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Abstract: Food fraud is a major threat to the integrity of the nut supply chain. Strategies using a 

wide range of analytical techniques have been developed over the past few years to detect fraud 

and to assure the quality, safety, and authenticity of nut products. However, most of these tech-

niques present the limitations of being slow and destructive and entailing a high cost per analysis. 

Nevertheless, near-infrared (NIR) spectroscopy and NIR imaging techniques represent a suitable 

non-destructive alternative to prevent fraud in the nut industry with the advantages of a high 

throughput and low cost per analysis. This review collects and includes all major findings of all of 

the published studies focused on the application of NIR spectroscopy and NIR imaging technologies 

to detect fraud in the nut supply chain from 2018 onwards. The results suggest that NIR spectros-

copy and NIR imaging are suitable technologies to detect the main types of fraud in nuts. 

Keywords: food authentication; detection of adulterants; near-infrared spectroscopy; hyperspectral 

imaging; targeted and non-targeted approaches 

 

1. Introduction 

Food fraud is a long-standing issue that has increased in occurrence in recent years 

given the sophisticated nature of the food supply chain and the growth of dishonest prac-

tices of reducing production costs or deceiving costumers regarding product quality to 

obtain a higher market price. In Regulation (EU) 2017/625 [1], the European Union (EU) 

established the general rules in official controls to identify risks associated with the use of 

products, processes, or materials that could have a negative influence on the integrity of 

foodstuffs and to account for any information regarding the composition, properties, 

origin, or production method that could mislead consumers. This regulation arose as a 

consequence of the billions of euros that the fraudulent practices cost the EU every year 

and the effects that these practices can have on consumers’ health, the quality of the com-

mercialized foodstuffs, and on public confidence in the agri-food chain [2]. Although ef-

forts have been made to counter food fraud [see, for example, the FoodIntegrity European 

Project (ID: 613688), with participants from 18 European countries, which aims to ensure 

the quality, safety, and authenticity of the European food chain], there is unfortunately 

still a long way to go to reduce and prevent fraud in the agri-food chain. 

The Knowledge Centre for Food Fraud and Quality (KC-FFQ) of the European Com-

mission provides expertise for policy making, creating a network of food fraud experts 

[3] and publishing the ‘Monthly Food Fraud Summary Reports’. In these reports, several 

cases of food fraud related to nuts have been published in the past few years, such as the 

reported lack of documentation of 98 tons of almonds sold as organic, valued at EUR 
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753,000 in Italy in 2020, or the incorrect labelling of pistachio nuts in France and Spain, 

valued at EUR 6 million, in 2021 [4]. According to the Combined Nomenclature (CN) code 

provided in Regulation (EU) 2017/1925, the fruits most commonly included in the ‘nuts’ 

category are almonds, Brazil nuts, cashew nuts, chestnuts, hazelnuts, macadamia nuts, 

peanuts, pecan nuts, pine nuts, pistachio nuts, and walnuts [5]. It is key to note that alt-

hough peanuts are, in botanical terms, strictly legumes, they are commonly included in 

the nuts group, as indicated by Buthelezi et al. [6]. Nuts are high-added-value products 

with a total production over 1 million tons in the EU in 2022 [7] and are a valuable source 

of energy, healthy fats, proteins, fiber, and vitamins. They are commonly sold as whole 

nuts or as ingredients in other formats, e.g., ground, to be processed by the manufacturing 

industry. Fraudulent practices in nuts are a major issue that can involve economic fraud 

and even pose a threat to human health [8,9], and for this reason, there is an urgent need 

to make reliable and rapid techniques available to assist in fraud detection throughout the 

food supply chain [10].  

A wide range of analytical techniques have been proposed to assure the authenticity 

of foodstuffs [11,12]. In nuts, the most common ones are those based on chromatographic 

techniques [13–15], polymerase chain reaction (PCR) methods [16,17], spectroscopic tech-

nologies [18–22], and mass spectrometry fingerprinting alternatives [23,24] among others. 

The chromatographic techniques and PCR methods require the preparation of the sample 

prior to analysis, which involves destroying the original structure of the product. In addi-

tion, these methods entail a high cost per analysis, are time-consuming, require trained 

staff, and are not suitable for assessing large volumes of product, which, in many cases, is 

a key factor in identifying fraud in foodstuffs. However, spectroscopy-based applications 

offer the possibility of assuring the authenticity of nuts in a fast and non-destructive way 

while analyzing large amounts of product. Among these, the most popular technique for 

fraud detection in nuts is near-infrared (NIR) spectroscopy [25]. This technique is based 

on the absorbance that takes place when a molecule bond vibrates at the same specific 

frequency as the incident NIR light irradiating the product. A wide range of applications 

can be found using NIR spectroscopy in nuts [6,26], such as the successful quantitative 

estimation of the lipid oxidation in in-shell and shelled hazelnuts, carried out by Pannico 

et al. [27], or the qualitative application for the identification of commercial sweet almond 

batches adulterated with bitter almond kernels, carried out by Torres-Rodríguez et al. [28], 

which showed an excellent capability for discrimination. Additionally, the detection of 

adulterated products with other non-compliant ingredients, e.g., different nuts and frag-

ments of nutshells or non-edible elements, could benefit from the combination of conven-

tional spectroscopy and imaging techniques, providing not only the spectral information 

but also the spatial properties of the commodity analyzed [29]. NIR imaging technology 

offers the possibility to obtain both spectral and spatial features of an object, integrating 

the power of spectroscopy and digital imaging, which can be of great utility in specific 

applications and complex issues. This technology is known as hyperspectral imaging 

(HSI) if the image is composed of hundreds of contiguous wavebands and as multispectral 

imaging (MSI) if only a few spectral bands (usually between three and ten bands) are in-

cluded in the spectral dimension [30,31].  

In the scientific literature, we found only one review (Teixeira & Sousa [25], submitted 

for publication in May 2018) that focuses on NIR applications for origin authentication 

and the detection of adulteration in nuts. Thus, the aim of this work is to provide a review 

on the application of NIR-based techniques for the detection of fraud in nuts and nut 

products over the last 7 years (2018–2024). 

  



Foods 2024, 13, 1612 3 of 19 
 

 

2. Bibliographic Search 

The literature review was carried out using three scientific databases, Scopus, Web of 

Science, and Google Scholar. The keywords used (in different combinations) included the 

range of nuts considered—‘almonds’, ‘Brazil nuts’, ‘cashew nuts’, ‘chestnuts’, ‘hazelnuts’, 

‘macadamia nuts’, ‘peanuts’, ‘pecan nuts’, ‘pine nuts’, ‘pistachio nuts’, ‘walnuts’, and the 

term ‘nut’—together with the techniques reviewed (in this case, ‘NIR spectroscopy’ and 

‘hyperspectral imaging’) and words that made any reference to fraud, such as ‘adultera-

tion’, ‘authentication’, ‘fraud’, and ‘counterfeit’. Once the list of potential research papers 

to be included in the review was made, we used the following criteria to accept or reject a 

study: (1) Assurance of the quality of the documents—only peer-reviewed papers pub-

lished in journals included in the Journal Citation Reports (JCR) index were considered. 

The peer-review criterion was also used for books and chapters of books. (2) Nuts were 

presented in intact, ground, powder, or paste formats, excluding other presentations such 

as nut oils. (3) Only NIR-based techniques were used, excluding other spectroscopic tech-

niques such as mid-infrared or Raman spectroscopy. (4) Any reference to the authentica-

tion of nuts or issues of fraud needed to be reported in the document in question. For 

example, a document would be accepted if the objective was the classification of pistachio 

cultivars to detect fraud in their commercialization; however, a paper would not be con-

sidered in this review if the objective was the classification of pistachio cultivars per se, 

with no mention or consideration of food fraud. (5) The earliest date for a document to be 

included in this review was set at 2018. The number of documents published in the past 7 

years regarding fraud detection in nuts using NIR spectroscopy and HSI was significantly 

greater than the number of documents available in the years before 2018 (Figure 1). Con-

sequently, this review is of great importance to summarize the research information avail-

able on this topic from the past seven years. 

 

Figure 1. Numbers of studies related to food fraud detection in nuts before 2018 and from 2018 

onwards. 

3. The Nature of Fraud in Nuts and Types of NIR Applications Reviewed 

Nowadays, several approaches to food fraud can be taken due to the great complexity 

of the food supply chain and the latest trends in which foodstuffs are produced, processed, 

distributed, and sold [32]. Momtaz et al. [33] indicated the main mechanisms of food adul-

teration, including the adulteration of food properties by adding artificial coloring agents 

or preservatives and the substitution of a specific food ingredient by adding another in-

gredient of inferior quality and value. Moreover, other types of fraud related to authenti-

cation issues can be found in the scientific literature, such as the mislabeling of foodstuffs, 
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which takes advantage of the high economic value of products of a superior quality cate-

gory or those that have been produced in specific regions and associated with a Protected 

Geographical Indication (PGI), Protected Designation of Origin (PDO), or similar quality 

standards [34]. In nuts, different type of fraud can be found depending on the format of 

the commercialized product. One of the most common types identified in the papers we 

reviewed was the adulteration of ground, powder, or paste nut products by using other 

foodstuffs of a lower value, including different nuts or fruit, such as the adulteration of 

almond powder with apricot or peanut powder [35,36]. This can mainly lead to food safety 

issues (allergies) and consumer dissatisfaction, given the lower quality of the product they 

purchase and the financial deceit involved. In addition, although it is not so common, 

given the ease of committing fraud in the previously mentioned nut formats, several cases 

can be found of authenticity issues with intact nuts, including the year of stock, type of 

production (for example, organic farming) or origin, or their adulteration, such as the 

commercialization of non-compliant intact nuts. In this context, of the studies reviewed in 

this work (Tables 1 and 2), three main targets were identified related to food fraud detec-

tion in different formats of nuts using NIR-based techniques: the identification of their 

origin, the authentication of the cultivar, and the detection of adulterants in the commer-

cialized product.  

The origin of nuts is a key issue affecting the characteristics of their products since 

factors such as the climatologic conditions of the area or the soil properties and the man-

agement of the orchards have a significant influence on the chemical composition of the 

nuts and, thus, on their quality and final market price. Biancolillo et al. [37] and Sammarco 

et al. [38] developed methods to authenticate different PDOs and PGIs of Italian hazelnuts 

harvested in specific locations such as the Roma and Viterbo (Lazio, Italy) areas. The au-

thentication of the origins of different nuts was also evaluated in the studies carried out 

by Firmani et al. [20] for almonds, Amendola et al. [39] for walnuts, and Nardecchia et al. 

[40] for chestnuts. Furthermore, nut cultivars are also a key factor in the market value of 

the product since its shape, taste, and/or aroma can differ from one cultivar to another. 

Hence, different studies have been carried out in nuts such as almonds, chestnuts, and 

pine nuts [41–44].  

Finally, regarding the detection of adulterants in the commercialized product, a wide 

range of adulterants can be found in the studies reviewed, such as was suggested by the 

presence of green peas in pistachio nut products, given the lower price of the former 

[45,46]; the presence of bitter almonds in batches of sweet almonds, which can affect con-

sumer safety [47,48]; the adulteration of cashew nuts with other allergenic nuts [49,50]; 

and the detection of foreign bodies in Chinese hickory nuts, such as shell fragments that 

can be harmful for human consumption [51]. To address these issues, different chemo-

metric approaches were tested in the reviewed documents by means of the development 

of quantitative and qualitative models to detect fraud in nuts. The former aim at the esti-

mation of the quantity of the undesired component in the adulterated product while the 

latter apply methods designed for the classification of the product according to its mem-

bership to a certain class.  
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Table 1. Applications for fraud detection in nuts using NIR point spectroscopy techniques. N: number of samples; Ref.: reference. 

Type of Nut Aim of the Study 
Sample Presentation  

and Analysis 
Technique 

Acquisition 

Mode 

Spectral Range 

(nm)  
Chemometric Technique N Performance Ref. 

Almonds Cultivar authentication  
Intact shelled. 

Two spectra per kernel. 
NIR spectroscopy Reflectance 1000–1700  

Partial least squares–discrimi-

nant analysis (PLS-DA) and 

quadratic discriminant analysis 

(QDA) 

120 
Test set: 94% of almonds 

correctly classified 
[41] 

Almonds  

Origin authentication 

(Avola almonds from 

Syracuse area, southeast 

of Sicily, Italy) 

Intact.  

Two spectra per sample. 

Fourier-Transformed 

(FT) NIR spectroscopy  
Reflectance 1000–2500 

PLS-DA and soft independent 

modeling of class analogies 

(SIMCA) 

227 
Test set: 95% of almonds 

correctly classified  
[20] 

Almonds Origin authentication 
Intact and ground. Up to 

six spectra per sample. 

FT  

NIR spectroscopy 
Reflectance 866–2532 Support vector machine (SVM) 64 

Nested cross-validation: 

62.6% of intact almonds and 

79.1% of ground almonds 

correctly classified  

[52] 

Almonds Detection of adulterants 
Powder. One spectrum 

per sample. 

FT  

NIR spectroscopy 
Reflectance 1000–2500  

Data-driven SIMCA 

(DDSIMCA) and one-class PLS 

(OCPLS) 

260 

Test set: 91–100% of adulter-

ated samples correctly clas-

sified 

[35] 

Almonds Cultivar authentication  
Ground, five spectra per 

sample. 

FT  

NIR spectroscopy 
Reflectance 866–2532  SVM 250 

Nested cross-validation: 

80.3% of almonds correctly 

classified  

[42] 

Almonds Detection of adulterants Intact shelled almonds.  NIR spectroscopy Reflectance 908–1676  PLS-DA  216 
Cross-validation: 90% sam-

ples correctly classified 
[28] 

Almonds Detection of adulterants Intact shelled almonds.  NIR spectroscopy Reflectance 950–1650  PLS-DA  216 
Test set: 98.6% samples cor-

rectly classified 
[28] 

Almonds Detection of adulterants 

Intact in-shell and shelled. 

Batch spectra in dynamic 

mode. Four spectra per 

sample. 

NIR spectroscopy Reflectance 950–1650  PLS-DA 145 

Test set: 95 and 100% of in-

shell and shelled samples, 

respectively, correctly classi-

fied 

[47] 

Almonds Detection of adulterants 

Intact in-shell and shelled. 

Batch spectra in dynamic 

mode. Four spectra per 

sample. 

NIR spectroscopy Reflectance 908–1676  PLS-DA 145 

Test set: 100% of in-shell 

and shelled samples cor-

rectly classified 

[47] 

Almonds Detection of adulterants 
Intact in-shell and shelled. 

Batch spectra in dynamic 
NIR spectroscopy Reflectance 950–1650  

Modified PLS (MPLS) regres-

sion, LOCAL algorithm 
145 

Test set MPLS: R2 = 0.53 for 

in-shell samples; R2 = 0.96 
[47] 
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mode. Four spectra per 

sample. 

for shelled samples.  

Test set LOCAL: R2 = 0.98 

for shelled samples 

Almonds Detection of adulterants 

Intact in-shell and shelled.  

Batch spectra in dynamic 

mode. Four spectra per 

sample. 

NIR  

spectroscopy 
Reflectance 908–1676 

MPLS regression, LOCAL algo-

rithm 
145 

Test set MPLS: R2 = 0.53 for 

in-shell samples; R2 = 0.96 

for shelled samples. Test set 

LOCAL: R2 = 0.95 for shelled 

samples 

[47] 

Almonds Cultivar authentication  

Intact shelled. 

Batch spectra in dynamic 

mode. Four spectra per 

sample. 

NIR  

spectroscopy 
Reflectance 950–1650 

Principal component analysis 

(PCA), Shewhart control chart, 

GH distance 

140 
Test set: 52–90% of almond 

batches correctly classified 
[53] 

Almonds Cultivar authentication  

Intact shelled.  

Batch spectra in dynamic 

mode. Two spectra per 

sample. 

FT NIR 

spectroscopy 
Reflectance 834–2502 

PCA, Shewhart control chart, 

GH distance 
140 

Test set: 57–100% of almond 

batches correctly classified 
[53] 

Almonds Origin authentication  
Powder. 

Five spectra per sample. 

FT NIR 

spectroscopy 
Reflectance 866–2532 

Linear discriminant analysis 

(LDA) 
72 

Nested cross-validation: 

92.5–95.0% of almonds cor-

rectly classified 

[54] 

Almonds Detection of adulterants 
Powder.  

Three spectra per sample. 

NIR 

spectroscopy 
Reflectance 900–1700  DDSIMCA, SIMCA and OCPLS 182 

Test set: 98.5% of almond 

samples correctly classified 
[55] 

Almonds Detection of adulterants 
Powder.  

Three spectra per sample. 

NIR  

spectroscopy 
Reflectance 950–1650 DDSIMCA, SIMCA and OCPLS 182 

Test set: 98.5% of almond 

samples correctly classified 
[55] 

Almonds Detection of adulterants 
Powder.  

Three spectra per sample. 

FT NIR  

spectroscopy 
Reflectance 1350–2500  DDSIMCA, SIMCA and OCPLS 182 

Test set: 96.4% of almond 

samples correctly classified 
[55] 

Almonds Detection of adulterants 
Powder.  

Three spectra per sample. 

FT NIR  

spectroscopy 
Reflectance 900–2500 DDSIMCA, SIMCA and OCPLS 182 

Test set: 100% of almond 

samples correctly classified 
[55] 

Almonds Detection of adulterants Ground. 
NIR  

spectroscopy 
Reflectance 908–1676 

SIMCA, decision tree (DT), lo-

gistic regression (LR), naive 

Bayes (NB), SVM, k-Nearest 

Neighbor (KNN), Gaussian 

Process (GP) 

120 
Test set: 100% of almond 

samples correctly classified 
[36] 

Almonds Detection of adulterants Ground. 
FT NIR  

spectroscopy 
Reflectance 1000–2500  

SIMCA, DT, LR, NB, SVM, 

KNN, GP 
120 

Test set: 100% of almond 

samples correctly classified 
[36] 
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Almonds Detection of adulterants Ground. 
NIR  

spectroscopy 
Reflectance 908–1676 PLS regression  120 

Test set: R2 = 0.96 for the de-

termination of adulterant 

concentration 

[36] 

Almonds Detection of adulterants Ground. 
FT NIR  

spectroscopy 
Reflectance 1000–2500  PLS regression  120 

Test set: R2 = 0.96 for the de-

termination of adulterant 

concentration 

[36] 

Cashew nuts Detection of adulterants 
Ground.  

One spectrum per sample. 

NIR  

spectroscopy 
Reflectance 908–1676 PLS-DA and SIMCA 280 

Test set: 55.4–100% reliabil-

ity rate 
[49] 

Cashew nuts Detection of adulterants 
Ground.  

One spectrum per sample. 

NIR  

spectroscopy 
Reflectance 908–1676 SIMCA 280 

Test set: 95.7–98.7% of adul-

terated samples correctly 

classified 

[50] 

Cashew nuts Detection of adulterants 
Ground.  

One spectrum per sample. 

NIR  

spectroscopy 
Reflectance 908–1676 SIMCA 280 

Test set: 95.7–100% of adul-

terated samples correctly 

classified 

[56] 

Chestnuts  

Origin authentication 

(‘Vallerano’ chestnuts, 

Italy) 

Intact in-shell.  

Four spectra on the peri-

carp and two on the hilum 

per individual fruit. 

FT NIR  

spectroscopy  
Reflectance 1000–2500  PLS-DA and SIMCA 441 

Test set: 95% of in-shell and 

97% of shelled walnuts cor-

rectly classified 

[40] 

Chestnuts Cultivar authentication  
Intact shelled.  

One spectrum per kernel. 

FT NIR  

spectroscopy 
Reflectance 1000–2500  PLS-DA 96 

Cross-validation: 98% cor-

rectly classified 
[43] 

Hazelnuts 

Origin authentication 

(Italian PDO ‘‘Nocciola 

Romana’’) 

Intact in-shell.  

Two spectra per intact 

nut. 

FT NIR  

spectroscopy  
- 1000–2500  PLS-DA and SIMCA 376 

Test set: 94% of hazelnuts 

correctly classified 
[37] 

Hazelnuts  

Origin authentication 

(different regions of Tur-

key) 

Intact in-shell and shelled.  

Two spectra per kernel.  

FT NIR  

spectroscopy  
Reflectance 1000–2500  PLS-DA and LR 280 

Test set: 100% of in-shell 

and shelled hazelnuts cor-

rectly classified 

[57] 

Hazelnuts  

Origin authentication 

(from five different 

countries) 

Ground.  

Five spectra per sample. 

FT NIR  

spectroscopy 
Reflectance 866–2532  

Discriminant 

classifiers using random sub-

spaces for constructing DT 

233 

Nested cross-validation: 

90.6% of hazelnuts correctly 

classified 

[58] 

Hazelnuts  

Origin authentication 

(Italy: PGI from Pied-

mont and PDO from 

Campania) 

Ground and paste.  

Fourteen spectra per sam-

ple. 

NIR  

spectroscopy 
Reflectance 400–2500  PLS-DA 216 

Test set: 100% of intact ha-

zelnuts correctly classified 

and 72% of paste hazelnuts 

correctly classified 

[38] 

Pine nuts Cultivar authentication  
Intact shelled.  

Two spectra per kernel. 

NIR  

spectroscopy 
Reflectance 1100–2300  

PLS-DA and Interval-PLS-DA 

(iPLS-DA) 
900 

Test set: 97% of pine nuts 

correctly classified 
[44] 
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Pine nuts Cultivar authentication  
Intact in-shell.  

One spectrum per kernel. 

FT NIR  

spectroscopy 
Reflectance 781–2632  

DT, random forest (RF), MLP, 

SVM, NB 
210 

Test set: 99% of pine nuts 

correctly classified 
[59] 

Pistachio  Detection of adulterants 
Ground.  

Three spectra per sample. 

FT NIR  

spectroscopy 
Reflectance 1250–2500  SIMCA 60 

Test set: 100% of pistachio 

adulterated samples cor-

rectly classified 

[46] 

Pistachio  Detection of adulterants  
Powder.  

Ten spectra per sample. 

NIR  

spectroscopy 
- 908–1695 

PCA and PLS regression for 

adulterant quantification 
143 

PCA scores plot reported a 

clear grouping of classes.  

Test set PLS: R2 > 0.99 

[45] 

Walnuts Origin authentication 
Powder.  

One spectrum per sample. 

FT NIR  

spectroscopy 
Reflectance 833–2500  PLS-DA 555 

Test set: 98.8–100% of wal-

nuts correctly classified 
[60] 

Walnuts  

Origin authentication 

(Sorrento area, south of 

Italy) 

Intact in-shell and shelled.  

Two spectra per  

individual kernel. 

NIR  

spectroscopy 
- - PLS-DA 237 

Test set: 95% of in-shell and 

97% of shelled walnuts cor-

rectly classified 

[39] 

Walnuts Origin authentication  
Ground.  

Three spectra per kernel. 

FT NIR  

spectroscopy 
Reflectance 866–2532 LDA 212 

Nested cross-validation: 

77% of walnuts correctly 

classified 

[61] 

Table 2. Applications for fraud detection in nuts using hyperspectral imaging techniques. N, number of samples; Ref., Reference. 

Type of Nut Aim of the Study Sample Presentation and Analysis Technique 
Acquisition 

Mode 

Spectral Range 

(nm) 

Chemometric 

Technique 
N Performance Ref. 

Almonds  
Detection of adul-

terants 
Intact shelled almond kernels NIR HSI system Reflectance 900–1700  PLS-DA 448 

Test set: 97.1% of samples cor-

rectly classified 
[62] 

Almonds 
Detection of adul-

terants 
Intact shelled almond kernels NIR HSI system Reflectance 946–1648  PLS-DA 158 

Test set: 75% of samples cor-

rectly classified 
[48] 

Chinese hickory nuts 
Detection of adul-

terants  

Intact shelled Chinese hickory nut 

kernels 

Visible (VIS)–NIR  

HSI system 
Reflectance 400–1000  

PCA-KNN,  

and SVM 
213 

Test set: 99% of samples cor-

rectly classified 
[51] 
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4. NIR-Based Instrumentation and Analysis Mode for the Detection of Fraud in  

Different Formats of Nuts 

The wide range of applications for the detection of fraud in nuts using NIR-based 

technologies have been made possible due to the great development in terms of instru-

mentation over the last few years, enabling this technology to be used throughout the 

different steps of the food supply chain to meet the needs of producers, industry, retailers, 

and consumers [63–65]. In this work, the research studies reviewed were classified into 

two groups, according to the type of instrumentation used: conventional NIR spectros-

copy instruments or multispectral/hyperspectral camera systems.  

4.1. NIR Spectroscopy 

The versatility of NIR spectroscopy enables us to analyze nuts in the different formats 

available in the market such as intact, ground, powder, or paste, which can be considered 

as a major advantage for fraud detection in these products. This technology can be applied 

in various modes, namely reflectance, interactance, and transmission, using three main 

types of instruments, namely laboratory devices, instruments located in the sorting and 

grading industrial lines, and portable devices [66,67]. It permits the analysis of food prod-

ucts in the different steps of the supply chain, i.e., in the field (in-situ), in the laboratory 

(off-line), on the production line (at-line, on-line), etc. 

The most common instruments used among the studies reviewed (Table 1) were 

those designed for at-line or off-line applications in different formats of nuts, such as the 

FT-NIR TANGO spectrometer (Bruker Optics, Bremen, Germany) [58,61] or the FT-NIR 

Nicolet 6700 spectrophotometer (Thermo Fisher Scientific, Madison, WI, USA) [20,37], 

which both work in reflectance mode. Although these FT-NIR laboratory devices offer 

high-spectral-resolution NIR measurements, their main disadvantage is that they can be 

only incorporated at-line and in the laboratory under controlled conditions and that the 

amount of product which can be inspected using them is limited compared to that using 

other types of instruments. In addition to the laboratory systems, other research papers 

used devices suitable for the on-line NIR analysis of nuts. One of the main advantages of 

this type of instrument is the possibility to analyze—directly from the processing line—

greater amounts of product compared to the laboratory devices and, thus, to collect a 

greater variability, which is of major importance when dealing with food fraud detection. 

In this context, Vega-Castellote et al. [53] used the Matrix-F spectrophotometer (Bruker 

Optik GmbH, Ettlingen, Germany), which is an FT-NIR instrument interfaced to a fiber-

optic NIR illumination and a detection head working in reflectance mode in the 834–2502 

nm spectral range. The spectral range in which most of the benchtop and on-line instru-

ments used in the studies we reviewed work (approx. 1000–2500 nm) provides key infor-

mation for the detection of fraud in nuts. For example, the 1000–1100 nm band, at the 

beginning of the second overtone region, can be useful to discriminate hazelnuts of differ-

ent geographical origins since that band can be associated with the presence of polyphe-

nols in aromatic compounds [38] while the 1200 nm wavelength can be related to absorb-

ances of the second overtone of C–H bonds of lipids [68]. Furthermore, the 1408–1650 nm 

region can be related to the N-H stretching (first overtone) of proteins, which can be useful 

for determining the origins of almonds [52]. In addition, the 1724 nm wavelength, linked 

to C-H stretching (first overtone), can provide information about the lipid contents of wal-

nuts, which can be of great interest to identify the geographical origin of their products 

[61].  

In addition, apart from these applications using laboratory and on-line NIR instru-

ments, various research papers can be found that aimed to detect food fraud using porta-

ble NIR instruments. These devices belong to a new generation of NIR handheld instru-

ments which permit the in-situ analysis of products at different steps throughout the food 

supply chain. Despite the reduced sizes of these instruments, the technological develop-

ments enable one to ensure the satisfactory performance of these devices [69]. The portable 
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instruments used in the papers we reviewed work in reflectance mode in the spectral 

range of approx. 900–1700 nm so that key information for fraud detection in nuts can be 

extracted, as mentioned above. It is important to highlight that compared to on-line in-

struments, the area from which the NIR information is collected when using portable de-

vices is smaller, given the limited window size of these devices. Nevertheless, different 

strategies to deal with this issue have been reported in the studies we reviewed, such as 

analyzing the nuts in dynamic mode (moving the portable sensor along the surface of the 

product) to collect the maximum amount of variability as possible, and to obtain more 

representative information from a sample [28], or taking more than one spectrum per sam-

ple, which, in addition, would enable one to guarantee the spectral repeatability of the 

data acquired. For example, Lösel et al. [54] acquired five spectra per powdered almond 

sample, and Arndt et al. [52] took six spectra per each intact almond sample. It is worth 

noting that even when the purpose is to obtain a representative measurement of a single 

kernel, it is of paramount importance to collect more than one spectrum per sample since, 

as reported by Nardecchia et al. [40], there is a difference in the spectral signatures of the 

measurements taken from different parts of a chestnut (pericarp versus hilum), which 

highlights the wide variability within a single kernel. In addition, these authors reported 

that taking the spectral information from the pericarp or the hilum could have an influ-

ence on the model’s performance when classifying PDO and non-PDO Italian ‘Vallerano’ 

chestnuts.  

4.2. NIR Imaging Systems 

The studies available for fraud detection in nuts with NIR imaging devices all used 

hyperspectral systems (Table 2). These systems are generally composed of charged-cou-

pled device (CCD) cameras, which include sensors with small photodiodes (pixels) made 

of materials sensitive to light such as silicon (Si) or indium gallium arsenide (InGaAs) [70], 

along with point, line, or area-scan spectrographs. The line-scan methods are well suited 

for taking information from moving samples by acquiring a slit of spatial and spectral 

information for each point in the linear field of view using conveyor belts or electric dis-

placement platforms, which is of particular interest for analyzing products in food indus-

try processing lines. These methods can be considered as extensions of the point-scan ap-

proach and are both known as spatial-scan methods [70]. For the line-scan systems, the 

speed of the displacement platforms is dependent on the experiment settings and may 

need to be adapted to industrial operation conditions when developing an application for 

routine analysis. Qin et al. [70] stated that HSI applications are the first step to determining 

the optimal wavebands with the aim of reducing the total volume of data to be used later 

as an MSI solution for a particular application. Faqeerzada et al. [62] used a commercial 

Pika NIR-640 (Resonon, Bozeman, MT) line-scan push-broom hyperspectral camera to ac-

quire images in the 900–1700 nm range in reflectance mode in order to detect apricot ker-

nels in almonds—the former is a cheaper product with similar color, texture, or odor com-

pared to almonds—and reported excellent classification accuracy (~97%). Feng et al. [51] 

worked with an HSI system to identify shell fragments in Chinese hickory nuts. The au-

thors reported that the color similarities between kernels and shell fragments can make it 

difficult to differentiate small but harmful endogenous foreign bodies in these nuts. To 

discriminate between these types of products, a line-scan HSI system consisting of a CCD 

camera working in reflectance mode in the VIS–NIR range (400–1000 nm) was used, which 

enabled the researchers to separate kernels from shell fragments with a high degree of 

accuracy (99%). Furthermore, Torres-Rodríguez et al. [48] also used a line-scan HSI system 

to detect bitter almonds in batches of sweet almonds by preparing mixtures in which the 

proportion of bitter kernels was increased from 5 to 20% in 5% steps. The system also 

featured a CCD camera working in the NIR range between 946 and 1648 nm, acquiring 

data in reflectance mode. Based on the results obtained in their study, the authors con-

cluded that it would be possible to classify almonds by bitterness although further studies 

would be needed to be able to identify each individual bitter almond present in a mixture. 
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5. Strategies for the Treatment of the NIR Data and Chemometric Approaches 

The complexity of the food matrices and the large number of data obtained when 

working with NIR-based techniques require using multivariate statistical tools for data 

interpretation. One of the first steps prior to the development of NIR models is to pretreat 

the spectral data in order to remove unwanted signals [71]. In addition, different chemo-

metric approaches can be found to develop quantitative or qualitative applications to de-

tect fraud in nuts. These approaches, in turn, can be targeted or not targeted, as explained 

below.  

5.1. Spectral Preprocessing of Nuts 

In nuts, it is important to study the influence that the physical characteristics of the 

sample, like the shape of the nut or particle size (i.e., kernels analyzed in intact versus 

ground format), can have on the captured spectrum, given the absorbance displacement 

and the slope shift related to the scatter effect of the light when it interacts with a sample. 

In addition to the correction of the scatter effects—using, for example, standard normal 

variate (SNV) or multiplicative scatter correction (MSC) specifically suggested to eliminate 

drifts (non-linear baseline deviations) caused by scatter in reflectance measurements—

other preprocessing methods should also be tested, such as the filtering and/or the scal-

ing/centering signal pretreatments, since the latter, for example, often enables one to ob-

tain a more simple and interpretable regression model [72]. Corona et al. [43] tested dif-

ferent pretreatments on the spectra of intact chestnuts such as SNV, MSC, and Savitzky–

Golay (SG) derivatives to remove the unwanted spectral variance that could be associated 

with the variability in the refractive index and the morphology or density of the sample. 

These authors reported that the best modeling results were obtained using SNV in com-

bination with derivatives. This pretreatment combination of scatter correction followed by 

a filtering method was the one most frequently used among the studies reviewed and 

could be seen in the research carried out by Moscetti et al. [44], Torres et al. [28], Vega-

Castellote et al. [53], Shakiba et al. [58], and Netto et al. [55] among others. Likewise, Arndt 

et al. [61], who tested more than eight different pretreatments applied in different orders 

to classify walnuts analyzed in ground format based on their geographical origin, also 

concluded that the most suitable option to remove unwanted variations from the spectral 

data was the application of a scatter correction method—followed, in this case, by a cen-

tering pretreatment. It should be mentioned that while these studies selected the optimal 

pretreatment combination based on the models’ performance, none of them showed sig-

nificance tests comparing the models’ performance when the different pretreatments were 

applied and, therefore, the fact that most of them used a scatter correction method along 

with other spectral pretreatments should be viewed with caution. Finally, other types of 

pretreatments can be found among the papers reviewed, such as the use of binning as a 

preprocessing technique to average the intensity of a different number of adjacent, 

strongly correlated wavenumbers to decrease the computational time of the spectral data 

[54].  

5.2. Chemometric and Machine Learning Approaches for Fraud Detection in Nuts 

Two types of chemometric approaches can be differentiated to deal with food fraud 

using NIR techniques. When the aim is the quantification of a specific compound/property 

of the matrix analyzed or the discrimination of previously defined classes, targeted 

chemometric methods are used. However, when the objective is to assess product devia-

tions compared with a library of previously recorded compliant samples according to a 

standard (without focusing on any specific compound, but rather focusing on the whole 

fingerprint of the product in question), non-targeted methods are applied [73].  

The targeted approach is the most traditional method in the NIR community for qual-

ity and safety determination in food products. Quantitative and qualitative applications 

are commonly carried out using regression and classification techniques such as the PLS 
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regression or PLS-DA, respectively. However, non-targeted approaches are a recent, 

promising trend in NIR applications and have great potential to assure the integrity of 

food products. Many examples of non-targeted approaches can be found, such as the use 

of PCA or the OCPLS method [74,75]. 

5.2.1. Targeted Approaches 

The most frequently used approach to detect fraud in nuts is the application of the 

targeted linear PLS-DA technique (Tables 1 and 2), for example, to detect adulterants in 

almonds [28] or cashew nuts [49], to authenticate the origin of almonds [20] or hazelnuts 

[37,38], and to authenticate the cultivars of almonds [41] or pine nuts [44]. One important 

aspect to take into consideration when using the PLS-DA technique, as mentioned by 

Vega-Castellote et al. [47], who assessed the presence of bitter almond kernels in commer-

cial batches of sweet almonds, is the number of samples included per class since unbal-

anced models can bias the PLS-DA prediction boundary towards the smaller class. After 

the application of PLS-DA, different authors have proposed ways of identifying which 

variables have the greatest influence on the model using different methods such as Bian-

colillo et al. [37], who used the variable importance in projection (VIP) score values and 

found that the most important spectral regions for the origin authentication of hazelnuts 

were at approximately 1700–1785 nm, related to the presence of lipids, and 2000–2170 nm, 

associated with combination bands of the peptide bonds. The VIP values were also stud-

ied by Torres-Rodríguez et al. [48], who used a PLS-DA model to detect the presence of 

bitter almonds in batches of sweet almonds using an HSI system. The results obtained 

with the full spectral range (179 bands) and only the ones selected using the VIP values 

(25 bands) reported a similar accuracy, which is of special interest in HSI applications to 

reduce the amount of available data.  

In addition to PLS-DA, other chemometric targeted approaches have been used to 

detect fraud in nuts. Arndt et al. [61] used LDA to determine the geographical origin of 

walnuts. Prior to the application of this technique, these authors reduced the dimensions 

of the spectral data by applying PCA. Likewise, Cortés et al. [41] performed QDA to de-

termine the cultivars of almonds in which, prior to the application of this algorithm, PCA 

was performed and the QDA was applied to the principal component scores obtained. 

When applying these types of algorithms (LDA or QDA), the dimension of the NIR data 

usually needs to be reduced—by using PCA or PLS, for example—since the number of 

variables must be lower than the number of samples [76].  

Other approaches based on machine learning techniques have also been used such 

as the application of discriminant classifiers using random subspaces to construct DTs for 

the geographical determination of hazelnuts [58], in which the authors carried out a data 

fusion strategy using NIR and nuclear magnetic resonance (NMR) spectroscopies. Arndt 

et al. [52] and Arndt et al. [42] developed multiclass models to determine the geographical 

origin of almonds using SVM, which is a method that can be used to train linear and non-

linear classifiers, for classification [77]. Huang et al. [59] also used machine learning meth-

ods, such as the RF, NB, or the multilayer perceptron (MLP), to identify the cultivars of 

pine nuts. Menevseoglu et al. [36] successfully identified ground almonds that had been 

adulterated with apricot kernels by applying different machine learning algorithms. The 

results obtained in these studies showed that the machine learning approaches, along with 

the NIR techniques tested, were effective means of geographical determination and culti-

var identification in different nuts. 

In addition to these classification techniques, quantitative approaches have also been 

tested in studies aiming at the detection of adulterants in nuts. Genis et al. [45] applied 

the PLS regression method to detect the presence of green peas and/or spinach powder in 

ground samples of pistachio, reporting a high degree of prediction accuracy. Vega-Castel-

lote et al. [47] also used the MPLS regression technique and the LOCAL algorithm to iden-

tify adulterants in intact almonds by quantifying the amount of a toxic compound in the 

samples (Table 1).  
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5.2.2. Non-Targeted Approaches 

There is a current and important discussion in the food authentication literature re-

garding the ‘discriminant’ and ‘class-modeling’ approaches [78]. Non-targeted tech-

niques, which are focused on a single class and can be related to the class-modeling ap-

proach, can also be found among the studies reviewed. As can be seen from Table 1, the 

most frequently used is the SIMCA method. This class-modeling approach, based on PCA, 

models each of the classes individually, with new unknown samples accepted or rejected 

by each class model [79]. Firmani et al. [20] tested this method for the authentication of 

the origin of almonds, indicating the importance of presenting the results of the analysis 

in terms of sensitivity and specificity—samples correctly identified in their class and cor-

rectly rejected samples, respectively—given the fact that when the SIMCA method is used, 

one sample can be associated with more than one class. Biancolillo et al. [37] also applied 

the SIMCA method for to authenticate the origin of hazelnuts. In their study, they focused 

on a specific class (an Italian PDO hazelnut), with all the rest of the samples not belonging 

to that PDO assigned to a second class. This type of approach is known as asymmetric 

classification. In addition, other studies using the SIMCA method can be found for au-

thenticating the origin of chestnuts [40], as well as for detecting adulteration in pistachios 

[46], cashew nuts [49], or almond flour [55] among others. In all cases, satisfactory results 

have been obtained using the SIMCA method. Nevertheless, it is important to note that in 

many studies in which PLS-DA and the SIMCA method were tested, the authors high-

lighted that PLS-DA outperformed the SIMCA method [40,49], given the fact that the 

SIMCA method models the intra-class variance, which is usually low, as was in the case 

of the study conducted by Miaw et al. [49], while PLS-DA maximizes the between-group 

variance [80]. An adaptation of the SIMCA method, the DDSIMCA method, was tested by 

Faqeerzada et al. [35] and Netto et al. [55] to detect adulterants in almonds in powder 

format. Both studies also applied the OCPLS algorithm, which is another non-targeted 

class-modeling method and which models only the target class and sets threshold bound-

aries during the development of the model. Although, in these studies, high accuracy 

(~90–100%) was obtained for the detection of adulterants in almonds in powder format, 

in both cases, it was reported that the DDSIMCA models performed better for classifica-

tion when compared to OCPLS. 

Another example of a non-targeted method was used by Vega-Castellote et al. [53], 

who developed a system based on PCA, Mahalanobis distances, and the construction of 

Shewhart control charts to detect non-compliant batches of sweet almonds, i.e., batches of 

sweet almonds adulterated with bitter kernels. A standard or control population of sweet 

almonds was characterized by means of PCA, and new adulterated samples (with 5, 10, 

15, and 20% of bitter kernels) were projected into that PCA space. The distance (global 

Mahalanobis distance—GH) of each adulterated sample to the center of the control pop-

ulation was plotted on the Shewhart control charts and GH limits were set in order to 

detect the batches of adulterated almonds. The results obtained suggested that this ap-

proach, which uses solely the NIR spectral information of the product, would enable one 

to successfully perform conformity tests on batches of sweet almonds processed in the 

industry.  

6. Conclusions and Future Prospects 

The adulteration of the physicochemical characteristics of nut products through the 

addition or substitution of any of their components not only has an economic impact –

given the high value of this commodity—but can also have an impact on consumer health. 

In nuts, the main types of fraud are related to the identification of the origin, authentica-

tion of the cultivar, and the detection of adulterants in the commercialized product. The 

papers included in this review show that NIR technology is a suitable analytical alterna-

tive for the rapid detection of fraud in different nuts. The at-line or off-line applications 

were the most common type and were developed using laboratory devices that can be 
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used in limited scenarios. However, only a few applications were available in the literature 

that use the new generation of portable and on-line NIR sensors to detect fraud in nuts. 

The feasibility of portable devices to perform NIR measurements in different steps of the 

food supply chain and the possibility of on-line sensors analyzing large amounts of pro-

duce, along with the need for fast, non-destructive analytical alternatives for routine op-

erations to detect fraud in the food supply chain, mean there are promising perspectives 

for the application of these types of sensors in the upcoming years. In addition, HSI tech-

nology has become a powerful tool that combines characteristics of machine vision and 

point spectroscopy and is of great interest in the identification of fraud in intact nuts, 

where spatial information plays a significant role. Future prospects for this technology 

seek to improve the implementation of HSI systems by reducing the workload of imaging 

acquisition and processing so that real-time routine operations can be used for fast, non-

destructive fraud detection and thus meet the needs of the nut industry. Although con-

siderable advances have been achieved in the past few years in the field of HSI systems in 

terms of hardware and software, the speed of these systems is still the greatest handicap 

for their adoption in inspection processes in the food industry. 

In the reviewed papers, different chemometric approaches were used to assess the 

occurrence of fraud in nuts, and these can be divided into targeted and non-targeted meth-

ods. Several papers included in this review used non-targeted methods, given that fraud-

sters often develop sophisticated alternatives to avoid detection through targeted meth-

ods. Thus, non-targeted methods are a promising tool for the screening of fraud in nuts, 

reducing the volume of product analyzed using confirmatory techniques. However, 

among the key challenges still to be addressed in the following years in order to imple-

ment these methods for fraud detection in nuts in routine operations in the industry are 

the development of legislative guidelines to apply these methods in routine analysis for 

official control and the validation of the models using independent sample tests on the 

industrial sorting lines. 
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Nomenclature 

CCD charged-coupled device 

CE conditional entropy  

CN combined nomenclature 

DDSIMCA data-driven soft independent modeling of class analogies 

DT decision tree 

EU European Union  
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FT Fourier-transform 

GH global Mahalanobis distance 

GP Gaussian process  

HSI hyperspectral imaging 

InGaAs indium gallium arsenide  

iPLS interval partial least squares discriminant analysis  

JCR journal citation reports 

KC-FFQ Knowledge Centre for Food Fraud and Quality 

KNN k-nearest neighbor  

LDA linear discriminant analysis 

LR logistic regression 

MLP multilayer perceptron 

MPLS modified partial least squares 

MSC multiplicative scatter correction 

MSI multispectral imaging 

NB naive bayes 

NIR near-infrared 

NMR nuclear magnetic resonance 

OCPLS one-class partial least squares 

OJEU official journal of the European Union 

PCA principal components analysis 

PCR polymerase chain reaction 

PDO protected designation of origin 

PGI protected geographical indication 

PLS partial least squares 

PLS-DA partial least squares–discriminant analysis 

QDA quadratic discriminant analysis 

RF random forest 

SG Savitzky–Golay 

Si Silicon 

SIMCA soft independent modeling of class analogies 

SNV standard normal variate 

SVM support vector machine 

VIP variable importance in projection 

VIS visible 
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