After the population
has been evolved for Np iterations, all the subpopulations are evolved for Nsp

iterations. Each subpopulation evolves independently also following a CHC
algorithm. Since each element of a subpopulation is a binary array, we have
implemented an standard CHC algorithm.

However, in order to improve the results, we also use local search at
the subpopulation level implemented as a mutation operator. In single la-
bel instance selection, memetic algorithms have been proven to be superior
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to other types of genetic algorithms in previous works [30]. However, for
the multilabel case, it is not easy to implement a memetic algorithm since
there are very few methods that can be implemented as local optimization
operators. However, for our cooperative approach, the implementation of a
memetic algorithm is straightforward at the subpopulation level.

Within the CHC algorithm carried out for every subpopulation, we in-
troduce a local search that consisted of a single label instance selection algo-
rithm. Since most of the labels are class-imbalanced, if they are considered
in isolation, we use two different local search algorithms: a class-imbalanced
instance selection algorithm, the one-sided selection (OSS) algorithm [31];
and a standard instance selection algorithm, the Drop3 algorithm [32]. Both
algorithms are carried out independently with probabilities poss and pdrop3
for the OSS and Drop3 methods, respectively.

The last concept introduced in our evolution is elitism inheritance. In
the global population, we use the elitism mentioned above. However, since
the global population is made of combinations of the members of the sub-
populations, a modification of one of these members would affect the global
individual and might damage its performance. To avoid this, the elite con-
sideration is inherited by all members of an individual. That means that
if a certain individual is among the top pelite individuals, all its members
are also considered elite individuals and are kept during the evolution of
the subpopulations. This is what we call elitism inheritance. The elitism
in the subpopulations is limited by pelite since, at most, this percentage of
subindividuals could belong to an elite member of the global population.

To initialize the individuals of the population, each value is selected ran-
domly in the range [−N,N ], which means that initially each individual has
members of all the subpopulations. The subindividuals are initialized ran-
domly with a probability of having an instance selected of pinit.

The complete cooperative coevolutionary algorithm is shown in Algorithm
1.

3.1. Fitness of individuals and subindividuals

The evaluation of the individuals of the global population involves two
steps. First, we must obtain a selection from the individual. Since each
member of a subpopulation represents a complete selection, we must devise
a way of combining the selections carried out by every subindividual. The
most straightforward way is majority voting. An instance is selected if at
least half of the members of the subpopulations selected it. However, from
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Algorithm 1: Cooperative Coevolutionary Instance Selection for
Multilabel problems (CCISML).

Data: A training set T = {(xi, yi)}, 1 ≤ i ≤ p, (xi ∈ X, yi ∈ Y = {0, 1}q), with a label set L, |L| = q
Result: The subset of selected instances S ⊂ T .

22 Initialize global population
44 Initialize subpopulations
5 for g = 1 to G do

/* Evolve population */

6 for i = 1toNp do

88 Perform crossover of all individuals
1010 Perform local search mutation with probability pls
1212 Perform bit mutation with probability pbit
1414 Perform random bit mutation for nonelite individuals with probability prm
1616 Revaluate individuals
1818 Obtain best individuals to survive to next iteration

/* Evolve subpopulations */

19 for i = 1toNsp do

20 foreach Subpopulation do

2222 Perform CHC crossover of all individuals
2424 Perform Drop3 mutation with probability pdrop3 for nonelite subindividuals

2626 Perform OSS mutation with probability poss for nonelite subindividuals
2828 Revaluate individuals
3030 Obtain the best individuals to survive to the next iteration

3232 If time exceeded break

3434 Return S as the selection performed by the best individual

a practical point of view, this method achieved poor results. Furthermore,
depending on the number of actual members of the individual, which can be
different since negative values are not considered, the use of a fixed number
as a threshold can be troublesome. Thus, we opted for the quorum sensing

method [33]. Each subpopulation adds a vote to the corresponding instance;
and when the votes are above a sensing threshold, the instance is selected.
The threshold is dynamic, and it evolves together with the remaining part
of the individual, as we explained above.

To evaluate a certain individual Pi = (pi, qsi, ki), the selection of instances
Si ⊂ T is obtained by combining the member of the subpopulations selected
by pi and the threshold value given by qsi. Then, an MLkNN algorithm
is applied to Si using ki as the number of nearest neighbors to obtain the
classification performance of the subset Ci(Si, ki). The reduction is measured

as the percentage of removed instances Ri = 1 − |Si|
|T |

. As it is usual in

evolutionary instance selection for single label problems [34], the fitness value
is a weighted combination of these two values. Another term was added to
the fitness function to improve the results for both our approach and the
standard CHC algorithm, the absolute value of the difference of the average
number of predicted labels, np, and the average number of relevant labels,
nr. The fitness function is:
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Fi = Ci(Si, ki) +Ri − |np − nr|/q. (1)

Classification performance is more difficult to evaluate in multilabel datasets
since there are many metrics that consider the accuracy of a classifier from
different points of view. These metrics are explained in Section 4.1. The
experiments provide results using each of these metrics separately to study
the behavior of our proposal when the classification performance is aimed
at different targets. This same fitness function was used for the standard
CHC genetic algorithm used to compare the performance of our cooperative
proposal with others.

The evaluation of the members of the subpopulations is more compli-
cated. Usually, in cooperative coevolution, the fitness of an individual in a
subpopulation is evaluated in terms of the complete solution(s) in which this
individual participates [6]. However, we also considered the isolated perfor-
mance of each subindividual. Thus, we consider fitness using three factors:
the reduction of the subindividual, its performance for the label assigned to
the subpopulation and the average fitness of the members of the global pop-
ulation in which it participates as a member. Thus, the evaluation of every
subindividual j of the subpopulation i, sij, is given by:

fij = ci(sij) + rij + F̄ , (2)

where ci(sij) is the classification performance of the k-nearest neighbors for
label i measured using Matthews correlation coefficient (MCC) using the
selection of instances given by sij:

MCC =

(TP · TN)− (FP · FN)
√

(TP + FN)(TN + FP )(TP + FP )(TN + FN)
, (3)

we use MCC because most labels present a high class-imbalance problem, rij
is the reduction obtained by sij, and F̄ is the average fitness of the members
of the global population in which sij participates. In this way, the fitness
of the subindividuals considered a local part, which is measured by the re-
duction and single label classification performance; and a global part, which
is measured by the average fitness of the global individuals in which the
subindividual participates.
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To improve traditional cooperative coevolution, Omidvar et al. [35] pro-
posed a contribution-based cooperative coevolution framework in which the
subcomponents that have the largest contributions to the global objective
value will receive extra fitness evaluations to evolve. When using this method,
every subpopulation would not be treated equally since some of them are
more important for the whole evolutionary process than others. However,
we experimentally tested this idea and achieved worse results; thus, we did
not incorporate it into our model.

4. Experimental setup

To make a fair comparison between the standard instance selection evolu-
tionary algorithm and our cooperative coevolution-based proposal, we consid-
ered 70 datasets whose characteristics are shown in Table 1. These datasets
represent a varied number of problems with different numbers of instances,
features and labels. Furthermore, the label densities are also very different
among the datasets.

Table 1: Description of the datasets

Dataset Instances Features Labels
1 20NG-F 19300 1006 20
2 3s-bbc1000 352 1000 6
3 3s-guardian1000 302 1000 6
4 3s-inter3000 169 3000 69
5 3s-reuters1000 294 1000 6
6 bibtex 7395 1836 1594
7 birds 645 271 193
8 CAL500 502 68 1744
9 corel16k001 13766 500 1534

10 corel16k002 13761 500 1643
11 corel16k003 13760 500 1542
12 corel16k004 13837 500 1620
13 corel16k005 13847 500 1602
14 corel16k006 13859 500 1624
15 corel16k007 13915 500 1748
16 corel16k008 13864 500 1683
17 corel16k009 13884 500 1733
18 corel16k010 13618 500 1443
19 Corel5k 5000 499 373
20 emotions 593 72 6
21 enron 1702 1001 53
Continued on next page
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Dataset Instances Features Labels
22 EukaryoteGO 7766 12689 22
23 EukaryotePseAAC 7766 440 22
24 Eurlex-sm 19348 5000 201
25 flags 194 43 71
26 foodtruck 407 31 12
27 genbase 662 1185 27
28 GnegativeGO 1392 1717 8
29 GnegativePseAAC 1392 440 8
30 GpositiveGO 519 912 43
31 GpositivePseAAC 519 440 4
32 HumanGO 3106 9844 14
33 HumanPseAAC 3106 440 14
34 Image 2000 294 5
35 LLOG-F 1460 1003 75
36 medical 978 1449 45
37 Music 592 71 6
38 OHSUMED-F 13929 1002 23
39 PlantGO 978 3091 12
40 PlantPseAAC 978 440 12
41 rcv1subset1 6000 47236 101
42 rcv1subset2 6000 47236 101
43 rcv1subset3 6000 47236 101
44 rcv1subset4 6000 47236 101
45 rcv1subset5 6000 47236 101
46 REUTERS-K500-EX2 6000 500 103
47 scene 2407 294 6
48 SLASHDOT-F 3782 1079 22
49 Stackex chemistry 6861 540 175
50 Stackex chess 1675 585 227
51 Stackex coffee 225 1763 123
52 Stackex cooking 10491 577 400
53 Stackex cs 9270 635 274
54 Stackex philosophy 3971 842 233
55 VirusGO 207 749 6
56 VirusPseAAC 207 440 6
57 Water-quality 1060 16 14
58 Yahoo Arts 7484 23146 26
59 Yahoo Business 11214 21924 30
60 Yahoo Computers 12444 34096 33
61 Yahoo Education 12030 27534 33
62 Yahoo Entertainment 12730 32001 21
63 Yahoo Health 9205 30605 32
64 Yahoo Recreation 12828 30324 22
Continued on next page
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Dataset Instances Features Labels
65 Yahoo Reference 8027 39679 33
66 Yahoo Science 6428 37187 40
67 Yahoo Social 12111 52350 39
68 Yahoo Society 14512 31802 27
69 yeast 2417 103 14
70 Yelp 10806 671 5

Regarding comparisons, we used the Wilcoxon test [36] as the main sta-
tistical test for comparing pairs of algorithms. This test was chosen since it
assumes limited commensurability and is safer than parametric tests since
it does not assume normal distributions or homogeneous variance. Thus,
this test can be applied to classification performance and reduction ability.
Furthermore, empirical results [36] show that this test is stronger than other
tests. Since we are testing our approach with respect to the standard voting
procedure, our comparison will always be pairwise. We consider a confidence
level of 95% in all the tests.

One of the problems when comparing a standard evolutionary algorithm
and a cooperative one is how to fairly run the two algorithms. In most com-
parisons of evolutionary algorithms, the number of evaluations of the fitness
function can be used as a way of comparing the methods with similar compu-
tational costs. In our case, that it is not possible since the evaluation of the
individuals of the populations and subpopulations is very different in terms
of the procedures and computational costs. Thus, we opted for comparing
the methods using the total runtime. For both approaches, standard and
coevolutionary, the algorithm was run for a maximum of one hour and the
best individual after that time was returned as result of the evolution. With
this setup, both methods are compared when the computation costs are the
same.

Although there are several versions of ML-kNN [37, 38, 39] we used in
our experiments the original version to avoid and over complicated imple-
mentation that could preclude the conclusions of our work.

The source code, which was written in C and licensed under the GNU
General Public License, and the datasets are freely available upon request
from the authors.

4.1. Evaluation measures

The evaluation of multilabel classification methods is relatively difficult
because the prediction for an instance is a set of labels, and the result can
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be fully correct, partially correct (with different levels of correctness) or fully
incorrect [40, 41]. Thus, many different metrics have been proposed [1]. The
metrics can be divided into two major groups: example-based (EB) metrics
and label-based (LB) metrics. The former evaluate the learning system on
each instance (example) separately and then obtain a unique measure for
the average value across the test set. The latter obtains the performance
of the learning system for each class label separately and then returns a
unique measure by means of macro/microaveraging across all class labels.
Furthermore, the metrics can be focused on classification (using h(·)) or
ranking (using f(·)).

There are many metrics defined in the literature [1]. Among them, we
have chosen the following metrics to be used to compare the results of the
studied metrics. They offer a comprehensive set of measures that evaluate
the performance from different points of view.

4.1.1. Example-based metrics

For classification, the most relevant example-based metrics are given be-
low:

1. Subset accuracy evaluates the fraction of correctly classified examples,
that is, the examples for which the predicted set of labels is identical
to the set of relevant labels:

subsetacc(h) =
1

p

p
∑

i=1

Jh(xi) = yiK (4)

where JπK returns 1 if predicate π is true and 0 otherwise.
This metric can be considered to be the multilabel counterpart of the
accuracy metric. It can be overly strict, especially if the number of
labels, q, is large. As it is the case for the accuracy, a perfect model
would have a value of 1 for this metric.

2. Hamming Loss [42] evaluates the number of times a label not belonging
to an instance is predicted or a label belonging to an instance is not
predicted.

Hamming Loss(h) =
1

p

p
∑

i=1

1

q
|h(xi)∆yi|, (5)

where ∆ indicates the symmetric difference between two sets and cor-
responds to the XOR operation in Boolean logic. With respect to this
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metric, the performance is optimal when its value is zero, and higher
values signify lower performance.

3. Accuracy [42, 43] is defined as the proportion of the number of correctly
predicted labels to the total number (predicted and actual) of labels
for an instance:

Accuracy(h) =
1

p

p
∑

i=1

|h(xi)
⋂

yi|

|h(xi)
⋃

yi|
(6)

With respect to this metric, the performance is optimal when its value
is one, and lower values indicate lower performance.

4. Precision [42, 43] is the average proportion of the number of correctly
predicted labels to the total number of predicted labels:

Precision(h) =
1

p

p
∑

i=1

|h(xi)
⋂

yi|

|h(xi)|
(7)

5. Recall is the average proportion of the number of correctly predicted
labels to the total number of relevant labels:

Recall(h) =
1

p

p
∑

i=1

|h(xi)
⋂

yi|

|yi)|
(8)

With respect to this metric, the performance is optimal when its value
is one, and lower values indicate lower performance.

6. Fβ is an integrated version of the precision and recall with a balancing
factor β:

F β =
(1 + β2) · Precision(h) ·Recall(h)

β2Precision(h) +Recall(h)
. (9)

In the experiments, we show the results for β = 1.

These previous metrics are devoted to classification. We also consider the
following example-based metrics used for measuring the ability of a classifier
from the point of view of ranking the labels:

1. One-error [42] measures the number of times the most highly ranked
predicted label is not included in the set of actual labels of an instance:

One-error(f) =
1

p

p
∑

i=1

J[arg max
y∈Y

f(xi, y)] /∈ yiK (10)
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With respect to this metric, the performance is optimal when its value
is zero, and higher values indicate lower performance.

2. Coverage [42] evaluates how far, on average, we must descend down the
ranked list to cover all the proper labels of an instance:

Coverage(f) =
1

p

p
∑

i=1

max
y∈yi

rankf (xi, y)− 1 (11)

With respect to this metric, higher values indicate lower performance.

3. Ranking Loss [42] denotes the average fraction of label pairs that are re-
versely ordered for an instance and expresses the frequency of irrelevant
labels being ranked higher than relevant labels:

Ranking Loss(f) =

1

p

p
∑

i=1

1

|yi||yi|
|{(ya, yb) : f(xi, ya) ≤ f(xi, yb),

(ya, yb) ∈ yi × yi}|,

(12)

where yi is the complementary set of yi with respect to L. With respect
to this metric, the performance is optimal when its value is zero, and
higher values indicate lower performance.

4. Average precision evaluates the average fraction of relevant labels that
are ranked higher than a particular label y ∈ yi by the model:

avgprec(f) =
1

p

p
∑

i=1

1

|yi|

∑

y∈yi

|{y|rankf (xi, y
′) ≤ rankf (xi, y), y

′ ∈ yi}|

rankf (xi, y)
.

(13)

This metric has an optimal value of 1.

4.1.2. Label-based metrics

For label-based metrics, we first must define the four basic quantities that
characterize the binary classification of each label based on function h(·):
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TPj = |{xi|yj ∈ yi ∧ yj ∈ h(xi), 1 ≤ i ≤ p}|,

FPj = |{xi|yj /∈ yi ∧ yj ∈ h(xi), 1 ≤ i ≤ p}|,

TNj = |{xi|yj /∈ yi ∧ yj /∈ h(xi), 1 ≤ i ≤ p}|,

FNj = |{xi|yj ∈ yi ∧ yj /∈ h(xi), 1 ≤ i ≤ p}|.

With these four quantities, most of the binary classification metrics can be
adapted to multilabel problems. Considering any measureB(TPj, FPj, TNj, FNj),
the label-based classification metric can be obtained either by microaveraging
or macroaveraging [44]:

• Macroaveraging:

Bmacro =
1

q

q
∑

j=1

B(TPj, FPj, TNj, FNj). (14)

• Microaveraging:

Bmicro = B

(

q
∑

j=1

TPj,

q
∑

j=1

FPj,

q
∑

j=1

TNj,

q
∑

j=1

FNj

)

. (15)

With these definitions, we can obtain the macro- and microaveraged ver-
sions of the accuracy, recall, precision and Fβ metrics. It is evident that the
accuracy metric is the same when macro- and microaveraged.

As in the previous case of example-based metrics, if the intermediate
function f(·) is known, we can define two ranking metrics. The first metric
is the macroaveraged AUC:

AUCmacro =
1

q

q
∑

j=1

AUCj

= 1
q

∑q

j=1
|{(x′,x′′)}|f(x)′,yj)≥f(x′′,yj),(x

′,x′′)∈Zj×Z̃j |

|Zj ||Z̃j |
,

(16)

where Zj = {xi|yj ∈ Yi, 1 ≤ i ≤ p} (Z̃j = {xi|yj ∈ Yi, 1 ≤ i ≤ p}) is
the set of instances with (without) label yi in its set of relevant labels. The
corresponding microaveraged AUC is given by:
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AUCmicro =
|{(x′,x′′,y′,y′′)|f(x′,y′)≥f(x′′,y′′),(x′,y′)∈S+,(x′′,y′′)∈S−|

|S+||S−|}
, (17)

where S+ = {(xi, y)|y ∈ Yi, 1 ≤ i ≤ p} (S− = {(xi, y)|y /∈ Yi, 1 ≤ i ≤ p})
corresponds to the set of relevant (irrelevant) instance-label pairs.

In the experiments, we show the results using all of these metrics or a sub-
set of them for certain cases when studying the behavior of our proposal. The
use of different metrics is justified because they represent the performance of
the models from different points of view.

5. Experimental results

The first set of experiments was devoted to comparing our proposal
against the previously published methods. One of the problems faced is
the lack of previous approaches addressing the problem of instance selection
for multilabel problems. However, for single label datasets, genetic algo-
rithms have been proven to be the best approach [45]; thus, as the basic
method, we have chosen to compare our cooperative approach with a CHC
genetic algorithm. To allow a fair comparison, we made the two methods as
close as possible in terms of hyperparameters. The same fitness function was
used for the cooperative approach (see Eq. 1) and the standard evolutionary
algorithm. Additionally, we also compared our method with the ML-kNN
algorithm without instance selection. Table 5 shows the parameters used for
evolving the cooperative algorithm. The standard evolutionary algorithm
and the cooperative algorithm used a population of 100 individuals and were
evolved for an hour.

Both algorithms have been run 19 times and the metrics shown above
were calculated as the classification performance measures (seq Eq. 1). The
results have been divided into different tables for better readability. We have
used two tables for the classification-based metrics, one for the example-based
metrics and another for the label-based metrics. Another table has been used
for ranking measures. The tables showing classification performance results
also show the results of an ML-kNN algorithm without instance selection,
and k = 10 which is the value recommended by the authors [3].

Tables 3, 4, 5 and 6 show the comparisons in terms of reduction using
example-based classification metrics, label-based classification metrics and
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Table 2: Parameters used for the cooperative coevolutionary algorithm

Parameters Value
Size of global population (Ng) 100
Size of subpopulations (Ns) 100
Number of generations (G) 1000
k [1, 100]
Internal population iteration (Np) 10
Internal subpopulation iteration (Nsp) 10
Memetic mutation (pm) 0.01
Random bit mutation (prm) 0.01
Bit mutation (pbit) 0.1
Drop3 mutation (pdrop3) 0.01
OSS mutation (poss) 0.01
Elitism (pelite) 0.05

ranking metrics, respectively for the fitness function. The comparisons in
terms of the classification performance metrics are shown in Tables 7, 8,
9. 10, 11 and 12 for the example-based classification metrics, the label-
based classification metrics and the ranking metrics, respectively. Tables
1-19 of the supplementary material show detailed results for reduction and
Tables 20-38 of the supplementary material show the detailed results for
classification performance. Regarding the reduction, the tables show that
the proposed approach achieved a better reduction than the CHC for all 19
different metrics. In all cases, the differences were significant according to
the Wilcoxon test. Furthermore, the differences were large, and in most cases
they favored our method by approximately 10%.

Regarding the classification performance, our algorithm was also better
than CHC. Regarding the classification example-based metrics, our proposal
beat the CHC algorithm at a confidence level of 95% in three out of six met-
rics, including the subset accuracy, precision and recall; and it was better
but not significantly different for the accuracy and F1. Our method was
significantly worse than CHC only on the Hamming loss. The comparison to
the ML-kNN always favored our method, showing the usefulness of instance
selection at both reducing the dataset and improving the classification perfor-
mance of the ML-kNN. Regarding the label-based classification metrics, our
method was better than CHC in four metrics, including the recall-macro,
F1-macro, recall-micro and F1-micro; worse in two metrics, including the
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Table 3: Comparison between our approach and a CHC genetic algorithm in terms of
reduction for example-based classification performance metrics as the fitness function

CHC Cooperative
Mean 0.8111 0.9499
Ranks 1.9357 1.0643

w/l 65/4
CHC p 0.0000

R+/R− 2438.5/46.5

(a) Subset accuracy

CHC Cooperative
Mean 0.9360 0.9934
Ranks 1.8571 1.1429

w/l 57/7
CHC p 0.0000

R+/R− 2377.0/108.0

(b) Hamming loss

CHC Cooperative
Mean 0.8374 0.9468
Ranks 1.9143 1.0857

w/l 64/6
CHC p 0.0000

R+/R− 2438.5/46.5

(c) Accuracy (example-based)

CHC Cooperative
Mean 0.8477 0.9472
Ranks 1.9857 1.0143

w/l 69/1
CHC p 0.0000

R+/R− 2483.0/2.0

(d) Precision (example-based)

CHC Cooperative
Mean 0.8453 0.9748
Ranks 1.9214 1.0786

w/l 64/5
CHC p 0.0000

R+/R− 2449.5/35.5

(e) Recall (example-based)

CHC Cooperative
Mean 0.8430 0.9212
Ranks 1.7786 1.2214

w/l 54/15
CHC p 0.0000

R+/R− 2093.5/391.5

(f) F1 (example-based)
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Table 4: Comparison between our approach and a CHC genetic algorithm in terms of
reduction for the label-based classification performance metrics as the fitness function

CHC Cooperative
Mean 0.9341 0.9926
Ranks 1.8857 1.1143

w/l 59/5
CHC p 0.0000

R+/R− 2392.5/92.5

(a) Accuracy macro/micro-averaged

CHC Cooperative
Mean 0.8433 0.9379
Ranks 1.9000 1.1000

w/l 62/6
CHC p 0.0000

R+/R− 2391.5/93.5

(b) Precision (macro-averaged)

CHC Cooperative
Mean 0.8303 0.9760
Ranks 1.8857 1.1143

w/l 60/6
CHC p 0.0000

R+/R− 2399.0/86.0

(c) Recall (macro-averaged)

CHC Cooperative
Mean 0.7987 0.8466
Ranks 1.6714 1.3286

w/l 47/23
CHC p 0.0001

R+/R− 1927.0/558.0

(d) F1 (macro-averaged)

accuracy-macro and precision-micro; and there were no differences for the
precision-macro. As it was the case for the example-based metrics, the co-
operative method improved the results compared to the ML-kNN for all
instances for all metrics with the exception of the precision-macro.

Regarding the ranking metrics (see Tables 11 and 12), there were no sig-
nificant differences for the one-error, coverage, average precision and AUC-
micro. Regarding the ranking loss and AUC-macro, our proposal performed
better than the standard algorithm. We must stress that this good perfor-
mance was achieved while very significantly improving the reduction ability
of the algorithm. The comparison to the ML-kNN with all instances favored
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Table 5: Comparison between our approach and a CHC genetic algorithm in terms of
reduction for the label-based classification performance metrics as the fitness function
(continuation).

CHC Cooperative
Mean 0.8575 0.9657
Ranks 1.9429 1.0571

w/l 65/3
CHC p 0.0000

R+/R− 2458.5/26.5

(e) Precision (micro-averaged)

CHC Cooperative
Mean 0.8597 0.9870
Ranks 1.9000 1.1000

w/l 61/5
CHC p 0.0000

R+/R− 2434.0/51.0

(f) Recall (micro-averaged)

CHC Cooperative
Mean 0.8351 0.9367
Ranks 1.8929 1.1071

w/l 61/6
CHC p 0.0000

R+/R− 2411.0/74.0

(g) F1 (micro-averaged)

23





Table 6: Comparison between our approach and a CHC genetic algorithm in terms of re-
duction for the example- and label-based ranking performance metrics as fitness functions

CHC Cooperative
Mean 0.8502 0.9493
Ranks 1.9214 1.0786

w/l 64/5
CHC p 0.0000

R+/R− 2439.5/45.5

(a) One-error

CHC Cooperative
Mean 0.9209 0.9808
Ranks 1.9143 1.0857

w/l 60/2
CHC p 0.0000

R+/R− 2412.0/73.0

(b) Coverage

CHC Cooperative
Mean 0.9223 0.9863
Ranks 1.8643 1.1357

w/l 57/6
CHC p 0.0000

R+/R− 2365.0/120.0

(c) Ranking-loss

CHC Cooperative
Mean 0.8770 0.9520
Ranks 1.9357 1.0643

w/l 65/4
CHC p 0.0000

R+/R− 2458.5/26.5

(d) Average precision

CHC Cooperative
Mean 0.9077 0.9990
Ranks 1.8214 1.1786

w/l 45/0
CHC p 0.0000

R+/R− 2322.5/162.5

(e) AUC macro-averaged

CHC Cooperative
Mean 0.8427 0.9354
Ranks 1.8429 1.1571

w/l 58/10
CHC p 0.0000

R+/R− 2205.0/280.0

(f) AUC micro-averaged
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Table 7: Comparison between our approach, the MLkNN and a CHC genetic algorithm
in terms of the example-based classification performance metrics.

MLkNN CHC Cooperative
Mean 0.1587 0.2883 0.3008
Ranks 2.8714 1.6929 1.4357

w/l 64/3 63/2
MLkNN p 0.0000 0.0000

R+/R− 2377.0/108.0 2448.5/36.5
w/l 41/23

CHC p 0.0473

R+/R− 1581.5/903.5

(a) Subset accuracy

MLkNN CHC Cooperative
Mean 0.1114 0.0803 0.0873
Ranks 2.6000 1.4643 1.9357

w/l 60/10 52/18
MLkNN p 0.0000 0.0000

R+/R− 2272.0/213.0 2042.0/443.0
w/l 20/45

CHC p 0.0017

R+/R− 707.5/1777.5

(b) Hamming loss

MLkNN CHC Cooperative
Mean 0.2944 0.3916 0.3938
Ranks 2.7571 1.8143 1.4286

w/l 59/11 64/6
MLkNN p 0.0000 0.0000

R+/R− 2289.0/196.0 2355.0/130.0
w/l 46/24

CHC p 0.3387

R+/R− 1406.0/1079.0

(c) Accuracy (example-based)
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Table 8: Comparison between our approach, the MLkNN and a CHC genetic algorithm
in terms of the example-based classification performance metrics (continuation).

MLkNN CHC Cooperative
Mean 0.3247 0.4887 0.4996
Ranks 2.9000 1.6714 1.4286

w/l 65/5 68/2
MLkNN p 0.0000 0.0000

R+/R− 2394.0/91.0 2463.0/22.0
w/l 41/27

CHC p 0.0215

R+/R− 1635.5/849.5

(d) Precision (example-based)

MLkNN CHC Cooperative
Mean 0.4539 0.5603 0.7111
Ranks 2.6857 1.9071 1.4071

w/l 59/11 59/11
MLkNN p 0.0000 0.0000

R+/R− 2225.0/260.0 2370.0/115.0
w/l 52/17

CHC p 0.0000

R+/R− 2100.5/384.5

(e) Recall (example-based)

MLkNN CHC Cooperative
Mean 0.3687 0.4515 0.4586
Ranks 2.5571 1.8357 1.6071

w/l 52/18 57/13
MLkNN p 0.0000 0.0000

R+/R− 2167.0/318.0 2248.0/237.0
w/l 40/29

CHC p 0.1550

R+/R− 1485.5/999.5

(f) F1 (example-based)
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Table 9: Comparison between our approach, the MLkNN and a CHC genetic algorithm
in terms of the label-based classification performance metrics.

MLkNN CHC Cooperative
Mean 0.8886 0.9188 0.9148
Ranks 2.6714 1.4571 1.8714

w/l 61/9 56/14
MLkNN p 0.0000 0.0000

R+/R− 2246.0/239.0 2151.0/334.0
w/l 20/44

CHC p 0.0016

R+/R− 704.5/1780.5

(a) Accuracy macro/micro-averaged

MLkNN CHC Cooperative
Mean 0.2822 0.2813 0.2692
Ranks 1.9429 2.0000 2.0571

w/l 32/38 34/36
MLkNN p 0.6045 0.6628

R+/R− 1331.0/1154.0 1168.0/1317.0
w/l 31/37

CHC p 0.5312

R+/R− 1135.5/1349.5

(b) Precision (macro-averaged)

MLkNN CHC Cooperative
Mean 0.2914 0.3404 0.3932
Ranks 2.4143 2.0071 1.5786

w/l 40/30 59/11
MLkNN p 0.0476 0.0000

R+/R− 1581.0/904.0 2177.0/308.0
w/l 40/29

CHC p 0.0013

R+/R− 1790.5/694.5

(c) Recall (macro-averaged)

MLkNN CHC Cooperative
Mean 0.2461 0.2702 0.2858
Ranks 2.1286 2.0929 1.7786

w/l 37/33 42/28
MLkNN p 0.0375 0.0011

R+/R− 1598.0/887.0 1801.0/684.0
w/l 43/26

CHC p 0.0225

R+/R− 1632.5/852.5

(d) F1 (macro-averaged)
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Table 10: Comparison between our approach, the MLkNN and a CHC genetic algorithm
in terms of the label-based classification performance metrics (continuation).

MLkNN CHC Cooperative
Mean 0.3535 0.5711 0.4558
Ranks 2.6571 1.4429 1.9000

w/l 65/5 51/19
MLkNN p 0.0000 0.0009

R+/R− 2260.0/225.0 1808.0/677.0
w/l 23/41

CHC p 0.0006

R+/R− 657.5/1827.5

(e) Precision (micro-averaged)

MLkNN CHC Cooperative
Mean 0.4417 0.5395 0.7114
Ranks 2.6786 1.9571 1.3643

w/l 54/16 63/6
MLkNN p 0.0000 0.0000

R+/R− 2104.0/381.0 2377.5/107.5
w/l 49/17

CHC p 0.0000

R+/R− 2156.5/328.5

(f) Recall (micro-averaged)

MLkNN CHC Cooperative
Mean 0.3738 0.4209 0.4525
Ranks 2.5714 1.9929 1.4357

w/l 48/22 62/8
MLkNN p 0.0015 0.0000

R+/R− 1784.0/701.0 2305.0/180.0
w/l 47/22

CHC p 0.0008

R+/R− 1814.5/670.5

(g) F1 (micro-averaged)
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Table 11: Comparison between our approach, the MLkNN and a CHC genetic algorithm
in terms of the example- and label-based ranking metrics.

MLkNN CHC Cooperative
Mean 0.6131 0.4848 0.5182
Ranks 2.5714 1.8071 1.6214

w/l 54/13 54/15
MLkNN p 0.0000 0.0000

R+/R− 2227.0/258.0 1969.5/515.5
w/l 39/25

CHC p 0.3476

R+/R− 1403.0/1082.0

(a) One-error

MLkNN CHC Cooperative
Mean 29.5161 23.8921 23.7328
Ranks 2.5500 1.6429 1.8071

w/l 55/14 53/17
MLkNN p 0.0000 0.0002

R+/R− 2148.5/336.5 1883.5/601.5
w/l 28/37

CHC p 0.2104

R+/R− 1028.5/1456.5

(b) Coverage

MLkNN CHC Cooperative
Mean 0.1481 0.0447 0.0359
Ranks 2.8571 1.7429 1.4000

w/l 65/3 63/5
MLkNN p 0.0000 0.0000

R+/R− 2429.5/55.5 2404.5/80.5
w/l 43/17

CHC p 0.0036

R+/R− 1740.5/744.5

(c) Ranking-loss
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Table 12: Comparison between our approach, the MLkNN and a CHC genetic algorithm
in terms of the example- and label-based ranking metrics.

MLkNN CHC Cooperative
Mean 0.4698 0.5499 0.5513
Ranks 2.6143 1.7714 1.6143

w/l 59/11 54/16
MLkNN p 0.0000 0.0000

R+/R− 2184.0/301.0 2122.0/363.0
w/l 43/27

CHC p 0.1646

R+/R− 1480.0/1005.0

(d) Average precision

MLkNN CHC Cooperative
Mean 0.8290 0.9024 0.9110
Ranks 2.9714 1.8286 1.2000

w/l 68/1 69/0
MLkNN p 0.0000 0.0000

R+/R− 2482.5/2.5 2484.5/0.5
w/l 43/0

CHC p 0.0000

R+/R− 2296.0/189.0

(e) AUC macro-averaged

MLkNN CHC Cooperative
Mean 0.8011 0.8457 0.8381
Ranks 2.6071 1.6214 1.7714

w/l 59/11 53/16
MLkNN p 0.0000 0.0000

R+/R− 2273.0/212.0 2134.5/350.5
w/l 32/37

CHC p 0.0848

R+/R− 948.0/1537.0

(f) AUC micro-averaged

31







is developed based on the decomposition of the problem. Since our approach
is different, we must validate the use of a separate population for evolving
the best combinations of subindividuals. We conducted experiments without
using the global population of combinations and using the combination of
the best individual of every subpopulation as the solution to the instance
selection problem. These experiments were carried out for ten classification
metrics selected as representative of the 19 used above: the subset accuracy,
Hamming loss, accuracy, F1, recall, one-error, coverage, ranking loss, AUC
and average precision.

Figure 5 shows the comparison using a radar plot in terms of both classi-
fication performance and reduction. For coverage, since the scale is different,
we plot the average of Optimal coverage

Coverage
whose optimum value is 1. For both

the reduction and classification performance, the results supported the use
of the global population. Almost all metrics showed worse performance when
the population of combinations was removed. Notably, the reduction ability
was clearly damaged. It seems evident from the results that combining the
best individuals is a suboptimal solution when compared with the use of a
population of combinations evolved together with the subpopulations.
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Accuracy (EB)
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Coverage
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Average precision (+)
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Figure 5: Average values for the reduction (left) and performance (right) for the 10 per-
formance metrics selected for our cooperative approach and the same method removing
the global population.

5.2. Removing local search

As explained in Section 3, the evolution of the subpopulations includes
a local search step implemented as a mutation operator. This part of the
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algorithm was also validated experimentally. We conducted experiments re-
moving the local search step for the ten performance metrics of the previous
section. Figure 6 shows the radar plot for the average values of the reduction
and the corresponding performance metric.
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Figure 6: Average values for the reduction (left) and performance (right) for the 10 per-
formance metrics selected for our cooperative approach and the same method removing
the local search operators.

The trend shown in figure is different from that of the previous case.
The classification performance is less affected by the removal of the local
search with lesser differences between the performance with and without
local search. However, overall, the method with the local search performed
better. Regarding the reduction, the results showed a clear improvement
when the local search was removed. This might be an unexpected result
since the local search algorithm’s main aim is reduction. However, a closer
look at the evolution of the algorithm showed a clear pattern. Due to the
large class imbalance of some of the labels, the local search achieved a large
reduction, removing almost all instances. That produced useless individuals
that negatively affected the reduction ability of the method since the resulting
global individuals had very poor classification performance and were thus
discarded during the evolution.

5.3. Considering the multilabel global performance for subindividuals

Our next experiment consisted of studying the behavior of our model
when multilabel global fitness was added for the subindividuals. This term
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evaluated the fitness of the individual using the same multilabel metric used
for the population of combinations and added this term to Eq. 2 for a new
fitness value f ′

ij:

f ′
ij = ci(sij) + rij + F̄ +multilabel performance, (18)

The aim was to improve the performance by means of a more global view
from the subindividuals. The multilabel performance is always evaluated
for k = 10 since the subindividuals did not affect the value of k. Figure 7
shows the average values of the reduction and the 10 performance metrics
for the standard version of our approach using the previous fitness function
for the subindividuals. The plots show that adding the multilabel perfor-
mance measure improved the reduction ability of the method but damaged
its classification performance.
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Figure 7: Average values for the reduction (left) and performance (right) for the 10 perfor-
mance metrics selected for our cooperative approach and the same method using multilabel
performance as part of the subindividuals’ fitness.

5.4. Using a fixed quorum sensing threshold

Another aspect of our method is that the quorum sensing threshold for
retaining an instance is evolved along with the selection of individuals from
the subpopulations in the population of combinations. As an additional test
of the usefulness of the evolution of this threshold, we conducted experiments
for selecting an instance with a fixed threshold of 10%. Figure 8 shows
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the radar plot comparing the evolutionary and fixed values for the quorum
sensing threshold.
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Figure 8: Average values for the reduction (left) and performance (right) for the 10 perfor-
mance metrics selected for our cooperative approach and the same method using a fixed
quorum sensing threshold.

In this case, the differences were small. Both versions of the algorithms
achieved almost the same results in terms of both reduction and classification
performance. Since the evolution of the subindividuals also depended on the
threshold due to the combination fitness, the subindividuals learned to adapt
to the fixed threshold and the dynamic one.

5.5. Class-imbalanced dataset approach

As has been previously stated, when considered alone, many of the labels
presented a heavily class imbalance classification problem. This is especially
relevant for datasets with large degrees of label sparsity. To account for the
fact that we designed a version of our method taking into account the class
imbalance nature of the problems faced by each subpopulation, in this ver-
sion, prior to evolution, we applied undersampling for every subpopulation,
taking into account its corresponding label. Therefore, subpopulation i was
evolved using an undersampled sample of the whole dataset using its corre-
sponding label. This sampling meant that every subpopulation was evolved
with different, though overlapped, datasets. The remainder of the algorithm
was performed using the standard cooperative method described above.
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Figure 9 shows the radar plot for the two versions of the algorithms. Re-
garding the reduction, the class imbalance version achieved better results.
Since every subpopulation began with a smaller sample, they are expected
to obtain larger reductions. In terms of classification performance, the stan-
dard version performed better for all metrics, although the differences were
not large. Additionally, the class imbalance version was faster since the sub-
populations had to deal with smaller datasets.
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Figure 9: Average values for the reduction (left) and performance (right) for the 10 per-
formance metrics selected for our cooperative approach and the same method adding
undersampling.

6. Conclusions

In this paper, we have proposed the first cooperative coevolutionary al-
gorithm for instance selection for multilabel problems. The method is based
on two populations that evolve together. One of the populations formed
by different subpopulations that evolve individuals focused on a particular
label. The other population evolves combinations of the individuals of the
subpopulation to obtain valid solutions for the global problem.

We have compared our method with the evolution of a genetic algorithm
in the standard way. The results have shown the better performance of
our method in terms of the reduction and classification performance using
19 different metrics. Our method also improved the results of an ML-kNN
algorithm using all the instances of the datasets. A further study of the
different components of our algorithm has validated the design of the method.
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There are many different ways that the work presented here can be con-
tinued. One of the most straightforward is using a multiobjective approach
for the evolution of both populations since different terms are used for the
fitness function. Another field where similar ideas could be applied is the
feature selection task. Furthermore, the design of ensembles of classifiers for
multilabel problems could also benefit from the ideas reported in this paper.
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